# CONTENTS

Abstract xi  
Resumen xiii  
Resum xv  

1 INTRODUCTION 1  
1.1 Microwave Filters and Multiplexers 2  
1.2 Circular-Waveguide Dual-Mode Filters 2  
1.2.1 Physical Structure and Operation 2  
1.2.2 Design of Circular-Waveguide Dual-Mode Filters: State of the Art 3  
1.3 Waveguide Manifold-Coupled Multiplexers 4  
1.3.1 Physical Structure and Operation 5  
1.3.2 Design of Waveguide Manifold-Coupled Multiplexers: State of the Art 6  
1.4 Thesis Outline 7  

References 9  

i
## 2 DESIGN OF CIRCULAR-WAVEGUIDE DUAL-MODE FILTERS USING DISTRIBUTED MODELS

### 2.1 Background

### 2.2 Synthesis of the Lumped Model

### 2.3 Synthesis of the Distributed Model

#### 2.3.1 Modeling the Transmission Lines

#### 2.3.2 Simplification of the Model

### 2.4 Determination of the Physical Dimensions

#### 2.4.1 Iris Dimensions

#### 2.4.2 Dimensions of Cavities and Screws

### 2.5 Design of Dual-Mode Filters of Other Orders

#### 2.5.1 Five-Pole Filters

#### 2.5.2 Six-Pole Filters

#### 2.5.3 Eight-Pole Filters with Symmetric Structure

#### 2.5.4 Eight-Pole Filters with Asymmetric Structure

#### 2.5.5 Ten-Pole Filters

#### 2.5.6 Twelve-Pole Filters with Symmetric Structure

#### 2.5.7 Twelve-Pole Filters with Asymmetric Structure

### 2.6 Reconfiguration of the Folded Coupling Matrix

#### 2.6.1 Folded Form of the Coupling Matrix

#### 2.6.2 Rotations of the Coupling Matrix

#### 2.6.3 The Even-Mode Coupling Matrices

#### 2.6.4 CM Reconfiguration for Six-Pole Filters

#### 2.6.5 CM Reconfiguration for Symmetric Eight-Pole Filters

#### 2.6.6 CM Reconfiguration for Asymmetric Eight-Pole Filters

#### 2.6.7 CM Reconfiguration for Ten-Pole Filters

#### 2.6.8 CM Reconfiguration for Symmetric Twelve-Pole Filters

#### 2.6.9 CM Reconfiguration for Asymmetric Twelve-Pole Filters

### 2.7 Design Examples

#### 2.7.1 Four-Pole Filter

#### 2.7.2 Symmetric Eight-Pole Filter

### References

## 3 CORRECTION OF MANUFACTURING DEVIATIONS IN CWDM FILTERS WITHOUT TUNING SCREWS

### 3.1 Background

### 3.2 Manufactured Prototype

### 3.3 Space Mapping Technique
3.3.1 Fine and Coarse Models
3.3.2 Space Mapping Parameters
3.3.3 Formulation
3.4 Correction Process
3.5 Results
3.6 Practical Considerations
  3.6.1 Minimum Penetrations in the Insertion Pieces
  3.6.2 Alignment Pins
  3.6.3 Manufacturing Tolerances in the SM Pieces
  3.6.4 Correction Capability of the Insertion Pieces
References
73

4 DESIGN OF MANIFOLD MULTIPLEXERS WITH CWDM FILTERS USING DISTRIBUTED MODELS
4.1 Background
4.2 Synthesis of the Lumped Model
  4.2.1 Lumped Model of the Individual Filters
  4.2.2 Multiplexer with the Lumped Model of the Filters
4.3 Synthesis of the Distributed Model
4.4 Extraction of the Physical Dimensions
  4.4.1 Individual Filters
  4.4.2 Manifold Waveguide Sections and Stubs
  4.4.3 Complete Multiplexer
4.5 Design Examples
  4.5.1 Non-Contiguous Channel Multiplexer
  4.5.2 Contiguous Channel Multiplexer
References
101

5 DESIGN OF A WIDEBAND MANIFOLD MULTIPLEXER WITH RECTANGULAR WAVEGUIDE FILTERS
5.1 Background
5.2 General Description
5.3 Design Specifications
  5.3.1 Frequency Specifications
  5.3.2 Power and Attenuation Specifications
5.4 Configuration of the Multiplexer and the Channel Filters
5.5 Design Procedure
  5.5.1 Design of the Low-Order EM Model