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Abstract

One of the most common types of analysis in genome research

is the comparison of gene expression profiles (or transcriptomics)

to understand the relationship between genes (or genotype) and

the phenotype. Transcriptome analysis has been traditionally con-

ducted using microarrays and with increasing frequency since 2008

by RNA sequencing (RNA-seq). A fundamental goal in these

types of studies is to identify the genes whose expression changes

between different conditions, in other words, to select the most

relevant variables (genes) in terms of inter-condition variability.

The variable selection problem, usually known in transcriptomics

as “differential expression analysis”, can be addressed from the

univariate or multivariate point of view, but must always take

the complexity of the experimental design into account. One of

the challenges that biostatisticians face when tackling this prob-

lem is the so-called “curse of dimensionality”: hundreds or even

thousands of variables have to be analyzed with few observations

usually available. Therefore, it is essential to provide researchers

with efficient statistical tools to perform this task.

A typical approach to variable selection is to test the null hy-

pothesis of equality of average expression levels between two con-

ditions in a gene-wise fashion and to do this repeatedly for all

genes in the transcriptomics data set. However, transcriptomics

may also involve multifactorial experimental designs (eg multiple

treatments, several developmental states, time series...). The first

part of this thesis is dedicated to the variable selection problem



in multifactorial designs when multivariate methods are used to

model microarray gene expression profiles. In particular, we chose

the ASCA-genes multivariate technique as a starting point to pro-

pose some strategies to select differentially expressed genes in the

multivariate context, that were tested under different biological

scenarios.

RNA-seq technology emerged when work for this thesis was first

started and now it is widely applied in transcriptomics. RNA-seq

data is fundamentally different from microarray data and this has

motivated the development of new statistical methods to study

differential expression in this technology. Thus, the second part

of the thesis is entirely focused on RNA-seq experiments. First,

we develop a set of procedures to assess the quality of RNA-seq

measurements, to identify the potential biases of the technol-

ogy and to process the data to reduce the impact of technical

noise on statistical results. Secondly, we address the variable se-

lection problem for the two-class comparison case. Given that

some controversy exists on the theoretical distribution followed

by RNA-seq data, we opted to investigate non-parametric data-

driven techniques to overcome the limitations of parametric as-

sumptions and propose a strategy that is efficient in controlling

the false positive rate. Two methodologies, NOISeq for techni-

cal and NOISeqBIO for biological replicates, were developed and

compared to the state of the art methods.



Resumen

Uno de los análisis más comunes en investigación genómica es la

comparación de perfiles de expresión génica (o transcriptómica)

para entender la relación entre los genes (o genotipo) y el fenotipo.

El análisis del transcriptoma se ha llevado a cabo tradicional-

mente utilizando microarrays y cada vez con mayor frecuencia

desde 2008 mediante secuenciación del ARN (RNA-seq). Un ob-

jetivo fundamental en este tipo de estudios es identificar aquellos

genes cuya expresión cambia entre condiciones, en otras palabras,

seleccionar las variables más relevantes (genes) en términos de

variabilidad entre-condiciones. El problema de selección de varia-

bles, normalmente conocido en transcriptómica como “análisis de

expresión diferencial”, se puede abordar desde el punto de vista

univariante o multivariante, siempre teniendo en cuenta la com-

plejidad del diseño experimental. Uno de los retos a los que los

bioestad́ısticos se enfrentan al tratar de resolver este problema es

la llamada “maldición de la dimensión”: se tienen que analizar

cientos o incluso miles de variables con muy pocas observaciones

disponibles normalmente. Por tanto, es esencial proporcionar a

los investigadores herramientas estad́ısticas eficientes para llevar

a cabo esta tarea.

Un enfoque t́ıpico en selección de variables es contrastar la hipóte-

sis nula de igualdad del nivel de expresión medio entre dos condi-

ciones para un gen particular y hacerlo repetidamente para todos

los genes del conjunto de datos transcriptómicos. Sin embargo, la

transcriptómica puede conllevar también diseños experimentales



multifactoriales (múltiples tratamientos, varios estados de desa-

rrollo, series temporales...). La primera parte de esta tesis se ha

dedicado al problema de selección de variables en diseños multi-

factoriales cuando se usan métodos multivariantes para modelizar

los perfiles de expresión génica en microarrays. En particular,

elegimos como punto de partida la técnica multivariante ASCA-

genes para proponer algunas estrategias de selección de genes

diferencialmente expresados en un contexto multivariante, que

fueron evaluadas bajo distintos escenarios biológicos.

La tecnoloǵıa RNA-seq apareció al comienzo de esta tesis y ahora

se aplica ampliamente en transcriptómica. Los datos de RNA-seq

son en esencia diferentes a los datos de microarrays y esto ha mo-

tivado el desarrollo de nuevos métodos estad́ısticos para estudiar

la expresión diferencial en esta tecnoloǵıa. Por tanto, la segunda

parte de la tesis se centra exclusivamente en experimentos de

RNA-seq. Primero, desarrollamos una colección de procedimientos

para determinar la calidad de las medidas de RNA-seq, identificar

los sesgos potenciales de la tecnoloǵıa y procesar los datos para

reducir el impacto del ruido técnico en los resultados estad́ısticos.

En segudo lugar, abordamos el problema de selección de variables

para el caso de comparación de dos grupos. Dado que existe

cierta controversia en la distribución teórica que siguen los datos

de RNA-seq, optamos por investigar técnicas no paramétricas di-

rigidas por los datos para vencer las limitaciones de las hipótesis

paramétricas y propusimos una estrategia que es eficiente a la

hora de controlar la tasa de falsos positivos. Se desarrollaron

dos metodoloǵıas, NOISeq para réplicas técnicas y NOISeqBIO

para réplicas biológicas, y se compararon con los métodos más

punteros.



Resum

Una de les anàlisis més comunes en investigació genòmica és

la comparació de perfils d’expressió gènica (o transcriptòmica)

per entendre la relació entre els gens (o genotip) i el fenotip.

L’anàlisi del transcriptoma s’ha dut a terme tradicionalment uti-

litzant microarrays i cada vegada amb més freqüència des de

2008 mitjançant la seqüenciació de l’ARN (RNA-seq). Un ob-

jectiu fonamental en aquest tipus d’estudis és identificar aquells

gens l’expressió dels quals canvia entre condicions, en altres pa-

raules, seleccionar les variables més rellevants (gens) en termes

de variabilitat entre-condicions. El problema de selecció de vari-

ables, normalment conegut en transcriptòmica com a “anàlisi

d’expressió diferencial”, es pot abordar des del punt de vista uni-

variant o multivariant, sempre tenint en compte la complexitat del

disseny experimental. Un dels reptes a què s’enfronten els bioes-

tad́ıstics en tractar de resoldre aquest problema és l’anomenada

“maldició de la dimensió”: s’han d’analitzar centenars o milers de

variables amb molt poques observacions disponibles normalment.

Per tant, és essencial proporcionar als investigadors ferramentes

estad́ıstiques eficients per a dur a terme aquesta tasca.

Un enfocament t́ıpic en selecció de variables és contrastar la

hipòtesi nul·la d’igualtat de nivells d’expressió mitjans entre dues

condicions per a un gen particular i fer-ho repetidament per a tots

els gens del conjunt de dades transcriptòmiques. No obstant això,

la transcriptòmica pot comportar també dissenys experimentals



multifactorials (múltiples tractaments, diversos estats de desen-

volupament, sèries temporals...). La primera part d’aquesta tesi

s’ha dedicat al problema de selecció de variables en dissenys mul-

tifactorials quan s’usen mètodes multivariants per a modelitzar els

perfils d’expressió gènica en microarrays. En particular, triàrem

com a punt de partida la tècnica multivariant ASCA-genes per a

proposar algunes estratègies de selecció de gens diferencialment

expressats en un context multivariant, que van ser avaluades sota

diferents escenaris biològics.

La tecnologia RNA-seq va aparèixer al començament d’aquesta

tesi i ara s’aplica àmpliament en transcriptòmica. Les dades de

RNA-seq són en essència diferents a les dades de microarrays i

açò ha motivat el desenvolupament de nous mètodes estad́ıstics

per a estudiar l’expressió diferencial en aquesta tecnologia. Aix́ı

doncs, la segona part de la tesi se centra exclusivament en ex-

periments de RNA-seq. En primer lloc, vam desenvolupar una

col·lecció de procediments per a determinar la qualitat de les

mesures de RNA-seq, identificar biaixos potencials de la tecnolo-

gia i processar les dades per a reduir l’impacte del soroll tècnic en

els resultats estad́ıstics. En segon lloc, es va abordar el problema

de selecció de variables per al cas de comparació de dos grups.

Donat que existeix certa controvèrsia en la distribució teòrica

que segueixen les dades de RNA-seq, vam optar per investigar

tècniques no paramètriques dirigides per les dades per a véncer

les limitacions de les hipòtesis paramètriques i vam proposar una

estratègia que és eficient a l’hora de controlar la tasa de falsos

positius. Es desenvoluparen dues metodologies, NOISeq per a

rèpliques tècniques i NOISeqBIO per a rèpliques biològiques, i es

compararen amb els mètodes més capdavanters.
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1.1 What is transcriptomics about?

The cell is the basic structural, functional and biological unit of a living

organism. There are two types of cells, eukaryotic cells, which contain a

nucleus, and prokaryotic cells, which do not. Prokaryotic cells are usually

single-celled organisms, while eukaryotic cells can be either single-celled or part

of multicellular organisms. Plants, animals, fungi, slime moulds, protozoa,

and algae are all eukaryotic.

The three main components of eukaryotic cells are the membrane, cy-

toplasm, and nucleus (Figure 1.1). The membrane is a lipid structure that

preserves the integrity of the cell and selectively regulates the flux of nutrients

and proteins. The nucleus contains the chromosomes, which are made up of

DNA (deoxyribonucleic acid). The genes, which are the hereditary units of

biological organisms, are localized along the DNA chains. In the cytoplasm,

there are many different molecules such as RNA (ribonucleic acid), proteins,

carbohydrates, etc. and also organelles that are responsible for various cellular

functions. RNA molecules are also known as transcripts and contain informa-

tion transcribed from DNA, which is translated into proteins by ribosomes.

Proteins are constituted by amino acid sequences and are the basic functional

elements of cellular physiology and metabolism.

Figure 1.1: Diagram of a eukaryotic cell
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DNA molecules (where genes are located) form a double helix: each DNA

chain is a linear sequence of nucleotides that are composed of one of the four

following bases: adenine (A), cytosine (C), guanine (G) and thymine (T). The

genetic information encoded by this sequence of bases determines the order of

amino acids in the protein and three DNA bases (a codon) encode one amino

acid. However, only a small part of the whole genome (3-8% in humans)

is considered “functional”, the part that encodes proteins or functional RNA

[32]. This means that most of the DNA is “non-functional” and may have

other structural or regulatory functions. For many years, it was believed

that each gene coded for a single protein because there are genetic diseases

in which a single gene mutation causes disease by disrupting the protein it

encodes. However, it is now known that a gene can encode more than one

protein through the process of “alternative splicing” and that a protein can

be encoded by more than one gene. Moreover, proteins may undergo post-

translational modifications and therefore, in higher eukaryots one single gene

serves as the basis for many possible versions of a particular protein.

The genetic code is the set of rules that defines how the information

contained in the sequence of bases in the genes is transfered to the amino

acids that form the proteins. But the fact that DNA is in the cell nucleus and

that proteins are synthesized by ribosomes located in the cytoplasm implies

the existence of a mechanism to transfer this information from the nucleus to

the cytoplasm. This process is called transcription (Figure 1.2), the synthesis

of DNA-derived intermediary molecules in the nucleus: RNA transcripts. RNA

has a similar structure to DNA, but is single chained rather than a double

helix and one of the four bases, thymine (T) is replaced by uracil (U). RNA

molecules are transported to the cytoplasm and the information they contain

(determined by the A, U, C and G base sequence) is translated to a specific

sequence of amino acids that constitutes a protein. Alternatively, RNAs may

not be translated into proteins and instead perform their cellular function as

“non-coding RNA” molecules which have different regulatory and processing

roles.
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Figure 1.2: Transcription and translation

Thus, the process of producing a biologically functional molecule of either

RNA or protein from DNA is called gene expression and this process consists

of two basic steps: transcription and translation. During transcription, a gene

(DNA) is copied into a transcript (RNA). In the case of protein-coding genes,

the translation allows for the RNA to generate a protein; non protein-coding

genes go through transcription but are not translated into a protein. The

number of transcripts synthesized from a certain gene in a given cellular con-

text is known as the expression level of that gene. Unlike the genome, which

is roughly fixed for a given cell line (excluding mutations), the transcriptome

varies through development and between different tissue types in response

to external environmental conditions. The composition of the transcriptome

reflects which genes are being actively expressed at any given time.

Therefore transcriptomic analyses essentially compare gene expression pro-

files between biological samples or experimental conditions to identify differ-

ences that could help to infer the function of the genes or understand the

ongoing biological processes. For instance, studying the genes that are dif-

ferentially activated between healthy and diseased people could help to find
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candidate genes that may be responsible for causing the disease, and which

could therefore become therapeutic targets.

There are many methods for measuring gene expression levels: transcrip-

tomics refers to the situation where all genes are observed simultaneously so

high-throughput techniques are needed to estimate the expression of thou-

sands of genes in order to obtain a global picture of cellular activity. The

most widely used techniques in this field are DNA microarray technology and

RNA-seq which are both described in detail in the next section.

1.2 Measuring gene expression

The cell transcriptome is dynamic: as opposed to the static genome, the

transcriptome continually changes. Expression profiling experiments often in-

volve measuring the relative amount of transcripts arising from each gene in

two or more experimental conditions. Altered gene expression levels suggest

a change in the level of the protein encoded by the gene and may indicate

the cause of a disease or the response to perturbations, clinical treatments, or

environmental conditions. Thus, gene expression changes may provide impor-

tant clues to understanding the biological mechanisms underlying differences

between phenotypes, i.e. the differences in the observable characteristics or

traits of an organism.

Some techniques for measuring gene expression include: microarrays, real-

time polymerase chain reaction (RT-PCR), serial analysis of gene expression

(SAGE), and RNA sequencing (RNA-seq). In this section, we describe the

most widely used high-throughput techniques for measuring gene expression:

microarrays and RNA-seq which were used to generate the data analyzed in

this work.

1.2.1 Microarrays

DNA microarrays (also called chips or arrays) are used to measure the ex-

pression level of a large number of genes simultaneously. The most common
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Figure 1.3: Example of a microarray.

types of microarrays for transcriptomics are cDNA arrays and oligonucleotide

arrays that are used in combination with one or two dye-labeling strategies.

A microarray is a solid surface which contains a collection of microscopic

DNA spots representing short sections of genes (Figure 1.3); these spots are

usually known as probes, and each one corresponds to a different gene. In

the case of one-color microarrays (one dye-labeling), the RNA of the bio-

logical sample being studied is labeled with a fluorescent dye and hybridized

to these target probes. Hybridization occurs between complementary nucleic

acid sequences because of their propensity to specifically pair with each other

by forming hydrogen bonds. Fluorescently labeled target sequences that bind

to a probe generate a signal. The intensity of that signal is measured with

a scanner and the intensity of each probe is registered. These intensity val-

ues are the expression level estimations of the target genes, once they have

been corrected for the background noise or other technical effects: the higher

the intensity of a given probe the higher the amount of RNA (transcripts) in

the biological sample and, therefore, the higher the expression level of that

particular gene.

Transcriptomic experiments usually consist of studying several biological

samples from different experimental conditions, which requires the processing

of several microarrays (one per sample). However, the measurements ob-

tained must be comparable for all samples: the procedure for transforming

the data to make meaningful biological comparisons is called normalization
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[115]. The gene expression values produced by microarray technologies are

continuous measurements and it is generally accepted that, albeit with ap-

propriate transformations on occasions, they follow a Gaussian distribution,

and many statistical methods have been adapted or developed to model this

kind of data based on this assumption [33, 133].

The advantage of DNA expression microarrays is that they can estimate

the relative activity of thousands of genes. However, the target genes must

have been previously characterized and it is not possible to identify or measure

genes that have not yet been discovered.

1.2.2 RNA-seq

Massive parallel DNA sequencing1 is termed as next generation sequencing

(NGS) or second-generation sequencing, and encompasses several technolo-

gies such as DNA-seq, RNA-seq, ChIP-seq, DNase-seq, Methyl-seq, among

others. Some of these technologies have been commercially available since

2005. Sequencing platforms can sequence millions of short reads (50-400

bases each) per instrument run and thus genome-wide studies are possible

using this technology. The advent of NGS technologies has created unprece-

dented possibilities for the characterization of genomes and has significantly

advanced our understanding of its organization. They can now be used to

tackle the de novo sequencing of large genomes [9, 87, 146], report individual

genome differences within the same species (DNA-seq or resequencing) [1],

characterize the interaction spectrum of DNA-binding proteins (ChIP-seq)

[110], map chromatin structure (DNase-seq, Hi-C), and to create genome-

wide epigenetic modification profiles (Methyl-seq) [84].

One of the most ground-breaking applications of NGS techniques is the

deciphering of the complexity of the transcriptome by means of RNA se-

quencing technology (RNA-seq). In the last few years the use of RNA-seq

has resulted in an incredible amount of new data that has dissected gene

1DNA sequencing is the process of determining the precise order of nucleotides within

a DNA molecule.
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isoforms1, allelic expression2, and extended 3’ UTR regions3, as well as re-

vealing novel splice junctions, modes of antisense regulation, and intragenic

expression [23, 52, 100, 144]. In addition, RNA-seq has made sequence-based

expression analysis an increasingly popular alternative to microarrays because

any active gene can be measured, as opposed to the pre-characterized set

of known genes which are recognized by microarrays. Other advantages of

RNA-seq have also been claimed, such as having a wider dynamic range of

expression measurements and a lower technical variability.

As previously described [107], in most RNA-seq experiments a sample of

purified RNA is taken, sheared, and converted to cDNA (as also done for

cDNA arrays). However, in contrast to microarrays, this cDNA is sequenced

on a high-throughput platform (e.g. Illumina, SOLiD or Roche 454). For

instance, the sequencing chemistry in the Illumina system occurs in the flow-

cell, which is a glass slide separated into lanes (usually 8) into which different

biological samples can be deposited (Figure 1.4).

The sequencing process generates millions of short reads (25 to 300 bp)

taken from one end of the cDNA fragments. When short reads from both

ends of each cDNA fragment are generated, they are called “paired-end”

reads. The platforms differ substantially in their chemistry and processing

steps, but the raw data they produce always consist of a long list of short

sequences with associated quality scores.

1Isoforms are transcripts produced from the same locus (specific spot on a chromo-

some), but their transcription start sites (TSSs), protein coding DNA sequences (CDSs), or

untranslated regions (UTRs) can differ, potentially altering gene function.
2Most multicellular organisms have two sets of homologous chromosomes. An allele is

the copy of a gene on each chromosome. The two alleles of a given gene are inherited, one

from each parent.
3DNA strands have directionality, since double helices are necessarily directional (a

strand running 5’-3’ pairs with a complementary strand running 3’-5’). DNA replication

occurs only in the 5’-3’ direction. The 3’-UTR is the section of messenger RNA that imme-

diately follows the translation termination codon, so this part of the gene is not translated

into a protein. However, the 3’-UTR often contains post-transcriptional gene expression

regulatory regions.
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Figure 1.4: Illumina flow-cell.

In contrast to microarrays, where the raw data generated requires little

pre-processing to obtain an expression level estimation, a more laborious pro-

cedure must be followed to obtain an expression estimation using the RNA-seq

strategy (an example of a process pipeline is shown in Figure 1.5). First, se-

quencing reads are mapped onto the reference genome, i.e. their genomic

location of origin must be identified. Some of the reads will not map to

the reference genome because of potential sequencing errors, or differences

in the sample and reference genome sequences, etc. Second, if the reference

genome has previously been studied and characterized (i.e. annotated) and

gene positions within each chromosome are known, the mapped reads from

each of the biological samples corresponding to each annotated gene can be

quantified. The number of sequencing reads mapped to a given gene is an

estimation of the expression level of that gene [92]. Finally, as occurs when

microarrays are used, these estimated expression levels have to be normalized

in order to remove unwanted technical effects and to calibrate the observa-

tions (samples).

Consequently, the nature of RNA-seq data is very different to microarrays.

Expression estimates from RNA-seq for a given gene are discrete measure-

ments since they are defined as the number of reads mapping to that gene

(read counts). Hence, statistical models developed for microarray analysis

have had to be revised for use for RNA-seq analysis. It is not easy to find a

good formula to transform these count data into a continuous distribution,



1.2 Measuring gene expression 13

  

 

 Illumina sequencer

 Sequencing reads

GCAATCCG

CCCTACGT

CGAGACTCG

CATGGCAG

TATACCGA

CGATCACG

AGACGTTG

TATAGACG

AATTGCCG

GTGTCCAA

CATTGAAG

TTTTGCCG

fastq file

 Mapping algorithm
TopHat

  (Reference genome  fasta file)

bam file

GCAATCTCAGGCTACAGTGATCCAAGGCCAT

 Expression
 quantification

algorithm
-htseq count

  (Annotated genes  gtf file)

txt file
184_1190_1587 0 DS231771 1557 1 44M4S2H *

0 0
CCTATATATGTGGCNNCTGTTGTGCNNNNNCCTCGCANNNAGTGTNNN
JJJJJJJJJJJJG6('9;=CC=21+$$&&#168873<%#"/4374*** RG:Z:DefaultLibrary
NH:i:3 CM:i:5 NM:i:0 CQ:Z:>>AA27A;:=<B92)+/:5+952@65A2;)/<<8-1@(5%
%+118-:;'' CS:Z:T20233333311103133211011131311300223311130211112120
1068_1911_656 0 DS231771 1565 1 50M *

0 0
TGTGGCAGCTGTTGTGCTACATCCTCGCATGAAGTGGAGCTTCGTTGACA
JJJJJJJJJJJJJJJJJJJJJJJJJJJJJ?@GGF>@JJJJJJJ@JJJJD. RG:Z:DefaultLibrary
NH:i:3 CM:i:0 NM:i:0 CQ:Z:@B7?9?:<1@=7@>3?
6=6<8<@@;<>>=&=,8=&4-=>-80A5%D8>6)
CS:Z:T01110312321101113231132022331312021102232023101211
1356_1432_428 0 DS231771 1565 1 50M *

0 0
TGTGGCAGCTGTTGTGCTACATCCTCGCATGAAGTGGAGCTTCGTTGACA
JJJJJJJJJJJJJJJJJJJJJJJJJJJJJ@@JJJJJJJJJJJJJFFHJH8 RG:Z:DefaultLibrary
NH:i:3 CM:i:0 NM:i:0 CQ:Z:AA@@AA:9<??6>?
<@=:@@><@A==>8>(:*@>3<9?A5<>?=.;)@@1
CS:Z:T01110312321101113231132022331312021102232023101211
139_502_1736 0 DS231771 1567 1 50M *

0 0
TGGCAGCTGTTGTGCTACATCCTCGCATGAAGTGGAGCTTCGTTGACAAG
JJJJJJJGJJJJJJJJJJJJJJJJJJJJEJJJJJ>JJJJJJJ4JJJH687 RG:Z:DefaultLibrary
NH:i:3 CM:i:0 NM:i:0 CQ:Z:<B/<71B+4<?A);<;B96?
2B<<7=@D2+<A4@(0BD79?=')==:'+6
CS:Z:T01031232110111323113202233131202110223202310121102

18s_rRNA 29136
28s_rRNA 50188
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...

Figure 1.5: Example of an RNA-seq analysis pipeline.

especially in the lower count range and for small samples. Initial analyses

using only technical replicates1 assumed that read counts followed a Poisson

distribution [18, 92]. However, soon it became clear that biological variability

was not well described by this distribution as over-dispersion was observed

among biological replicates. Thus, to take biological variability into account,

a negative binomial distribution (which would be equivalent to a Poisson dis-

tribution when the mean and variance are equal) is generally accepted as a

good option for modeling RNA-seq data [4, 122]. Even so, other specific

statistical methods for this new technology following different approaches are

still being developed.

1In RNA-seq, technical replicates are often considered to be the different sequencing

runs performed on the same biological sample. For instance, in Illumina technology, each

lane containing the same biological material might be taken as a technical replicate.
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1.3 The role of statistics in transcriptomics

Transcriptomics and other omics disciplines that study biological systems from

different perspectives all yield a huge amount of data to be stored, retrieved,

organized and analyzed. Bioinformatics is an interdisciplinary field that deals

with these topics. It covers tasks from the design or adaptation of statistical

models and algorithms for analyzing high-throughput data to the implementa-

tion of efficient software tools to generate useful biological knowledge. Hence

different areas such as computer science, mathematics, engineering and, of

course, statistics converge and interact in bioinformatics in order to success-

fully address these problems. There are several omics data analysis challenges

which are discussed in the following paragraphs:

First, the technical noise in the data is often high and thus an efficient

pre-processing step is required before starting the statistical analysis. The

process of removing technical effects to make samples and observations com-

parable is called “normalization”. These normalization methods aim to ensure

that technical biases minimally impact the results of the statistical analyses.

There are technical biases specific to each technology: two such technical

aspects which characterize microarrays are background noise and the differ-

ences between array platforms, although many methods have been suggested

to correct these unwanted sources of data variation [150]. The main biases

that can alter the expression levels of RNA-seq are the different number of

sequencing reads generated for each sample, the gene length, and the guanine

and cytosine nucleotide gene content (GC content). These aspects will be

looked at in more depth in Chapter 4. There are also other potential biases

that are more general, such as “batch effects”. These effects may appear

when biological samples have been processed at different moments, by dif-

ferent laboratories, on different devices, etc, although if the experiment has

been appropriately designed it is possible to remove or at least mitigate this

effect.

Another important challenge for statistics is the dimensionality of omics

data. Thousands of variables are typically generated in one experiment, while
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Figure 1.6: Total number of genes and transcripts for different species.

the sample size tends to be relatively small (most studies are not bigger than

twenty or thirty observations). In transcriptomics, and in particular in this

work, the variables analyzed are gene expression levels and the observations

are biological samples where the expression levels have been measured. Figure

1.6 shows the number of genes or transcripts for different species to illustrate

the high number of variables in the analysis of transcriptomic data.

When analyzing an experiment in which the expression levels were mea-

sured under different experimental conditions (over time, for different treat-

ments, or diseases, etc.), the first question that obviously arises is if an asso-

ciation between the expression of the gene and the experimental conditions

(i.e. the covariate) exists. In other words, the aim of the analysis is to identify

the genes with expression changes across conditions, a problem which is also

known as “differential expression analysis”. Many different approaches can

be envisaged to address differential expression (DE) studies and these can be

classified into two groups: univariate and multivariate methodologies.

Univariate statistical approaches are probably the most popular. In gen-

eral, they consist of testing a null hypothesis for each one of the variables
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(genes). The null hypothesis is equivalent to saying that gene expression is

not affected by the covariate that describes the experimental conditions com-

pared [108, 121, 133]. Due to the dimensionality problem mentioned above,

specifically the low number of available observations, it is common that meth-

ods in this category borrow information from all genes to better estimate the

parameters of the statistical model. In addition, the high number of tests

performed may lead to a pronounced increase in the false positive rate and so

multiple testing corrections must be used to adjust the p-values and reduce

the number of false positives [11, 39, 138]. A very well-known procedure to do

this is Bonferroni’s adjustment which aims to reduce the family-wise error rate

(FWER), i.e. the number of rejected true null hypotheses. However, Bonfer-

roni’s method is too restrictive and the reduction in false positives it would

produce comes at the expense of increasing the number of false negatives,

thus losing statistical power. Hence, other more permissive procedures have

been proposed with the goal of reducing the false discovery rate (FDR), rather

than the FWER. The FDR is defined as the proportion of true null hypotheses

with respect to the number of rejected null hypotheses. There are a number

of procedures that aim to reduce the FDR, among them the one proposed by

Benjamini and Hochberg [11], which is widely used in Bioinformatics.

An alternative to univariate methods is multivariate analysis which takes

into account the joint distribution of all variables in the study [20, 78, 103].

In transcriptomics, it is quite common to apply multivariate tools such as

clustering or principal component analysis (PCA) to explore the data prior to

statistical analysis to check if replicates within the same condition are properly

clustered or if there is a batch effect in the data. However, it is more unusual

to resort to these kinds of tools to analyze differential expression, maybe due

in part to the difficulty of identifying differentially expressed genes (DEG)

using these models. Even so, some examples can be found in the literature

that tackle the problem of differential expression from a multivariate approach

which succeed in selecting the most relevant genes [103, 114]. In addition,

these multivariate methodologies can be complemented by incorporating pre-
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viously known biological information, such as the biological pathways in which

genes are involved or their specific functional role. This class of methods is

classified as “pathway analysis” and focuses on analyzing sets of genes which

share, for instance, the same biological function [31, 36, 74, 104].

Both univariate and multivariate models can be constructed either un-

der parametric assumptions, i.e. based on data following a given probability

distribution, or without distributional assumptions. In transcriptomics (or

bioinformatics in general), it is not always straightforward to find a proba-

bility distribution that fits the data or even a suitable transformation that

fulfills the parametric assumptions. As previously mentioned, gene expression

is generally supposed to follow a Gaussian distribution when measured by mi-

croarrays and a Poisson or Negative Binomial distribution when RNA-seq is

used. Nevertheless, this may not always be a true and model validation (that

is required to check the distribution hypothesis), becomes tedious given the

huge number of models obtained in univariate analyses. On top of this, the

small number of replicates makes it difficult to estimate the model parame-

ters and information must often be borrowed from the rest of the variables

[122, 133]. Alternatively, non-parametric methods can instead be used to

tackle all these difficulties and resampling procedures are a very popular ap-

proach in this field [82, 109].

Once the differentially expressed genes (DEGs) have been identified, their

functional profile is usually interrogated to establish if they share biological

functions that are not characteristic of the rest of the genes. This type of

analysis is named “functional enrichment analysis” or “pathway analysis”.

There are many genes associated with a given biological function (e.g. “lipid

transport”), and a single gene may have many different biological functions.

Therefore, for each biological function and a given set of DEGs, a contingency

table can be generated to count the number of genes inside and outside this

set, and belonging to that functional category or not. To assess if the set

of DEGs is enriched in a particular function, a test of independence such as
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Fisher’s exact test can be performed. Again, many tests must be performed

(one per functional category) and multiple test correction is advisable.

In summary, transcriptomic studies do not only require a wide-ranging

knowledge of existing statistical methods to extract relevant biological infor-

mation from the data, but also a lot of inventiveness and flexibility in order to

find efficient and practical solutions for researchers. Moreover, biotechnology

is permanently evolving, and at high speed: in particular, technologies used

for measuring gene expression have undergone a major revolution over the last

few years. Microarrays became a very popular technique during the nineties,

but the more recent NGS technologies such as RNA-seq are replacing them.

Third generation, or single molecule long-read technologies (PacBio, Oxford

Nanopore), are also starting to take off which might create new sets of tran-

scriptome data in the future. As previously mentioned, the nature of the data

generated by each technology is very different, consequently, models used to

describe each type of transcriptomic data should be different and therefore

the development of new statistical procedures is constantly required [83].
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2.1 Motivation

One of the most common types of analysis in biological research is the com-

parison of gene expression profiles. A fundamental goal in these types of

genome-wide study is to identify genes whose expression profile changes be-

tween conditions, in other words, to select the most relevant variables (genes)

in terms of inter-condition variability. The variable selection problem, which is

usually known in transcriptomics as “differential expression analysis”, can be

addressed from the univariate or multivariate point of view, but the complexity

of the experimental design must always be taken into account.

When this PhD thesis started in 2009, DNA microarrays were a mature

technology used to measure gene expression levels and, due to their afford-

able cost, there were many experiments available that included many differ-

ent treatment types, developmental states, time series, etc. A wide variety

of statistical procedures had already been designed to identify differentially

expressed genes and their functional relationships [108, 115, 133, 139]. Specif-

ically, our group had been working on both univariate [3, 29] and multivariate

[3, 30, 103, 104] methodologies to solve these problems for complex exper-

imental designs such as single or multiple time course experiments, and we

detected a lack of proper tools to address differential gene expression analysis

in these scenarios. This motivated the first part of this thesis (Chapter 3),

which is dedicated to the variable selection problem when using multivari-

ate approaches to model microarray gene expression profiles. In particular,

we chose the ASCA-genes multivariate technique [103] as a starting point to

propose some strategies to select the genes responsible for phenotype changes

among different experimental conditions.

However NGS technologies quickly became common place in transcrip-

tome analysis and RNA-seq data were being generated in our projects, mak-

ing it necessary to develop new strategies to deal with this new kind of data.

Therefore, the second part of this work is entirely focused on RNA-seq exper-

iments. Being a novel technology, we first had to address the issue of data

quality monitoring to evaluate the accuracy of expression estimation. Chapter
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4 of this thesis deals with the quality assessment of expression measurements,

the potential sources of bias in the technology and how to process the data

to reduce the impact of technical noise on statistical results. In Chapter 5,

the variable selection problem for the two-class comparison case (differential

expression) is discussed. As stated in the previous chapter, the nature of

expression data for RNA-seq is different to microarrays, so specific DE meth-

ods were needed for this technology. We opted to develop non-parametric

data-driven procedures to overcome the limitations of parametric assump-

tions, and showed that these were efficient in controlling the false positive

rate: two methodologies (NOISeq and NOISeqBIO), for technical and biolog-

ical replicates respectively, were proposed and compared to the state of the

art methodologies.

This thesis has given me the opportunity to examine new and exciting

fields such as cell biology and bioinformatics, and specifically transcriptomics.

The principles of gene expression, the different ways of measuring it and the

statistical approaches for analyzing expression data obtained from different

technologies were studied in depth. It has been very challenging and enriching

to search for and develop suitable statistical tools to discover the biological

stories at the root of each transcriptomic project. Hopefully, these pages will

reflect the enthusiasm devoted to it.

2.2 Aims

1) To develop variable selection strategies for multivariate methods

applied to microarray data.

When using multivariate methods to model the association of gene

expression to covariates describing the experimental conditions under

study, a posteriori selection of the genes which meaningfully contributed

to the model construction is normally desired. These should be genes

with a significant change in expression levels between conditions. Vari-

able selection strategies will be studied, using our group’s previous work
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[103] as a starting point. In particular, the following tasks will be un-

dertaken:

• Proposal of new variable selection methods or variations of exist-

ing ones in the context of multivariate techniques for dimension

reduction.

• Simulation of multi-factorial expression data and assessment of

variable selection strategies on these synthetic data.

• Application of the best selection strategies to experimental data to

identify the genes responsible for human stem cell differentiation

under different oxygen concentration conditions.

• Application of these strategies to other analysis scenarios to assess

the general validity of the methods when using other multivariate

techniques.

2) To generate tools to control the quality of count data from se-

quencing experiments in order to discover potential biases and to

propose procedures to mitigate their effect.

Sequencing technologies such as RNA-seq produce count data that

might be biased due to technical noise. It is convenient to remove

or, at least, reduce these unwanted technical effects before performing

further statistical analyses. Regarding this issue, we will focus on the

following aspects:

• Design exploratory and diagnostic graphical tools to detect poten-

tial technical biases.

• Show the usefulness of these exploratory tools using different RNA-

seq experimental data sets.

• Review of the most popular normalization procedures to remove

these biases, and apply some of them to experimental data.
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• Propose methods to filter out low-count features, which are unre-

liable and can decrease the power of statistical methods to identify

true effects of the experimental factors.

3) To develop differential expression methodologies for RNA-seq

data.

There are many parametric methods available to study DE in pair-wise

comparisons. These kinds of methods might present some limitations

regarding the distributional assumptions but few non-parametric alter-

natives exist. In this work, we will propose two complementary non-

parametric approaches for application on data with technical replicates,

no replicates at all or with biological replicates. These are the main

issues we will address in this section:

• Development of the NOISeq method which can be applied to data

with technical replicates or without replicates. Comparison of

NOISeq to other DE methodologies on both simulated and ex-

perimental datasets.

• Adaptation of the NOISeq method for use on data with biolog-

ical replications (NOISeqBIO). Evaluation of several versions of

NOISeqBIO on simulated data to determine the best option.

• Comparison of NOISeqBIO to other DE methods in several simu-

lated scenarios to check the method’s performance and to assess

the influence of biological parameters such as noise, number of

features, percentage of differentially expressed genes, etc. on the

DE results.

2.3 Main contributions

I first arrived to Bioinformatics Department at the CIPF in 2008 to co-

supervise the final year project of one of my students at the Technical Univer-

sity of Valencia (“Functional prediction of novel citrus sequences from gene
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expression analysis”, awarded by Bancaja Prize 2008). About one year later,

I started to work on this thesis. Therefore, my first collaborations [104, 114]

taught me the basics of transcriptomics (specifically about microarray data

analysis) and allowed me to identify which lines of work in the group I would

follow. I became primarily interested in multivariate approaches and, in par-

ticular, in the variable selection problem. That is why the first part of this

document (Chapter 3) is focused on the study of variable selection strategies

in multivariate models, as published in [31, 113, 142]. Some of these strate-

gies were implemented in a web tool for analyzing serial gene expression data

named SEA [102].

By that time, NGS technologies emerged and there was a need for the

development of ad-hoc statistical methods to analyze this kind of data. RNA-

seq was rapidly gaining popularity in gene expression estimation but, due to

the still high cost of the technology, the experiments available at that time

had very simple designs, usually including only two experimental groups and

only a few replicates. Hence, the context for the variable selection problem

had slightly changed. First, we established pipelines for RNA-seq data qual-

ity assessment and pre-processing to obtain normalized and bias-free data

(Chapter 4) and then we focused on the variable selection problem for pair-

wise comparisons (Chapter 5). All these methodologies were gathered into

a Bioconductor R package named NOISeq and summarized in [141] and in

another paper (in preparation). The quality control tools were also imple-

mented in Qualimap software [49]. Our expertise in analyzing RNA-seq data

helped us to update the maSigPro tool [29] for dealing with RNA-seq time

series [105].
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Pŕıncipe Felipe, Valencia). From 2008 to 2014, lectures on “Basic

Statistics applied to Bioinformatics, “Differential Expression in RNA-

seq”, “Functional Enrichment Analysis” or “DNase-seq”.

• Data analysis workshop for massive sequencing data (University of Granada,

Granada). 2011.

• Course on RNA-seq and ChIP-seq analysis (IDIBAPS, Barcelona). 2012.



Chapter 3

Variable selection for

multifactorial genomic data
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3.1 Introduction

High-throughput genomic and transcriptomic experiments generate data for a

high amount of variables (e.g. genes) on a much lower number of individuals

(samples). Common approaches to explore this kind of data are clustering

methods such as hierarchical or KNN clustering [89, 135], and dimensional-

ity reduction techniques such as Principal Component Analysis (PCA). PCA

[63, 64, 68, 112] is frequently used in transcriptomic data to group samples,

identify associated genes or to spot those genes or samples behaving com-

pletely different from the rest [34, 117]. In simple case-control studies, the

methodology is able to provide biologically interpretable results. However,

more complex experimental designs can also be found in transcriptome re-

search, that include factors such as time effect, treatment, tissue, strain, etc.,

at different levels, giving rise to high-dimensional multifactorial datasets. For

these multifactorial experiments, other dimension reduction techniques exist

that tackle the analysis of the data in a more efficient way and achieve a better

interpretation of the results. Some examples are Tucker3 [145] or PARAFAC

[62], which have been successfully applied to the analysis of genomic data

[151]. Another interesting approach is ASCA (ANOVA-Simultaneous Com-

ponent Analysis) [132], adapted to genomic data in the ASCA-genes software

[103]. ASCA-genes is a powerful tool to extract targeted signals from noisy

data in complex experimental setups using a combination of ANOVA-like data

decomposition and PCA.

In many cases, though, descriptive analysis is not the only goal of the ex-

periment, but also the identification of responsive (or activated) genes, since

they give the clue to the molecular biology interpretation of transcriptional

regulation. When facing the issue of variable selection within the framework

of dimension reduction techniques, there exist some rules of thumb such as

considering that a variable is important if its loading absolute values are higher

than a certain threshold. However, this is a rather arbitrary way of select-

ing variables. More sophisticated variable selection methods can be found

in the literature, especially for PCA. Jolliffe [69, 70] used the absolute value
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of PCA loadings to measure the contribution of the original variables to the

model and selected as many of these variables as the number of selected la-

tent variables in order to retain the maximum variance of the data. McCabe

[95] recommended four different criteria to select what he called principal

variables and then evaluated all possible subsets of original variables to find

the one optimizing the pursued criterion. Krzanowski [76] combined PCA

with Procrustes analysis to select those variables preserving the multivariate

data structure, and used a Procrustes criterion to quantify the similarity of

compared structures. Since exploring all the subsets of q variables (q being

the number of variables to be selected) might be very computationally ex-

pensive, he included a backward procedure to discard variables. Guo et al.

[55] improved the search of the best subset in the latter method by applying

a genetic algorithm to avoid exhaustive searching. Westad et al. [149] used

Student’s t-tests based on loadings and their estimated standard uncertainties

to calculate the significance on each variable for each component. Principal

Feature Analysis [88] is based on taking PCA loadings and clustering them us-

ing the K-Means algorithm. The number of clusters must be equal or greater

than the number of PCs. In each cluster, the closest variable to the mean

of the cluster is selected (principal feature). Finally, variable selection can

be carried out by applying Sparse Principal Component Analysis [90]. Sparse

PCA generates linear combinations of the data variables explaining a maxi-

mum amount of variance in the data while having only a limited number of

nonzero coefficients.

The purpose of most of these methods is reducing the number of variables

to achieve a better interpretation of the principal components. Several of

them are unfeasible in the context of genomic data due to the large number

of variables (genes) or inappropriate due to the low signal to noise ratio that

characterizes these data. Another drawback is that the majority of these

approaches need to set the number of variables to be selected (or removed)

in advance, which is generally an unwanted constraint when trying to identify

responsive genes. In this chapter, several selection strategies are compiled
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that avoid this constraint and are compared by applying them to the analysis

of multifactorial genomic data following the work of adapting ASCA [132] to

genomic experiments in the ASCA-genes tool [103]. ASCA-genes was shown

to be an effective approach for the analysis of complex datasets and the gene

selection strategy presented in that work was proven to give good results with

signal rich transcriptomic datasets. Here, that study is extended and a vast

array of signal to noise conditions will be considered together with different

selection strategies to provide a comprehensive understanding of the behavior

of complex transcriptomic designs.

In this chapter, two novel approaches are proposed for variable selection in

the context of multifactorial gene expression experiments: minAS and Gamma

approximation. The ASCA-genes framework is used for treating the multi-

factorial nature of the data. However, the gene selection strategies proposed

rely on the probability distribution of PCA statistics and can be applied to-

gether with other dimension reduction techniques. Both minAS and Gamma

methods in combination with ASCA-genes have been implemented in the web

suite for Serial Gene Expression Analysis: SEA (http://sea.bioinfo.cipf.es/)

[102], which is freely available to the scientific community. Moreover, the

minAS strategy has been applied to other multivariate variable selection sce-

narios [31, 113] that will be presented and briefly discussed at the end of this

chapter.

3.2 Methods

The methods presented in this chapter were initially designed to be used

for analyzing gene expression data measured by microarrays. However, with

proper data transformations, they could be also used on data coming from

other technologies, such as RNA-seq. In this work, methods have been vali-

dated on microarray data and the simulation studies also mimic the behavior

of this kind of data.

Let X0 be the gene expression matrix, with dimensions M ×N , where N

is the number of variables (e.g. genes) and M is the number of observations
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(biological samples). If samples have been taken according to a certain ex-

perimental design, including one or more different factors such as treatment,

tissue, time, etc. with different levels and different number of replicates in

each level, we are dealing with multifactorial datasets. The experimental

setup must be taken into account when choosing the appropriate dimension

reduction technique in order to better extract the information contained in

the data. ASCA model was used because it tackles the problem of complex

experimental designs and efficiently separates signal from noise to achieve an

optimal interpretation of the results in terms of experimental factors effects

[103].

3.2.1 The ASCA-genes framework

To present the ASCA-genes methodology, let us consider the specific case

of an experiment with two factors. In the context of genomic experimental

designs, one of the factors is usually time (say, for example, factor a). The

other factor b indicates the experimental group, such as treatment or tissue.

If xijr is the expression level for a given gene measured at time point i, under

experimental condition j and for replicate r, Equation 3.1 shows the ANOVA

model definition for that gene, where µ is an offset term, αi is the model

parameter for the time factor on level i, βj measures the j-th group effect,

(αβ)ij represents the interaction effect between the i-th time and j-th group,

and the individual variation is indicated by (αβγ)ijr:

xijr = µ+ αi + βj + (αβ)ij + (αβγ)ijr (3.1)

Estimates of the ANOVA parameters of Equation 3.1 can be obtained

for all genes and collected into matrices as in Equation 3.2, where the gene

expression matrix X0 has been mean centered, resulting in matrix X.

X = Xa + Xb + Xab + Xabg (3.2)

Each one of the submatrices on the right hand side of Equation 3.2 con-

tains the estimated effects associated with a certain experimental factor, for
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example factor a, factor b, the interaction ab between them or the residuals

abg. The estimation of these effects depends on the nature of the factors (be-

tween or within subjects, random or fixed effects, etc.). In this work, we have

considered the most simple case of ANOVA-like decomposition: fixed effect

factors between subjects. Independence of measurements holds when expres-

sion values over time are independent, as frequently happens in genomics

because they correspond to different biological samples.

As the goal in time-course experiments is usually to detect gene expres-

sion profile changes between experimental groups (factor b), in this study,

the interaction effect has been joined to factor b effect and analyzed in one

submodel as it is shown in Equation 3.3:

X = Xa + Xb+ab + Xabg (3.3)

For the remainder of this work, ASCA submodels in Equation 3.3 will be

named as “submodel a” and “submodel b+ ab”, respectively.

PCA is applied to each one of the submatrices (Simultaneous Component

Analysis) to reveal major expression patterns associated to the experimental

factors and to identify relevant experimental conditions. At this point, dimen-

sionality reduction is undertaken by selecting, for each submodel, kx principal

components (for x=a, b+ ab, abg). Many criteria have been proposed to de-

cide the optimal number kx of principal components to choose. In this work,

a component was selected if the percentage of total variability it explained

was higher than C/nmax, nmax being the maximum number of components

(given by the rank of the matrix) and C a constant, set to 1.5 in our case.

The resulting ASCA-model is given in Equation 3.4:

X = TaP
t
a + Tb+abP

t
b+ab + TabgP

t
abg + E (3.4)

where, the scores of each submodel are given by the M × kx matrices

indicated by Ta, Tb+ab, Tabg, and the submodel loadings are given by the

N × kx matrices Pa, Pb+ab, Pabg, where Pt
xPx=I for x=a, b + ab or abg.

E is a matrix in which the residuals of all submodels of ASCA-model are
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collected: E = Ea + Eb+ab + Eabg, where Ex = Xx−TxPT
x for x = a, b+ ab

or abg. The extension of this model to more than two experimental factors

is straightforward.

Once the major variability patterns have been identified, and assuming

that the model is biologically meaningful, the next step is to select genes

whose expression is affected by the experimental factors. When considering

the expression of a single gene, this might follow the general model, change

according to a different pattern, or simply present a flat profile. Two statistics

are proposed to characterize the behavior of genes within each submodel: the

leverage and the Squared Prediction Error (SPE).

The leverage measures the importance of a variable (gene) in the PCA

model. Leverage values for all the genes in the submodel x can be computed

from the loadings matrix according to Equation 3.5 (see [93]):

hx = diag[PxP
t
x]; x = a, b + ab (3.5)

The SPE associated with a particular gene is a measure of the goodness

of fit of the model for that specific gene. Genes not following the general

structure of the model will have high SPE. SPE values can be computed

from the residuals matrix in each submodel (Ex = Xx - TxPt
x) according to

Equation 3.6:

SPEx = diag[EtxEx]; x = a, b + ab (3.6)

By combining the information given by the leverage and the SPE, genes

can be classified (as proposed in [103]) in the following groups:

• Genes relevant to the model (following the main trends): high leverage

and low SPE.

• Influential but poorly modeled genes: high leverage and high SPE.

• Badly modeled genes which are potential outliers: low leverage and high

SPE.
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• Non-responsive genes (not affected by the experimental factors): low

leverage and low SPE.

Therefore, we are interested in the genes which present a high leverage or

high SPE, because these genes may be affected by the experimental condi-

tions. To decide which genes should be classified as “interesting” (responsive),

a threshold must be established for both leverage and SPE in such a way that

those genes presenting an SPE or leverage higher than this threshold will be

selected. Nueda and co-workers calculated the SPE threshold by using Box’s

approximation [17] for SPE distribution. The leverage threshold was obtained

by resampling techniques [41]. However, they observed that these selection

strategies presented a good performance when the signal to noise ratio in the

dataset was high, but were not so effective for data with low signal to noise

ratio. Hence, in this chapter, other selection methods have been introduced

and compared to the ones in ASCA-genes under a much wider variety of bi-

ological scenarios. Both simulated and real datasets are used to evaluate the

performance of the proposed selection methods.

3.2.2 Variable selection strategies

Once the dimension reduction model has been established, the goal is often

finding the variables with higher contribution in the model. In our case, the

most “regulated” genes. The variable selection strategies we propose here

consist of three steps: first, choosing an appropriate statistic to measure the

importance of the variables in the model (leverage and SPE in this study);

second, estimating the probability distribution of this statistic (in a parametric

or non-parametric way) and, finally, establishing the threshold to separate

“interesting” from “uninteresting” variables (genes). As in ASCA-genes, our

proposals are focused on studying the univariate distribution of both SPE and

leverage statistics, although most of the methods we present are valid for

other statistics or even other multivariate methods, as it will be shown at the

end of this chapter.
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It should be noted that SPE and leverage statistics can be computed for

each gene in each of the different ASCA submodels a, b+ ab and abg. Gene

selection is therefore possible for each of these submodels independently. In

this work we have chosen to evaluate the gene selection coming from both a

and b+ab submodels as these capture the gene expression changes of interest

in the proposed scenario, namely, the time associated changes (submodel a)

and the time-experimental factor interaction (submodel b + ab). Depending

on the aim of the experiment, all or only specific submodels might be rele-

vant for the study, and selection will have to be based on the SPE and/or

leverage statistics of the corresponding submodels. Thus, interpretation of

the gene selection has always to be done on the light of the ASCA submodels

considered.

Generally and because of the nature of expression data, most genes present

a low SPE or low leverage values. Hence, it is expected that these statistics

follow a mixture distribution of, at least, two populations. The biggest pop-

ulation is that of “uninteresting” genes (with statistic values closer to zero).

The other population(s) correspond to “interesting” genes (those with higher

values for the statistic). As our aim is to separate “interesting” from “unin-

teresting” genes, the mixture model can be written as in Equation 3.7:

f(x) = p0f0(x) + p1f1(x) (3.7)

where, x is the value of either SPE or leverage for a particular gene, p0 is

the proportion of “uninteresting” genes (a priori unknown), f0(x) is the null

probability density function (i.e. probability density function for “uninterest-

ing” genes), and p1 and f1(x) are, respectively, the proportion of “interesting”

genes and their probability density function.

Two different approaches can be used to establish the threshold for SPE

or leverage values. The first one consists of estimating the “uninteresting”

genes distribution (null distribution) and using a percentile of this estimated

distribution as the threshold. The methods compared in this work that follow

this first approach are: Box’s method [17], Jackson & Mudholkar’s method
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[66], Gamma method and resampling techniques [41]. In the first three, the

null distribution is estimated in a parametric way, while resampling is consid-

ered a non-parametric technique. In the second approach, an approximation

is obtained for the mixture distribution and the threshold is taken as the value

which best separates the two components of the mixture. Many authors have

focused on the parametric estimation of the distribution of the mixture com-

ponents (see, for example, Efron’s work at [43] or [42]). But we observed

that, due to the huge difference between the sizes of both populations, it was

very difficult to parametrically estimate the probability distribution of each

component. Therefore, only a non-parametric approach is introduced here,

which is called minAS (MINimum Algorithmic Selection).

Box’s method

Assuming that errors from a PCA model approximately follow a multivariate

normal distribution and given that SPE is a quadratic form of the error asso-

ciated with a particular variable, Box [17] showed that SPE distribution could

be estimated by a weighted χ2-distribution (gχ2
h). In ASCA-genes [103], this

distribution was used to calculate the (1-α)% confidence SPE threshold for

each PCA submodel. Parameters g and h are estimated by the matching

moments method and the following expression is obtained for SPE threshold

at α level of significance, where m is the sample mean and v is the sample

variance:

SPEα =
v

2m
χ2

2m2

v

(α) (3.8)

Jackson & Mudholkar’s method

Jackson and Mudholkar [66] found another approximation for SPE distribution

in PCA models, by using the residuals matrix E. Therefore, for PCA coming

from each ASCA submodel, the SPE threshold at α level of significance can
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be computed as follows:

SPEα = θ1[1−
θ2h(1− h)

θ21
+
zα(2θ2h

2)1/2

θ1
]1/h (3.9)

where V= E’E
N−1 , N being the number of variables (genes) in the model;

θi=trace(Vi), for i=1,2,3; and h=1-2θ1θ3
3θ22

.

Gamma method

Gnanadesikan and Kettenring [51] proposed the Gamma distribution for the

squared residuals from a PCA. Following this idea and because of the flexibility

of this distribution to suit many density curves, we used it to approximate both

the SPE and leverage null distributions. Given the statistic values for the N

genes in each submodel (x1, ..., xN ), shape (k) and scale (θ) parameters for

the gamma distribution can be estimated by maximum likelihood [27]:

θ̂ =
x̄

k̂
(3.10)

k̂ =
3− s+

√
(s− 3)3 + 24s

12s

s = ln(x̄)− 1

N

N∑
i=1

ln(xi)

The corresponding threshold for the statistic (either SPE or leverage) is

then the percentile (1-α)% of the estimated gamma distribution.

Resampling techniques

Resampling methods are non-parametric procedures to determine the statis-

tical significance of a result, sampling repeatedly within the same data. An

empirical distribution is generated for an statistic under the null hypothesis

by taking the original data, randomly shuffling them numerous times and
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computing the statistic value for each of the permuted datasets. The way of

permuting the data depends on the null hypothesis to be tested [41].

In ASCA-genes [103], a permutation method was used to define the

threshold of leverage. In the present work, we study the performance of per-

mutation techniques to obtain the confidence thresholds not only for leverage

but also for SPE. We also compare their permutation strategy with our pro-

posal. Both strategies are described below for the M ×N data matrix X and

are summarized in Figure 3.1.

Strategy 1.- As implemented in ASCA-genes, K row permutations of ma-

trix X are generated, destroying the structure of the experimental design. In

this case, the null hypothesis to be tested is that experimental conditions

do not affect gene expression, i.e. all genes have a flat profile across condi-

tions. For instance, the null hypothesis to test for submodel a (analogous for

submodel b+ ab) would be:

H0 : (α1)k = ... = (αt)k = 0,∀k = 1, ..., N (3.11)

Strategy 2.- The null hypothesis to test in this strategy is that all genes

are equally responsive. In the case of leverage, for example, it would imply

that all genes have equal leverage values.

H0 : (αi)1 = ... = (αi)N ,∀i (3.12)

If this is true, all the genes would have the same contribution in the PCA

model and the residual errors would also be similar. Hence, the novel per-

mutation strategy we propose in this work consists of performing K column

permutations. Moreover, the permutation of values in the columns is different

for each row so that the structure in the data (associations among genes, and

among genes and experimental conditions) is totally broken.

In this work, the number of permutations K was set to 1000. Once the

permuted matrices have been generated, an ASCA model is fitted to each

one of them. SPE and leverage values are then obtained for each gene in

each permutation to generate the reference distribution. The threshold can
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1

Strategy 1 Strategy 2

g1 g2 g3 g4 g5 g1 g2 g3 g4 g5
A1 A2 A3 A4 A5 A1 A2 A3 A4 A5
B1 B2 B3 B4 B5 B1 B2 B3 B4 B5
C1 C2 C3 C4 C5 C1 C2 C3 C4 C5

Permuting conditions Permuting genes

g1 g2 g3 g4 g5 g1 g2 g3 g4 g5
C1 C2 C3 C4 C5 A2 A5 A4 A1 A3
A1 A2 A3 A4 A5 B5 B3 B1 B2 B4
B1 B2 B3 B4 B5 C4 C5 C2 C3 C1

condA condA
condB condB
condC condC

condA condA
condB condB
condC condC

Figure 3.1: Resampling strategies.

Table 3.1: Methods to calculate SPE or leverage threshold by resampling tech-

niques

Method Permutation strategy Threshold computation

1 1 - Permuting conditions Option (a) - For each gene

2 2 - Permuting genes Option (a) - For each gene

3 2 - Permuting genes Option (b) - Globally

be calculated from this reference distribution in two ways:

Option (a).- First, the (1-α)% percentile of the K statistic values for each

gene is computed and the threshold is obtained as the (1-α)% percentile of

the N gene percentiles. This is the option implemented in ASCA-genes.

Option (b).- We propose using the (1-α)% percentiles of the KxN statistic

values obtained from the K permutations and N genes.

The three resampling methods to be compared in this work are combinations

of permutation strategies 1 and 2 and options (a) and (b) to compute thresh-

olds. They are described in Table 3.1.

minAS

In this work we introduce minAS, which is a very intuitive data-driven method.

This algorithmic approach consists of empirically estimating the mixture den-
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sity function for either the SPE or the leverage and then computing the first

local minimum closest to the “uninteresting” genes probability density curve.

The SPE or leverage value in which this minimum is reached is taken as

the threshold that separates both distributions. The minAS strategy assumes

that the mixture distribution in Equation 3.7 for SPE or leverage is, at least,

bimodal. The intrinsic nature of genomic data makes this assumption hold

in general. However, it is not always possible to visualize this bimodality in

histograms, due to the large difference in the sizes of both populations.

To estimate the mixture density curve, a non-parametric density estimator

was used: the kernel density estimator (KDE) [125]. A KDE is a sophisticated

version of histograms that produces smoothed density curves and it is defined

in Equation 3.13:

f̂(x) =
1

N ·h

N∑
i=1

K

(
xi − x
h

)
(3.13)

where xi are the observed values, N is the total number of observed val-

ues (in this case, the number of genes), h is the bandwidth (the smoothing

parameter) and K(x) is the kernel function, that weights each observation

depending on the distance to the point for which the density is being esti-

mated. For instance, when choosing a Gaussian kernel to estimate f at x0,

and for a given bandwidth h, the highest weights correspond to the closest

observations to x0, and the weight diminishes as the distance to x0 increases.

However, the KDE goodness of fit relies more on bandwidth h than on the

kernel choice. There are different rules of thumb to compute the optimum

bandwidth. For instance, Silverman [129] takes into account the dispersion

in the data and the sample size to compute bandwidth for KDE with a Gaus-

sian kernel. These are the default options in the R density function from the

library stats, which we used to obtain the KDE within minAS.

In the minAS algorithm, users can choose the kernel and the method to

calculate bandwidth (as in the R density function), as well as the number

of points for which the density is fitted. The smoothing of the KDE is de-

termined by the bandwidth computed by the chosen method. To increase or
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decrease this smoothing, the value of the coefficient adjust (which defaults

to 1) can be increased or decreased, respectively. Several kernel functions

or methods to calculate the bandwidth can be chosen and then minAS se-

lects the mixture estimation that best fits the data according to one of the

two implemented options: “max” and “mean”. As the true density function

is unknown, cumulative distribution functions computed from the KDE are

compared with the empirical cumulative distribution function derived from

SPE or leverage values. In order to compare them, the difference between the

empirical distribution and the KDE cumulative distribution is computed for

each value. Then, in the case of the “max” option, the maximum of these

differences (Kolmogorov-Smirnov distance) is taken. For the “mean” option,

the mean of all these differences is obtained. The KDE with the smallest

maximum (or mean) difference is selected.

Once the best KDE has been obtained, minAS computes the minima of

this curve. By default, the first local minimum after the highest peak is

taken as the cutoff value to separate the two populations, i.e. “interesting”

from “uninteresting” genes. However, minAS users can also set the maximum

number of minima to be computed, calculate all of them or provide the interval

where the minimum has to be found. A plot is provided in which all the

computed minima are represented over the mixture distribution. Then, if

more than one minimum is found, users can decide to reduce the number of

selected genes by choosing a more restrictive threshold.

3.2.3 Data simulation

The synthetic data sets used to evaluate the variable selection methods were

generated using a simulation algorithm. This algorithm is intended to mimic

the behavior of gene expression across time and for different experimental

conditions. In order to cover a wide variety of biological scenarios, we varied

the values of the input parameters of the algorithm when generating the data.

The input parameters are listed in Table 3.2, and some of them are explained

in more detail below:
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Experimental factors: Factors that are controlled by the experimentalist.

The algorithm was designed to work with two experimental factors: the time

factor and another one referring to the experimental group such as treatment,

tissue, illness, etc.

Signal genes (deg): Also called responsive genes or differentially expressed

genes. Genes which are activated at any time point and for any of the exper-

imental groups.

Expression pattern: Gene behavior over time for a certain experimental

group. As only short time series have been studied in this paper, expres-

sion patterns have been summarized and modeled according to the following

functions of time t:

• Continuous induction (β0+β1t; β1>0): Gene activity increases linearly

as time elapses.

• Continuous repression (β0+β1t; β1<0): The gene is initially active and

the activity decreases linearly as time elapses.

• Transitory induction (β0+β1t+β2t
2; β1>0, β2<0): The gene is initially

inactive, it increases its activity and, after a certain time and until the

final time point, this activity decreases.

• Transitory repression (β0+β1t+β2t
2; β1<0, β2>0): The gene is initially

active, it decreases its activity and, after a certain time and until the

final time point, this activity increases.

• Plain (for non-responsive genes): The gene remains inactive over time.

Coefficients β0, β1 and β2 have been computed in such a way that the

absolute value for gene expression level is not higher than a certain maximum

value. In microarray studies, expression levels are obtained as a log-ratio from

color intensities, so the expression values for responsive genes may vary be-

tween approximately 2 and 5. Thus, the maximum expression value computed
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by the algorithm is a random number between 2 and 5, 0.5, 0.3, 0.1 and 0.1

being the probabilities for values 2, 3, 4 and 5, respectively.

Class of genes: A class of genes is a group of genes that follow the

same temporal pattern within a certain experimental group (e.g. treatment).

The number of classes of genes will determine the variety of different gene

behaviors in the experiment.

The criterion for allocating the expression patterns to each class of genes

in each experimental group tries to imitate biological behavior as much as pos-

sible. Every pattern can be found in at least one class of genes. When genes

follow an induction pattern for a certain class, there must be another class

with the equivalent repression pattern. Inside every class containing respon-

sive genes, experimental groups for which genes are activated are randomly

selected taking into account that:

• Genes in that class must be active for at least one experimental group.

• If genes are expressed for several experimental groups, the expression

pattern must be the same for all of these experimental groups and

replicates.

• For two complementary gene classes, the genes must be active for the

same experimental groups.

When modeling gene behavior, noise must be introduced to get realistic

simulated expression data. Two types of noise have been considered: random

and structural noise. Random noise is generated by technology and affects

all the genes and samples in a similar way. For microarray data, it is common

that about 20% of the signal is random noise. Structural noise is related to

biological sample handling to obtain signal intensities. Hence, it takes the

same value for all the genes in the same microarray. It has been observed

that expressed genes are usually more affected by this kind of noise.

Let Gij be the “pure” expression value (without noise) for a certain gene

i and sample j.
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Table 3.2: Input parameters for simulation algorithm

Parameter Description

N Number of genes.

SN Percentage of differentially expressed

genes (%deg).

t Time points array.

f Number of experimental groups.

r Number of replicates for each time

point and experimental group.

d Number of classes of signal genes.

rn Maximum percentage of expression

level corresponding to random noise

in signal genes.

sd Standard deviation for structural noise

and for random noise in non-signal

genes.



48 3. VARIABLE SELECTION FOR MULTIFACTORIAL GENOMIC DATA

Random noise. Let rn be the parameter that determines the amount

of noise in the data, which is chosen by the user (by default, it is set to

20%). The simulation algorithm takes a random value δij from a uniform

distribution between -rn and rn to be used as random noise. Then, the

amount of random noise for an expressed gene is equal to δij times Gij ,

because it is expected that the effect of this kind of noise is proportional to

the level of expression. For non-expressed genes, with Gij=0, the amount of

random noise is a random value λij generated from a normal distribution with

mean 0 and standard deviation sd (a parameter that can also be set by users,

by default sd=0.3). If, by chance, the expression value for a signal gene is 0,

the random noise for that gene will also be computed this way.

Structural noise. The algorithm considers that structural noise only affects

signal genes. For a given sample j, structural noise is computed as a random

value εj from a normal distribution with mean m and standard deviation sd

and this value is equal for all the genes in the same sample. The parameter

sd is the same used for random noise in non-responsive genes and the mean

m is calculated as rn×msv, where rn is the random noise parameter defined

above and msv is the expected value for gene signal expression. As previously

mentioned, signal genes expression level can be 2, 3, 4 or 5 with probabilities

0.5, 0.3, 0.1, and 0.1 respectively. Therefore, msv turns out to be 2.8.

Hence, once the “pure” gene expression value Gij is generated, the “ob-

served” gene expression value G∗ij is computed by the algorithm according to

the following equations:

G∗ij = Gij + δij ×Gij + εj ; if Gij 6= 0 (3.14)

G∗ij = Gij + λij ; if Gij = 0

where δij ∼ U[−rn, rn]; λij ∼ N(0, sd); and εj ∼ N(m = rn× 2.8, sd).
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3.2.4 Performance indicators

The variable selection methods previously described are to be compared on

simulated data in order to assess their performance. Thus, we need to define

some indicators to measure this performance. A variety of indicators to assess

the classification of features into two groups (e.g. activated/non-activated,

differentially expressed/non-differentially expressed, etc.) have been described

in the literature. These two groups will be named as positives and negatives.

The confusion matrix in Table 3.3 illustrates the potential classification errors.

The performance indicators are then defined according to these successes and

failures.

Table 3.3: Confusion matrix for two-classes classification

Actual values

Positives Negatives

P N

Positives True Positives False Positives

Predicted P’ TP FP

values Negatives False Negatives True Negatives

N’ FN TN

These are the performance indicators we will use in this chapter:

• Sensitivity (SE), which is also known as the True Positive Rate (TPR):

SE =
TP

TP + FN
=
TP

P

• Specificity (SP) or True Negative Rate (TNR). The False Positive Rate

(FPR), which is the performance indicator used in Receiver Operating

Characteristic (ROC) curves, is equal to 1-SP.

SP =
TN

TN + FP
=
TN

N

• False Discovery Rate (FDR), which is the percentage of FP over the

total number of detections:

FDR =
FP

TP + FP
=
FP

P ′
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• Matthews correlation coefficient (MCC) [94]. Can take values from

-1 to 1, where 1 would indicate a perfect match and -1 an inverse pre-

diction. This coefficient takes into account every type of classification

error and is especially appropriate when the size of both groups is very

different, which usually happens in variable selection problems in tran-

scriptomics.

MCC =
TP × TN − FP × FN√

P ′ × P ×N ′ ×N

3.3 Results

The variable selection methods described in Section 3.2.2 were first evaluated

on simulated data in several comparative studies. According to the results

of these comparisons, the best strategies were determined and applied to an

experimental dataset.

3.3.1 Simulated data

Simulation studies were conducted, on the one hand, to compare the perfor-

mance of the proposed variable selection methods and, on the other hand, to

see which methods are preferred under certain biological scenarios or which

ones are less affected by the biological characteristics of the data.

To simplify the interpretation of the results, for each simulated dataset,

only two factors (e.g. time and experimental group) were considered: the

time factor consisting of three time points, and the number of experimen-

tal groups that was also three. Four replicates were generated for each ex-

perimental group at each time point. Two different simulation experiments

were conducted (see Simulation experiment 1 and Simulation experiment 2).

The first experiment was used to compare different options in each selection

method and to determine a good range for parameter values. Next, a global

comparison of the best combinations for each method was carried out on

the second simulation experiment to obtain a more precise selection approach

benchmarking.
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Simulation experiment 1

The biological scenarios to be simulated for this first experiment were defined

by the values of the following parameters:

• Number of genes in the dataset (N): 3000, 15000, or 30000.

• Percentage of differentially expressed genes (responsive or signal genes)

with regard to the total number of genes (%deg): 1%, 5% or 15%.

• Number of gene classes (class): 5, 10 or 25. Genes in the same class

have the same expression time pattern under the same experimental

group.

• Level of noise in the data (noise): 10% or 30%.

These parameters define 54 different biological scenarios, and 10 datasets

were generated for each of them. We made several comparisons on these 540

datasets whose results are described in the following sections.

Comparing resampling strategies

As already mentioned in Section 3.2.1, the variable selection strategies

implemented in ASCA-genes were Box’s method for SPE, and resampling

techniques for leverage. However, these approaches were not efficient in sep-

arating “interesting” from “uninteresting” genes in large dataset scenarios.

Therefore, a complete study was designed to determine which biological sce-

narios these selection strategies failed in, and to compare the three different

resampling options to calculate the leverage threshold (see Table 3.1) at sig-

nificance levels of 0.01 and 0.05. Box’s method was maintained to compute

the SPE threshold, as in the ASCA-genes paper.

Hence, the ASCA model was obtained for each of the 540 simulated

datasets and these variable selection strategies were applied. The Matthews

Correlation Coefficient (MCC) was obtained in each case and the results

were analyzed by means of an ANOVA model with repeated measures [10]

to evaluate the effect of the biological factors indicated above, the resam-

pling strategy (“leverage method”) and the significance level (α) on MCC
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values. An ANOVA with repeated measures was used because the variable

selection methods were applied to SPE and leverage values obtained from

the same simulated datasets, so the measurements were not independent in

this sense. The ANOVA results indicated that factors with a significant effect

on MCC (p-value<0.002) were: leverage method, significance level, number

of signal gene classes (class) and percentage of signal genes (%deg). The

noise level and the number of genes had no statistically significant influence

on MCC (p-value>0.6). Post-hoc tests showed that the best MCC results

(p-value<0.001) were obtained for leverage method 3, i.e. permuting genes

and computing threshold as a global percentile; α=0.01; low number of signal

genes classes and medium signal genes percentage (5%). See Figure 3.2. We

also observed that for α=0.01, the real False Positive Rate (FPR) obtained

with any of the resampling methods was similar to the significance level, but

when setting α to 0.05, FPR reached 80% in some cases. Classification fail-

ures were mainly due to the strategy used to calculate SPE threshold (Box’s

method).

Comparing selection methods for SPE

In the second study on these simulated datasets, Box’s method was com-

pared to the other SPE parametric methods: Jackson & Mudholkar’s and

Gamma. In this case, twelve different significance levels were evaluated, vary-

ing from 0.001 to 0.1. No leverage thresholds were calculated, so gene selec-

tion was based only on SPE values. Consequently, MCC results can be used

to compare SPE methods, but not to measure the global performance of the

methods. As shown in Figure 3.3, when the significance level is around 0.03,

all three methods perform similarly. For the rest of the significance levels,

Box’s method produces much worse results than the other two, which behave

similarly.

An ANOVA model with repeated measures showed that the SPE method,

significance level and all the biological factors had a statistically significant

effect on MCC (p-value<0.001), except the number of genes (p-value>0.7).
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Figure 2: Resampling strategies performance (measured by MCC) according to the signif-
icance level, the number of signal gene classes and the percentage of signal genes.

9

Figure 3.2: Resampling strategy performance (measured by MCC) according

to the significance level, the number of signal gene classes and the percentage

of signal genes.
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where TP is the number of True Positives, TN the number of True Neg-
atives, FP the number of False Positives and FN the number of False
Negatives. Unless otherwise stated, MCC is calculated from the selec-
tion made using both SPE and leverage values.

To simplify the interpretation of results, for each simulated data-
set, only two factors (e.g. time and experimental group) have been
considered: the time factor consisted of three time points and the
number of experimental groups was also three. Four replicates have
been generated for each experimental group at each time point. The
description of the simulation algorithm can be found in the Supple-
mentary Material. Two different simulation experiments were con-
ducted. The first experiment was used to compare different options
in each selection method and determine a good range for parameter
values. Next, a global comparison of the best methods combinations
was carried out on the second simulation experiment to obtain a
more precise benchmarking of the selection approaches.

3.1.1. Simulation experiment 1
The biological scenarios to be simulated for this first experiment

were defined by the values of the following parameters:

• Number of genes in the dataset (N): 3000, 15,000 or 30,000.
• Percentage of differentially expressed genes (responsive or signal
genes) with regard to the total number of genes (%deg): 1%, 5% or
15%.

• Number of gene classes (class): 5, 10 or 25. Genes in the same class
have the same expression time pattern under the same experimen-
tal group.

• Level of noise in the data (noise): 10% or 30%.

These parameters define 54 different biological scenarios and 10
datasets were generated for each one of them.

As already mentioned in Section 2.1, variable selection strategies
implemented in ASCA-genes were Box's method for SPE and resam-
pling techniques for leverage. However, these approaches were not
efficient in separating “interesting” from “uninteresting” genes in
large datasets scenarios (unpublished results). So in this work, a com-
plete study was designed to determine under which biological sce-
narios these selection strategies failed and to compare the three
different resampling options to calculate leverage threshold (see
Table 1) at significance levels 0.01 and 0.05. The Box's method was
maintained to compute SPE threshold, as in the ASCA-genes paper.

Hence, the ASCA model was obtained for each of the 540 simulat-
ed datasets and these variable selection strategies were applied. The
Matthews Correlation Coefficient (MCC) was obtained in each case
and the results were analyzed by means of an ANOVA model with re-
peated measures [29] to evaluate the effect of the biological factors
indicated above, the resampling strategy (“leverage method”) and
the significance level (α) on MCC values. An ANOVA with repeated
measures was used because the variable selection methods were ap-
plied to SPE and leverage values obtained from the same simulated
datasets, so the measurements were not independent in this sense.
The ANOVA results indicated that factors with a significant effect on
MCC (p-valueb0.002) were: leverage method, significance level,
number of signal gene classes (class) and percentage of signal genes
(%deg). The noise level and the number of genes had no statistically
significant influence on MCC (p-value>0.6). Post-hoc tests showed
that the best MCC results (p-valueb0.001) were obtained for leverage
method 3, i.e. permuting genes and computing threshold as a global
percentile; α=0.01; low number of signal gene classes and medium
signal genes percentage (5%). Further details on this analysis may
be found in Supplementary Material. We also observed that for
α=0.01, the real False Positive Rate (FPR) obtained with any of the
resampling methods was similar to the significance level, but when
setting α to 0.05, FPR reached 80% in some cases. Classification fail-
ures were mainly due to the strategy used to calculate SPE threshold
(Box's method).

In the second study on these simulated datasets, Box's method
was compared to the other SPE parametric methods: Jackson and
Mudholkar's and Gamma. In this case, twelve different significance
levels were evaluated, varying from 0.001 to 0.1. No leverage thresh-
olds were calculated, so gene selection was based only on SPE values.
Consequently, MCC results can be used to compare SPE methods, but
not as a measure of the global performance of the methods. It can be
observed in Fig. 1 that when significance level is around 0.03, all the
three methods present a similar performance. For the rest of signifi-
cance levels, Box's method produces much worse results than the
other two, which behave similarly.

An ANOVAmodel with repeated measures showed that SPE meth-
od, significance level and all the biological factors had a statistically
significant effect on MCC (p-valueb0.001), except the number of
genes (p-value>0.7). From post-hoc tests, it was deduced that SPE
methods were significantly different (p-valueb0.008), being Jackson
and Mudholkar and Gamma the ones presenting better results. For
significance levels between 1% and 3% the best MCC results were
obtained (p-valueb0.001). No statistically significant differences
were observed between 5 and 10 signal gene classes (p-value>0.3),
but significantly better results were obtained when number of classes
was 25 (p-valueb0.001), maybe because when so many different pat-
terns are present in the data, there are more genes badly explained by
the model and hence those genes have a high SPE value. The best MCC
results were obtained when responsive genes percentage was 5%, fol-
lowed by 15% and lastly 1% (p-valueb0.001). Finally, MCC was higher
when noise level was 30% (p-valueb0.001).

Joining the results of this study, we determined themost convenient
significance levels for eachmethod to obtain the bestMCC valuewhich-
ever the signal gene percentage and the number of signal gene classes
were. The recommendations were α=0.03 for Box's method,
0.005bαb0.02 for Jackson and Mudholkar's method and α=0.01 for
Gamma approximation (see Fig. 1).

Again, the significance level was compared to the False Positive Rate
(FPR) obtained for eachmethod. Fig. 2 presents these results and shows
that in Gamma and Jackson andMudholkar's methods this relation was
preserved, while this did not happen for Box's method.

Once the methods estimating the null distribution were com-
pared, we included minAS method in the study (always taking the
first local minimum after the highest peak as the threshold for both
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Fig. 1. SPE selection methods performance (measured by MCC) according to significance
level.

117S. Tarazona et al. / Chemometrics and Intelligent Laboratory Systems 110 (2012) 113–122

Figure 3.3: SPE selection method performance (measured by MCC) according

to significance level.

From post-hoc tests, it was deduced that SPE methods were significantly dif-

ferent (p-value<0.008), and that Jackson & Mudholkar and Gamma methods

produced the best results. For significance levels between 1% and 3% the best

MCC results were obtained (p-value<0.001). No statistically significant dif-

ferences were observed between 5 or 10 signal gene classes (p-value>0.3),

but significantly better results were obtained when number of classes was 25

(p-value<0.001), maybe because when so many different patterns are present

in the data, there are more genes badly explained by the model and hence

those genes have a high SPE value. The best MCC results were obtained

when the percentage of responsive genes was 5%, followed by 15%, and lastly

1% (p-value<0.001). Finally, MCC was higher when the noise level was 30%

(p-value<0.001).

Joining the results of this study, we determined the most convenient signif-

icance levels for each method to obtain the best MCC value, despite the signal

gene percentage or the number of signal gene classes. Our recommendations

were α=0.03 for Box’s method, 0.005<α <0.02 for Jackson & Mudholkar’s
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SPE and leverage). To see if minAS selection was satisfactory enough
to continue studying the method in depth, it was compared to the
combinations of methods evaluated in the first study (Box's method
for SPE and resampling techniques for leverage). In this preliminary
comparison, default options in R “density” function (Gaussian kernel
and “nrd0” method to compute bandwidth) were used. As it can be
seen in Fig. 3, MCC obtained from minAS was, in general, higher
than MCC obtained with the other methods.

In addition, using the same simulated datasets, the default options in
minAS (Gaussian kernel and “nrd0” bandwidth computing method)
were compared to the best estimators according to minAS options
“max” and “mean” (see Section 2.2). Fig. 4 shows that minAS resulted
in betterMCC scores when using the default KDE thanwith the KDE pro-
ducing the minimummaximum or minimum mean distance to the em-
pirical data distribution. The reason is that the other kernels or methods
to compute bandwidth tended to generate infra-smoothed curves with
toomany localminima. In these cases, the selection by thefirst localmin-
imum increased the number of false positives. Therefore, default “densi-
ty” options were used when applying the minAS procedure hereinafter.

The influence of biological parameters defining the scenarios on
MCC results for minAS method was also analyzed using an ANOVA
model. All the parameters had a statistically significant effect on
MCC (p-valueb0.01), especially the number of genes, the number of
classes and the signal genes percentage, as well as the interactions be-
tween them. It was observed that the greater the number of classes

and the percentage of signal genes, the better MCC results minAS pro-
duced, no matter the number of genes. As number of genes and signal
percentage increased, MCC was less dependent on the number of
classes. Boxplots describing these results can be seen in Supplemen-
tary Material. Hence, as general guidelines, we recommend using
minAS for datasets with a high number of variables because other-
wise the goodness of fit of KDE is not guaranteed and the multimod-
ality is more dependent on the value of the smoothing parameter. The
method can be applied to datasets with a thousand variables approx-
imately, but results show that the best performance is obtained for
more than 15000 variables. A Gaussian kernel and the method
“nrd0” to compute bandwidth have been proved to offer the best
minAS performance. Furthermore, increasing the parameter “adjust”
to get a more smoothed KDE produces even better results (see Sup-
plementary Material), although this parameter was not changed in
any of the simulation experiments we performed.

3.1.2. Simulation experiment 2
To conclude the evaluation of variable selection methods on sim-

ulated data, a new simulation experiment was designed in order to
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Figure 3.4: The FPR according to the significance level for each one of the

SPE methods studied.

method, and α=0.01 for Gamma approximation (see Figure 3.3).

Again, the significance level was compared to the False Positive Rate

(FPR) obtained for each method. Figure 3.4 presents these results and shows

that in Gamma and Jackson & Mudholkar’s methods this relation was pre-

served, while this did not happen for Box’s method.

Comparing minAS to the other methods

Once the methods estimating the null distribution were compared, we in-

cluded the minAS method in the study (always taking the first local minimum

after the highest peak as the threshold for both SPE and leverage). To see if

minAS selection was sufficiently satisfactory to continue studying the method

in depth, it was compared to the combinations of methods evaluated in the

first study (Box’s method for SPE and resampling techniques for leverage). In

this preliminary comparison, default options in R “density” function (Gaussian

kernel and “nrd0” method to compute bandwidth) were used. As shown in

Figure 3.5, the MCC obtained from minAS was, in general, higher than the

MCC obtained with the other methods.

In addition, using the same simulated datasets, the default options in mi-

nAS (Gaussian kernel and “nrd0” bandwidth computing method) were com-

pared to the best estimators according to minAS options “max” and “mean”

(see Section 3.2.2). Figure 3.6 shows that minAS resulted in better MCC
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SPE and leverage). To see if minAS selection was satisfactory enough
to continue studying the method in depth, it was compared to the
combinations of methods evaluated in the first study (Box's method
for SPE and resampling techniques for leverage). In this preliminary
comparison, default options in R “density” function (Gaussian kernel
and “nrd0” method to compute bandwidth) were used. As it can be
seen in Fig. 3, MCC obtained from minAS was, in general, higher
than MCC obtained with the other methods.

In addition, using the same simulated datasets, the default options in
minAS (Gaussian kernel and “nrd0” bandwidth computing method)
were compared to the best estimators according to minAS options
“max” and “mean” (see Section 2.2). Fig. 4 shows that minAS resulted
in betterMCC scores when using the default KDE thanwith the KDE pro-
ducing the minimummaximum or minimum mean distance to the em-
pirical data distribution. The reason is that the other kernels or methods
to compute bandwidth tended to generate infra-smoothed curves with
toomany localminima. In these cases, the selection by thefirst localmin-
imum increased the number of false positives. Therefore, default “densi-
ty” options were used when applying the minAS procedure hereinafter.

The influence of biological parameters defining the scenarios on
MCC results for minAS method was also analyzed using an ANOVA
model. All the parameters had a statistically significant effect on
MCC (p-valueb0.01), especially the number of genes, the number of
classes and the signal genes percentage, as well as the interactions be-
tween them. It was observed that the greater the number of classes

and the percentage of signal genes, the better MCC results minAS pro-
duced, no matter the number of genes. As number of genes and signal
percentage increased, MCC was less dependent on the number of
classes. Boxplots describing these results can be seen in Supplemen-
tary Material. Hence, as general guidelines, we recommend using
minAS for datasets with a high number of variables because other-
wise the goodness of fit of KDE is not guaranteed and the multimod-
ality is more dependent on the value of the smoothing parameter. The
method can be applied to datasets with a thousand variables approx-
imately, but results show that the best performance is obtained for
more than 15000 variables. A Gaussian kernel and the method
“nrd0” to compute bandwidth have been proved to offer the best
minAS performance. Furthermore, increasing the parameter “adjust”
to get a more smoothed KDE produces even better results (see Sup-
plementary Material), although this parameter was not changed in
any of the simulation experiments we performed.

3.1.2. Simulation experiment 2
To conclude the evaluation of variable selection methods on sim-

ulated data, a new simulation experiment was designed in order to
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Figure 3.5: MCC obtained by applying the three resampling methods in Table

3.1 with α=0.01 and α=0.05 for leverage and Box’s method for SPE, and minAS

method for both of them.

scores when using the default KDE than with the KDE producing the mini-

mum maximum or minimum mean distance to the empirical data distribution.

The reason for this is that the other kernels or methods to compute bandwidth

tended to generate infra-smoothed curves with too many local minima. In

these cases, the selection by the first local minimum increased the number of

false positives. Therefore, default “density” options were used when applying

the minAS procedure hereinafter.

The influence of biological parameters defining the scenarios on MCC

results for minAS method was also analyzed using an ANOVA model. All

the parameters had a statistically significant effect on MCC (p-value<0.01),

especially the number of genes, the number of classes and the signal genes

percentage, as well as the interactions between them. It was observed that

the greater the number of classes and the percentage of signal genes, the

better MCC results minAS produced, no matter the number of genes. As the

number of genes and signal percentage increased, MCC was less dependent

on the number of classes. Boxplots describing these results can be seen in

Figure 3.7.
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SPE and leverage). To see if minAS selection was satisfactory enough
to continue studying the method in depth, it was compared to the
combinations of methods evaluated in the first study (Box's method
for SPE and resampling techniques for leverage). In this preliminary
comparison, default options in R “density” function (Gaussian kernel
and “nrd0” method to compute bandwidth) were used. As it can be
seen in Fig. 3, MCC obtained from minAS was, in general, higher
than MCC obtained with the other methods.

In addition, using the same simulated datasets, the default options in
minAS (Gaussian kernel and “nrd0” bandwidth computing method)
were compared to the best estimators according to minAS options
“max” and “mean” (see Section 2.2). Fig. 4 shows that minAS resulted
in betterMCC scores when using the default KDE thanwith the KDE pro-
ducing the minimummaximum or minimum mean distance to the em-
pirical data distribution. The reason is that the other kernels or methods
to compute bandwidth tended to generate infra-smoothed curves with
toomany localminima. In these cases, the selection by thefirst localmin-
imum increased the number of false positives. Therefore, default “densi-
ty” options were used when applying the minAS procedure hereinafter.

The influence of biological parameters defining the scenarios on
MCC results for minAS method was also analyzed using an ANOVA
model. All the parameters had a statistically significant effect on
MCC (p-valueb0.01), especially the number of genes, the number of
classes and the signal genes percentage, as well as the interactions be-
tween them. It was observed that the greater the number of classes

and the percentage of signal genes, the better MCC results minAS pro-
duced, no matter the number of genes. As number of genes and signal
percentage increased, MCC was less dependent on the number of
classes. Boxplots describing these results can be seen in Supplemen-
tary Material. Hence, as general guidelines, we recommend using
minAS for datasets with a high number of variables because other-
wise the goodness of fit of KDE is not guaranteed and the multimod-
ality is more dependent on the value of the smoothing parameter. The
method can be applied to datasets with a thousand variables approx-
imately, but results show that the best performance is obtained for
more than 15000 variables. A Gaussian kernel and the method
“nrd0” to compute bandwidth have been proved to offer the best
minAS performance. Furthermore, increasing the parameter “adjust”
to get a more smoothed KDE produces even better results (see Sup-
plementary Material), although this parameter was not changed in
any of the simulation experiments we performed.

3.1.2. Simulation experiment 2
To conclude the evaluation of variable selection methods on sim-

ulated data, a new simulation experiment was designed in order to
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Figure 3.6: MCC obtained by applying minAS for both SPE and leverage

on datasets from simulation experiment 1, considering three options: “max”

criterion, “mean” criterion, and default options.

Hence, as general guidelines, we recommend using minAS for datasets

with a high number of variables because otherwise the goodness of fit of

KDE is not guaranteed and the multimodality is more dependent on the value

of the smoothing parameter. The method can be applied to datasets with

approximately a thousand variables, but results show that the best perfor-

mance is obtained for more than 15000 variables. A Gaussian kernel and the

method “nrd0” to compute bandwidth have been proven to offer the best

minAS performance. Furthermore, increasing the parameter “adjust” to get

a more smoothed KDE produces even better results (as shown in the following

section), although this parameter was not changed in any of the simulation

experiments we performed.

Simulation experiment 2

To conclude the evaluation of variable selection methods on simulated data,

a new simulation experiment was designed in order to compare simultane-

ously all of the previously described methods for computing SPE and leverage

thresholds. In this last comparison, other biological scenarios were simulated
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Figure 3.7: Performance of minAS (measured by MCC) according to the num-

ber of genes, the level of noise, the number of signal gene classes and the

percentage of signal genes.
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taking into account the results obtained in the previous studies. The level of

noise was not included as a parameter in these simulations because it had,

in general, very little influence on MCC results, so it was set to 20%. The

values for the rest of biological parameters were:

• Number of genes in the dataset: 5000 or 20000.

• Percentage of responsive genes: 3% or 10%.

• Number of gene classes: 5 or 25.

For each one of the 8 possible scenarios, 10 datasets were again generated.

The SPE selection methodologies to be compared in this analysis were Box’s

method, Jackson & Mudholkar’s (J&M), Gamma, minAS, and resampling

using permutation strategy 2 (genes permutation) and option (b) to compute

threshold by global percentile (Permut2b). Regarding leverage, we compared

the resampling method (Permut2b), Gamma approximation and the minAS

method. The resulting combinations of all these methods are shown in Table

3.4. The significance level that produced the best results in the previous

studies was chosen.

Figure 3.8 shows 95% confidence intervals for the mean MCC produced

by each of these methods. The overall good performance of the meth-

ods can be deduced from this plot, because all of them obtained a mean

MCC higher than 0.9. However, the ANOVA model with repeated measures

showed a statistically significant difference between them (p-value<0.001).

The worst results were obtained for those combinations in which resampling

techniques were used to compute the SPE threshold. Box’s method for SPE

is not recommended for its high standard deviation. The Gamma approx-

imation for leverage worked excellently. Considering both MCC mean and

standard deviation, the best combinations were number 6 (J&M+Gamma),

number 8 (Gamma+minAS) and number 9 (Gamma+Gamma). The ANOVA

model also showed that the number of genes and the number of signal genes

classes had no significant effect on mean MCC value (p-value=0.137 and
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Table 3.4: Selection methods combinations included in global comparison.

Combination SPE method Leverage method

1 Box - α=0.03 Permut2b - α=0.01

2 Box - α=0.03 minAS

3 Box - α=0.03 Gamma - α=0.01

4 J&M - α=0.01 Permut2b - α=0.01

5 J&M - α=0.01 minAS

6 J&M - α=0.01 Gamma - α=0.01

7 Gamma - α=0.01 Permut2b - α=0.01

8 Gamma - α=0.01 minAS

9 Gamma - α=0.01 Gamma - α=0.01

10 minAS Permut2b - α=0.01

11 minAS minAS

12 minAS Gamma - α=0.01

13 Permut2b - α=0.01 Permut2b - α=0.01

14 Permut2b - α=0.01 minAS

15 Permut2b - α=0.01 Gamma - α=0.01
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p-value=0.353, respectively). However, signal genes percentage significantly

affected the MCC value (p-value<0.001), as well as the interaction between

signal gene percentage, and method combination (p-value<0.02). In general,

the higher signal genes percentage, the higher the mean MCC. Combination

9 (Gamma+Gamma) did not result in big differences in mean MCC for the

different percentages of signal genes. However, some combinations including

minAS, for example numbers 10, 11, and 12, worked much better when the

percentage of signal genes was higher.

Author's personal copy

compare simultaneously all of the previously described methods for
computing SPE and leverage thresholds. In this last comparison,
other biological scenarios were simulated taking into account the re-
sults obtained in the previous studies. The level of noise was not in-
cluded as a parameter in these simulations because it had, in
general, very little influence on MCC results, so it was set to 20%.
The values for the rest of biological parameters were:

• Number of genes in the dataset: 5000 or 20000.
• Percentage of responsive genes: 3% or 10%.
• Number of gene classes: 5 or 25.

For each one of the 8 possible scenarios, again 10 datasets were
generated. SPE selection methodologies to be compared in this analy-
sis were Box's method, Jackson and Mudholkar's (J&M), Gamma,
minAS and resampling using permutation strategy 2 (genes permuta-
tion) and option (b) to compute threshold by global percentile (Per-
mut2b). Regarding to leverage, we compared resampling method
(Permut2b), Gamma approximation and minAS method. The result-
ing combinations of all these methods are shown in Table 2. The sig-
nificance level that produced the best results in the previous studies
was chosen.

Fig. 5 shows 95% confidence intervals for mean MCC produced by
each one of the methods. It can be deduced from this plot the overall
good performance of the methods, since all of them got a mean MCC
higher than 0.9. However, the ANOVA model with repeated measures
showed a statistical significant difference among them (p-valueb0.001).
The worst results were obtained for those combinations in which
resampling techniques were used to compute SPE threshold. Box's
method for SPE is not recommended for its high standard deviation.
The Gamma approximation for leverage worked excellently. Consider-
ing both MCC mean and standard deviation, the best combinations
were number 6 (J&M+Gamma), number 8 (Gamma+minAS) and
number 9 (Gamma+Gamma). The ANOVA model also showed that
the number of genes and the number of signal genes classes had no sig-
nificant effect on mean MCC value (p-value=0.137 and p-value=
0.353, respectively). However, signal gene percentage significantly
affectedMCCvalue (p-valueb0.001), aswell as the interaction between
signal genes percentage and method combination (p-valueb0.02).
In general, the higher signal gene percentage, the higher mean MCC.
Combination 9 (Gamma+Gamma) did not result in big differences in
mean MCC for the different percentages of signal genes. However,
some combinations including minAS, for example numbers 10, 11 and
12, worked much better when the percentage of signal genes was
higher. Additionally, interaction plots illustrating the methods combi-
nations performance can be found in the Supplementary Material.

In all the simulation studies, the bandwidthwas computed following
the Silverman's rule (“nrd0” option). To check what happened if band-
width was modified with the “adjust” coefficient, minAS was applied

to the 80 simulated datasets in simulation experiment 2, using the de-
fault options in “density” and varying the coefficient “adjust” from 0.5
(i.e., half the bandwidth obtained by “nrd0” method) to 5 (i.e., 5 times
the bandwidth obtained by “nrd0”method), as it is described in Supple-
mentary Material. Interestingly, minAS performance improves for “ad-
just” values higher than one, that is, when the estimated density curve
is more smoothed (see Supplementary Material).

To summarize, minAS and Gamma approximation (with α=0.01)
behaved slightly better than the rest of the studied methods. Further-
more, Gamma method presented less differences in MCC value for
different signal genes percentages, while minAS had a better perfor-
mance when this percentage was higher.

3.2. Experimental data: hypoxia

Once the benchmarking with simulated data was completed, the
methods producing the best results were applied on an experimental
dataset and evaluated for their ability to select genes that led to out-
standing biological information. The Hypoxia gene expression data in
[30] was used for this biological validation. This dataset collects the
transcriptomic profile of human embryonic stem cells cultured
under different oxygen concentrations. The oxygen conditions were:
normoxia (21% of oxygen) and hypoxia (5% or 1% of oxygen). Gene
expression for 30826 genes was measured in several time points
using Agilent microarrays. An ASCA model was fit to the data. Factor
a is the time (0 h, 12 h, 24 h, 5 days and 10 days) and factor b was
used for the oxygen level (21%, 5% and 1%). Oxygen level and interac-
tion effects were joined together in the model (as in Eq. 2). Two prin-
cipal components were selected in each submodel (a and b+ab),
which explained 83.2% of the variability in submodel a and 71.9% in
submodel b+ab. Model analysis showed different gene behaviors
for each oxygen level, differentiating clearly normoxia from hypoxia
conditions, and time points 12–24 h from 5 to 10 days (results not
shown). In order to compute SPE and leverage thresholds, several
combinations of selection methods showing the best performance in
the previous simulation studies were used: Jackson and Mudholkar's
SPE method (α=0.01), Gamma approximation (α=0.01) and minAS

Table 2
Selection methods combinations included in global comparison.

Combination SPE method Leverage method

1 Box — α=0.03 Permut2b — α=0.01
2 Box — α=0.03 minAS
3 Box — α=0.03 Gamma — α=0.01
4 J&M — α=0.01 Permut2b — α=0.01
5 J&M — α=0.01 minAS
6 J&M — α=0.01 Gamma — α=0.01
7 Gamma — α=0.01 Permut2b — α=0.01
8 Gamma — α=0.01 minAS
9 Gamma — α=0.01 Gamma — α=0.01
10 minAS Permut2b — α=0.01
11 minAS minAS
12 minAS Gamma — α=0.01
13 Permut2b — α=0.01 Permut2b — α=0.01
14 Permut2b — α=0.01 minAS
15 Permut2b — α=0.01 Gamma — α=0.01
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Fig. 5. 95% confidence intervals for mean MCC according to methods combination.
Horizontal dashed-line corresponds to overall average MCC.
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Figure 3.8: 95% confidence intervals for mean MCC according the combination

of methods used. Horizontal dashed-line corresponds to overall average MCC.

In all the simulation studies, the bandwidth was computed following Sil-

verman’s rule (“nrd0” option). To check what happened if the bandwidth was

modified with the “adjust” coefficient, minAS was applied to the 80 simulated

datasets in simulation experiment 2, using the default options in “density”
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and varying the coefficient “adjust” from 0.5 (i.e., half the bandwidth ob-

tained by the “nrd0” method) to 5 (i.e., 5 times the bandwidth obtained by

“nrd0” method). The MCC results for each “adjust” value are displayed in

Figure 3.9. Interestingly, minAS performance improves for “adjust” values

higher than one, that is, when the estimated density curve is more smoothed.

It is expected that for a certain value of “adjust” coefficient not considered

in the study, performance gets worse, because the density curve would be

so smoothed that the distribution would become unimodal. Moreover, if the

bandwidth is decreased, the curve is not smooth enough and may yield false

local minima. As shown in the plot, for an “adjust” coefficient of 0.5, there

are MCC values close to 0, and the MCC first quartile is less than 0.8. The

important conclusion is that the default minAS options provide a good esti-

mation for SPE and leverage density curves. Increasing the bandwidth can

improve gene selection, but smaller bandwidths result in over-adjustment and

in the occurrence of false local minima, leading to an increase of the number

of false positives.

To summarize, minAS and Gamma approximation (with α=0.01) behaved

slightly better than the rest of the studied methods. Furthermore, the Gamma

method presented fewer differences in MCC values for different signal gene

percentages, while minAS had a better performance when this percentage

was higher.

3.3.2 Experimental data: Hypoxia

Once the benchmarking with simulated data was completed, the methods pro-

ducing the best results were applied on an experimental dataset and evaluated

for their ability to select genes that led to outstanding biological information.

The Hypoxia gene expression data in [114] was used for this biological vali-

dation. This dataset collects the transcriptomic profile of human embryonic

stem cells cultured under different oxygen concentrations. The oxygen con-

ditions were: normoxia (21% oxygen) and hypoxia (5% or 1% oxygen). Gene

expression for 30826 genes was measured at several time points using Agilent
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Figure 1: Matthew’s correlation coefficient obtained in simulated datasets according to
different values for the coefficient “adjust” (that multiplies the bandwidth obtained by
“nrd0” default method) when applying minAS selection strategy for SPE and leverage
values from ASCA model in datasets from simulation experiment 2.

3

Figure 3.9: Matthew’s correlation coefficient obtained in simulated datasets

according to different values for the coefficient “adjust” (that multiplies the

bandwidth obtained by the “nrd0” default method) when applying the minAS

selection strategy for SPE and leverage values from the ASCA model in datasets

from simulation experiment 2.
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Table 3.5: Number of genes selected by the method combinations studied in

the hypoxia dataset.

Combination SPE

method

Leverage

method

Sub-model

a

Sub-model

b+ab

Total

5 J&M minAS 1347 1827 2668

6 J&M Gamma 1182 1919 2618

8 Gamma minAS 1287 1076 2034

9 Gamma Gamma 1122 1176 1976

11 minAS minAS 1862 1309 2705

12 minAS Gamma 1706 1405 2649

microarrays. An ASCA model was fit to the data. Factor a is the time (0

hours, 12 hours, 24 hours, 5 days and 10 days) and factor b was used for

the oxygen level (21%, 5% and 1%). The oxygen level and interaction effects

were joined together in the model (as in Equation 3.3). Two principal compo-

nents were selected in each submodel (a and b+ab), which explained 83.2%

of the variability in submodel a and 71.9% in submodel b+ab. Model analysis

showed different gene behaviors for each oxygen level, clearly differentiating

normoxia from hypoxia conditions, and time points 12-24 hours from 5-10 days

(results not shown). In order to compute SPE and leverage thresholds, sev-

eral combinations of selection methods showing the best performance in the

previous simulation studies were used: Jackson & Mudholkar’s SPE method

(α=0.01), Gamma approximation (α=0.01) and the minAS method. Table

3.5 shows the number of genes selected by each one of these combinations

and Figure 3.10 shows the histograms and distributions fitted for SPE and

leverage values in each submodel, as well as the thresholds obtained by the

selection methods.

To evaluate the validity of the different variable selection methods, se-

lected gene lists were investigated to see whether the biological information

they contained was relevant to the study. Hence, for each one of the selected
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Finally, we have focused on multifactorial designs because the vari-
able selection issue has not been sufficiently developed for these complex
experimental setups. The ASCA-genes framework was chosen to model
these data, since it is considered a suitable methodology for the analysis
of genomic datasets with such experimental designs. However, as the
proposed variable selectionmethods are based onmodeling the distribu-
tion ofmultivariate statistics, they are generally applicable to different di-
mension reduction techniques and kind of data by changing the statistic
measuring the importance of the variables in the model. In fact, we have
successfully applied our methods in other contexts, as for example in
[37], where minAS was used for selecting variables from genomic and
metabolomic data in Tucker3 and N-PLS models.

The minAS and Gamma variable selection methods applied to
ASCA-genes analysis have been implemented in the web suite for Se-
rial Expression Analysis, SEA (http://sea.bioinfo.cipf.es/) [18], and are
freely available to the scientific community.
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Figure 3.10: Histograms for SPE and leverage in each submodel. Curves repre-

sent the distributions fitted by the variable selection methods applied. Vertical

lines are the thresholds computed from these distributions. The X-axis has been

zoomed for better visualization and therefore they do not show the full range of

SPE and leverage values.
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gene sets, we carried out a functional enrichment (FE) analysis by means

of the FatiGO tool, included in Babelomics suite [2], using the Gene Ontol-

ogy (GO) gene function annotation to compare selected versus non-selected

genes. FE is an established methodology to interpret and evaluate transcrip-

tomic data, that assesses whether specific cellular functions (in this case, GO

terms) are overrepresented within the set of significant genes. Significant en-

riched GO terms for the selected genes sets were visualized with the Blast2GO

software [28], that allowed them to be colored, depending on the number of

selection methods by which they had been detected. This kind of graph en-

abled us to evaluate which of the selected gene sets contributed more to the

biological interpretation of the experimental results (see an example in Figure

3.11).

In general, all of the tested methodologies generated gene selections en-

riched in a number of GO terms that represent key general processes of the

hypoxia treatment. These were, among others, “developmental process”,

“metabolic process”, “response to stimulus”, “transcription factor activity”,

“chemokine receptor binding”, “lipid transport activity”, “immune system

process”, “intrinsic to plasma membrane”, “organ morphogenesis”, “angio-

genesis”, “response to wounding” and “humoral immune response”. “Organ

morphogenesis” and “angiogenesis” refer to the establishment of the circula-

tory system in mammals, one of the first events during the embryo develop-

ment [22, 75]; while the metabolism of lipids has also been postulated to play

an important role in the embryo differentiation [56]. Also “ectoderm develop-

ment” and “epidermis development” were functions identified by most of the

methods, and are directly related to the differentiation process analyzed in

this experiment. Additionally, some specific processes were only revealed by

some of the selection methods. For example, combinations 5 and 6 (both us-

ing J&M method for SPE selection) highlighted the “central nervous system

development” (associated to normoxia) and “sensory organ development”

or “chemokine receptor binding” (both related to hypoxia). Combinations

11 and 12 (SPE selection by minAS) discovered metabolic processes such
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Figure 3.11: Example of a Blast2GO graph displaying enriched GO terms

detected by the FatiGO tool (adjusted p-value < 0.05) when comparing genes

selected by each of the method combinations against the others.
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as “hormone metabolic process”, “hexose metabolic process” and “glucose

metabolic process”. Combinations 9 and 12 (leverage selection by Gamma)

found the “extracellular matrix part” GO term, which plays a fundamental

role in regulating remodeling processes in embryo development and is also

involved in repair processes, inflammation and tumor invasion [65].

In summary, most of the biological information is shared by all the com-

pared methods combinations, but not all of them contribute equally to im-

proving our biological knowledge about the gene products dynamics in this

context. Each of the combinations leads to the extraction of some particular

biological functions than the rest of the methods do not detect or, at least,

not with the same degree of specificity.

3.3.3 Other applications

Some of the variable selection strategies described here have also been applied

in other multivariate contexts different from ASCA method.

In [31], multi-way projection methods such as Tucker3 and N-PLS were

used for the integrative analysis of a functional genomics dataset where tran-

scriptomics, metabolomics and physiological data were available from an ex-

periment on rats to assess the effect of hepatotoxicant bromobenzene. The

most relevant biological features were selected by applying minAS to either the

loadings corresponding to one of the model components or the projection of

several component loadings into the line that best separated the experimental

conditions.

In [113], the PANA computational methodology is introduced. It studies

the functional interconnections among the molecular elements of a biological

system by using high-throughput genomics measurements and a functional

annotation scheme. PCA is applied to extract an activity profile from each

functional block -or pathway. Next, machine-learning methods infer the rela-

tionships between these functional profiles to obtain an interconnected net-

work of pathways that represents the functional cross-talk within the molec-

ular system. minAS is again used to identify the main gene contributors to
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pathway profiles computed from PCA models also taking the loadings as the

variable importance measurement. We showed the benefits of the PANA ap-

proach to describe the functional transcriptional connections during the yeast

cell cycle and to identify pathways that change their connectivity in a disease

condition using an Alzheimer example.

3.4 Discussion

In this chapter, we have presented and compared several strategies to se-

lect the most relevant genes in multivariate models applied to the analysis of

complex genomic data. The starting point of this contribution is the adop-

tion of a multivariate dimension reduction strategy, commonly used in data

exploration for the identification of important genes. In comparison to uni-

variate methods that carry out gene-wise analysis, the multivariate approach

exploits the coordinated nature of gene expression and avoids the applica-

tion of multiple testing corrections that seriously diminishes statistical power

in genomic research. In these scenarios, two additional factors are also im-

portant. Firstly, the high-dimensionality of the feature space, that results in

data structures where the number of variables can be two or three orders of

magnitude the number of observations. And second, the low signal to noise

ratio of the measurements. This implies that traditional multivariate feature

selection methods are generally not applicable. The basic contribution in this

paper is that the variable selection choices we propose always involve studying

the distribution of the statistics used to measure the importance of the vari-

ables. Hence, the threshold for these statistics is set according to the shape

of the distribution rather than selecting a fixed percentage of the total num-

ber of variables, which is a common and rather arbitrary practice in this kind

of analysis. Our main concern in this study was to identify methodologies

that will generally work well in different scenarios of dataset size, diversity

of gene expression signals and levels of noise, since these features are not

normally fixed by the experimentalist. We also tried to gather selection meth-

ods with an easy implementation and comprehension, as we understand that
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variable selection is only a small part of a genomic study and researchers may

need quick but consistent solutions. In this work, some methods were taken

from the literature (Box, Jackson & Mudholkar) or adapted to be used in

this context (resampling), while others are novel proposals (minAS, Gamma

approximation). These variable selection methods were first compared on

simulated datasets to evaluate which ones presented the best performance

and to quantify the influence of some biological data features on the good-

ness of the selection. In general, Gamma and minAS methods showed the

best behavior for both SPE and leverage thresholds computation, as well as

Jackson & Mudholkar’s method for SPE. It was also seen that the higher

the percentage of signal genes or the number of genes are, the better minAS

performance is, while Gamma approximation is not significantly affected by

these biological parameters, therefore making it a more robust methodology.

However, modifying minAS default options (such as increasing the smoothing

parameter) improved the performance of this method. The application of

these three approaches on a real experimental dataset verified their useful-

ness for selecting relevant genes. In all cases, relevant biological conclusions

could be obtained on the gene selection provided by the different methods,

although specific biological functions were differentially uncovered by each

approach. Interestingly, the major differences in gene selection and functional

enrichment were the result of the method choice for the SPE statistic, while

leverage seemed to be more robust for the statistical model applied. This

result is interesting as the SPE measures the deviation of each gene from

the general multivariate model. Differentially expressed genes that follow a

minority expression pattern tend to have high SPE values [103]. Our results

indicate that selection on this part of the signal is also biologically relevant.

It should be outlined that the conclusions of this chapter are based on the

simulation studies performed and might not be valid outside the biological

scenarios analyzed. However, since the simulation algorithm was carefully

designed to mimic real datasets and a vast variety of scenarios was considered
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(comprising more than 600 datasets), we believe that the results are generally

valid for most multifactorial gene expression experiments.

Finally, we focused on multifactorial designs because the variable selection

issue has not yet been sufficiently developed for these complex experimental

setups. The ASCA-genes framework was chosen to model these data, since

it is considered a suitable methodology for the analysis of genomic datasets

with such experimental designs. However, as the proposed variable selection

methods are based on modeling the distribution of multivariate statistics, they

are generally applicable to different dimension reduction techniques and kind

of data by changing the statistic measuring the importance of the variables

in the model. In fact, we have successfully applied our methods in other

contexts, as for example in [31], where minAS was used for selecting variables

from genomic and metabolomic data in Tucker3 and N-PLS models, and

in [113], where minAS is again used to identify the main gene contributors

to pathway profiles computed from PCA models taking the loadings as the

variable importance measurement.

The minAS and Gamma variable selection methods applied to the ASCA-

genes analysis have been implemented in the web suite for Serial Expression

Analysis, SEA (http://sea.bioinfo.cipf.es/) [102], which is freely available to

the scientific community.
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Tarazona S, Furió P, Turrà D, Di Pietro A, Ferrer A, and Conesa A.

NOISeq: An R package for visualization, quality assessment and differential

expression for RNA-seq experiments

(In preparation)





4.1 Introduction 75

4.1 Introduction

RNA-seq is a recently emerged high-throughput sequencing technology which

is increasingly being applied to quantify gene expression levels. With RNA-

seq, no previous knowledge of the genome is required, and in addition to

estimating expression levels, it also allows structural analysis of the transcrip-

tome: alternative splicing, 3’ UTR regions, novel splice junctions, antisense

regulation, intragenic expression, etc. [91, 124].

At the dawn of RNA-seq applications it was claimed that this technology

would produce unbiased, ready-to-analyze gene expression data. However, the

reality has turned out to be very different. It is now generally admitted that

it collects a number of biases and that accuracy at the low expression level is

still limited [77, 99]. RNA-seq technology boasts a generally high level of data

reproducibility across lanes and flow-cells, which reduces the need for techni-

cal replication within these experiments [92, 99], but neither data processing

nor experimental design are straightforward. While microarrays provide gene

expression measurements in a format that can be directly analyzed by the

researcher, the information generated by sequencing platforms must be care-

fully processed to obtain these expression estimations. There are many steps

between biological sample collection and expression quantification, including

RNA isolation, library construction, sequencing, read alignment, etc. Un-

fortunately, the files generated at each of these processing steps frequently

contain biases that are introduced by the sequencing technology [124], during

sample preparation [60, 98] and/or by the selected mapping algorithm [45].

Therefore, when analyzing sequencing data performing quality control at each

step to get an idea of how reliable the data are, and how well they fit with the

expected outcome is a fundamental requirement. However, despite the many

procedures that have been developed to reduce the noise at each one of these

processing steps and to control the quality of the data generated [8, 49], the

technology is still far from being perfect and therefore it is absolutely nec-

essary to be able to detect potential biases once the expression levels (read
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counts) have been obtained, and crucially, before proceeding with any further

analyses such as differential expression analysis.

An important trait of sequencing technologies that must be taken into

account when designing an experiment is the amount of reads to be gener-

ated (sequencing depth). In RNA-seq, in particular, the more the target is

sequenced, the more transcripts are identified and the higher the value of the

expression level. Although most of the existing analysis methods address this

issue by including a correction factor related to library size [18, 99], higher

sequencing rates will presumably result in a more accurate estimation of the

expression level and, concomitantly, the detection of significant changes in

expression may be very much determined by the sequencing depth. Inevitably

this leads to the question of how many reads should be generated in an RNA-

seq experiment to obtain robust results. Some reports suggest that, in a

mammalian genome, ∼ 700 million reads would be required to obtain accu-

rate quantification of more than 95% of expressed transcripts [14]. Knowledge

of the relationship between sequencing depth and feature detection is needed

for experimental design purposes and for understanding the characteristics

of the analysis results. Hence, the number of replicates and the sequenc-

ing depth at which one should sample remains an important question to be

answered when designing an RNA-seq experiment [19].

Another issue that must be faced when dealing with analysis of short

reads is that the quantification of expression depends on the length of the

biological features under study (genes, transcripts, or exons), as longer fea-

tures generate more reads than shorter ones [106]. In the case of the Illumina

RNA-seq platform, which is probably the most widely used, a guanine and

cytosine nucleotide content (GC content) bias has also been reported [119].

Genomic sequences with either a high or low GC content are prone to under-

representation in the sequencing outcome, which means that the correspond-

ing estimated expression levels will be lower [12, 57]. Another drawback is the

very nature of the sequencing technology, which is basically a sampling proce-

dure from a population of transcripts, implying that differences in the relative
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distributions of transcripts between samples affect the assessment of differen-

tial expression [15, 120]. Furthermore, the ability to detect and quantify rare

transcripts is obscured by the wide dynamic range of mapped reads and the

concentration of a large portion of the sequencing output in a reduced number

of highly expressed transcripts. Hence, all these factors interfere in the linear

relationship between transcript abundance and the number of mapped reads

at a gene locus. The correction of these potential biases to make expres-

sion across samples or genes comparable is known as normalization, and it is

therefore a substantial step in RNA-seq data processing. Different methods

are available to tackle both within-sample and between-sample normalization

[18, 38, 119, 154].

In this chapter, we will focus on quality control procedures to be applied

on expression data, i.e. read count, which may be useful to explore the data

before proceeding with further analyses. This exploratory analysis helps to

gain knowledge about the biological characteristics of the detected features

and also to choose an appropriate normalization method according to the

potential biases observed in the data. We also discuss the normalization

procedures to be applied in order to correct these biases and propose some

methods to filter out the low count features since they may be inaccurate and

may introduce noise into the analysis.

All these procedures have been implemented in the NOISeq R package,

which is available in the open-source Bioconductor repository [50]. Some of

them were introduced in [141] and are also available in the Qualimap software

[49]. The functionalities of the NOISeq package are summarized in Figure 4.1

and were used to generate most of the results in this chapter and in chapter

5.
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Figure 4.1: Outline of NOISeq package functionalities. Black arrows highlight

that some quality control plots are used to take decisions on data processing.

4.2 Data

To illustrate the usefulness of the quality control tools described in this chap-

ter, three experimental RNA-seq data sets were chosen. Two of them will

also be used in the next chapter to assess the performance of the methods

introduced there.

• ENCODE data set

RNA-seq data from human monocytes (cell line Cd14) were obtained by

the Cold Spring Harbor Laboratory for the ENCODE project [32]. Two

different RNA extraction protocols were applied: PolyA+ extraction

method (Pap) and PolyA- selection procedure (Pam). The sequencing
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was done with an Illumina GAIIx platform and the reads were mapped

to the reference genome (hg19 GRCh37) downloaded from UCSC [61]

using TopHat v2.0.8 [71]. Gene expression was quantified using the

HTSeq Python package version 0.5.3p3 [6], taking multi-hits into ac-

count by using an in-house script. This dataset will be referred to as

ENCODE.

• Fusarium oxysporum data set

Fusarium oxysporum is a soil-borne fungal pathogen that may affect a

broad range of animals, from arthropods to humans, and also more than

100 plant species. It can produce localized skin or corneal infections in

immunocompetent humans and frequently lethal infections in immuno-

compromised patients. This experiment was conducted by one of our

collaborators on the “Transcriptional networks controlling virulence in

filamentous fungal pathogens” project (TRANSPAT), which co-funded

this work. The aim of TRANSPAT was to explore transcriptional net-

works which enable fungi to survive and proliferate in the mammalian

bloodstream, given the increasing incidence of invasive fungal infec-

tions in immunocompromised patients, and associated mortality rates

as high as 85-90%. Therefore, in order to study the infection mech-

anisms, the fungus was cultured in either minimal medium (MM) or

human whole blood, and RNA was extracted from these samples and

sequenced using SOLiD protocols. Two biological replicates were ob-

tained for both blood and MM conditions and these were mapped to

the reference genome from the Ensembl Fungi database (release 14)

[47] using Lifescope software. CLC Bio tools were used to quantify the

gene expression. This dataset will be referred to as FO.

• Human prostate data set

These RNA-seq data were taken from the work of Ren et al. [118] and

were publicly available at the SRA repository. In this work, samples

of tumoral and healthy prostate that came from Shanghai Changhai
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Hospital patients were sequenced. There were 11 biological replicates

for the tumoral prostate condition and 12 replicates for the healthy

prostate condition. The sequencing was done with an Illumina HiSeqTM

2000 and the reads were mapped to the Homo sapiens reference genome

downloaded from Ensembl (release 68) [47] using TopHat 1.4.1 [143].

To quantify the gene expression the HTSeq Python package version

0.5.3p3 [6] was used. This dataset will be referred to as HS.

4.3 Quality control analysis

The quality control measures for read count data proposed in this chapter

address three issues. First, biotype detection is used to obtain a global view

of the type of genes detected in relation to the composition of the reference

genome. Second, sequencing depth is analyzed to assess detection and quan-

tification of the expressed genes. Finally, analysis of potential technical biases

in the data is performed, such as the influence of gene length or GC content

on expression or the differing RNA composition of the samples.

The NOISeq package offers the possibility of easily generating a quality

control report with all these plots in PDF format (see an example in Ap-

pendix).

4.3.1 Biotype distribution

The Ensembl database [48] provides a biological classification of genes accord-

ing to the role they play in transcription or translation. For instance, some

of the biological groups include “protein-coding” genes (genes that code for

proteins), “miRNA” (for microRNAs, which are small transcripts that can

degrade messenger RNA in the cytoplasm), or “tRNA” (for transfer RNA,

which serves as the physical link between the nucleotide sequence of DNA or

RNA and the amino acid sequence of proteins), among others.

RNA-seq experiments may follow different RNA purification protocols to

select specific target RNA species (i.e., long mRNAs or microRNAs) that may
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be subjected to different levels of technical variation. Also, library preparation

choices result either in data being stranded and hence allowing the identifi-

cation of antisense expression, or ignoring the strand origin of the transcript.

A standard protocol for an mRNA library preparation includes poly-A mRNA

isolation, RNA fragmentation, and size selection from a gel. Therefore, tran-

scripts should be polyadenylated and larger than the size selection cutoff

(typically 200 bp) to be captured by the sequencing procedure. Polyadenyla-

tion signals are present in protein-coding genes but have also been identified

in long-range, noncoding transcripts [23] and some snoRNAs1 [54, 81]. The

expression of pseudogenes is controversial, but reports indicate that these

might be transcribed, giving rise to non-functional messengers in a tissue

specific manner [153]. Furthermore, poly-A stretches might be present in

retrotransposed pseudogenes2 that originate from genome insertion events

of these transcribed messengers [153]. Poly-A tails are also added to pri-

miRNAs, nascent miRNA transcripts that undergo processing to reach the

mature miRNA state [72]. Although pri-miRNAs can be long molecules, they

are of transient nature and miRNAs are typically not captured by mRNA-seq

library preparation protocols; alternatively, miRNAs embedded in the introns

of coding genes could still be sequenced from partially processed transcripts.

Other RNAs such as tRNAs, snRNAs3, snoRNAs, and rRNAs4 may undergo

cytoplasmic polyadenylation to targeting them for degradation [7, 131]. Addi-

tionally, rRNA depletion usually precedes mRNA preparation and the presence

of rRNA is considered as contamination in mRNA-seq experiments. In general,

these small RNA species can be considered as non-targeted by the mRNA-seq

procedure. Therefore, in RNA-seq experiments involving polyA selection, it is

1Small nucleolar RNAs
2Pseudogenes are dysfunctional relatives of genes that have lost their protein-coding

ability or are otherwise no longer expressed in the cell. Pseudogenes often result from the

accumulation of multiple mutations within a gene whose product is not required for the

survival of the organism. Although not protein-coding, the DNA of pseudogenes may be

functional. (Wikipedia)
3Small nuclear RNAs
4Ribosomal RNAs
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expected that most of the genes with mapped reads belong to the “protein-

coding” category. The identification of other biotypes at proportions higher

than in the reference genome might indicate inefficient mRNA purification or

reveal new discoveries.

Thus, different experimental protocols may result in RNA-seq data having

a non-uniform RNA composition that may not be directly comparable. This

may be relevant, for example, when trying to combine data from different

public sources to perform a joint meta-analysis or when technical variability

with specific protocols is high. The biotype plots (Figures 4.2 and 4.3) are

useful for determining which biotypes are present in the sample to provide an

assessment on the homogeneity of samples within the data set. The “Biotype

detection” plots (Figures 4.2a and 4.2b) show the proportion of genes within

each biotype in the genome (gray bars), the proportion of them being detected

in the biological sample with counts higher than 0 (red stripped bars) and

which proportion represents each biotype within the genes detected in the

sample (red solid bars). Bars on the left of the green vertical line correspond to

the left Y axis, while bars to the right side are associated with the right Y axis

(they are less abundant biotypes). Since the plots were generated for one of

the conditions, the mean expression values (normalized to counts per million)

across all samples for that condition were computed. The “Biotype expression

range” box-plots (Figures 4.3a and 4.3b) show the range of expression levels

in counts per million reads (CPM) within each biotype and help to decide

if the expression quantification for the genes within a given biotype is good

enough to perform further analyses on that biotype.

To illustrate the usefulness of these diagnostic plots we used them to

compare RNA-seq samples generated with two different purification proto-

cols (ENCODE data). By comparing the “Biotype detection” plots of both

experimental procedures some differences are readily evident. The Pap proto-

col identifies a higher relative proportion of protein-coding genes (more than

60%) than the Pam protocol (around 55%). As a consequence, the second
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(a) Biotype detection. Pap protocol.
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(b) Biotype detection. Pam protocol.

Figure 4.2: Biotype detection. ENCODE data. Grey bars represent the

percentage of each biotype in the reference genome. Stripped color bars illus-

trate the proportion of genes in the genome, by biotype, that are detected in

the sample. Solid color bars give the percentage of each biotype within genes

detected in the sample.
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(a) Biotype expression range. Pap protocol.

●

●●●
●●
●●●

●

●●

●
●●

●●●●

●

●●●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●●●●●

●

●●

●

●●●

●

●

●

●

●●

●

●●●●●
●

●

●●

●
●
●
●
●
●●

●●
●●

●
●
●
●

●

●

●●●

●

●

●

●●

●●

●

●●

●●●●
●●

●

●

●

●●
●●
●●
●

●

●

●●

●●
●
●

●

●
●

●
●●●●●●
●
●●
●

●

●
●●

●

●
●
●
●

●●
●
●●
●

●

●

●

●

●

●●

●●
●

●
●

●●

●

●●●

●
●●

●●●●●●

●

●●

●

●●●
●●

●

●

●
●

●

●●

●

●
●
●

●●
●

●
●

●

●

●

●●

●

●●

●

●●
●

●

●●●
●
●
●
●●●

●

●●
●

●●●●

●

●●
●
●

●

●
●●
●

●

●

●●
●

●●

●

●●●●●●●
●
●●●
●
●
●●●

●
●
●

●

●

●
●●
●
●●●●

●

●

●●
●●●●●

●
●

●

●

●

●●

●
●●●●
●

●

●●●●●
●

●

●●

●
●

●
●
●
●
●

●
●

●
●●●
●
●
●

●

●

●

●

●

●
●
●
●
●
●●

●

●●
●
●●

●●

●
●
●●
●

●

●●●●
●

●

●
●●
●●
●

●

●●
●
●●●
●
●●

●
●
●
●●

●

●●

●
●●

●
●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●
●
●
●

●

●

●●●

●

●●
●

●

●●●●
●
●
●

●●

●●●

●
●●

●

●
●●●
●

●

●
●●
●

●

●●●
●
●

●
●
●

●

●●
●
●●
●●
●

●
●

●

●●●
●

●

●

●

●

●

●●●

●
●

●

●●
●

●

●●

●

●

●

●●●
●
●●

●

●
●
●●●●

●

●
●

●

●●●●
●
●
●
●
●●
●●
●
●●

●

●
●

●

●●●●

●

●
●

●

●●●
●
●

●

●

●

●

●

●

●

●
●

●

●●●
●●

●
●●●

●

●

●●

●●
●
●

●

●●●

●

●●●●
●●
●
●

●●●●●

●
●
●
●

●
●●

●
●
●

●●●●●●

●

●

●●

●

●
●

●

●
●●●

●

●

●●
●

●●●●
●●●●

●
●

●
●
●
●

●●●●

●

●●
●

●

●

●
●
●
●

●

●●

●

●

●
●

●●

●●

●
●●

●

●
●●
●

●

●

●

●

●

●●

●

●●●●●
●●
●

●

●

●●●

●

●●
●
●

●
●●
●

●

●●
●

●

●
●●

●

●●

●

●●●●

●
●●●

●

●
●
●●

●
●●●●

●

●
●

●
●
●

●●●

● ●

●
●

●● ●● ●●
●●
●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●
●●●

●

●

●●●

●●

●

●

●●
●
●

●

●

●●●●●●
●

●

●●●

●

●●
●

●

●●
●●
●●

●

●●

●

●

●
●

●●●●●
●●
●

●●●●

●

●
●
●

●

●
●
●●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●
●
●

●
●

●
●

●

●
●
●
●
●●

●

●●●
●
●●●
●●●●

●

●●●●●
●
●

●
●
●●
●

●

●

●

●●●
●

●

●

●●

●

●

●

●

●

●

●●●
●
●

●●

●

●●
●
●●●●

●

●●

●

●●
●●●●

●

●●

●

●
●

●
●

●●

●

●●

●

●●●

●

●●
●●●

●

●●●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●●●
●●●●

●

●●●
●
●

●●

●

●●

●

●●

●
●
●●
●

●●

●
●

●

●

●
●●
●
●
●

●
●

●●
●
●

●

●
●
●

●

●●
●●
●
●
●

●

●●●

●
●
●

●

●
●
●
●

●

●
●
●
●

●

●

●
●

●

●

●
●●
●
●

●
●●●●●

●

●●
●
●

●●

●

●●

●
●

●

●

●●

●

●

●
●
●

●
●
●●●●●
●
●

●●●●●●

●

●●●
●
●
●
●●●
●●●●●

●

●●

●

●

●
●

●●

●

●
●

●

●
●●
●
●

●

●
●

●

●

●●

●

●

●

●●●●●
●

●

●●
●●
●
●

●●●●●
●●
●

●

●●●●
●

●

●
●
●
●
●

●

●
●

●

●●●●●●●●●
●
●

●

●
●●●
●
●
●●●●●●●

●
●
●

●●

●

●
●

●●●
●
●
●
●●●

●

●●

●

●
●●●●

●

●

●●

●●
●

●

●●●●●●
●
●

●
●●●●
●●
●

●

●●
●
●●●
●
●●●

●

●

●

●

●
●
●
●●
●

●

●
●
●
●●

●

●
●
●●
●

●

●

●
●●

●

●

●
●
●
●●

●

●
●
●●●
●

●

●

●●

●

●
●
●●●
●●
●

●
●●●●
●

●●
●

●
●

●●●

●

●
●
●

●

●

●

●●

●●

●

●
●
●

●

●
●

●
●

●

●

●
●●

●

●
●
●

●

●

●

●●

●

●

●
●●

●●●

●

●●●●

●

●

●

●
●
●

●
●
●●●●●●●●●●●●●●●●●
●
●
●●
●
●

●

●
●
●
●

●

●

●

●●●●

●

●

●

●●●●

●

●

●●

●
●●

●

●●●●●

●

●

●

●●●

●

●●●●

●
●●
●
●●●

●

●

●

●

●●
●

●
●

●●●●
●
●

●

●●●●●

●

●●

●

●

●

●●
●●

●

●

●

●●
●
●●●

●

●●●●

●

●●●

●

●

●●
●●

●

●
●

●●

●

●

●

●
●

●

●●●●
●●
●●●●●●

●

●

●●●
●●
●
●●●●●●

●
●

●

●

●

●

●

●

●
●●

●

●
●●

●

●●
●

●
●

●
●●
●
●

●

●

●●●
●
●●●●
●

●●

●●●●

●

●
●

●

●
●

●

●
●

●●

●

●
●●●

●

●

●

●
●
●
●●
●●●●
●
●●

●

●

●

●●●●●
●

●●
●

●

●
●
●

●

●●●●
●
●●●
●●●●
●
●●●
●

●

●
●
●
●
●●●

●●●●●●●
●
●

●

●

●●●

●

●
●●●●●
●
●
●
●
●●●
●
●
●
●●●●●●●●●●
●
●●

●
●●●●●●

●
●
●●
●●●●

●

●
●●

●●●●
●
●●●
●
●●
●
●

●

●

●

●●
●
●●●
●
●●
●
●
●
●●●
●●●●

●

●●●
●●

●

●●●●●●
●
●

●

●
●
●●
●
●●●
●●●●
●
●●●

●

●●●●●●
●
●●●
●
●●
●
●

●

●●●
●
●●●
●●●●●●

●

●
●●

●
●●●
●●
●●●●
●
●●●
●
●●●●●●●●●

●

●●●●
●

●
●
●
●
●

●●●
●
●

●
●

●●●●●●●●●●

●

●
●●
●
●●●
●●

●

●●
●
●
●
●

●
●

●

●●●●
●
●●●●●
●
●

●

●
●●●
●●●
●
●●

●●●●●
●
●

●
●●●●●●●●
●
●●
●●
●
●

●●

●

●

●

●
●●
●●●●● ●●●●●●●

●
●●
●
●●●
●
●●●●●●●●●●●

●

●●●
●●●●

●

●●●
●

●

●●●
●
●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●
●●●●●●●●●●●●●
●
●●
●●●

●

●●●●●●●●

●

●●●●●●●●●●
●
●●●●
●
●

●●

●●
●●
●

●

●●●●

●

●●

●

●
●
●●●●
●

●

●●

●

●●●
●●●●●●●●●●●●●

●●

●●●●
●●●●●●

●

●●●

●

●●●●●●●●
●●
●●●

●

●

●

●●●●●●●●●●
●●
●
●●●●●●●●●

●
●●●●●
●●●
●●
●●●●●●●●●●●●●●●●●●●

●
●
●
●●●●●●●●●
●●●●●●
●
●
●●

●●
●●●●●●
●
●●●●●
●●●
●●●●●●●●
●
●●
●

●

●

●

●

●

●

●●

●

●

●

●
●●●●●

●

●

●

●

●

●
●●●

●

●

●●
●

●

●

●

●
●

●

●

●●
●
●

●●

●
●

●

●●

●

●

●

●

●

●
●●

●

●

●●

●

●

●●

●

●
●

●
●

●

●

●●●

●

●

●
●

●

●●

●

●
●
●●●
●
●

●●
●

●

●

●

●
●
●
●

●
●
●
●●
●
●

●

●●

●
●
●

●
●●
●

●

●

●

●●●
●

●●

●●
●●

●

●
●●

●

●

●●

●

●

●
●
●

●
●

●●

●
●
●●

●
●

●
●●●

●

●
●●
●●
●

●

●●
●

●

●
●●

●

●

●

●

●●

●

●
●
●

●

●

●●

●
●

●

●●

●
●

●

●●

●

●

●
●●

●●

●

●

●

●

●●
●●
●
●
●●●●●●

●●
●●

●

●
●●●
●●●

●

●●●●

●

●
●
●●●

●
●

●

●

●

●●●

●
●

●●
●
●●
●

●

●

●●

●●

●

●●

●
●
●
●

●

●
●
●●
●●

●

●●

●

●

●
●●
●●

●
●
●

●

●●●

●●
●

●

●●●●
●●
●
●

●●

●
●

●

●

●

●

●

●●
●●
●
●

●

●●

●

●

●
●

●

●

●

●
●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●●
●
●
●

●

●

●
●●●

●

●

●
●

●

●
●
●●

●

●
●●
●

●

●●
●
●

●
●
●●
●●●●

●

●●●●●●
●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●●●●

●

●●
●●
●

●●●●
●

●

●
●
●
●

●●●
●
●●

●

●

●

●

●

●

●

●

●●
●

●

●●●

●

●●

●

●●●

●

●
●●
●
●

●

●●

●

●

●●

●

●
●

●

●

●

●
●
●●

●

●
●●
●
●●●
●●
●
●

●

●●●

●

●

●

●

●●
●
●

●

●

●

●
●

●
●

●

●
●

●
●

●

●
●

●●●
●
●

●
●

●

●

●

●●

●
●

●●●

●●

●

●
●

●●

●

●

●

●●●

●
●

●●

●

●

●●●

●

●

●
●

●
●

●
●

●

●
●

●

●
●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●●●
●●

●

●

●

●
●●

●

●●●●●

●

●

●

●
●
●●

●

●●

●

●●
●
●
●

●

●

●

●●●●●●●●●
●

●

●
●
●●

●

●

●

●●
●

●

●

●●
●
●

●

●

●

●

●

●

●●●●
●●●●●●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●
●
●●

●●●

●

●●●●●

●
●

●

●
●

●

●●●

●

●●●
●

●

●

●

●

●
●

●
●●
●●●●●

●

●●●●
●

●
●

●

●●
●●
●
●
●

●

●
●
●●
●
●●●●●
●

●

●

●●
●

●

●●●●
●
●●

●

●

●●

●

●

●
●

●

●

●●

●

●
●

●

●●●

●

●●

●

●

●
●

●

●

●

●

●●●●
●●●

●
●

●●

●

●

●●
●
●

●

●●●

●

●
●

●

●

●

●

●
●

●
●●

●

●●●
●
●
●●
●●●

●

●
●
●

●●
●
●●
●●
●

●

●
●

●

●●●●

●

●
●●

●●●

●

●●●●●●

●

●

●

●●

●

●

●

●

●
●●●●●
●●

●

●

●
●●
●●

●

●●
●●

●

●●

●

●

●●

●

●

●●

●

●

●

●●

●

●
●
●
●

●

●●●●
●
●
●

●

●
●
●

●
●●
●●●●

●

●
●●
●
●●

●

●

●

●

●

●

●

●●●

●

●●●●

●

●

●

●

●●

●
●
●

●

●
●

●●
●

●
●

●●●

●

●●●

●

●
●●

●

●

●

●
●
●●

●

●
●

●●

●●

●
●

●●
●

●

●●●

●

●

●

●●●●●

●

●

●

●●●●●

●

●

●

●●●
●●●●●
●
●●●

●

●●●

●

●

●

●

●●●●●
●
●●●

●

●

●
●

●●●●

●

●

●
●●●

●

●

●
●

●

●

●

●
●

●

●●
●

●

●

●●
●

●

●

●
●●
●
●●

●

●
●
●

●●
●●
●
●●

●

●

●

●
●

●
●
●

●
●

●

●
●●●●●●

●

●

●

●●

●

●●
●

●

●

●

●●●
●
●
●

●
●●
●

●

●●
●●●●●●●●●

●

●

●●

●

●
●●●
●●
●

●

●
●

●

●●
●
●

●

●●

●
●●

●
●●
●●●
●
●

●
●

●●●●
●
●●●

●

●
●●

●●

●

●●●

●

●●

●

●

●

●●●
●●●●
●
●
●

●●

●

●

●

●●

●●

●
●
●

●●●

●

●

●

●●
●●
●●

●

●●
●

●
●
●●●

●

●

●
●

●

●

●

●●●●●

●

●●

●
●

●

●

●●
●

●

●●
●
●
●●●●

●
●

●●●
●

●

●●

●

●
●

●
●●
●●●●
●●
●
●
●●
●

●

●●
●

●
●

●●

●
●

●

●

●
●●
●
●
●●

●

●●

●
●

●●●
●
●●
●●

●

●

●

●
●
●
●●

●

●

●

●●●●

●
●

●

●

●

●

●

●
●

●

●
●
●
●

●

●
●
●
●●●●●

●
●
●●
●
●●
●

●

●●
●
●
●
●●●

●

●

●

●

●

●●

●

●

●

●

●
●
●

●●

●

●

●
●
●●●

●

●
●

●

●●

●
●

●●

●

●●●●

●●
●
●●

●

●
●●

●

●
●

●
●
●●

●

●

●

●●●
●

●

●
●

●

●

●●

●
●

●●●
●
●●●

●

●●

●

●●●
●
●

●

●●●●●●●●

●

●

●●●

●

●●
●

●●

●

●●

●

●

●●●

●

●●

●

●
●●●
●

●

●

●
●

●

●

●

●●●

●

●●●
●
●

●
●
●●●

●●

●

●
●●●

●
●

●
●

●
●

●

●

●

●
●

●

●
●

●

●
●

●

●●●
●
●

●●●●●●
●●

●

●
●●●●●

●

●●●
●●

●

●
●
●
●●
●
●●

●

●●
●

●

●●
●●

●
●
●

●

●●
●
●●●

●●

●

●
●●
●

●

●

●

●

●
●

●●
●
●

●

●

●

●

●

●

●
●●
●
●●●●

●
●
●

●●●

●●
●●●
●●●
●
●

●
●●

●
●

●

●

●

●●
●

●

●

●

●●●●●

●

●●
●

●

●
●

●

●
●
●●●●●●●

●

●
●
●
●
●●●●●●●

●

●

●

●
●

●

●●●●
●●
●●●

●

●●
●

●●

●

●
●

●

●

●●●●
●
●●●●

●

●●●●

●
●

●●
●
●

●
●●
●●●

●

●

●●
●
●●

●

●

●
●
●

●

●
●●
●

●
●
●
●
●
●●●
●●

●

●
●●●

●●

●

●
●●
●
●

●●
●●●
●
●
●

●

●●

●

●

●

●●

●

●●●

●

●●
●●●

●

●
●

●

●

●
●

●

●
●

●
●

●

●●

●●●

●●

●

●

●

●

●

●

●

●●●
●

●

●

●

●
●

●●

●

●●
●●●

●

●

●●

●
●●●●●

●

●
●●
●
●

●

●●●
●

●

●●●●●●

●

●●●●●●

●

●●
●●●
●
●●
●

●●
●

●

●

●

●

●

●
●

●

●●

●●●●

●●

●

●●

●

●
●●

●

●
●

●

●

●

●

●

●
●
●
●●●
●●●●

●●

●

●

●

●
●
●

●

●

●
●
●
●

●

●

●

●●

●●
●

●

●●

●●●●

●

●

●

●●●●
●

●

●

●

●
●●
●

●

●●●
●●
●●

●

●
●

●

●

●

●

●

●●

●

●
●

●●
●

●

●●●●●●●
●
●
●●●
●
●

●

●●

●

●●
●

●

●●

●

●●●●●

●

●

●

●●●●

●

●●
●●

●

●

●

●

●
●
●

●
●
●

●

●

●

●●

●●

●
●
●●●

●

●●●●

●

●●

●

●

●●●●

●
●

●

●●

●

●
●

●
●●

●
●●
●
●●●

●

●●●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●●●●

●●
●●●
●

●

●●
●

●
●
●

●

●

●

●

●
●●●

●

●●
●
●

●

●
●

●

●
●●●

●

●
●
●

●

●●
●

●

●

●●

●

●●●

●
●

●

●●
●
●●●

●

●
●
●

●

●●●●

●

●

●

●

●
●

●●
●

●

●●

●

●●

●●

●
●●●
●●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●
●●●

●

●
●●●

●

●

●
●

●

●
●●●●●●●

●

●
●

●

●

●●●
●

●

●

●
●
●

●
●●
●
●
●●

●●
●

●

●

●

●

●●●●

●

●

●

●●

●●

●
●

●●

●

●

●

●●

●

●●

●●
●

●
●

●
●●
●

●

●

●●

●

●

●

●

●

●

●●

●

●

●●●●

●●

●

●

●
●●

●
●
●

●●●

●

●●

●

●

●

●●
●●

●

●●●

●

●

●

●

●

●

●

●●●●●

●

●
●

●

●

●●●
●
●
●

●

●

●
●
●

●

●●

●

●●
●
●

●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●

●
●

●

●●

●

●

●

●●

●

●●
●
●●●●
●●

●

●●●

●

●
●
●
●
●

●
●●
●
●●

●●●
●

●

●●●●
●
●●●
●
●
●
●●●

●

●
●
●

●

●●●

●●

●
●
●

●●
● ●●

●
●●

●
●
●
●

●
●

●●●

●
●●●●●

●

●●●
●

●
●
●●

●

●●●●●●●
●●●●●●●●●●
●
●●●

●

●●●●●●●●●
●●●

●

●
●●●
●
●

●
●

●

●

●

●

●
●●
●
●
●●

●

●

●

●●●●●●●●

●

●●●
●●●●●●

●

●●

●

●●

●
●

●

●●
●
●
●
●

●

●
●
●●●●●●●

●

●
●
●●●●●
●
●
●

●

●●●●
●
●

●

●

●

●●

●

●●●●

●

●●●●●●●●●●
●●●●●●●●●

●

●

●
●
●

● ●

●

●●●●
●
●●●●●

●
●

●
●●●●

●●

●●●●●

●

●

●

●

●●
●●●●●●●●
●
●

●

●

●
●●

●

●●●●●●●●●●●●●●

●

●
●
●●

●

●●

●

●●●●●●
●
●●

●

●●

●

●

●

●●●

●

●●●●●
●

●

●●
●
●●

●

●●
●●
●●

●

●●●●●●●●●●●●●
●
●●

●

●
●●

●●

●●●●

●

●
●●

●

●
●●

●

●

●

●●●●●

●

●●●

●

●●

●

●●●
●●●●

●

●●●●

●

●
●●●

●

●●●

●

●●●●●●

●

●●●●●●●●●

●

●

●
●

●

●●● ● ●●●●●●●●●●●● ●●
●
●●●●●●●●●●●●●●●●●●● ●

●
●

3p
rim

e_
ov

er
la

pp
in

g_
nc

rn
a

an
tis

en
se

IG
_C

_g
en

e
IG

_C
_p

se
ud

og
en

e
IG

_D
_g

en
e

IG
_J

_g
en

e
IG

_J
_p

se
ud

og
en

e
IG

_V
_g

en
e

IG
_V

_p
se

ud
og

en
e

lin
cR

N
A

m
iR

N
A

m
is

c_
R

N
A

M
t_

rR
N

A
M

t_
tR

N
A

no
n_

co
di

ng
po

ly
m

or
ph

ic
_p

se
ud

og
en

e
pr

oc
es

se
d_

tr
an

sc
rip

t
pr

ot
ei

n_
co

di
ng

ps
eu

do
ge

ne
rR

N
A

se
ns

e_
in

tr
on

ic
se

ns
e_

ov
er

la
pp

in
g

sn
oR

N
A

sn
R

N
A

T
R

_C
_g

en
e

T
R

_D
_g

en
e

T
R

_J
_g

en
e

T
R

_J
_p

se
ud

og
en

e
T

R
_V

_g
en

e
T

R
_V

_p
se

ud
og

en
e

Harbor_Monocd14_Pam_Rp1−2

E
xp

re
ss

io
n 

va
lu

es

26 43
74

14 8 25 13 3 12
5

12
3

52
80

19
78

14
78

2 16 11 26 18
64

20
04

2
11

19
2

31
9

63
1

13
6

98
3

12
40

5 1 74 4 89 20

0
10

10
0

10
00

0

(b) Biotype expression range. Pam protocol.

Figure 4.3: Biotype expression range. ENCODE data. Expression values (Y

axis) are given in counts per million of sequencing reads (CPM). Numbers in the

upper part of the plot are the number of genes, by biotype, that are represented

in each boxplot.

protocol had a relatively higher level of other RNA species such as pseudo-
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genes, lincRNA1 or antisense transcripts (Figures 4.2a and 4.2b). Differences

in the relative percentage of detected biotypes also impact the quantification

of the different RNA species, as revealed by the “Biotype expression range”

plots (Figures 4.3a and 4.3b). The Pap protocol results in a wider dynamic

range of expression for protein-coding genes than the Pam one. In contrast,

the two Mt rRNAs2 accumulate a huge number of reads when using the Pam

protocol (around 267, 000 and 64, 000 CPM, respectively) in comparison to

Pap protocol (around 1, 100 and 230 CPM, respectively). These differences

do not only affect the quantification of each transcript but may also have an

effect on the results of any statistical analyses performed on them such as

differential expression.

4.3.2 Sequencing depth and expression quantification

A key issue when analyzing RNA-seq data is to assess whether the avail-

able sequencing depth (total number of sequencing reads) provides sufficient

coverage of expressed transcripts and an accurate quantification of gene ex-

pression. Alternatively, one may ask which sequencing depth is required to

interrogate the transcriptome with good coverage and precision. It is generally

admitted that genes detected by only a few reads are not reliably quantified

and should be removed before further statistical analysis. The quality control

plots described in this section are targeted to answer questions and provide

solutions related to these matters.

The “Saturation” plot (Figures 4.4 and 4.5) indicates the number of de-

tected genes in a biological sample (left axis) at the given sequencing depth

(solid dot) and also at simulated higher and lower sequencing depths. The bars

(right axis) show the new detections per each additional million sequencing

reads. If more sequencing does not lead to a high number of new detections,

then the saturation point has been reached and the sequencing will improve

1Large intergenic non-coding RNAs
2Mitochondrial ribosomal RNAs
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Figure 4.4: Saturation. HS data. Two of the tumoral samples are displayed.

Genes from all biotypes are considered.

the quantification of the previously detected genes. The data for lower se-

quencing depths were simulated from a multinomial distribution taking the

counts of that sample as the reference probabilities and aggregating the sim-

ulated samples to increase the depth. For each case, 10 simulations were

performed and the number of detected genes in each simulated sample were

averaged. To simulate the higher sequencing depths, the same procedure was

applied but, in order to give genes with no counts a chance to appear, we

added 0.2 to the original data.

In HS data we observed that around 50% of the annotated genes are

found at the nominal sequencing depth of between 20 and 25 million reads

(Figure 4.4). The “Saturation” plot estimates that in this range of total reads,

around 250 additional genes are detected per additional million reads. This

implies that increasing the sequencing depth by 10 million reads will increase

transcriptome coverage by 10%. While this information alone is informative,
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Figure 4.5: Saturation. HS data. Two of the tumoral samples are displayed.
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Figure 4.6: Expression quantification. HS data.
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it may be more relevant to analyze it in the context of biotype break-down.

Figures 4.5a and 4.5b show the “Saturation” plots for the protein-coding and

the lncRNA1 biotypes. Between 16,200 and 17,400 protein coding genes were

found in these tumor samples in RNA-seq data sets at a new detection rate

of 40. This implies that the feature detection improvement with the addition

of 10 million additional reads is estimated to be around 2% for the gene-

coding biotype. In contrast, between 1200 and 1400 lncRNAs are found in

these samples and their new detection rate stays at 35. This translates into

an estimated 25% more lncRNAs with a 10 million read sequencing depth

increase. Depending on the goal and scientific questions of the study (i.e.

whether lncRNAs are of interest) decisions on the need for additional reads

may change.

In the “Dynamic range of expression” plot (Figure 4.6a) , the distribution

of the number of read counts per million (CPM) for all the samples in the

experiment is compared. Genes with no counts in any of the samples are not

used for this plot. Similar to the biotype boxplots, this plot is useful to identify

differences in count distributions within the data set. In HS data, we observed

that the distribution of expression levels for detected genes varies considerably

among samples, and suggests that a normalization approach that corrects for

these differences would be needed to make the samples comparable. This plot

could also be used to reject samples with odd expression level distributions.

For example, one could consider removing sample N 10 from the analysis for

having a too low median expression level.

The analysis of expression quantification is complemented by the “Sensi-

tivity” plot (Figure 4.6b), that displays the number of genes with more than

0, 1, 2, 5 or 10 CPM for each sample (bars) and in any of the samples

(horizontal lines). The sequencing depth (in million sequencing reads) is also

provided in the upper side of the plot. This plot reflects the proportion of

genes with low expression from the total number of transcripts. In the HS

example, less than 35% of the genes have more than 1 CPM in any of the

1Long non-coding RNA
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samples. This means that there are a high number of genes with 1 CPM

or less in all of them. The estimation of gene expression is less reliable for

low-count genes which represent a source of noise that negatively affects sen-

sitivity and specificity in most statistical analyses [134], and therefore their

removal is recommended [5]. Hence, the “Sensitivity” plot provides a graphi-

cal representation that helps to make decisions on the CPM threshold because

it shows the percentage of features that would be removed at different CPM

values.

4.3.3 Sequencing biases

Finally, when sequencing artifacts are present in the data, the expression

quantification could be biased and lead to misleading conclusions in posterior

analysis when comparing samples or genes (e.g. differential expression stud-

ies). Therefore a proper and timely detection of these biases is needed to

choose an appropriate normalization procedure that corrects data errors and

improves downstream statistical analyses: The diagnostic plots in Figure 4.7

are especially designed for this purpose.

For the “length” and “GC content” plots (Figures 4.7a and 4.7c), bins

containing 200 genes were created according to length or GC content. The

dots in these plots show the 5% trimmed expression value mean for the 200

genes within each bin. For instance, in the case of length, the first dot on

the left corresponds to the 200 shortest genes, the following dot to the 200

next longest genes, and so on. To assess the relationship between the length

or GC content and the trimmed gene expression mean, a cubic spline regres-

sion model was fitted (red and blue line for length and GC content plots,

respectively). When the model p-value is lower than a given significance level

(e.g. α = 0.05) and R2 is high enough (e.g. higher than 70%), the fitted

curve shows a trend for the relationship between length or GC content and

expression and helps to decide whether the bias is strong enough to be cor-

rected. Both feature length and GC content bias are manifest in the FO data

(Figures 4.7a and 4.7c). The longer the gene, the higher the expression, while
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Figure 4.7: Report III. Sequencing biases. FO data (Blood condition).
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the curve that relates GC content and expression shows that the expression

level diminishes when GC content is very low or very high.

The “RNA composition” plot (Figure 4.7e) indicates if significant differ-

ences in the composition of the RNA sample are present. In these plots, M

values are computed between each sample s and a reference sample r (which

can be arbitrarily chosen) as M = log2(xs/xr), where xs are the counts in

sample s. If no bias is present, the median of M values for each comparison

is expected to be 0 [120]. Deviations from this value indicate that expres-

sion levels of a fraction of genes in one sample tend to be higher than in the

others and mean that the data violate the assumption of a uniform global

RNA distribution which is frequently made in genome-wide gene expression

experiments. Figure 4.7e shows a deviation from 0 in the M medians for

the FO data. Confidence intervals for the M median were also computed

by resampling. The confidence level was adjusted for multiple testing using

Bonferroni’s correction. These confidence intervals showed that this deviation

was statistically significant.

Confidence Intervals for the median of M values in FO data

Warning: 4197 features with 0 counts in all samples are to be

removed for this analysis.

Reference sample is: wt_B_30_37_1

Confidence intervals for median of M:

0.83% 99.17% Diagnostic Test

wt_B_30_37_2 -0.153815574418935 -0.108393535088251 FAILED

wt_M_30_37_1 -0.370808505381945 -0.370808505381945 FAILED

wt_M_30_37_2 -0.36066807247099 -0.29410617912117 FAILED

Diagnostic test: FAILED.

Normalization is required to correct this bias.

Therefore, these diagnostic plots suggest that specific normalization pro-

cedures are required to remove these observed biases. In the next section, the

most common normalization procedures are briefly described.
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4.4 Normalization

Normalization is an important step in RNA-seq analysis since it helps to reduce

potential sequencing biases and to make the samples and features comparable.

Two different types of normalization may be considered [38, 119]:

• Within-sample normalization procedures try to adjust data for gene

specific effects such as gene length or GC content. Longer genes tend

to obtain a higher number of read counts and hence a higher estimation

of their expression level. A higher or lower GC content in a region of

interest may lead to an under-estimation of gene expression [12].

• Between-sample normalization methods aim to correct for systematic

differences among samples due to either different sequencing depths or

different RNA compositions. The sequencing depth affects expression

levels because the more reads that are sequenced for a given sample,

the higher the estimation of gene expression will be for that sample.

Regarding the RNA composition, this unwanted effect is present when

there are highly expressed genes in one of the samples but not in the

other samples. These genes have a relatively higher number of reads

in that sample while not in the others. If this is the case, genes with a

lower number of read counts would not be comparable among samples

and could contribute to artificially increasing the biological variability

among samples, possibly leading to unreal expression changes between

conditions.

Many normalization strategies have been developed to deal with these

potential biases that can be detected using the plots described in the previous

section. Some of the most widely used normalization methods are briefly

described in Table 4.1, where xsi is the number of read counts for gene i in

sample s, ysi is the normalized expression value for gene i in sample s, N s is

the total number of counts in sample s (sequencing depth), li is the length

of gene i, and Qs75 is the upper quartile of non-zero gene counts in sample s.
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Table 4.1: Normalization methods for RNA-seq data

Type Method Description

Within-

sample

EDASeq [119] Four approaches to correct for length

or GC content: Regression (loess),

Full-quantile, Median or Upper Quar-

tile normalization.

RNASeqBias [154] Generalized Additive Model to correct

for gene length or GC content.

Between-

sample

Upper Quartile

[18], also in

EDASeq [119]

ysi = xsi/Q
s
75

TMM [120], also

in edgeR [123]

Trimmed Mean of M values.

Given a reference sample r,

fs0 = 2WM(log2((xs/Ns)/(xr/Nr))),

where WM is the weighted mean

after removing the highest log-ratios

and the most expressed genes. The

scaling factor is fs = fs0/e
ln(f0).

Then: ysi = xsi/(f
s ×N s/N̄)

Quantile [16], also

in EDASeq [119]

The distributions of gene counts are

matched across samples.

DESeq [4] If fs = Mei(x
s
i/GM(xi)), where Me

is the median and GM the geometric

mean: ysi = xsi/f
s.

Both RPKM [99] Reads Per Kilobase per Million

mapped reads adjusts for length bias

and sequencing depth:

ysi = 109 × xsi/(N s × li)
CQN [58] Conditional Quantile Normalization

to correct for any within-lane system-

atic bias and also for between-lane

normalization.
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In the NOISeq R package, three of these popular normalization methods

were included: RPKM [99], Upper Quartile [18] and TMM [120]. However,

to perform a differential expression analysis (see Chapter 5), the package also

accepts previously normalized data, so any other normalization procedure can

be applied instead.

The diagnostic plots described in the previous section (Figure 4.7) revealed

the presence of sequencing biases in the data that required a within-sample

(length or GC content) and between-sample (RNA composition) normaliza-

tion. The choice of the type of normalization depends on the ulterior analysis

to be performed. For instance, in differential expression studies, it is essential

to assure that changes in expression between two samples are indeed due to

biological differences and not to sequencing artifacts. Therefore, at least a

between-sample normalization needs to be applied.

Different types of normalization procedures conceived to target each spe-

cific bias were applied: RPKM [99] (included in the NOISeq package) to

correct for length bias, “full” within-sample normalization in the EDASeq

package to correct for GC content bias [119] and TMM [120] (also included

in the NOISeq package) to correct RNA composition bias. The expression

dependence on gene length was reduced after applying RPKM (Figure 4.7b).

The same happened for GC content bias after using the EDASeq package

(Figure 4.7d). After TMM normalization, the distributions of M values did

not shift and the median was approximately 0, which indicated that the RNA

composition bias had been mitigated (Figure 4.7f).

4.5 Filtering out low-count features

It has been often argued that, in RNA-seq, expression estimation for low count

genes is less reliable because read counts could have been assigned by chance

[97, 137]. Thus, excluding features with low counts may improve the results

of statistical analyses because the level of noise is reduced. However, the best

procedure to filter these low count features has not yet been decided.
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To the best of our knowledge, no filtering procedures have been imple-

mented so far in statistical packages for RNA-seq data, but it is a common

practice to simply remove genes with total counts for all the samples lower

than a certain cutoff, e.g. 10 counts [4, 18, 134]. This approach does not

take into account the sequencing depth of the experiment to decide the cutoff,

so genes with a relatively high expression in one of the conditions could be

ignored. A better method is the procedure described in the edgeR R package

User’s Guide in the Bioconductor repository. The authors proposal consists of

keeping genes with counts per million reads (CPM) above a given threshold in

at least as many samples as the number of samples per condition. By setting

the cutoff for the CPM instead of the raw counts, it can be assured that no

genes with a high relative expression are eliminated. In the NOISeq pack-

age, we implemented three different filtering procedures: the CPM method,

Wilcoxon test, and Proportion test, which are described in detail in the next

section.

4.5.1 CPM method

Let xsg be the number of raw counts of gene g in sample s. As in the edgeR

proposal, counts for each sample are transformed to counts per million reads

(CPM): CPM s
g = 106 ×

xsg∑
g
xsg

. A value for CPM under which a feature is

considered to have low counts must be previously set (cpm). By default, the

CPM method takes a cutoff of cpm = 1. If there are S samples in a given

experimental condition, the cutoff for that condition would be cpm × S. A

gene g is filtered out if the sum of CPM values across all the samples in the

same condition is below the condition cutoff (
∑
s
CPM s

g < cpm× S) for all

the experimental conditions.

It is also possible to remove genes that present inconsistent expression

values in any of the experimental conditions with the CPM method. A cutoff

for the coefficient of variation per condition cv has to be set a priori. Then,

a gene g will be filtered out either if it has a total CPM value per condition
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of less than cpm × S or a coefficient of variation per condition higher than

the cv cutoff for all the conditions.

4.5.2 Wilcoxon test

Although the CPM method takes the experimental design and the variability

per condition into account , it has the drawback of having to decide the

cutoffs to use for both the CPM and the coefficient of variation. Hence, we

propose the Wilcoxon test to identify those genes with a CPM value median

per condition that is significantly higher than 0. Thus, the hypothesis to test

for each gene and condition is H0 : m = 0 versus H1 : m > 0, where m

is the median of the CPM values per condition. To be more conservative,

no multiple testing correction was applied in order to retain as many genes

as possible. Genes with a p-value higher than 0.05 in all the conditions are

filtered out.

By using the Wilcoxon method, genes with inconsistent values across repli-

cates within the same condition or with a low median expression value tend

to be removed. However, this non-parametric procedure is only recommended

when the number of replicates per condition is at least five.

4.5.3 Proportion test

The proportion test aims to be the alternative to the Wilcoxon test when

few replicates per condition are available. This method requires a cutoff to

be set for CPM (cpm), but not for the coefficient of variation. It is based

on the idea that read counts for a given gene follow a binomial distribution

where the number of trials n is the sequencing depth and the probability

p is the probability of expression for that gene under a given experimental

condition, which is unknown. Thus, in this case, H0 : p = p0 is tested

versus H1 : p > p0. Since it is not possible to use p0 = 0 in a binomial

proportion test, we define p0 = cpm/106. If several replicates are available

for an experimental condition, we sum across replicates (xg =
∑
s
xsg) and use
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this single value as the observed binomial variable. Then, n =
∑
g
xg. Again,

to be conservative, the raw p-values are used and genes with a p-value higher

than 0.05 in all conditions are filtered out.

4.5.4 Comparing filtering methods

We applied the three NOISeq filtering procedures and edgeR proposal to FO

(with 2 replicates per condition) and HS data (with 11 and 12 replicates per

condition) to illustrate the similarities and differences of the methods. We

set a cutoff of cpm = 1 for the CPM method, Proportion test, and edgeR

approach. Because of the number of replicates, the Proportion test was only

applied to FO and the Wilcoxon test was applied to HS. We considered a

coefficient of variation of 500 for the CPM method to cancel this filter and

make this method more comparable to edgeR approach. According to the

number of replicates per condition in each dataset, genes with a CPM higher

than 1 in at least 2 or 10 samples for each dataset respectively were retained

in the edgeR approach.

Both datasets originally contained 18066 (FO) and 59573 (HS) genes.

Out of these, 9577 and 16176 respectively, were not filtered out by any of

the methods (Figure 4.8). Most of the filtered genes (7904 and 30233)

were removed by all the methods which indicates that, in general, there were

very few differences among them. The greatest difference was found for

the Wilcoxon test (HS), since there were more than 12000 genes that were

removed by CPM and edgeR but not by Wilcoxon.

We studied the characteristics of the removed genes that were not in

common for the compared filtering methods by plotting the difference be-

tween the mean CPM per condition against the maximum variability between

replicates (Figures 4.9 and 4.10). Genes filtered only by edgeR tended to

show higher differences in expression between conditions which is obviously

not good because genes with potentially significant changes in expression be-

tween conditions could be removed from the analysis. Although these genes

generally present a high variability among replicates and will probably not be
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9577

130

175

243

0

0

37

7904

CPM Proportion test

edgeR

(a) FO data

16176

1024

0

7

15

12118

0

30233

CPM Wilcoxon test

edgeR

(b) HS data

Figure 4.8: Number of genes filtered out by each method

declared as differentially expressed by statistical methods, it may be preferable

to leave the decision about these cases to the statistical method instead of

filtering them out of the ulterior analysis.

Finally, to illustrate how low-count filtering affects statistical analyses,

for instance, differential expression analysis (see next chapter), we applied

the CPM filtering method with a cpm threshold of 1 to HS data and ob-

tained differentially expressed genes with two statistical packages (described

in the next chapter): NOISeqBIO and edgeR [123]. Figure 4.11 shows the

results of the filtering approach. A total of 42366 low-count genes were

removed after applying the CPM threshold, of which 292 and 887 had been

detected as differentially expressed by NOISeqBIO and edgeR, respectively. In

turn, removing these low-count genes resulted in 683 (NOISeqBIO) and 1195

(edgeR) newly detected genes that belonged to a higher expression range.

These results highlight the impact of low-count filtering in RNA-seq differen-

tial expression analysis and how the resources of the NOISeq package can be

used to address this task easily.
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Figure 4.9: Difference between expression mean per condition versus maximum

difference between replicates for genes not removed by all methods from FO

data.

4.6 Discussion

RNA-seq technology reads the population of RNA molecules in a given sam-

ple and renders a direct quantification of the abundance of each transcript,

mapping ambiguities and sequencing errors issues separately. Although this

is fundamentally true, as shown in studies on how RNA-seq data corresponds

with microarray and RT-PCR data [18, 53, 92], there is still some work to be

done to fully understand the characteristics of RNA-seq data and to properly

process them in order to obtain accurate results in further statistical analysis.

Estimation of gene expression levels from sequencing reads seems concep-

tually simple and was initially seen by many researchers as a very straightfor-

ward task. However, it implies the execution of a series of complex compu-

tational algorithms that should be chosen and adapted to the characteristics
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(b) Zoomed data

Figure 4.10: Difference between expression mean per condition versus maxi-

mum difference between replicates for genes not removed by all methods from

HS data.
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Figure 4.11: Differentially expressed genes not in common when filtering or

not filtering low-count genes using CPM method in HS data.

of the sequencing platform, sample preparation protocol, organism, etc.

Thus, from the files containing the sequencing reads to the estimation of

expression given by the number of reads assigned to each biological feature

being studied, a variety of tools to assess the quality of the results at each step

of the analysis have been introduced. FastQC [8] is a popular software package

for analyzing the data quality and some other aspects such as duplication of

reads, GC or N content, etc. of the raw sequencing reads. There are indeed

other software packages such as the NGS QC Toolkit [111] that not only

generate a quality control report but also include other functionalities such

as trimming the sequencing reads to remove low quality bases or adapter

sequences before continuing with the mapping step. Once the reads are

mapped to the reference genome, tools such as RSeQC [148], RNA-SeQC

[37], Qualimap [49], or RNASeqGUI (an R package with a graphical interface)

[126] can evaluate the results of the mapping. Some of them also offer

other possibilities such as expression quantification or differential expression

analysis. If mapping results are satisfactory, the next step would be to obtain

the number of reads assigned to each biological feature, i.e. the expression

quantification. These read counts will then be used as the input for statistical
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models.

However, no matter what quality control procedures were performed dur-

ing this process, it is essential to determine if there are systematic technical

effects that are biasing the expression estimation before going on with further

analyses. One of the biases that rapidly becomes evident is the effect of the

depth of the sequencing experiment; not only because counts from samples

with different sequencing depths are not comparable. Ultra-high throughput

sequencing seems advisable to detect transcripts with low expression values

because of the large dynamic range of gene expression obtained. However, as

more sequencing output is considered, the diversity and quantity of detected

off-target RNA species, such as several types of small RNAs, also increases

[141]. The extent to which each of these biotypes and transcripts are pu-

rification artifacts or have a biological significance warrants a separate study

but it does show an important property of RNA-seq data: the effect that

sequencing depth has on the distribution of reads among transcripts and the

quantification of expression, essentially a percentage in the case of this tech-

nology. Robinson et al. [120] have already highlighted the implications that

different transcript distributions might have on RNA-seq normalization and

differential expression. A preliminary exploration of the count data may also

be helpful to know the biological and quantitative characteristics of the data,

or even to detect any potential contamination. In addition, when there are

highly expressed transcripts in some of the samples that accumulate a huge

number of reads, an unwanted decrease in the read counts of transcripts with

low or medium expression is produced that might distort their comparison

across samples.

Other important elements that may affect the expression quantification

are the transcript length and the GC content. The nature of the short read

procedure makes it inevitable that longer transcripts will be preferentially

detected over shorter ones, and this has been shown to have implications on

the biological interpretation of the data [106, 152]. Also, an effect of the
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GC content of the transcripts has been reported for Illumina sequencing reads

[12, 119] which may also bias the data.

In this chapter, we described a whole set of useful graphical and diag-

nostic tools to assess the quality of the data prior to statistical analysis. We

illustrated which kind of information these tools provide by using experimen-

tal data. With these quality control plots we obtained a useful description of

biological and quantitative traits of the data, and also assessed the effect of

sequencing biases in expression quantification in order to choose an appropri-

ate normalization procedure. After reviewing the most popular normalization

methods and, according to the results from the exploratory analysis, we se-

lected the normalization procedure which should be applied in each case. In

addition, as it has been often claimed, features with low counts may hamper

the study of the behavior of the rest of features because they cause the sta-

tistical methods used to lose their power. Here we proposed some methods to

filter out these noisy low-count genes, compared the differences among these

methods, and showed the impact of filtering on the differential expression

analysis results.

All these functionalities are included in an open Bioconductor R package

called NOISeq, which also offers the possibility of generating a Quality Control

Report PDF to facilitate exploration of the user’s data. In this package,

we also implemented a non-parametric statistical procedure to compare two

experimental conditions and to find out which genes present a significant

change in expression between conditions (differentially expressed genes) that

will be introduced in the next chapter.
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5.1 Introduction

When high-throughput technologies are used to quantify the expression of

thousands of genes in several experimental conditions, one question rapidly

arises: which genes are differentially expressed? In bioinformatics, this means

identifying the genes that present a statistically significant change in expres-

sion due to an external stimulation, experimental perturbation, or simply

changes over time. These differentially expressed genes (DEGs) are likely

involved in the biological mechanisms that give rise to different phenotypes

between conditions (e.g. diseased versus healthy individuals, treated versus

control, etc.).

Methodologies to analyze differential expression (DE) have been thor-

oughly studied for microarray data [33, 108]: these take a measurement of

luminescence to estimate the expression level of the genes. Thus, the es-

timated expression level is a continuous variable and most of the proposed

methods assume a normal distribution for this type of data [133]. RNA-seq

expression measurement is totally different to microarrays, since in RNA-seq

the number of sequencing reads falling into a gene is considered to be the

estimation of the gene expression level. Therefore in this case the expression

level is a discrete variable, which has motivated the development of novel

differential expression methods specific for the NGS technologies. Methods

traditionally used for microarrays have paved the way to other approaches

that take into account the discrete nature of the expression quantification

by using discrete probability distributions to model the data. The vast ma-

jority of the methodologies proposed so far rely on parametric assumptions

[4, 59, 92, 105, 123, 136, 140]. For technical replication, they generally use

a Poisson distribution to model feature counts, following the rationale of the

sampling procedure in RNA sequencing. While in a Poisson distribution the

mean and variance have to be equal, the Negative Binomial distribution allows

for over (or under) dispersion, as occurs in the case of biological replication,

and so the read counts are modeled with the Negative Binomial distribution.
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However, the subsequent confirmation of distributional assumptions is impor-

tant as they might not always hold true [18]. Moreover, there are usually very

few replicates, if any, available, which hinders the estimation of model param-

eters. Non-parametric methods such as SAMseq [82] or NPEBseq [13] have

also been proposed and they have the advantage of not requiring such strong

assumptions to be fulfilled. However, the low replication problem remains

a drawback, because these kinds of methods tend to perform better with a

higher number of replicates. Another common alternative would be the adap-

tion of popular microarray methodologies such as Limma [133] for application

on transformed counts (e.g. log2 transformation or voom transformation), as

described in the literature [79, 116].

In this chapter, we introduce two non-parametric approaches for DE

analysis: NOISeq and NOISeqBIO, which have been implemented in the

open Bioconductor R NOISeq package (http://www.bioconductor.org/

packages/release/bioc/html/NOISeq.html). The NOISeq DE method

[141] was developed in the infancy of RNA-seq when experiments with only

technical replicates or no replicates at all were being produced by researchers

(because of the still high cost of the technology) and hence were available

from public repositories. Therefore, NOISeq is optimized for the use of tech-

nical replicates and can even process experiments without replications. It has

been successfully used in several studies [21, 26, 40, 44, 85, 127, 155] and

benchmarked against the most popular differential expression methods with

good results [13, 73, 101, 134].

Biological replicates are now more common in RNA-seq experiments, al-

though the number of them is still limited. Researchers tend to invest their

budget in increasing the sequencing depth of the experiments in order to de-

tect a wider variety of transcripts. However, they should be aware of the

fact that having more replicates per condition improves the biological vari-

ability estimation which results in a more robust DE analysis that gives more

power to the DEG capture. Therefore, the strategy of increasing replication

http://www.bioconductor.org/packages/release/bioc/html/NOISeq.html
http://www.bioconductor.org/packages/release/bioc/html/NOISeq.html
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instead of depth should be recommended when DE analysis is to be performed

[86, 130].

To better handle biological variability, we adapted the NOISeq method and

named it NOISeqBIO. NOISeqBIO implements an empirical Bayes approach

that improves the way of dealing with the biological variability specific to

each gene and is very successful in controlling the high false discovery rate in

experiments with biological replicates, where other methods have previously

been shown to fail [134].

We tested our NOISeq and NOISeqBIO methods on both experimental

and simulated datasets, and compared them to other widely used differential

expression methods such as Fisher’s Exact Test, edgeR [123], baySeq [59],

DESeq [4], and SAMseq [82].

5.2 Data

5.2.1 Experimental data

5.2.1.1 Experimental data with technical replicates

Two publicly available human RNA-seq datasets with different sequencing

depths were used in the studies with technical replication. In both of them,

sequencing was done with Illumina technology.

The MAQC dataset [18, 128] was generated for benchmarking purposes

on RNA-seq. It consists of two samples: Ambion’s human brain reference

RNA (Brain) and Stratagene’s human universal reference RNA (UHR). Each

sample comprises seven lanes, providing a total of 42 and 45 million reads

respectively. Each lane was considered as a technical replicate. This project

additionally has RT-PCR data for validation of RNA-seq analysis results.

Griffith’s dataset [53] contains 96 and 198 million paired-end reads re-

spectively of the transcriptome of two human colorectal cancer cell lines which

only differ in the fluorouracil (5-FU) resistance phenotype. The technical repli-

cates corresponded to 13 lanes selected from each condition to equilibrate the
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sequencing depth in both conditions to around 100 million reads. RT-PCR

data were also available in this data set for a number of genes.

Raw fastq files containing the sequencing reads were downloaded from

the SRA archive [80] and mapped against the Homo sapiens high cover-

age assembly Hg19 from Ensembl [46] using Tophat [143], allowing up to 2

mismatches and discarding reads mapping at multiple locations. Counts for

each gene were computed by means of the HTSeq Python package [6] using

Ensembl genes’ annotation (version 60) and only exonic reads.

Regarding the RT-PCR measurements from these two experiments, we

identified positive (RT-PCR differentially expressed) and negative (RT-PCR

non-differentially expressed) genes following a previously reported procedure

[18, 53] and matched them to Ensembl IDs. After discarding replicates and

eliminating unmatched genes, a total of 330 and 82 positive genes and 83

and 12 negative genes for MAQC and Griffith’s dataset, respectively, were

taken to compute the indicators for the performance plots.

5.2.1.2 Experimental data with biological replicates

We used two experiments with a very different number of biological replicates

that were described in detail in the Data section in Chapter 4. Briefly, the FO

experiment was done with the fungal pathogen F. oxysporum, and compares

fungal growth in a human blood culture against growth on a minimal medium

with the purpose of studying the mechanisms of proliferation of the fungus in

humans. It has two replicates per condition. The prostate cancer experiment

(HS) compares tumoral and healthy tissues from Chinese patients with 11

and 12 replicates per condition respectively.

For the preliminary studies on simulated data with biological replication

we also used samples from an experiment carried out within our TRANSPAT

project. In this case another opportunistic human pathogen, the fungus As-

pergillus fumigatus, was cultured in human blood and in minimal medium with

the same goal as in the FO experiment: comparing gene expression between
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these two experimental conditions to elucidate which genes were responsible

for the infection process in humans.

5.2.2 Simulated data

5.2.2.1 Simulated data with technical replication

The synthetic data included in the baySeq R package [59], which contains

counts for 1000 features evaluated in two experimental conditions with 5

replicates each, were used. The first hundred features are differentially ex-

pressed.

5.2.2.2 Simulation algorithm for biological replication

We developed an algorithm to simulate data with biological replicates in order

to better assess the performance of the DE methods being compared.

It has been reported [4, 59, 123] that the number of reads mapping to a

given gene resembles an over-dispersed Poisson distribution when considering

biological replicates and that one way of modeling this over-dispersion is by

taking the negative binomial distribution. Thus, our simulation algorithm is

based on randomly generating the counts from a negative binomial distribution

as done previously in other studies [124, 134]. Figure 5.1 shows the outline

of the algorithm.

These are the main steps of the simulation algorithm:

1. An initial number of counts per gene (µg0) is used to simulate the

replicates for each condition. This µg0 determines the proportion of

sequencing reads initially assigned to each gene g. It can be either pro-

vided by the user or randomly generated from a power-law distribution:

f(x) ∝ x−λ, where x is the gene expression level, 0 ≤ x ≤ depth/1000

and λ = 0.5. Thus, if ngenes is the number of genes in the simulated

dataset, ngenes values are randomly generated from this distribution

to be used as the initial counts µ0 when no experimental samples are

provided by the user.
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Figure 5.1: Outline of the simulation algorithm used for biological replications

2. The proportion of differentially expressed genes (propdeg) is chosen by

the user and is used to obtain the number of DEGs. The proportion

of DEGs that will be upregulated in condition 1 is generated from the

uniform distribution U(0.25, 0.75), and the rest of the DEGs are down-

regulated in this condition. Genes that are up and down regulated are

randomly taken from the total set of genes.

3. The number of replicates per condition is given by the parameter nrepl.

Each biological replicate for a given gene and condition is simulated

from a negative binomial distribution with mean µ and variance σ2. To

describe the relationship between the mean and the variance, previously

used parametrization [123] was applied: σ2 = µ(1 + φµ). This is how

µ and σ2 are estimated from the initial counts µ0:

• Estimation of µ

For each condition i (i = 1, 2), the mean expression is defined
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Figure 5.2: The fold-change is generated randomly from a Beta distribution

with shape parameters α = 1.5 and β (which can be modified, by default β = 6).

The larger the β value, the lower the probability of having high fold-changes.

as µgi = (µg0 + Kg) × FCg, for g ∈ DEG, and µgi = µg0, for

g /∈ DEG. The fold-change FCg is randomly generated from a

Beta distribution:
FCg − 1.5

100
∼ Beta(α, β), where α = 1.5. By

default, β = 6, but it can be modified by the user (see Figure 5.2).

The constant Kg is included because, if µg0 = 0, no change would

be applied to that specific gene. We set Kg = 5, ∀g ∈ DEG. The

mean µgi thereby obtained for each gene and condition is adjusted

so their sum is equal to the given total number of counts (depth).

Finally, in order to allow a certain level of noise in the data (noise),

the final µgi is the maximum between 0.1 and a random value from

the uniform distribution U(µi−noise×µi, µi +noise×µi). The

reason for taking the maximum is to give any gene with no initial

counts some chance to appear.

• Estimation of φ

To compute the variance σ2, we first need to estimate the value

of the dispersion parameter φ. We evaluated several experimental
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data sets with different number of replicates and biological variabil-

ity to obtain realistic scenarios of either high or low biological vari-

ability. We followed the estimation procedure described in [124].

For each dataset, only samples with a total number of counts

higher than 106 and the genes with a mean expression higher than

1 were chosen. Once this filter was applied, the remaining sam-

ples were adjusted so all of them had the same number of counts

(depth). With these normalized data, the mean expression of each

gene was computed, which is the maximum likelihood estimator

(MLE) of µg. The MLE of φg was obtained by maximizing the log-

likelihood function. This was done for each experimental dataset

and all the pairs (µg, φg) from every dataset were pooled. All µ

values were divided into bins containing approximately 1000 values

each. Figure 5.3 shows the dependence of φg on µg for the sce-

nario of high biological variability. The higher the value of µ, the

lower the median and variability of φ. The mid-point of the bin

was computed for each bin of µ values, as well as the median and

the median absolute deviation (mad) of φ values within the bin.

Thus, for each condition i, φg is randomly taken from a normal

distribution N(µgφ, σ
g
φ), where µgφ = µφ(µgi ) and σgφ = σφ(µgi ) are

obtained by linear interpolation from µ mid-points and φ medians.
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Figure 5.3: Distribution of φ values (in log-scale) from experimental datasets

within each bin of µ values (containing approximately 1000 values each).
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Figure 5.4 shows some examples of simulated datasets for different levels

of noise and DEG proportions and with high biological variability.

Figure 5.4: Example of simulated data. A sample from the Fusarium oxysporum

experimental dataset was taken as the initial counts µ0. The parameters in

common for all the simulations were: nrepl = 5 in both conditions, depth = 30

million and beta = 6. The values for parameters noise and propdeg are indicated

in each plot. The differentially expressed genes are highlighted in red.
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5.3 Methods

5.3.1 NOISeq

NOISeq is a non-parametric approach for the identification of DEGs between

two experimental conditions from count data with technical replicates or no

replicates at all. The basic idea underlying NOISeq is that a given feature

may be considered differentially expressed if its change in expression between

the two experimental conditions is greater (or has a higher probability of

being greater) than the change observed among replicates within the same

condition. Essentially, NOISeq creates a noise distribution of count changes by

contrasting fold-change differences (M) and expression differences (D) for all

the genes in samples within the same condition. This reference distribution

is then used to assess whether the (M,D) values computed between two

conditions for a given gene are likely to be part of the noise or represent true

differential expression (Figure 5.5). In practice, NOISeq creates the noise

distribution by joining (M,D) values from all possible pair-wise comparisons

between replicates of either condition.

Let xgij be the expression of gene g in condition i (i = 1, 2) and replicate j.

To measure the expression level change between two conditions, NOISeq takes

two statistics into consideration: the log fold change (M) and the difference

(D), that are calculated as in Equations 5.1 and 5.2:

Mg
s = log2(x̄

g
1/x̄

g
2) (5.1)

Dg
s = x̄g1 − x̄

g
2 (5.2)

The reason for using these two statistics is to get more reliable measure-

ments of the change, because the fold change for features with low read

counts can be misleading; the same occurs for the difference in expression

between two conditions in the range of high counts. To avoid indeterminate

values when computing the M statistic, values of 0 are changed to a constant
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Figure 5.5: (M, |D|) plot for signal distribution (green), noise distribution

(black) and genes declared as differentially expressed (red).

value k, where k can be chosen by the user or computed as the midpoint be-

tween 0 and the next highest value. The use of normalized data for analyzing

differential expression with NOISeq method is highly recommended. NOISeq

has the advantage of accepting already normalized expression values instead

of gene counts, so it can be used with any normalization procedure. It is also

possible to use the raw counts as input and specify which of the normalization

methods implemented in the package is to be used.

Note that when technical replicates correspond to different lanes of the

flow-cells used to sequence the biological samples, the counts of the replicates

are summed instead of averaged.

There are two variants of the method: NOISeq-real and NOISeq-sim.

When technical replicates are available, NOISeq-real uses them to compute

the noise distribution. NOISeq-sim simulates them in the absence of replica-

tion. It should be noted that the NOISeq-sim simulation procedure equates

to technical replication and does not reproduce biological variability, which
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is necessary for population inferential analysis. However, many RNA-seq ex-

periments still have low replication, thus the ability of statistical methods to

work with technical replicates, or no replicates at all, is relevant. It is also

very common to generate pilot data before completing a whole experiment,

so NOISeq-sim can be applied in these cases to get a preliminary picture of

the genes which change between conditions.

5.3.1.1 NOISeq-real

In order to determine the probability of differential expression, the algorithm

creates a so called “noise” distribution by pooling the (Mn, Dn) values com-

puted among replicates within the same condition. Thus, these noise values

can be calculated as: Mn = log2(x
g
ij/x

g
ik) and Dn = xgij − x

g
ik, for each pair

of replicates j and k (j 6= k) and for any condition i or gene g. All these

values are pooled together to generate the bivariate noise distribution.

Next, we derive an empirical cumulative distribution function F (M,D)

from the absolute value of these “noise” measurements (Mn, Dn). Given a

certain gene with (ms, ds) values of the “signal” statistics (Ms, Ds), com-

puted from the comparison of both experimental conditions, we suggest that

the probability of differential expression be estimated as follows:

F (|ms|, |ds|) = P (|Mn| ≤ |ms|, |Dn| ≤ |ds|) (5.3)

The higher this probability, the higher the change in expression between

conditions with regard to “noise”, and the more we expect that change be-

tween conditions is due to the experimental factor effect and not to chance.

We recommended that a threshold around 0.8 is used for this probability. This

threshold would be equivalent to an odds of 4:1, which means that the gene

is four times more likely to be differentially expressed than non-differentially

expressed.

Because the NOISeq method was developed for technical replicates or no

replicates at all it was not our intention to compute statistical significance in

terms of p-values. However, many NOISeq users have requested equivalence
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between the probability of differential expression returned by NOISeq and p-

values. The statistic (M,D) used by NOISeq to assess differential expression

is a bivariate statistic. We searched in the literature for cases in which a p-

value was computed from bivariate statistics, but we found that in multivariate

hypothesis testing, the statistic is transformed to a univariate distribution

(e.g. Hotelling’s T 2 when testing equality of means in multivariate normal

populations). This is the approach we followed in NOISeqBIO, as we will see

in the next section. However, to preserve the bivariate nature of the NOISeq

statistic when testing H0 : µ1 = µ2, we suggest computing the p-value as in

Equation 5.4, taking into account that in NOISeq we consider the absolute

values of M and D to obtain the probability of differential expression and

that we intend to declare a gene as DEG when both M and D values are

higher than in noise.

p− value(ms, ds) = P (|Mn| > |ms|, |Dn| > |ds|) (5.4)

Note that the p-value is not equivalent to 1 − F (|ms|, |ds|). NOISeq

performance using this p-value definition has not yet been tested.

5.3.1.2 NOISeq-sim

When there are no technical replicates available in any of the experimental

conditions, the NOISeq algorithm can simulate them. The simulation relies

on the assumption that read counts follow a multinomial distribution, where

the probability for a given class (gene) in the multinomial distribution is the

probability of a read to map to that gene. These mapping probabilities are

approximated using counts in the only available sample of the corresponding

experimental condition. Counts equal to zero are replaced with 0.5, to give

all genes some chance to appear.

Given the sequencing depth si of the unique available sample in condition

i, sequencing depth for the simulated samples is generated randomly from a

uniform distribution in the interval [(pnr-v)*si), (pnr+v)*si]. The parameter

pnr is a percentage that determines the number of reads of each simulated
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replicate, and the v parameter allows for some variability in the sequencing

depths across simulated samples. Both parameters can be chosen by the users,

as well as the number of replicates to be simulated (nss). The recommended

values for these parameters are: nss ≥ 5, pnr=0.2 and v=0.02.

Once the replicates have been simulated, the procedure to estimate dif-

ferential expression is the same as in NOISeq-real.

5.3.2 NOISeqBIO

In RNA-seq, technical replicates have been reported to present low variability

[18, 92]. Therefore, although no real inference can be made from technical

replicates, the NOISeq method can serve to estimate differential expression

under these circumstances. When biological replication is available, it is cru-

cial to consider the biological variability inherent to each gene under each

experimental condition in order to design a method able to detect genes with

significant statistical changes in expression between conditions.

Starting from the statistical framework developed in the NOISeq method

[141], we proposed a variant named NOISeqBIO that takes into account the

biological variability and tests the hypothesis H0 : µ1 = µ2, where µi is the

average of expression in experimental condition i. NOISeqBIO incorporates

the statistical modeling proposed by Efron et al. [43] into the NOISeq formu-

lation. These authors used an empirical Bayes approach on microarray data in

which they defined a statistic Z to evaluate the change in expression between

two conditions. Their method assumes that the genes can be classified into

two different populations: genes with invariant expression between two exper-

imental conditions and genes with expression changing between conditions,

so the probability distribution of this Z statistic can be described as a mixture

of two distributions. The mixture distribution f of Z can be written as in

Equation 5.5, where p0 is the probability of a gene having the same expres-

sion in both conditions and p1 = 1 − p0 is the probability of a gene having

different expression between conditions. f0 and f1 are the densities of Z for
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genes with no change in expression between conditions and for differentially

expressed genes respectively.

f(z) = p0f0(z) + p1f1(z) (5.5)

If one of these two distributions can be estimated, the probability of a

gene belonging to one of the two groups can be calculated.

Our adaptation of this strategy to the NOISeq context consists of the

following steps:

1. Choose an appropriate differential expression statistic Z.

2. Estimate the values of the Z statistic when there is no change in ex-

pression, i.e. the null statistic Z0.

3. Estimate the probability density functions f and f0.

4. Obtain the posterior probability of differential expression p1(zi) for each

gene i.

1. Differential expression statistic Z

Let xgij be the expression of gene g in condition i and replicate j. As

previously described, we measured the expression change in signal (that

is, between both conditions) by computing Mg
s = log2(x̄

g
1/x̄

g
2) and

Dg
s = x̄g1 − x̄

g
2. Let Ms and Ds be the vectors containing Mg

s and Dg
s

values for all the genes. Ms and Ds statistics must be corrected for the

biological variability by dividing them by their standard errors. Let σ̂2M

and σ̂2D be the vectors containing the standard errors of Ms and Ds for

all genes respectively. They were estimated as follows, assuming that

x̄1 and x̄2 are independent.

σ̂2M = V ar(log2(x̄1/x̄2)) = V ar(log2(x̄1)− log2(x̄2)) =

= V ar(log2(x̄1)) + V ar(log2(x̄2)) (5.6)



5.3 Methods 123

We used a Taylor approximation (δ-method) to estimate the variance

[24]: V ar(log2(X)) =

(
1

E(X)log(2)

)2

V ar(X). For each condition

i, we estimated E(x̄i) = x̄i and V ar(x̄i) = S2
i /ni. Hence:

σ̂2M ≈
1

x̄21log(2)2
S2
1

n1
+

1

x̄22log(2)2
S2
2

n2
(5.7)

σ̂2D = V ar(x̄1 − x̄2) =
S2
1

n1
+
S2
2

n2
(5.8)

Therefore, Ms and Ds statistics are corrected for biological variability

as described in Equations 5.9 and 5.10, where the constant a0 serves

to stabilize the denominator of the statistic [109]. This constant may

be computed as a given percentile of all the values in σ̂M or σ̂D, re-

spectively, as in [43]. The authors suggest the 90th percentile as the

best option.

M∗s =
Ms

a0 + σ̂M
(5.9)

D∗s =
Ds

a0 + σ̂D
(5.10)

Finally, we computed the Z statistic by combining the Ms and Ds

values. Combining both statistics instead of using the bivariate statistic

(M∗s , D
∗
s) allows us to derive a procedure to obtain a probability of

differential expression which can be considered equivalent to an adjusted

p-value [43]. We considered two different possibilities to combine both

statistics (Equations 5.11 and 5.12).

Z =
M∗s +D∗s

2
(5.11)

Z =
D∗s
|D∗s |

√
(M∗s )2 + (D∗s)

2 (5.12)
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2. Null scores Z0

Let X be the gene expression matrix with G rows (genes) and n1 + n2

columns, where ni is the number of biological replicates for condition i.

We assume that X is normalized (e.g. by converting the raw counts to

TMM [120] or RPKM [99] values) and that genes with no expression

across all the replicates for both conditions have been removed.

In order to compute the null density f0, we first need to estimate the

values of the Z-scores for genes with no change between conditions. To

estimate these null scores, we permuted the labels of samples (columns)

in X r times and each time we computed the differential expression

statistic Z, as previously described. In this way, we obtained a matrix

Z0 with as many columns as the number of permutations r. The G× r
elements of matrix Z0 are pooled together and are considered the null

scores that will be used to later estimate the null distribution f0.

However, when there are few replicates available for each condition, the

resulting null distribution is very poor because the number of different

permutations is low. Therefore, when the number of replicates per

condition is less than 5, it is convenient to borrow information from

across genes. The procedure we followed was to cluster all the genes

according to their expression values across replicates by using the k-

means algorithm. Hence, genes with similar expression values across

all replicates were clustered together. For each cluster of genes (k),

we considered the expression values of all the genes in the cluster as

observations within the corresponding condition (i.e. as replicates).

Thus, we shuffled this submatrix r × gk times, where gk is the number

of genes within cluster k. For each permutation, we calculated (M,D)

values and their corresponding standard errors. In order to reduce the

computing time and to get a refined clustering of the greatest clusters,

if gk ≥ 1000, we re-applied the k-means algorithm to subdivide cluster

k into subclusters.
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3. Estimation of densities

Once the Z and Z0 scores have been obtained, the density functions f

and f0 can be estimated. In [43], they directly estimate the ratio f0/f

using nonparametric logistic regression. In NOISeqBIO, we propose to

estimate f and f0 separately using a kernel density estimator (KDE)

with a Gaussian kernel (see Section 3.2.2). By default, the smoothing

parameter (adj in noiseqbio() function) was set to 1.5, which means

that the bandwidth is computed as 1.5 times the optimum bandwidth

obtained by “‘nrd0” Silverman’s rule of thumb [129]. Therefore, the

density curves we estimate are smoother than the default curves gener-

ated by the R density() function. In Section 5.4 we show that using this

KDE option in NOISeqBIO improved the performance of the method.

4. Probability of differential expression

Given a gene with a score z for the Z statistic, let p1(z) be the proba-

bility of that gene being differentially expressed between the two exper-

imental conditions being compared. Therefore, p1(z) is the conditional

probability of differential expression for an observed value of z for a

given gene. Thus, this probability can be derived from Bayes Rule as

follows:

p1(z) =
p1f1(z)

f(z)
= 1− p0

f0(z)

f(z)
(5.13)

Moreover, as Efron et al. showed [43], the a posteriori probability

p0(z) = 1 − p1(z) we calculate in Equation 5.13 is closely connected

to the FDR defined by Benjamini and Hochberg [11], so p0(z) can be

considered equivalent to a multiple testing adjusted p-value.

Thus, we only need to estimate p0 in order to calculate p1(z) because

we already estimated f0 and f . We took an upper bound of p0 as

suggested in [43]. Taking into account that p1(z) must be nonnegative

leads to the restriction p0 ≤ minZ{f(Z)/f0(Z)}, which can be used

as the estimate for p0.
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According to [43], more stable upper bounds can be constructed by

integrating over an interval I near Z = 0. Then, p0 ≤
∫
I f(Z)∫
I f0(Z)

. The

choice I = [−0.5, 0.5] is recommended, particularly when the true p0 is

near 1, which usually happens in differential expression analysis. This

upper bound can be directly estimated by
γI(Z)/|Z|
γI(Z0)/|Z0|

, where γI(X)

is the number of X values inside the interval I. However, when applied

to our work, this upper bound for p0 sometimes resulted in negative

probabilities, and so we discarded this option.

5.3.3 Other differential expression methods

NOISeq and NOISeqBIO were compared to other differential expression meth-

ods that are summarized in the following paragraphs.

These are the methods NOISeq was compared to. All of them are para-

metric except Fisher’s exact test (FET).

• Fisher’s exact test. This procedure is used when no biological replicates

are available to assess if the percentage of reads falling in a given gene

is significantly different for the two experimental conditions. Thus, a

FET is performed on each gene and the resulting p-values are corrected

for multiple testing using the Benjamini and Hochberg procedure [11].

• DEGseq [147] is a Bioconductor R package which integrates three ex-

isting differential expression methods and another two methods which

were developed by the authors. In this work, we chose two of them:

– DEGseq-LRT: RNA sequencing can be modeled as a random sam-

pling process, in which each read is sampled independently and

uniformly [67]. Under this assumption the number of reads coming

from a gene follows a binomial distribution (and can be approx-

imated by a Poisson distribution). A likelihood ratio test (LRT)

based on a Poisson distribution had previously been proposed to

identify differentially expressed genes [15, 92]. This test was im-

plemented inside the DEGseq package.
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– DEGseq-MARS: MA-plot is a widely used tool to detect the de-

pendence of fold-change (M) on intensity (A) for microarray data

that can also be extended to RNA-seq data. Let Ci denote the

counts of reads mapped to a specific gene in sample i, with

Ci ∼ Binomial(ni, pi), i = 1, 2, where ni is the total num-

ber of mapped reads and pi is the probability of a read coming

from that gene. M is defined as M = log2C1 − log2C2, and

A = (log2C1 + log2C2)/2. The authors proved that the condi-

tional distribution of M given that A = a follows an approximate

normal distribution. For each gene on the MA-plot, they do the

hypothesis test of H0 : p1 = p2 versus H1 : p1 6= p2.

• baySeq [59]: An empirical Bayesian approach to estimate the posterior

probabilities of models that define different patterns of differential ex-

pression across experimental groups. First, the models are defined by

indicating which samples behave similarly to each other, and for which

sets of samples there are identifiable differences. Samples behaving sim-

ilarly to each other should possess the same prior distribution on the

underlying parameters of that tuple, while samples behaving differently

should possess different prior distributions. The method is based on

either a Poisson distribution (PO) or a Negative Binomial distribution

(NB) for the tuple data, and derives an empirical distribution in the set

of underlying parameters from the whole dataset.

• edgeR [123] models count data using an over-dispersed Poisson model,

i.e. a Negative Binomial distribution, and uses parametrization to relate

the mean µ and the variance σ2: σ2 = µ+αµ2. In this way, only the α

parameter has to be estimated from the data. Gene-wise dispersions are

estimated by conditional maximum likelihood, conditioning on the total

count for that gene. An empirical Bayes procedure is used to shrink the

dispersions towards a consensus value, effectively borrowing information

from across genes [121]. Finally, differential expression is assessed for
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each gene using an exact test analogous to Fisher’s exact test, but

adapted for over-dispersed data [122]. In the technical replication study,

two variants of this method were considered:

– CD, which estimates a Common Dispersion for all tags.

– TWD, which estimates a Tag-Wise dispersion.

• DESeq [4] is a statistical procedure similar to edgeR. The authors extend

the edgeR model by allowing more general, data-driven relationships of

variance and mean, and they use a different procedure to estimate the

dispersion.

NOISeqBIO was compared to the following methods. Because the NOISe-

qBIO study was more recent, new versions of the methods were available with

improved performance.

• edgeR [123] (see description above).

• DESeq2 is a more recent and improved version of DESeq [4].

• SAMseq [82] is a non-parametric procedure that uses resampling to

account for the different sequencing depths. The method is based on the

Wilcoxon statistic to compare two samples and a permutation approach

is applied to approximate the distribution of this statistic.

5.3.4 Data processing

In NOISeq comparisons, a library size correction was applied to compute differ-

ential expression whenever the methods included this option. In some cases,

gene length correction was also applied, where gene length was computed

as the median length of transcripts of each gene. Since NOISeq-sim works

with no replicates, counts from different lanes were summed up so there was

always a unique replicate but with a different sequencing depth in each case.

In the studies related to NOISeqBIO, we applied the following normaliza-

tion and low count filtering procedures on both simulated and experimental
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data. TMM normalization was used for NOISeqBIO and edgeR differential

expression methods. For DESeq2 and SAMseq we used their own normal-

ization algorithms. Prior to normalizing the data, we filtered out genes with

an average expression per condition lower than 1 count per million in both

conditions. Filtering was done using the CPM method from the NOISeq R

package (see Chapter 4 for more details).

5.3.5 Tools for performance assessment

5.3.5.1 Performance indicators

The performance of the DE methods was assessed according to the values

of some indicators previously defined in Chapter 3: Sensitivity (SE), False

Discovery Rate (FDR) and Matthews Correlation Coefficient (MCC). These

indicators were either used for the plots described in the following text or

computed for the DE results obtained at a significance level of 5% (which is

the most frequently used by researchers).

5.3.5.2 Precision-recall curves and false discovery rate plots

Precision-recall curves (PRC) and False Discovery Rate (FDR) plots were

generated for both simulated and RT-PCR datasets. “Recall” is the sensitivity

or true positive rate (TPR) and “Precision” is defined as TP/(TP+FP ),

making it equal to 1-FDR. PRCs are good performance estimators when the

number of negatives greatly exceeds the number of positives, as is the case

of expression datasets [35].

5.3.5.3 Box plots

In some cases, to compare the performance of DE methods, we used box plots

with a notch at both sides of the box. This notch represents a sort of 95%

confidence interval for the median computed from Equation 5.14, where IQR
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is the interquartile range and n is the number of observations represented in

a given box plot.

Median∓ 1.58× IQR/
√
n (5.14)

This confidence interval was proposed by McGill et al. [96] and provides

a way to measure the difference between medians. If two of these confidence

intervals (for two different methods) do not overlap, it means that the medians

are, roughly, significantly different at an approximate confidence level of 95%.

The assumptions made in order to construct such confidence intervals are:

asymptotic normality for the median and equal (or very similar) sample sizes

for the two medians being compared. In principle the procedure should not

be sensitive to the underlying distributions of the samples. In this way, we

can use these intervals to test the null hypothesis that the true medians are

equal. However, when more than two samples are compared, it must be taken

into account that no multiple testing correction is applied [25].

5.4 Results

5.4.1 NOISeq performance

We compared NOISeq to a selection of RNAseq differential expression meth-

ods, namely edgeR [123], baySeq [59], DEGseq [147], DESeq [4] and FET

on data with technical replicates. In contrast to NOISeq which makes no as-

sumptions about the distribution of the M and D statistics, all these methods

follow parametric approaches (except FET).

5.4.1.1 Comparison on simulated data

To concentrate the comparison on a subset of representative and but different

approaches, we first evaluated the general performance of all of these differ-

ential expression methods and compared them to NOISeq using the synthetic

dataset included in the baySeq R package [59].
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Both PRC and FDR plots separated RNA-seq statistical methodologies

into two groups (Figure 5.6). The two options for the edgeR method (CD

and TWD), DESeq, baySeq-NB and both versions of NOISeq showed good

accuracy and consistent control of false discoveries, whereas MARS, LRT,

FET, and baySeq-PO showed poorer performances. Therefore, we selected

edgeR-CD, baySeq-NB, DESeq, and FET (the last one was included for its

extensive use by researchers), together with NOISeq-sim and NOISeq-real for

further analysis.
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Figure S10: Precision-Recall and False Discovery Rate curves for the differential expression methods com-
pared, applied to the synthetic dataset included in baySeq package.

Table S3: True and False Positive Rates for differential expression methods applied to Griffith’s dataset
and using RT-PCR as gold-standard. Genes considered as true positives are those declared differentially
expressed on RT-PCR data (82 genes). Genes considered as true negatives are those not found differentially
expressed by RT-PCR (12 genes).

Method Length correction # TP TPR # FP FPR

NOISeq-real No 47 57.3% 0 0.0%
NOISeq-real Yes (RPKM) 35 42.7% 0 0.0%
NOISeq-sim No 63 76.8% 2 16.7%
NOISeq-sim Yes (RPKM) 61 74.4% 0 0.0%

FET No 14 17.1% 0 0.0%
FET RPKM 9 11.0% 0 0.0%

edgeR No 73 89.0% 5 41.7%

DESeq No 70 85.4% 4 33.3%

baySeq No 58 70.7% 3 25.0%
baySeq Yes 61 74.4% 3 25.0%

17

Figure 5.6: Precision-Recall and False Discovery Rate curves for the differential

expression methods compared, as applied to the synthetic dataset included in

the baySeq R package.

5.4.1.2 Comparison on experimental data

The selected methodologies were applied to the MAQC and Griffith datasets.

We also included the analysis of gene length corrected data when the methods

permitted this input. Note that FET was applied on counts normalized by

the library size.

On the MAQC dataset, two performance indicators, PRC and FDR indi-

cated that NOISeq performed better compared to other methodologies (Figure

5.7). Specifically, false discoveries were higher for edgeR, DESeq and baySeq.
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FET had a low FDR regardless of the significance threshold but also showed

a poorer precision-recall figure. Interestingly, PRC and FDR were very similar

on data with and without length correction. Griffith RT-PCR data were more

limited but led to the same conclusions (Table 5.1).

different methodologies use different parameters to select signifi-

cant features, it was not always clear which cutoff values would

produce comparable analysis scenarios. In this study, we chose q =

0.8 for NOISeq, a probability of 0.999 for baySeq, and an adjusted

P-value threshold of 0.001 for the remaining methods. Less re-

strictive values for compared methodologies resulted in far too large

a number of selected genes. We performed our study using library

size–normalized count data, as all evaluated methods allowed this

possibility. Next, we introduced feature length normalization into

the analysis for those methodologies that permitted this option.

SD dependence in number and type of differential expression calls

We first investigated the number of differential expression calls as

a function of the SD (Fig. 4; Supplemental Table S4). A very pro-

nounced dependency between gene selection and read number

was observed for edgeR, DESeq, and baySeq. FET did not show this

dependency but did identify a reduced number of significant

genes. NOISeq had an intermediate behavior with a moderate

number of d.e.g. in the Marioni and MAQC data sets, and increased

only slightly with SD. Results for Griffith’s data were slightly dif-

ferent. While FET and NOISeq identified a small number of sig-

nificant genes (between 150 and 200), close to the figure reported

in the original study, other methods resulted in larger selection

sets. Moreover, both FET and NOISeq-real lost significant calls as

more lanes were considered, reflecting the high variability of this

data set. We then looked at differential expression curves by tran-

script biotype and noticed that, for parametric approaches, a sig-

nificant and increasing number of off-target transcripts were se-

lected as more reads were considered (Supplemental Fig. S11),

whereas NOISeq again behaved moderately here. In fact, NOISeq

significant calls were the most enriched in protein-coding genes,

Figure 3. NOISeq method: description and performance. (A) Schematic representation of the NOISeq methodology. M-D distribution in noise (black),
signal (green), and differentially expressed genes (red). Both axis scales have been trimmed to improve visualization. (B) Precision-recall curves and false-
discovery rates for the differential expression methods compared on MAQC data set using RT-PCR results as a gold-standard.
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Figure 5.7: Precision-recall curves and false discovery rates for the differential

expression methods compared on the MAQC dataset using RT-PCR results as

a gold-standard.

In summary, our performance analysis highlighted differences between

RNA-seq differential expression methods and pointed to NOISeq as a high

performing methodology.

We also investigated how the number of technical replicates influences

the number of differential expression calls (Figure 5.8), the gene length, the

fold-change (M) and the mean expression level of DEGs (Figure 5.9).

Figure 5.8 shows the very pronounced dependency between gene selection

and number of replicates (lanes) observed for edgeR, DESeq and baySeq.

FET did not show this dependency but did identify a reduced number of

significant genes. NOISeq had an intermediate behavior with a moderate

number of DEGs in the MAQC dataset which increased only slightly with the

number of replicates. Results for Griffith data were slightly different. While

FET and NOISeq identified a small number of significant genes (between 150

and 200), close to the figure reported in the original paper, other methods
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Method Length correction # TP TPR # FP FPR

NOISeq-real None 47 57.3% 0 0.0%

NOISeq-real RPKM 35 42.7% 0 0.0%

NOISeq-sim None 63 76.8% 2 16.7%

NOISeq-sim RPKM 61 74.4% 0 0.0%

FET None 14 17.1% 0 0.0%

FET RPKM 9 11.0% 0 0.0%

edgeR None 73 89.0% 5 41.7%

DESeq None 70 85.4% 4 33.3%

baySeq None 58 70.7% 3 25.0%

baySeq Yes 61 74.4% 3 25.0%

Table 5.1: True and false positive rates for differential expression methods

applied to the Griffith dataset and using RT-PCR as a gold-standard. Genes

considered as true positives are those declared as differentially expressed on RT-

PCR data (82 genes). Genes considered as true negatives are those not found

to be differentially expressed by RT-PCR (12 genes).

where other methods included higher proportions of non-

polyadenylated transcripts (Supplemental Fig. S12).

SD influence on length, expression, and fold-change of significant genes

To better understand how SD affects other properties of differential

expression, we plotted the transcript length, fold-change (M ), and

mean expression level of significant genes as a function of the

available number of reads (Fig. 5; Supplemental Fig. S13). The pat-

tern of differences between methods was similar to that observed in

previous analyses. The edgeR, DESeq, and baySeq methods showed

SD dependency, whereas NOISeq and FET did not. FET had large and

constant values for these three parameters.

In the parametric approaches, the mean transcript length of

the statistically significant genes decreased as the number of lanes

grew. This length shortening effect was only very moderately

present in NOISeq, which, at the highest SDs, generally selected

larger genes than did the other methods. This difference is in agree-

ment with the observed higher selection of small, noncoding RNAs

by the parametric approaches. Furthermore, the mean fold-change of

the genes detected by compared methodologies was greatly influ-

enced by the total read number. The larger the sequencing output,

the smaller the count differences between samples declared as sig-

nificant, and this was especially notable in the large Griffith’s data set

(100 million reads), where mean M values for d.e.g. dropped below

1. NOISeq, on the contrary, selected genes with larger count dif-

ferences and had a robust behavior with changing SD. Finally, we

also observed a strong dependency on the level of expression.

Current RNA-seq statistical methods tend to identify genes with

a lower relative abundance as the number of available reads grows.

Again here, NOISeq, and especially NOISeq-real, offered a more

constant and intermediate result, selecting genes with lower ex-

pression at smaller SDs and genes with larger count numbers at

higher depths than did parametric RNA-seq methods.

Most statistical analysis methods for RNA-seq suffer from high FDRs

All previous results indicated that d.e.g. identified by parametric

approaches strongly increase in number as more sequencing is

generated and that this results in calling significant genes with

smaller fold changes. Although this could be explained by an ap-

parent higher accuracy of gene expression estimates in large sam-

pling sizes, the prominent discrepancy with a data-driven meth-

odology such as NOISeq and the results of our initial performance

analysis led us to suspect a general failure of those methods in

controlling FDR as the sequencing output increase. To verify this, we

analyzed the available MAQC RT-PCR data as a function of the SD,

looking both at the false-positive (FPR) and true-positive (TPR) rates.

Figure 4. Differentially expressed genes according to sequencing depth for each data set and method. No gene length correction was applied to
the data.

Figure 5. Relationship between gene length, fold-change M, expression level of differentially expressed genes, and the number of lanes used, for each
method in MAQC data set. No length correction was applied to the data. RpMi is the number of reads in condition i per million reads, namely,

RpMi =
106 3 gene counts in condition i

total counts in condition i

.
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Figure 5.8: The number of differentially expressed genes according to the

number of technical replicates for each dataset and method. No gene length

correction was applied to the data.

resulted in larger selection sets. Moreover, both FET and NOISeq-real lost

significant calls as more lanes were considered, reflecting the high variability

of this dataset.
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where other methods included higher proportions of non-

polyadenylated transcripts (Supplemental Fig. S12).

SD influence on length, expression, and fold-change of significant genes

To better understand how SD affects other properties of differential

expression, we plotted the transcript length, fold-change (M ), and

mean expression level of significant genes as a function of the

available number of reads (Fig. 5; Supplemental Fig. S13). The pat-

tern of differences between methods was similar to that observed in

previous analyses. The edgeR, DESeq, and baySeq methods showed

SD dependency, whereas NOISeq and FET did not. FET had large and

constant values for these three parameters.

In the parametric approaches, the mean transcript length of

the statistically significant genes decreased as the number of lanes

grew. This length shortening effect was only very moderately

present in NOISeq, which, at the highest SDs, generally selected

larger genes than did the other methods. This difference is in agree-

ment with the observed higher selection of small, noncoding RNAs

by the parametric approaches. Furthermore, the mean fold-change of

the genes detected by compared methodologies was greatly influ-

enced by the total read number. The larger the sequencing output,

the smaller the count differences between samples declared as sig-

nificant, and this was especially notable in the large Griffith’s data set

(100 million reads), where mean M values for d.e.g. dropped below

1. NOISeq, on the contrary, selected genes with larger count dif-

ferences and had a robust behavior with changing SD. Finally, we

also observed a strong dependency on the level of expression.

Current RNA-seq statistical methods tend to identify genes with

a lower relative abundance as the number of available reads grows.

Again here, NOISeq, and especially NOISeq-real, offered a more

constant and intermediate result, selecting genes with lower ex-

pression at smaller SDs and genes with larger count numbers at

higher depths than did parametric RNA-seq methods.

Most statistical analysis methods for RNA-seq suffer from high FDRs

All previous results indicated that d.e.g. identified by parametric

approaches strongly increase in number as more sequencing is

generated and that this results in calling significant genes with

smaller fold changes. Although this could be explained by an ap-

parent higher accuracy of gene expression estimates in large sam-

pling sizes, the prominent discrepancy with a data-driven meth-

odology such as NOISeq and the results of our initial performance

analysis led us to suspect a general failure of those methods in

controlling FDR as the sequencing output increase. To verify this, we

analyzed the available MAQC RT-PCR data as a function of the SD,

looking both at the false-positive (FPR) and true-positive (TPR) rates.

Figure 4. Differentially expressed genes according to sequencing depth for each data set and method. No gene length correction was applied to
the data.

Figure 5. Relationship between gene length, fold-change M, expression level of differentially expressed genes, and the number of lanes used, for each
method in MAQC data set. No length correction was applied to the data. RpMi is the number of reads in condition i per million reads, namely,

RpMi =
106 3 gene counts in condition i

total counts in condition i

.
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where other methods included higher proportions of non-

polyadenylated transcripts (Supplemental Fig. S12).

SD influence on length, expression, and fold-change of significant genes

To better understand how SD affects other properties of differential

expression, we plotted the transcript length, fold-change (M ), and

mean expression level of significant genes as a function of the

available number of reads (Fig. 5; Supplemental Fig. S13). The pat-

tern of differences between methods was similar to that observed in

previous analyses. The edgeR, DESeq, and baySeq methods showed

SD dependency, whereas NOISeq and FET did not. FET had large and

constant values for these three parameters.

In the parametric approaches, the mean transcript length of

the statistically significant genes decreased as the number of lanes

grew. This length shortening effect was only very moderately

present in NOISeq, which, at the highest SDs, generally selected

larger genes than did the other methods. This difference is in agree-

ment with the observed higher selection of small, noncoding RNAs

by the parametric approaches. Furthermore, the mean fold-change of

the genes detected by compared methodologies was greatly influ-

enced by the total read number. The larger the sequencing output,

the smaller the count differences between samples declared as sig-

nificant, and this was especially notable in the large Griffith’s data set

(100 million reads), where mean M values for d.e.g. dropped below

1. NOISeq, on the contrary, selected genes with larger count dif-

ferences and had a robust behavior with changing SD. Finally, we

also observed a strong dependency on the level of expression.

Current RNA-seq statistical methods tend to identify genes with

a lower relative abundance as the number of available reads grows.

Again here, NOISeq, and especially NOISeq-real, offered a more

constant and intermediate result, selecting genes with lower ex-

pression at smaller SDs and genes with larger count numbers at

higher depths than did parametric RNA-seq methods.

Most statistical analysis methods for RNA-seq suffer from high FDRs

All previous results indicated that d.e.g. identified by parametric

approaches strongly increase in number as more sequencing is

generated and that this results in calling significant genes with

smaller fold changes. Although this could be explained by an ap-

parent higher accuracy of gene expression estimates in large sam-

pling sizes, the prominent discrepancy with a data-driven meth-

odology such as NOISeq and the results of our initial performance

analysis led us to suspect a general failure of those methods in

controlling FDR as the sequencing output increase. To verify this, we

analyzed the available MAQC RT-PCR data as a function of the SD,

looking both at the false-positive (FPR) and true-positive (TPR) rates.

Figure 4. Differentially expressed genes according to sequencing depth for each data set and method. No gene length correction was applied to
the data.

Figure 5. Relationship between gene length, fold-change M, expression level of differentially expressed genes, and the number of lanes used, for each
method in MAQC data set. No length correction was applied to the data. RpMi is the number of reads in condition i per million reads, namely,

RpMi =
106 3 gene counts in condition i

total counts in condition i

.
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Figure 5.9: Relationship between gene length, fold-change M, expression level

of differentially expressed genes, and the number of lanes used, for each method

using the MAQC data set. No length correction was applied to the data. RpMi

is the number of reads per million reads in condition i.

Regarding gene length, fold-change and mean expression (Figure 5.9), the

dependence of the results on the number of replicates was once again stronger

for parametric methods. The mean gene length decreased as the number of

lanes grew. This length shortening effect was only very moderately present

in NOISeq which, at the highest sequencing depths, generally selected larger

genes than the other methods. The mean fold-change of the genes detected

by parametric methodologies was smaller for a larger number of replicates.

On the contrary, NOISeq selected genes with larger count differences and
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behaved robustly with changing sequencing depth. Finally, we also observed

a strong dependency on the level of expression. Current RNA-seq statistical

methods tend to identify genes with a lower relative abundance as the number

of available replicates grows. Again here NOISeq, and especially NOISeq-

real, gave more constant and intermediate results, selecting genes with lower

expression and genes with larger count numbers than parametric RNA-seq

methods when a lower or higher number of lanes were used respectively. FET

had large and constant values for these three parameters.

Previous results indicated that the number of DEGs identified by paramet-

ric approaches strongly increases in number as more technical replicates are

used for the analysis. Although this could be explained by an apparent higher

accuracy of gene expression estimates in large sampling sizes, the prominent

discrepancy with a data-driven methodology such as NOISeq, along with the

results from our initial performance analysis, led us to suspect a general failure

of these methods in controlling the FDR as the sequencing output increased.

To verify this, we analyzed the available MAQC RT-PCR data as a function

of the number of replicates, looking both at the false (FPR) and true (TPR)

positive rates. As suspected, current RNA-seq analysis methods progressively

incorporated more false calls as more lanes were used, reaching more than

60% false positives using the edgeR method (Fig. 5.10). In contrast, NOISeq

maintained a stable and low FPR even as the number of lanes increased. Only

FET had better FPR performance, however at a significant cost of the num-

ber of true detections. The TPR obtained from the other methods compared

was slightly higher than that of NOISeq, which is logically the consequence

of the large number of the DEGs called by these methodologies. Notably,

genes selected by both NOISeq and other approaches did contain a functional

signature, i.e., they were significantly enriched in many biological functions

while those only detected by parametric methods had no specific functional

charge (Table 5.2).
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As suspected, current RNA-seq analysis methods progressively in-

corporated false calls as more sequencing data were used, reaching

above 60% of false positives in edgeR (Fig. 6). In contrast, NOISeq

maintained a stable and low FPR throughout the increasing number

of lanes. Only FET had better FPR performance, however, at a sig-

nificant cost of the number of true detections. The TPR obtained

from the other compared methods was slightly higher than that of

NOISeq, which is logically the consequence of the large number of

the d.e.g. called by these methodologies. Furthermore, we verified

that false positives were basically genes with shorter length, de-

creasing expression level, and smaller fold-change differences at

each SD value (Supplemental Fig. S16a). Notably, genes selected in

common by NOISeq and other approaches did contain a functional

signature; that is, they were significantly enriched in many bi-

ological functions, while those only detected by parametric

methods had no specific functional charge (Supplemental Material).

Effect of normalization by feature length on SD biases

Lastly, we evaluated whether normalization of count data by a fea-

ture length correction method, such as RPKM, affected the observed

patterns of SD dependence. We introduced length normalization

into NOISeq-sim, NOISeq-real, FET, and baySeq and repeated our

analysis (edgeR and DESeq packages do not allow for this correc-

tion). Figures were essentially the same as in non–length-normal-

ized data regarding number (Supplemental Fig. S14), mean fold-

change, and mean expression value of d.e.g. (Supplemental Fig.

S15b,c). However, the dependence between library size and tran-

script length was significantly changed, and all methodologies

showed now a constant behavior and a shorter mean length value

than did non-normalized counterparts (Supplemental Fig. S15a).

Finally, false- and true-positive curves for MAQC data (Fig. 7A,B;

Supplemental Fig. S16b) again resembled previous results: baySeq

increasingly detected false positives with increasing SD, and FETand

NOISeq maintained a low level of true positive detection.

Discussion
Estimation of gene expression levels by sequencing is conceptually

simple and has been seen as a very straightforward task. Sequencing

reads the population of RNA molecules in a given sample and ren-

ders a direct quantification of the abundance of each transcript,

mapping ambiguities and sequencing errors issues apart. Although

this is fundamentally true, as shown in studies on correspondence

of RNA-seq data with microarrays and RT-PCR (Marioni et al. 2008;

Bullard et al. 2010; Griffith et al. 2010), we believe that there is still

some work to be done to fully understand the characteristics of

RNA-seq data and their processing by statistical methods. One of the

biases that rapidly became evident was the effect of transcript length

in the quantification and identification of differential expression.

The nature of the short read procedure makes it inevitable that

longer transcripts will be preferentially detected over shorter ones,

and this has been shown to have implications in the biological in-

terpretation of the data (Oshlack and Wakefield 2009; Young et al.

2010). Another important element is the magnitude of the depth of

the sequencing experiment, the subject of this study. Due to the

large dynamic range of gene expression, ultra-high-throughput se-

quencing seems advisable to detect transcripts with low expression

values. However, we have seen that, as more sequencing output is

considered, the diversity and quantity of detected off-target RNA

species, such as several types of small RNAs, also increase (Fig. 2B).

The extent to which each of these biotypes and transcripts are pu-

rification artifacts or have a biological significance warrants a sepa-

rate study, but it does show an important property of RNA-seq data:

the effect that SD has on the distribution of reads among transcripts

and the quantification of expression, essentially a percentage in the

case of this technology. Robinson and Oshlack (2010) have already

highlighted the implications that different transcript distributions

might have in RNA-seq normalization and differential expression.

Our observations suggest that it is advisable to take equal SDs be-

tween samples in order to support accurate statistical analysis.

We have evaluated several RNA-seq differential expression

methods regarding their behavior throughout SDs: edgeR, DESeq,

baySeq, the traditional FET, and a novel method proposed here:

NOISeq. edgeR, DESeq, and baySeq use the NB distribution. The first

two apply an exact test, while baySeq is a Bayesian method. NOISeq

creates an empirical distribution of count changes adapted to the

available data, from which the probability of differential expression

for each feature can be derived. In this nonparametric approach,

differential expression does not rely on individual transcript mea-

surements but in the joint distribution of M-D values for all the

features within the data set. We studied the effect of SD on the

number of d.e.g., their length, fold-change value, and expression

level. The pattern produced by NOISeq and FET was more constant

across the different variables analyzed, whereas the other three

methods showed a pronounced dependence. The parametric ap-

proaches strongly increased the number of significant calls as more

sequencing output was included, resulting in a considerable num-

ber of false positives (Fig. 6). The newly

detected genes were shorter, were of lower

relative expression, and had smaller fold-

change differences than did those obtained

with less data, and they contained many

off-target RNA species (Fig. 5; Supplemen-

tal Fig. S12). False-positive genes identified

in the analysis of the MAQC data had

similar characteristics, suggesting that

large library size data sets analyzed by these

parametric approaches incorporate many

falsely called significant genes at the low

expression range and/or with small fold-

change differences. The constant pattern

of FET was intrinsically due to a low de-

tection power that identified only highly

expressed transcripts. However, NOISeq

showed more robustness against these SD

Figure 6. Relationship between the number of true positives ( TP) and false positives (FP) and se-
quencing depth. TP and FP were obtained applying different statistical methods on the MAQC data
set and comparing the results to RT-PCR positive and negative genes.
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Figure 5.10: The relationship between the number of true positives (TP) and

false positives (FP) and the number of technical replicates (lanes). TP and FP

were obtained by applying the statistical methods to be compared to the MAQC

dataset and then comparing results to RT-PCR positive and negative genes.

5.4.2 NOISeqBIO performance

In this section, we evaluate the performance of the NOISeqBIO method.

Prior to the comparison of NOISeqBIO to other DE methodologies, we show

the results of some preliminary studies that had two main purposes. Firstly,

they served to adjust the various options and parameters of NOISeqBIO that

we described in Section 5.3.2. Secondly, and in order to simplify the huge

number of biological scenarios that could be defined when simulating data,

we identified which parameters in the simulation algorithm had a greater

influence on DE results and which were the most informative values for these

parameters. This information was then used to generate the final set of

simulated datasets to compare the DE methods.

5.4.2.1 Preliminary studies on simulated data

Determining the best options for NOISeqBIO

The purpose of the first study on simulated data with biological repli-

cations was to determine the best choice for the parameters and options
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edgeR DESeq baySeq

In common between NOISeq and the other method 9735 9693 9712

Up in BRAIN 3468 3431 3457

Up in UHR 6267 6262 6255

# GO terms (Up in BRAIN) 192 178 190

# GO terms (Up in UHR) 486 481 485

Detected by the other method and not by NOISeq 137 7230 5398

Up in BRAIN 2731 3707 1826

Up in UHR 5406 3517 3572

BRAIN = UHR 0 6 0

# GO terms (Up in BRAIN) 0 0 2

# GO terms (Up in UHR) 0 4 1

Detected by NOISeq and not by the other method 0 42 23

Table 5.2: Comparison of the genes declared as differentially expressed by

NOISeq and by the other methods, including the number of significantly enriched

GO terms for each set of genes.

considered in NOISeqBIO. These optimized options were then used in the

remaining analyses.

In this study, we simulated data from an A. fumigatus sample for 9862

genes, with 5% DEGs and 0% noise. Data were normalized using the TMM

method. A gene was declared as differentially expressed when its probability of

having differential expression was higher than 0.95 which is, as we previously

stated, equivalent to FDR = 0.05 [43].

We compared the performance of the method for datasets with 5 and 10

replicates and simulated 10 different datasets for each number of replicates,

checking the following values for the input parameters:

• Differential expression statistic:

1. Mean of M∗ and D∗ values (stat = 1).

2. Distance of (M∗, D∗) to the origin with the sign of the difference

D∗ (stat = 2).
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• Method to estimate the densities f and f0:

1. Kernel density estimators (dens = 1).

2. Logistic regression using natural splines (dens = 2).

• Value for a0:

1. P50 of the values of the standard deviation of M or D, respectively,

for all the genes (a0 = 0.5).

2. P90 of the values of the standard deviation of M or D, respectively,

for all the genes (a0 = 0.9).

• Number of sample label permutations to generate the noise distribution:

20, 50 and 70.

As shown in Figures 5.11 to 5.14, NOISeqBIO generally performed well

in terms of sensitivity (SE) and FDR for simulated data sets with 5 or 10

replicates. When using the mean of M∗ and D∗ as the differential expression

statistic (stat = 1), we found no big differences for a0 = 0.5 and a0 = 0.9,

although perhaps P90 produced slightly better results. KDE (dens = 1)

improved logistic regression (dens = 2) for density estimation, especially

in the 5-replicate case. In addition, for the KDE option, the number of

permutations does not seem to influence the results.

Therefore, in the following studies we took the mean as the differential

expression statistic, KDE to estimate the densities, and used 50 permutations;

a more thorough analysis was done to choose the most proper value for a0.

A second simulation study was undertaken to assess the performance of

NOISeqBIO in terms of SE and FDR according to the level of noise in the

data (0, 0.2 or 0.4) and the proportion of DEGs (0.01, 0.05,0.10), and also

to determine the best value for a0. We compared the following values of a0:

0, P25, P50, P70, P90 and B, which means that a0 is 100 times the standard

deviation. Again, we simulated data from an A. fumigatus sample and took

a cutoff of 0.95 for the probability of differential expression.
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Figure 5.11: Comparison of different options in NOISeqBIO used on simulated

datasets with 5 replicates. Differential expression statistic was the mean of

(M∗, D∗) values.

When considering 5 or 10 replicates per condition, the method performed

best for lower levels of noise and higher proportions of DEGs, as expected.

SE was close to 1 in most cases and was always higher than 0.8. However,

in general, the FDR drastically rose when there were high levels of noise, and

was more dependent on the value of a0. The best choice for a0 was once

again P90, except in the case of 10 replicates and noise = 0.4, where option

B clearly outperforms the rest (see Figures 5.15-5.20). Thus, we set a0 to
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Figure 5.12: Comparison of different options in NOISeqBIO used on simulated

datasets with 5 replicates. The differential expression statistic was the distance

to the origin of (M∗, D∗) values.

P90 for our subsequent studies.
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Figure 5.13: Comparison of different options in NOISeqBIO used on simulated

datasets with 10 replicates. The differential expression statistic was the mean

of (M∗, D∗) values.
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Figure 5.14: Comparison of different options in NOISeqBIO used on simulated

datasets with 10 replicates. The differential expression statistic was the distance

to the origin of (M∗, D∗) values.
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Figure 5.15: Performance of NOISeqBIO applied on simulated data with 5

replicates according to different levels of noise and a0 values. Percentage of

DEGs is 1%.
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Figure 5.16: Performance of NOISeqBIO applied on simulated data with 5

replicates according to different levels of noise and a0 values. Percentage of

DEGs is 5%.
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Figure 5.17: Performance of NOISeqBIO applied on simulated data with 5

replicates according to different levels of noise and a0 values. Percentage of

DEGs is 10%.
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Figure 5.18: Performance of NOISeqBIO applied on simulated data with 10

replicates according to different levels of noise and a0 values. Percentage of

DEGs is 1%.
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Figure 5.19: Performance of NOISeqBIO applied on simulated data with 10

replicates according to different levels of noise and a0 values. Percentage of

DEGs is 5%.
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Figure 5.20: Performance of NOISeqBIO applied on simulated data with 10

replicates according to different levels of noise and a0 values. Percentage of

DEGs is 10%.
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NOISeqBIO for few replicates

Results derived from the previous simulation studies showed that NOISe-

qBIO behaved very poorly when the number of replicates per condition was

less than 5, no matter which options were chosen, or what parameters were

used (results not shown). This is logical because the algorithm is based on

permuting the sample labels to generate the noise distribution and so few

replicates result in bad estimations of the noise distribution, as occurs in non-

parametric methods based on resampling. Thus, we modified the algorithm

for cases in which the number of replicates was less than 5. When this hap-

pens, genes are clustered according to their expression values and resampling

is done within each cluster, considering gene expression values in the same

cluster and condition as the replicates of that condition (see Section 5.3.2 for

more details).
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Figure 5.21: Performance of NOISeqBIO using simulated data sets with 2, 3,

or 4 replicates. The parameters for the simulations were: propdeg = 0.05 and

noise = 0 or 0.3. Three data sets were generated for each scenario, organism,

and number of replicates.

In this section, we evaluated the performance of NOISeqBIO algorithm

for the case where there are few replicates. We simulated data from real

samples with different number of genes: A. fumigatus, F. oxysporum and H.

sapiens, and studied the effect of the number of replicates on SE and FDR.
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Figure 5.21 shows the expected increase in SE and decrease in FDR when the

number of replicates was increased from 2 to 4.

We also evaluated what the optimum number of clusters (k) was when

applying the k-means algorithm (Figure 5.22). The SE and FDR values were

computed for k = 10, 15 and 20 clusters in different simulated scenarios but

the results were not significantly different for 10 or 15 clusters. SE slightly

improved for 20 clusters but at the cost of also increasing the FDR. Therefore,

we decided to set the number of clusters to k = 15 by default, although users

can vary this parameter. We also used 15 clusters for further comparisons

with NOISeqBIO in this work.
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Figure 5.22: Performance of NOISeqBIO using simulated data sets for different

numbers of clusters. The parameters for the simulations were: propdeg =

0.05, and noise = 0 or 0.3. Three data sets were generated for each scenario,

organism and number of replicates (2, 3 or 4).

Influence of simulation parameters

Whilst still in the preliminary phases of the study, we analyzed the effects

of some simulation parameters on the performance of five differential expres-

sion methods: NOISeq, NOISeqBIO, edgeR, DESeq and SAMseq. These are

the simulation parameters we studied and their values:

• The β parameter, which determines the magnitude of the change in

expression between conditions: β = 5, 6, 7.
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• The proportion of DEGs: 0.01, 0.05 and 0.1.

• Noise, which is the percentage of deviation with regard to the average

expression that is allowed: 0, 20% and 40%.

For each combination of parameter values, 10 datasets were generated

from a sample of A. fumigatus RNA-seq data with 5 replicates per condition

and a sequencing depth of about 30 million reads. We used a significance level

of 0.05 for the methods that returned p-values, and a threshold of q = 0.8 for

NOISeq and q = 0.95 for NOISeqBIO. Note that we included NOISeq in this

preliminary comparison to see if it was outperformed by NOISeqBIO. However,

differential expression probabilities returned by NOISeq are not equivalent to

p-values so in this case we used the recommended cutoff for the differen-

tial expression probability (q = 0.8). We evaluated the performance of the

methods by measuring the SE, the FDR and the MCC.

We observed no influence of the β parameter on the performance of the

methods (see Figure 5.23), so we set β = 6 for further evaluations. However,

the proportion of DEGs, the level of noise, and the method applied all had

strong effects as shown in Figure 5.24, which shows MCC values for noise

= 0.2 and noise = 0.4 (results for noise = 0 are not shown because they

were very similar to noise = 0.2). In addition, we corroborated that the

performance of NOISeqBIO (Bio4 in Figure 5.24) was better than NOISeq on

data with biological replicates.

We also observed that sequencing depth had no influence in the perfor-

mance of the methods, since data are normalized to correct this effect prior

to computing differential expression (data not shown). Therefore, we used a

default value of 30 million reads for further studies. As expected, the num-

ber of replicates had an important effect on the results so we paid special

attention to this parameter in the following comparisons.

5.4.2.2 Comparison on simulated data

For this final comparison of DE methods on data with biological replicates,

we also used the simulation algorithm described in Section 5.2.2.2 to emu-
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Figure 5.23: The effect of the β parameter on the performance of several

methods (NOISeq, NOISeqBIO, edgeR, DESeq, and SAMseq) on datasets sim-

ulated from samples in an A. fumigatus experiment. The parameters for the

simulation were: ngenes = 9862, nrepl = 5 in both conditions, depth = 30

million, noise = 0, 0.2, 0.4, and propdeg = 0.01, 0.05, 0.1.

●
● ●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

noise = 0

DEG proportion

S
E

0.01 0.05 0.1

● Bio4
DESeq
edgeR

NOISeq
SAMseq

●●●

●

●

●

●

●

●

●

●●●
●●

●

●

●

●

●

●

●

●●●
●●

●

●

●
●●

●

●

●●
●
●

●

●

●

●
●●

●

●

●●
●
●

●

●

●

●
●●

●

●

●●

●
●

●

●●

●

●●
●

●

●

●

●
●

●

●●

●

●●
●

●

●

●

●
●

●

●●

● ●
● ●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

noise = 0.2

DEG proportion

S
E

0.01 0.05 0.1

● Bio4
DESeq
edgeR

NOISeq
SAMseq

●
●●
●

●●
●
●

●

●●

●

●

●●
●

●●
●
●

●

●●

●

●

●●
●

●●
●
●
●

●

●
●

●

●●

●
●●
●
●
●

●

●
●

●

●●

●
●●
●
●
●

●

●
●

●

●●●
●●●●●

●
●
●

●

●●●
●●●●●

●
●
●

●

●●●
●●

● ● ●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

noise = 0.4

DEG proportion

S
E

0.01 0.05 0.1

● Bio4
DESeq
edgeR

NOISeq
SAMseq

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●●
●
●
●

●

●
●
●●●
●●●
●
●
●

●

●
●
●●●
●●●
●
●
●

●●
●
●
●●
●
●
●
●●
●
●●
●
●
●●
●
●
●
●●
●
●●
●
●
●●

● ● ●0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

noise = 0

DEG proportion

F
D

R

0.01 0.05 0.1

● Bio4
DESeq
edgeR

NOISeq
SAMseq

●●●●
●
●●●●●●●●●●●
●
●●●●●●●●●●●
●
● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ● ● ●0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

noise = 0.2

DEG proportion

F
D

R

0.01 0.05 0.1

● Bio4
DESeq
edgeR

NOISeq
SAMseq

●●●●●●●●
●
●●●●●●●●●●●
●
●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

noise = 0.4

DEG proportion

F
D

R

0.01 0.05 0.1

● Bio4
DESeq
edgeR

NOISeq
SAMseq

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●●●●
●
●
●●
●
●
●

●

●●●●
●
●
●●
●
●
●

●

●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●

●
● ●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

noise = 0

DEG proportion

M
C

C

0.01 0.05 0.1

● Bio4
DESeq
edgeR

NOISeq
SAMseq

●●●
●

●

●
●

●
●

●

●●●
●●
●

●

●
●

●
●

●

●●●
●●
●

●

● ●●
●
●
●●
●
●
●

●
●
●●
●
●
●
●●
●
●
●

●
●
●●
●
●
●
●●

●●
●

●●

●
●●●

●
●
●

●●
●

●●

●
●●●

●
●
●

●●
●

●●

● ● ● ●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

noise = 0.2

DEG proportion

M
C

C

0.01 0.05 0.1

● Bio4
DESeq
edgeR

NOISeq
SAMseq

●
●●
●
●●
●
●

●

●●

●

●
●●
●
●●
●
●

●

●●

●

●
●●
●
●●

●
●●

●
●●
●
●●
●●●●●●

●
●●
●
●●
●●●●●●

●
●●

●
●●●●●
●●●
●
●●
●
●●●●●
●●●
●
●●
●
●●●●●

●

● ●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

noise = 0.4

DEG proportion

M
C

C

0.01 0.05 0.1

● Bio4
DESeq
edgeR

NOISeq
SAMseq

●
●

●

●

●

●

●
●

●

●●
●

●●

●

●

●

●

●
●

●

●●
●

●●

●

●

●

●

●●
●
●●●
●●
●
●●
●
●●
●
●●●
●●
●
●●
●
●●
●
●●●

●●●
●
●●●●●●●
●●●●
●
●●●●●●●
●●●●
●
●●

Figure 5.24: Performance measured by MCC of several methods when applied

to datasets simulated from samples in an A. fumigatus experiment. The param-

eters for the simulation were: ngenes = 9862, nrepl = 5 in both conditions,

depth = 30 million. Data were normalized with the TMM method.

late different biological scenarios of high and low variability. The values of

the simulation parameters were defined according to the results from studies

described in the previous section:

• Organism: The data were simulated from either FO or HS experi-
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mental samples, giving rise to data with different numbers of genes

(ngenes) and initial count distributions (µ0).

• Noise: We considered no noise (0) and 20% noise (0.2).

• Replicates: The number of replicates per condition is decisive for the

performance of statistical methods. We considered data with few repli-

cates (2 or 3 replicates), which are still quite common in RNA-seq

experiments, and data with 5 and 10 replicates.

• DEG: The percentage of differentially expressed genes was set to either

5% or 10%.

We generated 10 datasets per each combination of these parameter values,

resulting in a total number of 320 simulated datasets for each scenario of

biological variability (high and low). To assess the performance of the methods

being compared when setting a given adjusted p-value cutoff (e.g. 0.05), we

computed the SE, FDR and MCC.

Figures 5.25 and 5.26 considered all simulated scenarios with high bio-

logical variability and showed that SE is, in general, higher than 90% for

all methods, except for SAMseq. This method fails to detect any DEGs on

low replication experiments (2-3 replicates per condition) (Figure 5.25), al-

though it tends to improve for higher numbers of replicates. Differences in

performance for the other three methods can be observed in the boxplots but

were also analyzed by an ANOVA model with repeated measures for each of

the three indicators (SE, FDR and MCC) on results excluding the SAMseq

method. Tukey post-hoc tests revealed that NOISeqBIO significantly outper-

forms the other two methods in terms of FDR, except in the 2 replicates case,

where no significant differences compared to edgeR were observed. In con-

trast, parametric methods (edgeR and DESeq2) have significantly higher SE

than NOISeqBIO (except for data with 10 replicates), and generally produced

an SE of higher than 90% for all three methods. However, this higher SE for

the low-replicate case comes at the expense of increasing the FDR, which was
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higher than 5% in all cases. The SE was close to 100% in high replication

experiments for all methods, but the FDR for parametric methods was sur-

prisingly high in many cases, especially in scenarios with a high technical noise

level (Figures 5.27 to 5.30). Thus, the MCC results lead us to conclude that

for 2 replicates, the performance of NOISeq falls between edgeR and DESeq2

and, for 3 replicates, there was no difference in MCC between NOISeqBIO

and edgeR, which both outperformed DESeq2. Finally, for highly-replicated

experiments, NOISeqBIO performed significantly better than the other two

methods in terms of MCC.

When evaluating the results from the DE methods in more depth in differ-

ent biological scenarios of high variability (Figures 5.27 to 5.30), we observed

that the performance of the methods is very similar for different organisms

(with a different number of genes) and for different proportions of DEGs.

Again, all methods except SAMseq presented good results in terms of SE,

FDR and MCC when applied to non-noisy data (Figures 5.27 and 5.29).

However, when considering the more realistic scenario of a noise level of 0.2

(Figures 5.28 and 5.30), bigger differences were found between the methods

and it is in this scenario that NOISeqBIO best controlled FDR compared to

the other methods.

When analyzing the scenarios of low biological variability (Figures 5.31

and 5.32) we observed that NOISeqBIO performance on data with 5 and 10

replicates was again better than for the other methods, especially in terms

of FDR. For the 3 replicates case, NOISeqBIO FDR increases with regard

to the high variability scenario but is still lower than for the other methods.

However, when only 2 replicates are available, NOISeqBIO FDR is higher

than for edgeR but again lower than for DESeq2. SAMseq fails to detect

any DEG in data with two replicates but performs better with three replicates

when compared to high variability scenarios. If MCC results are analyzed,

NOISeqBIO outperforms the rest of the methods in all cases except the 2

replicate case, where edgeR is the best option.
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Figure 5.25: HIGH biological variability scenario. SE, FDR, and MCC of dif-

ferential expression methods for data with a low number of replicates using an

adjusted p-value cutoff of 0.05 (equivalent to a probability of 0.95 for NOISe-

qBIO). This cutoff corresponds to the red horizontal line in FDR plots. Results

for all simulation parameter values were aggregated.
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Figure 5.26: HIGH biological variability scenario. SE, FDR, and MCC of dif-

ferential expression methods for data with a high number of replicates using an

adjusted p-value cutoff of 0.05 (equivalent to a probability of 0.95 for NOISe-

qBIO). This cutoff corresponds to the red horizontal line in FDR plots. Results

for all simulation parameter values were aggregated.
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Figure 5.27: Performance of differential expression methods on data simulated

from F. oxysporum data with noise = 0, and a FDR cutoff of 0.05 for all

methods.
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Figure 5.28: Performance of differential expression methods on data simulated

from F. oxysporum data with noise = 0.2, and a FDR cutoff of 0.05 for all

methods.
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Figure 5.29: Performance of differential expression methods on data simulated

from prostate cancer data with noise = 0, and a FDR cutoff of 0.05 for all

methods.
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Figure 5.30: Performance of differential expression methods on data simulated

from prostate cancer data with noise = 0.2, and a FDR cutoff of 0.05 for all

methods.
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Figure 5.31: LOW biological variability scenario. SE, FDR, and MCC of dif-

ferential expression methods for data with a low number of replicates using an

adjusted p-value cutoff of 0.05 (equivalent to a probability of 0.95 for NOISe-

qBIO). This cutoff corresponds to the red horizontal line in FDR plots. Results

for all simulation parameter values were aggregated.
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Figure 5.32: LOW biological variability scenario. SE, FDR, and MCC of dif-

ferential expression methods for data with a high number of replicates using an

adjusted p-value cutoff of 0.05 (equivalent to a probability of 0.95 for NOISe-

qBIO). This cutoff corresponds to the red horizontal line in FDR plots. Results

for all simulation parameter values were aggregated.
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5.4.2.3 Results on experimental datasets

Finally, we computed differential expression on FO and HS experimental

datasets taking a cutoff of 0.05 for adjusted p-values, or equivalently, a prob-

ability cutoff of 0.95 for NOISeqBIO. The results are summarized in Figure

5.33.
FO_HS_2

Page 8

# genes CV (%) % DE genes (over total)

Data # replicates total after filter median DESeq2

FO 2 18066 10125 21.2% 31.5% 26.5% 24.5% 39.0%

HS 12 – 11 59573 17207 39.5% 2.9% 6.7% 7.4% 9.6%

NOISeqBIO edgeR SAMseq

Figure 5.33: Characteristics of FO and HS data sets regarding number of

replicates, number of genes, coefficient of variation and %DEG.

Results for the FO dataset (Figure 5.34), which has 2 replicates per condi-

tion, indicated that the number of DEGs was very high for all methods (from

25% DEG in DESeq2 to 39% in SAMseq), especially for non-parametric ap-

proaches (NOISeqBIO and SAMseq). According to the coefficient of variation,

this data set could be considered to belong to a high variability scenario so it

seems that it is confirmed that NOISeqBIO may be returning a high number

of false positives. However, NOISeqBIO results were more similar to edgeR or

DESeq2 results than SAMseq results. When considering an experiment with

more replication such as HS data with 11 and 12 replicates per condition

(Figure 5.35), the results change considerably and the proportion of DEGs

varies from 3% (NOISeqBIO) to nearly 10% (SAMseq).

Spearman’s correlation coefficient between FDR values obtained from all

the methods (Figures 5.36 and 5.37) was generally higher than 0.95, showing

a good agreement on the gene ranking between methods. The only exception

was SAMseq that presented a correlation with the rest of the methods of

around 0.6 in FO data, and from 0.85 to 0.91 in HS data, again highlighting

the effect of the number of replicates on its performance. Figures 5.36 and

5.37 also show the number of DEGs in common between each pair of methods.

GOseq [152] functional enrichment analysis was performed on each set of

DEGs from the prostate cancer data to try to determine which DE method
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Figure 5.34: Differential expression results from methods compared applied to

F. oxysporum data. The differentially expressed genes declared by each method

are displayed in color.

resulted in a more biologically meaningful set of DEG genes, i.e. to unveil if

the DEGs that were not in common contributed to generating better func-

tional characterization of the results from any of the methods. However, this

analysis revealed no major functional differences between the DE results for

the methods compared (results not shown). In all cases, the enriched Gene

Ontology terms included functions related to cancer or to prostate.
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Figure 5.35: Differential expression results from methods compared applied

to human prostate data. The differentially expressed genes declared by each

method are displayed in color.
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Figure 5.36: Differential expression results from FO data. The diagonal con-

tains the number of DEGs for each method. Above the diagonal the number

of DEGs in common for each pair of methods is shown. Below the diagonal

Spearman’s rank correlation coefficient between FDR or 1-probability for each

pair of methods is shown.
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Figure 5.37: Differential expression results from HS data. The diagonal con-

tains the number of DEGs for each method. Above the diagonal the number

of DEGs in common for each pair of methods is shown. Below the diagonal

Spearman’s rank correlation coefficient between FDR or 1-probability for each

pair of methods is shown.
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5.5 Discussion

Differential expression analysis is widely used in transcriptomics to identify

changes in gene expression. The genes that are differentially expressed under

a given experimental condition may be responsible for the change in the

phenotype and therefore are candidates for experimental validation or as the

basis for proposing new hypotheses.

With the arrival of RNA-seq technology, researchers in bioinformatics re-

alized that the statistical methods previously used for microarrays were no

longer valid because of the different nature of the measurements: discrete

values (read counts), in contrast to continuous values from microarrays (in-

tensities). Many DE methods have been developed since then, and most

of them are based on parametric assumptions [107]. Parametric methods

are said to have more power and robustness than non-parametric methods,

however, there are some drawbacks that must be taken into account. First,

researchers should check that the parametric assumptions are fulfilled, al-

though it is neither easy nor common to find this kind of verifications in

bioinformatics because of the huge number of models derived. Thus, in some

cases parametric methods could be unsuitable and using them could generate

a false positive rate higher than expected [79]. Second, parametric methods

need raw counts to be provided since they are based on discrete distributions

such as the Poisson or Negative Binomial. However, sometimes the available

data have already been normalized by the expression quantification software

(e.g. FPKM values coming from Cufflinks [144]) and so raw read counts

are not available. Other times the application of transformations to remove

technical biases or batch effects may be necessary. In these circumstances,

the distributional assumptions may not hold. Hence, the scientific commu-

nity would benefit from having appropriate non-parametric alternatives for

differential expression.

In this chapter, we presented two non-parametric differential expression

approaches included in the NOISeq R Bioconductor package: NOISeq and
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NOISeqBIO. NOISeq [141] was optimized for experiments with technical repli-

cates or without replication at all: the characteristics of the datasets available

at the dawn of the technology. NOISeqBIO is a new non-parametric empir-

ical Bayesian method for use with biological replicates, which are now more

common in RNA-seq experiments because of the decreasing cost of the tech-

nology, and it has been developed by joining the ideas from our previous work

and from that of Efron et al. [43].

NOISeq was compared to several RNA-seq differential expression methods:

edgeR, DESeq, baySeq, DEGseq and the traditional FET on data with tech-

nical replications. All but FET are parametric approaches. NOISeq creates

an empirical distribution of count changes (which is adapted to the available

data) from which the probability of differential expression for each feature can

be derived. In this non-parametric approach, differential expression does not

rely on individual transcript measurements, but rather on the joint distribution

of (M,D) values for all the features within the dataset.

Comparison of these methods on synthetic data showed that DEGseq-

MARS, DEGseq-LRT, FET and baySeq-Poisson performed worse than the

other methods. Therefore, we discarded all these methods except FET (be-

cause of its extended use) for further study on experimental data. Although

it has been claimed that the Poisson distribution is adequate for technical

replication [18, 92, 107], these results seem to highlight that the Negative

Binomial distribution may also be more suitable with technical replicates.

The experimental data we chose for the evaluation of the selected methods

on data with technical replicates (MAQC and Griffith’s) also included RT-PCR

measurements that could be used as a gold-standard to assess if the DEGs

identified by each method were correct. On MAQC data, both the Precision-

Recall curves and especially the FDR curves showed that NOISeq performed

much better than the parametric methods. FET presented a good FDR but a

poorer PRC. Griffith’s data, although more limited, confirmed these findings.

We studied the effect of the number of technical replicates (lanes) on

the number of differentially expressed genes, their length, fold-change value,
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and expression level. The pattern produced by NOISeq and FET was more

constant across the different variables analyzed, whereas the other three meth-

ods showed a pronounced dependence. The parametric approaches strongly

increased the number of significant calls as more sequencing output was in-

cluded, resulting in a considerable number of false positives (Fig. 5.10). The

newly detected genes were shorter, had a lower relative expression, and had

smaller fold-change differences than those obtained with less data. False

positive genes identified in the analysis of the MAQC data had similar char-

acteristics, suggesting that large library-size datasets analyzed by these para-

metric approaches incorporate many falsely called significant genes and/or

with small fold-change differences at the low expression range. The constant

pattern of FET was intrinsically due to a low detection power that identified

only highly expressed transcripts. However, NOISeq showed more robustness

against these sequencing depth biases while maintaining a high true positive

detection rate. We believe that, given the number of lanes sequenced and

the specific characteristics of the data analyzed, this approach creates a more

realistic estimation of the probability that a given count difference will occur

by chance, and also results in the stable control of false positives. The para-

metric approaches compared do not have this flexibility and tend to render

significant small fold-changes as sequencing numbers grow. With regard to

the two variants of NOISeq, overall NOISeq-sim and NOISeq-real performed

similarly throughout the whole study, although a slightly higher detection

rate and dependency on the sequencing depth was observed with NOISeq-

sim, and these differences were more pronounced with Griffith’s data. These

results indicate that the simulation procedure of NOISeq-sim works well to

replace technical replicates but may tend to overestimate DEG in data with

high variability among replicates.

Regarding differential expression in data with biological replicates, we car-

ried out several studies to assess the performance of the new non-parametric

method NOISeqBIO, by comparing it to some of the most widely used differen-

tial expression methods such as edgeR [123] and DESeq2 [4] on both simulated



5.5 Discussion 167

and experimental data. Since NOISeqBIO is a non-parametric method, we

also included the non-parametric method SAMseq [82] in these comparisons.

Preliminary studies on simulated data helped us to determine the best

variant of NOISeqBIO; this was computation of the differential expression

statistic Z as the mean of M and D, taking the 90th percentile of gene

standard deviations for the constant a0 for the variability correction, and using

the KDE to estimate densities f and f0. Since NOISeqBIO clusters genes with

similar expression levels when the number of replicates is lower than 5, we

also evaluated the effect of the number of clusters in these preliminary studies,

finally deciding to leave it to the user’s choice, although we chose 15 clusters

as the default option. The preliminary studies also served to analyze the

influence of the parameters which define the biological scenarios to simulate:

the number of replicates per condition, the noise level, and the proportion of

DEGs had the strongest effects on the performance of the methods, so a set of

scenarios for the final comparison were defined according to this information.

The final simulation study showed the superiority of NOISeqBIO in con-

trolling the FDR while maintaining a sensitivity rate above 90% in most cases,

except for the 2-replicate case in low biological variability scenarios. We ob-

served the dependence of the comparison results on the number of available

biological replicates and, interestingly, we observed that parametric methods

tend to present a higher FDR as the number of replicates increases, especially

for noisy data. SAMseq failed to detect DEGs for low replication number data

and presented a high FDR for high replication number cases.

Results from experimental datasets indicated that for data with few repli-

cates (FO) all the methods tend to declare a high number of genes as differ-

entially expressed, including SAMseq. In contrast, the proportion of detected

DEGs was lower for data with many replicates (HS), which shows the need to

increase the number of replicates to efficiently control the FDR. Correlation

of p-values was higher than 0.95 for all the methods except SAMseq. The

functional enrichment analysis rendered biologically meaningful results for all

methods.
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As RNA-seq technology becomes more affordable, experiments with a

higher number of replicates are expected and so DE methods which efficiently

deal with FDR whilst maintaining high sensitivity rates, will be needed. Hence,

NOISeqBIO perfectly fulfills these requirements. Although it has been re-

ported that non-parametric methods tend to require a higher number of repli-

cates to perform well, as we observed for SAMseq, NOISeqBIO performed

generally well with a small number of replicates while retaining the advantage

of not being based on distributional assumptions.

Therefore, in conclusion, we have proven here that we have successfully

designed two non-parametric differential expression methods (NOISeq and

NOISeqBIO) for pairwise comparisons that are a good alternative to popular

parametric approaches.



Chapter 6

General discussion and

Conclusions
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6.1 General discussion

This thesis mainly focuses on the analysis of gene expression data. Specifically,

the aim was to propose methodologies for variable selection i.e. to identify

genes whose expression significantly changes among different experimental

conditions.

Variable selection in transcriptomics is complicated for several reasons. On

the one hand, the high dimensionality of the data (many variables versus few

observations) drastically diminishes the power of statistical methods because

of the small sample size and the multiple testing correction when using univari-

ate approaches. On the other hand, data are noisy. It is not always possible to

identify the noise source and not all variables are equally noisy (for instance,

low-expression genes tend to be more noisy). The variable selection problem is

equivalent in this context to the identification of differentially expressed genes,

or genes whose change is biologically relevant and the two considerations are

not always equivalent. For example, small expression changes may be statis-

tically significant but have little biological impact. However, the effectiveness

of methods is frequently evaluated in terms of biological meaning. Univariate

statistics can capture the specifics of the behavior of each gene, although

they are strongly penalized when applying multiple testing corrections. On

the contrary, multivariate or Bayesian approaches may be more robust against

these problems but fail to identify changing genes with particular behaviors.

The technologies for measuring gene expression are constantly evolving and

statistical methods have to evolve to fit these new data structures. Moreover,

these new transcriptomics technologies give rise to novel analysis scenarios or

novel types of biases so methods need to be revisited and adapted to broader

sets of scenarios. The fact that transcriptome analysis is mostly performed by

biologists and scientists with a limited statistical background requires that any

methods proposed should be easy to adopt and apply by these users, implying

that not only methods but also accessible tools should be developed.

In this thesis we have addressed data analysis problems that were relevant

to the state of the art technologies in transcriptomics statistical analysis at
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the time. We developed variable selection methods for complex microarray

experimental designs where solutions were still limited. For this purpose, we

opted for a solution that uses multivariate dimension reduction statistics with

the assumption that this would be an efficient approach to treating data that

contains both many variables and multiple conditions (Chapter 3). Subse-

quently, and as the RNA-seq technology became a reality, we investigated

suitable differential expression methods for analyzing count data (Chapter 5).

Although these two approaches may appear to have distinct target technolo-

gies, the methods or principles they use could actually be extended to each

other or to other analysis scenarios. For example, the minAS method (Chap-

ter 3), which was initially developed for using the SPE and leverage statistics

of an ASCA analysis on multifactorial data, was also a very useful strategy

for variable selection coupled to other multivariate methods. In the case of

N-way statistics, minAS effectively selected both genes and metabolites from

multivariate datasets that were modeled as three-dimensional data structures.

In the pathway network approach, where PCA is used to reduce pathway-level

gene expression data matrices to indexed pathway activities, minAS was able

to identify the most relevant (or “driving”) genes associated with each path-

way. Arguably, these methods based on dimension reduction could also be

applied to highly transformed RNA-seq data. In fact, when RNA-seq data un-

dergo extensive normalization and data transformation pre-processing steps

(such as RPKM and TMM normalization, GC bias correction, and eventually

removal of batch effects), the resulting dataset may have lost the properties

of count data and be amenable to treatment with methods normally used for

continuous data. We have observed this situation in the analysis of RNA-

seq data from the STATegra project (not shown in this work), where ASCA

and linear models were applied after several rounds of data pre-processing

(including log-transformation). On the other hand, modeling noise in gene

expression data using the M and D statistics (Chapter 5) does not specifically

require that values are discrete and hence could be applicable to other types

of genome wide gene expression measurements.
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One of the assumptions of both the minAS and the NOISeqBIO methods is

that transcriptomic changes can be modeled as a mixture of two distributions:

one corresponding to the genes that do not change their expression between

conditions and another to the genes whose expression does change. This

implies a kind of on/off situation for gene expression which is biologically jus-

tified because of how the transcriptional machinery functions. In practice, the

detection of gene expression signals is buffered by post-transcriptional regula-

tion, the broad-magnitude range of gene expression, and the noise produced

by transcriptomics technologies, which may mask the bimodal distribution.

However, we have found that in many cases bimodal modeling does return

meaningful breakpoint thresholds (as in minAS) or results in gene selection

with high accuracy (as in NOISeqBIO) which supports the general validity of

the bimodal assumption.

Another relevant aspect of this thesis is the choice of non-parametric

statistics to analyze gene expression data. Both the minAS and the NOISeq

methods are data-driven and do not rely on theoretical distributions imposed

on the data. While parametric methods can be powerful for modeling data

when the number of observations is limited, they may introduce data analysis

inaccuracies if the model assumptions are not fulfilled. This may frequently

be the case in transcriptomics, as the technologies that generate the data do

not always follow uniform or constant error rates. Conversely, non-parametric

methods may fail to identify significant changes when data is insufficient. We

have seen that the non-parametric approaches implemented in the NOISeq

package work well in terms of sensitivity and, importantly, in controlling false

discovery rates better than its parametric counterparts. Good control of the

false positives is particularly relevant in transcriptome studies due to the large

number of variables present in the datasets and the need to reliably identify

biomarkers associated with the phenotype. Alternatively, parametric methods

might be a better choice when small changes need to be detected or false

calls are not as relevant, for example, when additional filtering or validation

steps are applied to the data.
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Finally, one of the most-important lessons learned while producing the

body of work presented in this thesis was the importance of a good under-

standing of the nature of the data, and of the potential biases of the measuring

technologies, to produce quality analysis. While data pre-processing tends to

be considered a minor or prolegomenon statistical task, the reality is that pre-

processing takes most of the data analysis time and that it greatly influences

the inferential results. One important aspect here is to first identify any po-

tential biases of the technology, second to know how to assess the magnitude

of the biases in the data, and third to have tools that can, at least partially,

correct them. In this thesis, we devoted a lot of effort to developing diagnostic

plots and quality improvement procedures for RNA-seq data. These proce-

dures are now implemented in two bioinformatics resources (Qualimap [49]

and NOISeq Bioconductor R package) to make them widely accessible to the

transcriptome research community. We believe that, as quality control pro-

tocols become more generalized and easy-to-use analysis tools become more

available, the overall quality of transcriptome research will greatly improve.
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6.2 Conclusions

The conclusions of this thesis are summarized and organized in the following

text according to the goals defined in Chapter 2.

1) To develop variable selection strategies for multivariate methods

applied to microarray data.

• We proposed new variable selection methods (minAS or Gamma)

or variations of existing ones (permutation approaches) for mul-

tifactorial gene expression data and compared them to existing

methods (Box or Jackson & Mudholkar).

• The methodologies presented are all based on studying the proba-

bility distribution of a statistic which measures the importance of

the variables in the model so the selection is data-adaptive.

• We tested the performance of variable selection strategies on sim-

ulated multi-factorial expression data and checked that they gen-

erally work well in different scenarios which were defined by the

dataset size, the diversity of gene expression signals and the levels

of noise. The best strategies were Jackson & Mudholkar, minAS

and Gamma.

• These three selection strategies were applied to experimental data

to identify the genes responsible for human stem cell differentia-

tion under different oxygen concentration conditions, and relevant

biological conclusions were obtained in all cases.

• The major differences in gene selection and functional enrichment

were because of the method chosen for the SPE statistic, while

leverage seemed to be more robust for the statistical model ap-

plied.

• These strategies have been successfully applied in cases where

other multivariate techniques and “importance” statistics were
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used. They are also implemented in SEA, which is a web tool

for analyzing time-series gene expression data.

2) To generate tools to control the quality of count data from se-

quencing experiments in order to discover potential biases and to

propose procedures to mitigate their effect.

• A whole set of useful graphical and diagnostic tools was designed

to assess the quality of the RNA-seq count data prior to statistical

analysis, and the functionality of each plot was illustrated by using

experimental data.

• We provided a statistical assessment of several typical RNA-seq

biases and offered appropriate normalization tools to correct them.

• All these tools were included in an open Bioconductor R package

called NOISeq, which also offers the possibility of generating a

Quality Control Report PDF to facilitate data exploration to the

users. Some of the plots are also available in the Qualimap web

tool.

3) To develop differential expression methodologies for RNA-seq

data.

• We presented the NOISeq differential expression method for ap-

plication on RNA-seq data with technical replicates or without

replicates. NOISeq was compared to several differential expres-

sion methods: edgeR, DESeq, baySeq, DEGseq and Fisher’s exact

test. It performed well on both simulated and experimental data

and was more robust against the number of technical replicates.

• The NOISeqBIO method was adapted from NOISeq for data with

biological replicates following an empirical Bayes approach. NOISe-

qBIO was successfully compared to edgeR, DESeq2 and SAMseq

when applied on both simulated and experimental data.
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• The non-parametric NOISeq and NOISeqBIO approaches were

able to control the False Discovery Rate well when compared to

parametric or other non-parametric methods.

• Both methods have been implemented in the NOISeq Bioconduc-

tor R package.

6.3 Reach and relevance

The relevance of this thesis is justified in the following points:

• This thesis was developed within the framework of three international

research projects (TRANSPAT, Genomics and transcriptomics of detox-

ification pathways in Drosophila and STATegra) and therefore the meth-

ods developed were used to analyze the data generated by these projects,

which has contributed to the dissemination of the results of the thesis.

• The methodologies described here have been implemented as software

tools which are freely available to the scientific community: the SEA

web tool, the Qualimap suite, and the Bioconductor R package, in order

to facilitate their use. The NOISeq method has also been implemented

as an analysis option by third party software such as RNASeqGUI [126].

• This work was developed not only to generate efficient statistical meth-

ods but also with the final users of these tools (mainly biologists) in

mind. This fact is reflected in the type of journals where we have pub-

lished our research. We intend our tools to be used by as many people

as possible and considering that the number of users is proportional to

the number of citations, we are satisfied with the impact of our work (for

instance our NOISeq paper [141] had 194 citations in Google Scholar

by October 4, 2014).
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• The usefulness of these methodologies has been demonstrated to the

end users at more than ten international courses.

6.4 Future research lines

Our current and future lines of research are defined by the STATegra European

project which we are currently working on. The goal of this project is to

develop appropriate and accurate statistical procedures to integrate multiple

omics data (which have been measured on the same biological system) in order

to gain knowledge on this system. Specifically, we are tackling the analysis

of several sequencing technologies such as RNA-seq, miRNA-seq, DNase-seq,

ChIP-seq, and Methyl-seq as well as both proteomic and metabolomic data.

Efficiently integrating this variety of omics data is still a challenge and the

solutions may lie in finding the answers to each one of the following critical

points:

• Experimental design: We will study how to determine the sequencing

depth and/or the optimal number of biological replicates for each data

type, taking into account the number of biological features (genes,

genomic regions, etc.) and the intrinsic technical noise of each data

type.

• Data pre-processing: It is essential to detect and correct unwanted ef-

fects in the data such as technical biases, contamination, batch effects,

etc. in order to obtain meaningful results from posterior analysis and to

increase the power of statistical methods by reducing noise. Therefore,

we will set up efficient pre-processing procedures. We will also identify

the best approach to impute missing values.

• Variable selection: Due to the huge number of biological features that

are measured in most of the data types mentioned above, we believe

that integration strategies will benefit from previously selecting the most

relevant variables for each data type. In this sense, we are adapting some
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approaches such as pair-wise linear models (between two data types)

or machine learning methods (e.g. decision trees) and using existing

methods such as NOISeq or maSigPro.

• Integration approaches: We will apply structural equation models to

infer the connections among the different omics features from all data

types and available biological information.

• Results validation: We aim to experimentally validate some of the re-

sults generated from the statistical analysis.

• Implementation of visualization methods and user-friendly tools: Soft-

ware will be developed that allows statistical results to be visualized so

that they can be easily understood from a biological point of view. Sta-

tistical methods will also be implemented in a Bioconductor R package

and in user-friendly commercial software.





Appendix:

Quality Control Report





Quality Control of Expression Data

Generated by NOISeq on 21 Jan 2014, 18:43:47

Content

Plot Description

Biotype detection Number of genes per biotype in the genome, and detected (counts > 0) in the sample/condition.

Biotype expression Distribution of gene counts per million per biotype in sample/condition (only genes with counts > 0).

Saturation Number of detected genes (counts > 0) per sample across different sequencing depths

Expression boxplot Distribution of gene counts per million (all biotypes) in each sample/condition

Expression barplot Percentage of genes with >0, >1, >2, >5 or >10 counts per million in each sample/condition.

Length bias Mean gene expression per each length bin. Fitted curve and diagnostic test.

GC content bias Mean gene expression per each GC content bin. Fitted curve and diagnostic test.

RNA composition bias Density plots of log fold changes (M) between pairs of samples.

Confidence intervals for the median of M values.
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Sequencing depth & Expression quantification
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Sequencing bias detection

Diagnostic plot for feature length bias

FAILED. At least one of the model p−values was lower than 0.05 and R2 > 70%.

Normalization for correcting length bias is recommended.
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WARNING. At least one of the model p−values was lower than 0.05, but R2 < 70% for at least one condition.

Normalization for correcting GC content bias could be advisable.
Plese check in the plots below the strength of the relationship between GC content and expression.
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Diagnostic plot for differences in RNA composition

FAILED. There is a pair of samples with significantly different RNA composition

Normalization for correcting this bias is required.
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Jaffrézic, F. (2012). A comprehensive evaluation of normalization methods for Illumina

high-throughput RNA sequencing data analysis. Briefings in Bioinformatics. 77, 93



192 REFERENCES

[39] Dudoit, S., Shaffer, J.P. & Boldrick, J.C. (2003). Multiple hypothesis testing in mi-

croarray experiments. Statistical Science, 71–103. 16
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