

Escola Tècnica Superior d’Enginyeria Informàtica

Universitat Politècnica de València

Input-Output Kernel Regression applied to

protein-protein interaction network

inference

Trabajo Fin de Grado

Grado en Ingeniería Informática

Autor: Carlos Maycas Nadal

Tutores: Jana Kludas y Óscar Pastor López

2013/2014

Input-Output Kernel Regression applied to protein-protein interaction network inference

2

Input-Output Kernel Regression applied to protein-protein interaction network inference

3

Resumen
El estudio de las redes de interacción de proteínas ha recibido una gran atención por

parte de la comunidad investigadora en los últimos años. Sin embargo, los estudios

experimentales para la reconstrucción de este tipo de estructures son caros.

Consecuentemente, varios métodos de aprendizaje automático para inferir redes de

interacción de proteínas han sido desarrollados. En este trabajo presento la

implementación y el análisis del Input-Output Kernel Regression (IOKR) desarrollado

por [9, 10] para llevar a cabo la inferencia utilizando varios conjuntos de datos

experimentales. IORK está basado en el aprendizaje de un kernel de salida que nos

permita aplicar modelos de regresión en un espacio de características donde podemos

calcular la similitud de pares de proteínas para inferir la existencia de interacción.

Además, esta aproximación extiende el Kernel Ridge Regression a una aproximación

semi-supervisada donde la inferencia se convierte en completar una red. La técnica de

aprendizaje de múltiples kernels es aplicada en los datos de entrada para tratar las

diferentes fuentes de datos. Finalmente, comparo el rendimiento de la implementación

con otras aproximaciones supervisadas para la inferencia de redes de interacción de

proteínas.

Palabras clave: proteína, inferencia de redes, interacción, output kernel, regresión,

aprendizaje de kernel, inferencia, Saccharomyces cerevisiae

Abstract
 The study of protein-protein interaction networks has received a lot of attention by

the research community lately. However, the experimental studies to reconstruct this

kind of structures are expensive. Consequently, several machine learning approaches

have been developed that automatically infer PPI networks. In this work I present the

implementation and analysis of the Input-Output Kernel Regression (IOKR) developed

by [9, 10] to compute the inference using various experimental data sets. IOKR is based

on the learning of an output kernel that let us apply regression models on a feature

space where we can compute the similarity of pairs of proteins to infer the existence of

interactions. Furthermore, this approach extends the Kernel Ridge Regression to a

semi-supervised approach where the inference turns into a matrix completion. The

Multiple Kernel Learning is applied on the input side to deal with the different data

sources. Finally, I compare the performance of the implementation with other

supervised approaches for the inference of PPI networks.

Keywords: protein, network inference, interaction, output kernel, regression, kernel

learning, Saccharomyces cerevisiae

Input-Output Kernel Regression applied to protein-protein interaction network inference

4

Input-Output Kernel Regression applied to protein-protein interaction network inference

5

Table of contents

Abbreviations and Acronyms .. 7

1. Introduction ... 8

1.1. Motivation .. 8

1.2. Problem statement ... 8

1.3. Objectives .. 9

1.4. Structure of the project ... 9

2. Background .. 11

2.1. Protein-protein interaction networks .. 11

2.2. The Kernel Trick .. 12

2.3. Graph inference ... 13

2.3.1. Local Models ... 14

2.3.2. Global Models ... 14

2.3.3. Output Kernel Trees ... 15

2.4. Regression methods... 16

2.4.1. Linear Regression models .. 16

2.4.2. Ridge Regression .. 17

2.4.3. Kernel Ridge Regression .. 18

3. Methods ... 19

3.1. Input-Output Kernel Regression .. 20

3.1.1. Supervised setting.. 22

3.1.2. Semi-supervised setting .. 22

3.2. Multiple Kernel Learning ... 23

3.2.1. Average sum .. 24

3.2.2. Kernel Centered alignment .. 24

4. Experimental setup and results .. 26

4.1. Performance analysis methods ... 26

4.2. Experimental setup .. 27

4.3. Experimental data .. 28

4.4. Parameter tuning .. 29

4.5. Performance analysis .. 32

4.5.1. Supervised vs. Semi-Supervised .. 32

4.5.2. Individual data sources ... 34

Input-Output Kernel Regression applied to protein-protein interaction network inference

6

4.5.3. Multiple Kernel Learning ... 37

4.6. Comparison with other inference methods .. 40

5. Discussion ... 43

6. Conclusion .. 46

7. Bibliography ..47

Appendix I: MATLAB Code ... 49

I. Main function ... 49

II. Input kernel .. 56

III. Kernel Regression ... 60

IV. Result processing ... 61

V. Accuracy, ROC and AUC analysis ... 63

Input-Output Kernel Regression applied to protein-protein interaction network inference

7

Abbreviations and Acronyms

PPI Protein-protein interaction

IOKR Input-Output Kernel Regression

OK3 Output Kernel Tree

MKL Multiple Kernel Learning

ROC Receiver Operating Characteristic

AUC Area Under the Curve

Input-Output Kernel Regression applied to protein-protein interaction network inference

8

1. Introduction

1.1. Motivation

Nowadays, the understanding of biological networks is one of the major challenges on

the study of the systems biology. These structures comprise among others protein-

protein networks, metabolic pathways and gene regulatory networks.

The knowledge extracted from this kind of biological structures has many applications.

Drug production can be improved with a better level of knowledge of the protein

interactions of a living cell, leading to produce better drugs. Furthermore, the

interaction between proteins can be used to annotate proteins based on the properties

of their neighboring proteins in the network. Also, the understanding of metabolic

pathways helps to understand how biological processes are performed in an organism,

for instance degradation or synthesis.

With the appearance of new high-throughput technologies for analysis of biological

material, such as next generation sequencing techniques, the amount of experimental

data have highly increased. This fact demands new approaches to analyze huge

amounts of data with reasonable and feasible computational time and space.

1.2. Problem statement

Currently, the amount of experimental data of biological networks is still not enough to

reconstruct most of these structures. Moreover, the extraction of this data in wet

experiments in a laboratory is a difficult task that implies high costs.

Because of that, several machine learning approaches have been developed to infer the

structure of biological networks. The inference of this kind of networks can be seen as a

classification problem, so machine learning techniques can be used in order to solve it

[5].

The aim of the machine learning models is the classification of each link of the network.

In the case of PPI networks, it is a binary classification task because we look for the

existence or absence of an interaction between two proteins.

The inference of a biological structure, in this case a PPI network, consists of training a

model using some kind of input data in order to be able to predict the labels of the links

Input-Output Kernel Regression applied to protein-protein interaction network inference

9

of the network. As said above, the amount of well-known protein-protein interactions is

low, therefore, this setup can help to correct existing data and find new interactions.

Several machine learning models can be used for this purpose. I have selected the

Input-Output Kernel Regression because it has shown in previous applications a better

performance and it requires less computational time and space [9, 10].

1.3. Objectives

The goal of this project is the implementation and testing of the machine learning

approach based on Kernel Ridge Regression named Input-Output Kernel Regression

(IOKR) [9, 10] for the inference of protein-protein interaction networks. Multiple

Kernel Learning is applied to combine the different input data sources to get a better

performance.

The implementation has been done in MATLAB. Experiments have been carried out in

order to tune the parameters of the model and the validation with curated data of the

PPI interaction network of the yeast Saccharomyces cerevisiae’s protein secretory

machinery [1]. Moreover, I compare the performance of our model with other

implementations on the inference of PPI networks.

Therefore, specific tasks were defined in order to clarify the different stages of the

project:

1. Review the state-of-the-art methods for the inference of PPI networks using

machine learning.

2. Implementation of the Input-Output Kernel Regression (IOKR) as given in [9,

10] from a given MATLAB code developed in the work [9].

3. Testing the model with data from the yeast Saccharomyces cerevisiae. Different

experiments have been carried out: parameter tuning, supervised vs. semi-

supervised performance and Multiple Kernel Learning (MKL) vs. no MKL

performance.

4. Comparing the results of the IOKR with other state-of-the-art methods.

1.4. Structure of the project

This work is structured as follows. First, in Section 2, I am going to present the

background of the studied problem, which is the inference of protein-protein

interaction networks. Moreover, I describe other state-of-the-art methods that have

Input-Output Kernel Regression applied to protein-protein interaction network inference

10

been used to solve the problem and the regression methods, which are the basis of the

model I have used.

In Section 3, once I have presented the background of our project I describe the

methods that I have used. The section is divided in two main parts. First, I describe the

Input-Output Kernel Regression which is used for inferring the interaction labels.

Then, I introduce the Multiple Kernel Learning for improving the fusion of the data

sources on the input side.

Section 4 covers the experimental setup which includes the parameter tuning. I present

the experiments that are used to analyze the performance of the classifier and the

comparison between the different settings of the model. Furthermore, I compare the

performance of IOKR with other state-of-the-art methods.

In Section 5, I discuss the experimental results from the previous section. Finally, I

summarize the work of the project in the conclusions in Section 6.

Input-Output Kernel Regression applied to protein-protein interaction network inference

11

2. Background

In the following sections, I describe the necessary background to understand the

implemented model. First, I explain the concept of PPI networks. Later, I give a brief

description of the kernel trick used in high dimensional spaces. Then, I briefly describe

previous approaches for the inference of graphs. Finally, I introduce the Kernel Ridge

Regression, which is the basis of the IOKR. These concepts will help the reader to

understand the Input-Output Kernel Regression.

2.1. Protein-protein interaction networks

Proteins are large biological molecules made of a chain of amino acids held together by

peptide bonds. They are the most abundant biological material in a cell, almost 50% of

it. These molecules are the product of transcription and translation of DNA (Figure 1).

The DNA sequence determines the amino acids that are produced when it is read.

Proteins are versatile molecules, meaning that the same protein can show different

amino acid chains [2].

This kind of molecule is involved in the

cell functionality, performing different

biological functions depending on the

protein type. For example, enzymes are

in charge of catalyzing chemical

reactions in the cells, for instance

accelerating or delaying them.

Furthermore, there are antibodies

which are the defenses of the body

against foreign invasions, as viruses or

bacteria, and transport proteins in

charge of moving molecules around the

organism [2].

Figure 1: Process for generating the proteins [17]

Changes in the protein production or protein properties can have external effects. The

lack or the excess of a certain protein can lead to a disease in the organism [2]. For

instance, the Proteinuria, which is the excess of the serum protein, can cause kidney

diseases. On the other hand, some changes in a protein can lead to health benefits, in

such cases the mutation is known as evolution.

Input-Output Kernel Regression applied to protein-protein interaction network inference

12

A protein-protein interaction (PPI) network defines the physical and functional

contacts between a set of proteins in a cell or a living organism. These interactions are

not with other molecules such as DNA, RNA or ligands. The interactions needed for

basic functionality of the proteins, such as production or degradation, are not included

in this kind of structure [2]. Figure 2 shows an example of a PPI network where the

protein TMEM8A is involved.

Figure 2: Protein Interaction Network for TMEM8A in humans (2013) [18]

The analysis of PPI networks is part of the field of study called interactomics [3].

Interactomics is the study of the interactions among proteins and between proteins and

other molecules. The mapping of all the interactions of a living being is called

interactome.

As described in [3], several experimental techniques have been developed to measure

biological interactions in the laboratory. For example, the yeast two-hybrid system

allows the identification of physical interactions between proteins under in vivo

conditions using a bay-prey system. There exist other experimental methods such as

the Affinity purification-mass spectrometry (APMS).

2.2. The Kernel Trick

Basic Machine Learning methods model the input output relations linearly. However,

real problems tend to be more complex and require high dimensional representation of

the data. As described in [4], we can use kernels to avoid working in such high

dimensional spaces.

In inference tasks we have the domain which is represented by a nonempty set of

inputs (predictor variables) and the domain that represents the targets (response

variables). In Machine Learning the aim is to predict the target of an unseen

input instance .

Input-Output Kernel Regression applied to protein-protein interaction network inference

13

The is selected by choosing a pair similar to the training instances [4].

Consequently, we need to measure the similarity between instances in the domains

and . A kernel can be used as the similarity measure. For all , a

kernel satisfies:

 〈 〉

Where is a mapping to a dot product space . This space is an infinite

dimensional product space, usually high dimensional, sometimes called feature space.

This property defined for the input domain can be transferred to the output domain .

The equation above is known as the Kernel Trick. Consequently, we can compute the

similarity of two instances by the evaluation of a kernel instead of computing it as a dot

product in a high dimensional feature space [4].

2.3. Graph inference

A protein-protein interaction network can be seen as an undirected graph, where each

vertex represents a protein of the network [5, 6, 16]. In this graph, there is an edge

between two vertices if the proteins interact.

Let be an undirected graph that represents a PPI network. The finite set of

vertices is the set of proteins of an organism. The set of edges

 defines how the vertices of the graph are connected, which means how the

proteins of the network interact with each other [5]. A feature vector is provided

for each protein of the network.

The graph inference can be considered as a pattern recognition problem, due to the fact

that we can assign a label value to an edge that defines whether two vertices are

connected [4]. An edge will be labeled with 1 if its vertices represent two proteins that

interact with each other in the PPI network, otherwise, the edge will be marked with 0.

As a result, I am interested in learning a model that can predict if two proteins interact.

As I have already mentioned, many Machine Learning approaches have been developed

to solve this problem. We can divide them in two groups, unsupervised and supervised

inference models. Unsupervised methods consist of inferring the labels of the edges

directly from data of the proteins without using the data from the labeled edges. For

this purpose several techniques have been used like probabilistic methods such as

Bayesian networks or dynamical system equations [5].

Input-Output Kernel Regression applied to protein-protein interaction network inference

14

As I explained in the previous section, various experimental techniques have provided

well-known interactions and non-interactions that can be used for performing

supervised machine learning. Supervised approaches aim for training a binary classifier

using the given labeled edges as training set to infer unknown edges in a PPI network.

Let be the training set for a supervised model, then ()

where is an edge of the graph, is the label of the edge and | |.

In this work I am focusing on supervised methods, where the Input-Output Kernel

Regression is included, because it has been shown that these methods outperform the

unsupervised models [16]. In the following sections I review two general supervised

models for the graph inference based on local models and global models as described in

[5] and the Output Kernel Tree [6].

2.3.1. Local Models

This approach uses each vertex of the graph as seed and infers the label of the edges

between this vertex and the other vertices of the graph. For each seed vertex, we solve a

local pattern recognition task for the subgraph around the seed.

First, we select a vertex from as seed vertex . Then, we extract a subset from

that includes the and the other vertexes of the graph connected with . This

model labels the vertices instead of the edges, so the resulting training set is

(

) where
 is a vertex connected with and

 is the label of

edge between
 and [5].

Then, we use the set to train a machine learning algorithm, for example Support

Vector Machine, in order to infer the labels of every vertex that are not in . The

label of is assigned to the edge between and . Each of the previous steps is

repeated for each vertex of the set , choosing it as . Finally, we combine the

predictions of the iterations over an edge’s label to obtain the final label of the edge.

The pattern recognition algorithm used in this approach exploits the idea that if a

vertex , which is known to be connected with the , is similar to a vertex , then,

it is likely that is also connected to [5].

2.3.2. Global Models

The previously introduced local models do not take advantage of the whole training set

to infer new edges due to the fact that in each iteration only the labeled edges around

Input-Output Kernel Regression applied to protein-protein interaction network inference

15

the seed vertex are used. Consequently, global models have been developed in order to

train a classifier using the whole training set.

These models are based on the idea of inferring unknown edges between two vertices

using data of similar pairs of vertices with known edges. Then, we try to find two

vertices and , where is similar to and is similar to . Consequently, it is

reasonable to think that the label of the edge between and will be the same of the

edge [5]. This inference cannot be done on local models.

Vert describes in [5] the use of the Kernel Trick to compute the similarity of pairs of

vertices. First, we use the direct product to represent the pair of vertices and

 in a feature space where a binary classification of the pairs can be done.

Where and are the feature vectors of the vertices and . This

representation allows for applying the kernel trick to compute the similarity between

two pairs of vertices. Let be the kernel between two pairs of vertices and

 [5].

 () ()

()

Where is a kernel that computes the similarity between two vertices.

Basically for the similarity between and we compare to and to

 . The measure of similarity of the kernel can be used in a machine learning

method such as Support Vector Machines to do the classification of new edges.

2.3.3. Output Kernel Trees

As mentioned, several machine learning approaches have been developed for the

inference of biological networks. The Output Kernel Trees (OK3) [5] is one of the

supervised models for this task. This approach proposes the kernelization of regression

trees to learn a kernel that allows making predictions about the edge between two

vertices in a graph. Moreover, this model uses the original input space that gives more

interpretability contrary to other methods with black-box models [6].

Based on the formulation of a graph that I have introduced at the beginning of this

section, this method defines a positive definite symmetric kernel that

encodes the proximity of two vertices in the graph. The kernel gives a higher value to

Input-Output Kernel Regression applied to protein-protein interaction network inference

16

pairs of connected vertices. As explained in Section 2.2 this kernel induces a feature

map into a Hilbert Space .

 〈 〉

The aim is to find an approximation of denoted as ̂ described by their input features

[5]. The OK3 method tries to find an approximation ̂ of the output feature vector

 by growing a binary classification tree on the input vectors of the training set [5].

The construction of the tree using binary tests over the input features of the vertices is

based on the minimization of the square distance in between the training samples in

the different nodes and leafs. Each leaf of the tree is labeled with the average of the

output feature vectors ̂ of the different learning samples of the leaf. An

approximation ̂ of the output feature vector of a new vertex is given by

searching in the tree the proper leaf.

Given two vertices and , we have found that they lie on the leafs and

respectively. Then, we can approximate its kernel value ̂ averaging the sum of

the kernel values between the learning samples of and given by the kernel . OK3

predicts the binary label of the edge between a pair of vertices thresholding

 ̂ [6]. If we obtain a value over the threshold, we will predict that there exists

interaction between the proteins represented by the vertices and .

2.4. Regression methods

The Input-Output Kernel Regression is based on the application and extension of

Kernel Ridge Regression. Regression models are widely used in machine learning.

Before describing the IOKR model, a brief introduction to regression methods is given.

2.4.1. Linear Regression models

The linear regression consists of finding a function | that shows how the features

of the input data (X) condition the output (Y). Let X be the vector that represents the

features of an input object , where represents the ith-feature.

Moreover, let be a vector of regression parameters. The linear function between the

input and output is:

 ∑

Input-Output Kernel Regression applied to protein-protein interaction network inference

17

In order to learn the values of I have a set of training data

 where is the feature vector of the ith instance and is the target or output

value. We use the least square method to choose the that minimizes the residual sum

of squares (RSS).

 ∑

 ∑((∑

))

As described in [6] we can minimize the previous cost function by taking derivatives.

First, we rewrite the residual sum-of-squares as follows.

Where X is a matrix with size with each row is an input vector from the

training set with an additional first column with 1, is the number of samples in the

training set and is size of the input vectors. Then, we derive by obtaining the unique

solution of the minimization problem [6].

 ̂

The unique solution is an approximation of the vector of regression parameters. This

approximation is used in the initial function to predict the output of a new input

vector.

2.4.2. Ridge Regression

The Ridge Regression, also known as Tikhonov regularization, is a type of linear

regression model where a regularization constant is introduced to achieve “weight

decay” [7]. The purpose of the regularization term is to penalize the norm of the

parameter vector to avoid overfitting. Consequently, the cost function can be written

as follows.

 ∑

 ‖ ‖ ∑((∑

))

 ‖ ‖

Where is the vector of regression parameters, is an input vector of the training set,

 is the output of such input vector and is the regularization term. As described in [7]

the optimum vector can be computed by taking the derivatives from the previous cost

function.

Input-Output Kernel Regression applied to protein-protein interaction network inference

18

 (∑

)

 (∑

)

Where is the identity matrix. The value of the regularization parameter has to be

determined experimentally. For this purpose, we can use for example cross validation

methods.

2.4.3. Kernel Ridge Regression

The Ridge Regression algorithm can be combined with kernels to carry out the task of

learning a non-linear function between input and output. The input feature vectors are

not anymore defined by a value , instead a transformed feature vector is used.

As a consequence, we can rewrite the derivation of the parameter vector as follows

[7].

Where is a matrix where each row contains the feature vector of the instance , is

the identity matrix of size and is a vector with the output value of each instance. In

order to predict the value of a new instance I project its feature vector onto the

hyperplane defined by . The linear regression model that retrieves the prediction ̂ of

a new data-case can be defined as follows.

 ̂

This formulation let us introduce a kernel and its Gram matrix to encode the

similarity between the different instances. Then, ̂ can be written as follows.

 ̂

Where the values of the Gram matrix are defined as ()
 , where

and are two different instances. This Gram matrix defines the kernel .

Input-Output Kernel Regression applied to protein-protein interaction network inference

19

3. Methods

The approach used for the network inference in this work is based on the framework

called Input-Output Kernel Regression introduced in [9, 10]. This method extends the

regression models explained in Section 2.4. Moreover, the work in [9, 10] extends the

IOKR to a semi-supervised setting. Both settings have been reviewed and implemented

to be analyzed in this work.

IOKR contrary to OK3, described in the Section 2.3.3, uses the kernelized input space

to learn an output kernel. Using this output kernel we can encode the proximity of the

proteins to each other in the PPI network. As in OK3 does, the proximity value of a pair

of proteins is thresholded to infer whether an interaction exists or not. Although I focus

in this work on the inference of PPI networks, IOKR can be applied on the link

prediction of other graph-based structures such as social networks [9].

The data for PPI network inference usually comes from different sources.

Consequently, I need to implement methods to combine the input data sources in order

to learn the input kernel. The selected methods are a simple average sum and a

Multiple Kernel Learning using the Kernel Centered Alignment to compute a weighted

combination of the data sources.

First of all, the following information is available for the network inference:

 A set of proteins , where a protein is represented by a feature vector

that describes different properties of the protein, where . This set

defines the full graph .

 We define a subset that represents the proteins of the training set, where

 . This set contains a total of proteins from a random split of

and defines a subgraph .

 We are given an adjacency matrix of size . Let and be two proteins

of the training set, is the label of the edge between the vertices that

represent and on the graph .

Once I have defined the available data, I review the applied methods based on the

Input-Output Kernel Regression and the Centered Alignment used for Multiple Kernel

Learning of the input kernel.

Input-Output Kernel Regression applied to protein-protein interaction network inference

20

3.1. Input-Output Kernel Regression

Previously, supervised approaches revised in the Section 2.3 are based on the

classification of the edges of the graph using a binary pairwise classifier that has two

vertices as an input. The Input-Output Kernel Regression transforms this classification

problem into the learning of an approximation of the output kernel.

The IOKR is based on the kernelization of the output side defining an output feature

space . In this output feature space we can encode the proximity of the vertices in the

graph using an output kernel in order to predict the label of the edges thresholding

this proximity value. The method consists of the use of the Kernel Trick in the output

feature space, similarly to OK3, to learn the output kernel to encode the proximity of

the vertices in such feature space.

Let be a PDS kernel that gives the proximity of two nodes in a PPI

network. There exists a Hilbert Space which corresponds to the output feature

space. The proteins of the network are mapped in using the function . The

proximity of two proteins of the PPI network encoded by the output kernel can be

defined as the dot product of their images in the output feature space.

 〈 〉

The output kernel is unknown, thus, I need to learn an approximation ̂ based on

the input data.

 ̂
 〈 〉

In that way, the aim is learning a mapping function which predicts the output

feature vector of a protein in the feature space (Figure 3) where we can

measure its proximity. This is similar to the OK3 where the prediction is given by the

label of a leaf of the tree. Then, the IOKR proposes a classifier function

 that thresholds the proximity value given by the output kernel ̂ to infer whether

two proteins and of the PPI network interact [9].

 ̂

 〈 〉

As I have mentioned, we do not know the output kernel , however, we know the

output Gram matrix
 that gives information about the proximity of two proteins of

Input-Output Kernel Regression applied to protein-protein interaction network inference

21

the training set in . Let
 be a positive semi-definite matrix of dimension

where
 ().

We need to compute a kernel that encodes the proximity between the vertices in the

graph. The diffusion kernel is suitable to encode the proximity [6, 9, 10]. Then, the

Gram matrix is defined as
 , where is the Laplacian matrix,

 is the degree matrix for the vertices of the training set and is the adjacency matrix

of the graph . The parameter controls the diffusion over the graph and its value

will be set by cross validation.

IOKR kernelizes the input space to encode the similarity between proteins of a PPI

network. Consequently, the input data is defined by a Gram matrix that encodes the

similarity of each possible pair of proteins of . is defined by a PDS kernel

 , so each component of the matrix is given by .

Contrary to the output kernel, the input kernel is known. The computation of the

matrix is discussed in the Section 3.2.

As I described above, this model extends the Kernel Ridge Regression. In this case I am

looking for the function that computes an approximation of the output feature vector

of a protein in .To develop the IOKR, we assume that there exists a general matrix

with dimension that projects the feature vector of a protein into the feature

space as the parameter vector does in Kernel Ridge Regression (KRR) described in

Section 2.4.3.

The computation of the matrix , as the computation of the vector in Ridge

Regression, corresponds to the solution of a minimization problem.

The IOKR implemented in this work and described in [9, 10] extends the Input-Output

Kernel Regression to a transductive setting, where I attempt to complete an existing

network using the data of the nodes of the whole network. This setting is referred as a

semi-supervised approach for network inference and is detailed in the Section 3.1.2.

The next sections describe the two settings of the model: supervised and semi-

supervised. The main differences between both are the input side and the cost function

used to learn the function .

Input-Output Kernel Regression applied to protein-protein interaction network inference

22

3.1.1. Supervised setting

In the supervised approach of the IOKR we use the input data of the proteins of the

training set to infer the labels of the rest of the edges of the network. Therefore, as

input kernel matrix, I use a submatrix
 of the Gram matrix with only those rows

and columns that correspond to proteins of the training set.

As in Ridge Regression, for the weight vector , an optimization problem has to be

resolved to learn the matrix . I need a function that minimizes the distance between

the output feature vector of a protein and the prediction of its feature vector

 in the output feature space . Therefore, the optimization problem consists of

the minimization of a square loss function with a regularization parameter [9].

 ∑‖ ‖

 ‖ ‖

This cost function can be seen as an extension of the Ridge Regression, where is the

regularization term to avoid the overfitting of the model defined by the function . The

minimization of the previous cost functions leads to a closed form solution for

computing the model parameters [9].

 ̂

Where is a matrix of dimension whose ith column corresponds to the

output feature vector of the protein of the training set, is the identity matrix

of dimension . Moreover, is the matrix of dimension where the ith

column corresponds to the input feature vector of the protein in the feature

space . The value of the regularization term will be set testing the performance of a

range of values and selecting the best.

3.1.2. Semi-supervised setting

The semi-supervised model consists of using additionally the input information of the

proteins of the test set to train the classifier. The task of inference of the PPI network

using the semi-supervised approach can be seen as the completion of the missing

values of the matrix
[9].

The work [10] describes how the cost function of the supervised is extended to this new

model introducing the unlabeled data. A smoothness constraint is introduced on the

regression model. This constraint penalizes protein pairs with a high similarity

Input-Output Kernel Regression applied to protein-protein interaction network inference

23

in the input features and a high distance between them in the output feature space .

Consequently, we can define the optimization problem to learn the matrix as follows.

 ∑‖ ‖

 ‖ ‖
 ∑∑ ‖ ‖

Where is a matrix that encodes the similarity of the proteins in the input space [10].

As in the supervised setting, the minimization of the previous cost function leads to a

closed form solution for computing the model parameters [9].

 ̂

Where
 is a diffusion kernel matrix of the whole graph, where

is the degree matrix of the vertices, W is the adjacency matrix of the graph and is the

identity matrix of dimension . Moreover, the matrix U is a matrix of dimension

 , where the left side is the identity matrix of size and the right side is a zero

matrix of size , where is the size of the test set. is defined as a matrix of

dimension where each column corresponds to the projection of the feature

vector of the protein in the feature space .

The values of the regularization term and the smoothness constraint will be set by

cross validation. The same process will be done for selecting the value of the

parameters and of the diffusion kernels.

3.2. Multiple Kernel Learning

Studies of PPI networks usually involve several data sources of a protein in order to

infer its interaction. Different data sources are used because they should contain

complementary information about PPIs that can be helpful to improve the performance

of the PPI network inference.

The use of different data sources requires the use of methods to fuse them to compute

the input Gram matrix . I have implemented two methods. The first one is the

average sum of the different data sources. The second one is a Multiple Kernel Learning

that uses the correlation between the data sources and the output kernel matrix given

by the kernel centered alignment to weight the data sources.

Input-Output Kernel Regression applied to protein-protein interaction network inference

24

3.2.1. Average sum

This solution can be seen as a naive approach of combining kernels, by computing a

uniform combination. Basically, I sum the different Gram matrices of the data sources

and normalize the sum. The combined input kernel is defined as follows.

∑

Where is the Gram matrix that results from the application of some kernel on the k-

th data set and is the number of data sets.

Due to its simplicity this algorithm takes into account each data source equally.

However, previous study [16] has shown that if we analyze the power of prediction of

each data source individually, we can find differences in their performance. Because of

this, several approaches have been developed to implement a weighted combination of

kernels.

3.2.2. Kernel Centered alignment

The goal of the following method is to compute weights for the kernels of different data

sources during combination or Multiple Kernel Learning. This method, described and

tested in [11], shows better performance than uniform combination.

First of all, let us introduce the notion of centered kernel matrices. Let be a kernel

matrix defined by a PSD kernel function . Centering a kernel matrix

consists of centering the feature map associated with removing its

expectation. Consequently, each component of the centered matrix can be computed

from as follows.

 []

∑

∑

∑

The alignment is computed between one data source and the target kernel, this

correlation value is used as a weight during combination of the data sources. The

centered alignment provides us correlation measure between two kernels. As described

in [11] we can obtain the correlation between two kernel matrices and as follows.

 ̂
〈

 〉
‖ ‖ ‖

 ‖

Input-Output Kernel Regression applied to protein-protein interaction network inference

25

Where 〈
 〉 and ‖ ‖ denote the Frobenius product and the Frobenius norm

respectively [11].

〈
 〉 [

] ∑

‖ ‖ √〈 〉

The method consists of computing the centered alignment between a base kernel

matrix and the target kernel matrix individually [11]. The computed correlation is used

as a weight for the base kernel . Then, the input Gram matrix can be computed as

a weighted sum of the base kernels.

 ∑ ̂

Where is the target kernel matrix, a Laplacian matrix , where is the

degree matrix for the vertices of the training set and is the adjacency matrix of the

graph . is the Gram matrix that results from the application of some kernel on the

k-th data source and is the number of data sources. I assume that a data source whose

matrix kernel is more correlated to will perform the PPI network inference better,

then, a higher weight is given to this data source.

Input-Output Kernel Regression applied to protein-protein interaction network inference

26

4. Experimental setup and results

The programming language selected for this work is MATLAB. This was based on the

fact that the model has a great mathematical complexity and this language offers

several advantages. It provides a huge range of already implemented mathematical

functions and an automatic parallelization of operations, for example loops. The code of

the implementation of the IOKR can be consulted in the Section Appendix I of this

work.

4.1. Performance analysis methods

In this work I use two methods to analyze the results of the experiments: the Receiver

Operating Characteristic (ROC) and the Area Under the Curve (AUC). The first one

gives visualization of the classifier’s performance and the second one is a performance

measure [12].

The “raw data” from the execution of a binary classifier are the counts of how many

instances of the problem have been classified correctly and wrongly. In the design of

the binary classifier for the inference of PPI network I try to find a classifier that

increases the number of existing interactions classified as existing interactions {1}

(True positives (TP)) and decreases the number of non-interactions classified as

existing interaction {1} (False positives (FP)).

The Receiver Operating Characteristic (ROC) is a way of visualizing a classifier’s

performance represented as a curve in a two-dimensional graph [12]. It consists of

plotting the True positive rate against the False positive rate varying the decision

threshold of the classifier [12]. A classifier with a ROC curve closer to the upper-left

corner is better.

This curve is also used to select the optimal threshold of the classifier. The decision

threshold or operating point of the classifier will be the proximity value of the instance

represented by the closest point of the curve to the upper-left corner [12].

The Area Under the Curve is a performance measure that consists of calculate the area

under the ROC curve. A higher AUC value indicates a better performance of the

classifier.

Input-Output Kernel Regression applied to protein-protein interaction network inference

27

4.2. Experimental setup

In order to get truthful measures of the performance of the different methods and

setups we run each experiment ten times. Each time, I randomly sub-sample a training

set of proteins that represents a specific percentage of the total amount of proteins of

the PPI network and consider the other proteins as testing set. After the runs I average

the different ROC and AUC results over the different runs. This repeated evaluation of

performance on random subsets is called cross validation and guarantees unbiased

performance measurements.

Secondly, as [6] does, I consider two sets of interactions in the inference of a PPI

network:

 The interactions between proteins of the training set and proteins of the testing

set (TR/TS). This means that one of the interaction partners has been seen

during training.

 The interactions between proteins of the testing set (TS/TS). This means that

none of the interaction partners has been seen during training, thus the

inference of this group is more difficult than the previous.

Figure 3: Representation of the interactions between proteins in a symmetric binary matrix. The
interactions are split in three sets, which are represented by different colors.

Figure 3 shows how the interactions are represented in a symmetric binary matrix of

size , where the columns and rows are the proteins of the PPI network and the

cells are the label of the edge between two vertices of the network. It includes the

interactions between proteins of the training set (TR/TR), this means that both of the

Input-Output Kernel Regression applied to protein-protein interaction network inference

28

interaction partners have been seen during training. This set is not considered in the

performance analysis because it is expected that a classifier will obtain an AUC close to

1. Therefore, its analysis was used only during the development to detect errors in the

implementation.

I analyze the performance of the classifier on each set separately. The first set of

interactions usually gets a better performance due to the classifier has been trained

using the input and output data of one of the interaction partners versus none for the

second case.

4.3. Experimental data

The protein-protein interaction network considered in this work for analyzing the

performance of the implementation of the IOKR is the PPI network of the Protein

Secretory Machinery of the yeast Saccharomyces cerevisiae [1]. This PPI network is

formed by 161 proteins directly involved in several functions of the Secretory

Machinery.

A total of 14 data sources have been used to represent the features of the proteins of the

network:

 Microarray expression data contains scores that represents the level of co-

expression of proteins obtained by microarray experiments.

 Cell localization data. Each protein has a binary vector where 13 cell

localizations are considered, for instance the cytoplasm. The ith value of the

vector is set to 1 if the protein has been found in the ith localization.

 BLAST sequence alignment score of the protein sequence with sequences of the

UniProt database. BLAST is a sequence similarity search program that provides

statistical information about an alignment [13].

 Global Trace Graph (GTG) is an improved sequence alignment score of the

protein sequence with genetic sequences of interest. GTG is a cluster algorithm

to perform sequence alignments [14].

 InterProScan is a tool that unifies several protein signature databases and

provides functional analysis of a given protein sequence [15]. The available data

comes from the following protein signatures databases: FingerPRINTScans,

CATH-Gene3D, HAMAP, PANTHER, patternscans, Pfam, PIRSF, ProDom,

pfscan, SMART, SUPERFAMILY and TIGRFAMs.

Input-Output Kernel Regression applied to protein-protein interaction network inference

29

The work [16] found by testing different kernels that Microarray expression data

achieves the best performance using the RBF kernel. On the other hand, the other data

sources have obtained the best performance with linear kernel. I have used this kernel

selection in the following experiments.

4.4. Parameter tuning

In this section I show the results of the experiments for setting the values of the

different parameters of the model. First, I start with the parameters and of the

diffusion kernels. Then, I present the result of the experiments to set the values of the

regularization term and the smoothness constraint .

I have tested different values of for the supervised setting and different pairs of

 for the semi supervised setting. The range of values for both parameters was 1,

2 and 3. In both settings I used 80% of the proteins as training set.

After analyzing the AUC scores of the different experiments I did not find noticeable

performance differences in any of the settings between the different values of and .

Consequently, I set the value of and to 1 in both settings.

Supervised setting

In the case of the supervised setting the regularization term in the cost function has

to be set to a value that gives the best performance. I have tested different values and

selected the one which gives the best AUC.

Table 1 shows the AUC scores obtained testing a range of values for from 0.1 to 1. I

have analyzed the performance on the two sets of interactions as explained above. We

can see that the performance of the classifier is increased when we choose a higher

value. Nevertheless, when we choose a value higher than 0.6 the penalization applied

on the cost function produces a worse performance.

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

AUC
tr/ts 0.856 0.865 0.87 0.872 0.873 0.874 0.873 0.872 0.871 0.87

ts/ts 0.78 0.786 0.789 0.79 0.79 0.791 0.79 0.789 0.788 0.787

Table 1: AUC of the Supervised setting varying the regularization parameter , using 80%

of the data for training and . tr/ts is the inference of interactions between proteins of

the training set and proteins of the test set, and ts/ts is the inference of interactions between

proteins of the test set.

Input-Output Kernel Regression applied to protein-protein interaction network inference

30

This situation can be seen easily in the Figure 4, where a greater range of values of is

shown. We can see that there is an increment of the AUC in both sets of interactions

from 0.05 to 0.5. Then, if we increase the value there is a stabilization of the AUC from

0.5 to 0.6, followed by a decrement from 0.65 to 1. Consequently, in the following

experiments with the supervised setting I will set the value of to 0.6.

Figure 4: AUC error bars of the supervised setting using different values of for the interactions between

the training set and testing set and between the testing set. 80% of the proteins are used as training set.

Semi-supervised setting

In the case of the semi-supervised setting the regularization term and the

smoothness constraint of the cost function have to be set to a value that gives the

best performance. I have tested different pairs of values and selected the one that gives

the best AUC.

First, I have run the semi-supervised setting varying the and from 0.1 to 1.0. Table

2 shows a subset of the experiments that are representative to show the behavior of the

AUC when we vary and .

It can be seen in Table 2 that there is an increment of the AUC with from 0.2 to 0.8.

Then, the performance of the classifier decreases when we use a value of higher than

0.8. On the other hand, we can see that there is a slight difference on the performance

when we vary the value . However, we can appreciate a slight improvement when we

use low values.

Input-Output Kernel Regression applied to protein-protein interaction network inference

31

 0.2 0.4 0.6 0.8 1.0

0.2 0.841 0.8408 0.8407 0.8407 0.8406

0.4 0.865 0.865 0. 865 0.8649 0. 8649

0.6 0.8716 0.8716 0.8714 0.8714 0.8713

0.8 0.8731 0.873 0.8729 0. 8729 0.8728

1.0 0.8727 0.8726 0.8725 0.8725 0.8725

Table 2: AUC of the Supervised setting for the different value pairs of and . The

interactions are between proteins of the training set and proteins of the test set. 80% of the

proteins are for training, and .

The results of Table 2 lead me to carry out another experiment using a fixed value of

 and varying using a bigger range. I select the value with the best AUC, in this

case is 0.8. Given the behavior of the AUC when we decrease the , I try lower values

of in order to see if there is an improvement of the performance. The Table 3 shows

the results of the experiment.

 0.0001 0.001 0.01 0.05 0.15 0.25 0.5 0.75 1.0

AUC
tr/ts 0.879 0.882 0.881 0.875 0.874 0.873 0.873 0.873 0.873

ts/ts 0.7427 0.76 0.7481 0.7301 0.7263 0.7255 0.7249 0.725 0.725

Table 3: AUC of the Supervised setting for the different values of with a fixed .

The interactions are between proteins of the training set and proteins of the test set. 80% of the

data is for training, and .

In the Table 3 we can see that decreasing the value of improves the performance of

the classifier. Figure 5 shows clearly the mentioned improvement for both sets of

interactions.

The value 0.001 for achieves the best performance in the classification of the two

types of interactions sets. A slight decrement on the value of would harm the

performance of the classifier in both set of interactions.

Given the results of this last experiment I can state that the best performance is

achieved when we set the values of and with 0.8 and 0.001 respectively.

Therefore, I will set the values of and to 0.8 and 0.001 respectively for the

following experiments.

Input-Output Kernel Regression applied to protein-protein interaction network inference

32

Figure 5: AUC of the Supervised setting for the different values of with a fixed . 80% of the

proteins are used as training set.

4.5. Performance analysis

After I have analyzed the values of the parameters of the model that achieve the best

performance, I describe the results of the different experiments that have been carried

out to analyze the performance of the IOKR using different settings.

4.5.1. Supervised vs. Semi-Supervised

In this section I present the results of several experiments to compare the two settings

of the Input-Output Kernel Regression. Both settings use the average sum to combine

the data sources to generate the input kernel. I have run the IOKR for the different

settings using different percentages of data in the training phase.

First, I will show the results of the inference of TR/TS interactions. In Figure 7 we can

see that both settings improve their performance when we increase the size of the

training set. This behavior can be considered as normal because the classifier build

during the training phase has more information about the PPI network, and therefore

its prediction should be more precise.

A relatively large improvement of the performance is appreciated in both settings when

we increase the training data percentage from 10% to 50%. However, the performance

improvements flatten down when more than 50% of the data is used in the training

phase. Moreover, we can see that in both methods the use of more than 80% of the

proteins as training set has no significant effects on the performance.

Input-Output Kernel Regression applied to protein-protein interaction network inference

33

Figure 6: AUC error bars of the inference of TR/TS interactions using the supervised and semi-

supervised setting and varying the percentage of proteins used in the training phase.

There is no a dominant setting in this case. The supervised setting seems to have a

better performance when we use less data in the training phase, from 10% to 40%. On

the other hand, the semi-supervised setting achieves a better performance in higher

percentage, especially from 50% to 80%, obtaining the highest performance with 80%

of data as training set.

Figure 7 represents the comparison of the AUC scores of both settings on the inference

of TS/TS interactions of the PPI network. The plot represents the variation of the

performance when the amount of proteins used in the training phase is increased.

Figure 7: AUC error bars of the inference of TS/TS interactions using the supervised and semi-supervised

setting and varying the percentage of proteins used in the training phase.

Input-Output Kernel Regression applied to protein-protein interaction network inference

34

As noticed for the TR/TS interactions the performance of the classifier increases when

the size of the training set is bigger. However, we can see that the semi-supervised

setting experiments a decrement of the performance when 90% of the proteins are used

as training set. However, this anomalous behavior can be caused by the high variation

of the AUC of this last percentage.

In this case the supervised setting outperforms the semi-supervised setting using from

10% to 80% of the data in the training phase. Using 90% of the data we can see that the

average AUC is higher for the supervised setting. Nevertheless, there is a high

overlapping of the error bars of both settings, which indicates a high variation of the

AUC for this percentage.

4.5.2. Individual data sources

As I explained in Section 3.2.2 the Multiple Kernel Learning gives a weight to each data

source in order to build the input kernel using a weighted sum of the data sources.

Consequently, I want to analyze if the given weight of the data source is correlated with

the performance of a classifier trained only with this data source.

First, I show the weights of the different sources given by the MKL. Later, I will show

the correlation between the weights of the data sources and the performance (AUC) of

the classifier trained with individual data sources.

Table 4a and Table 4b show the weights of the data sources computed using the Kernel

Centered alignment. The data sources BLAST and GTG, which are sequence alignment

scores, show the highest weights. One could think that these two data sources will

achieve the best classification results when used individually to train a classifier. In the

next paragraphs I analyze whether this idea is correct.

ID 1 2 3 4 5 6 7

Data

source

E
x

p
re

ss
io

n

L
o

ca
li

za
ti

o
n

B
L

A
S

T

F
P

ri
n

tS
ca

n

G
e

n
e

3
D

G
T

G

H
M

M
P

a
n

th
e

r

Weight 0.3638 0.3528 0.7191 0.2975 0.5440 0.7079 0.5632

Table 4a: Average of the weight of each data source given by the MKL for the weighted sum of

the data sources. The first row corresponds to the numeric identifier of the data source. Using

80% of data in the training phase.

Input-Output Kernel Regression applied to protein-protein interaction network inference

35

ID 8 9 10 11 12 13 14

Data

source

P
a

tt
er

n
S

ca
n

H
M

M
P

fa
m

H
M

M
P

IR

P
ro

fi
le

S
ca

n

P
ro

te
in

cl
u

st
e

rs

H
M

M
S

m
a

rt

S
u

p
er

fa
m

il
y

Weight 0.3699 0.5837 0.2746 0.3814 0.4069 0.419 0.5319

Table 4b: Average of the weight of each data source given by the MKL for the weighted sum of

the data sources. The first row corresponds to the numeric identifier of the data source. Using

80% of data in the training phase.

I have run an experiment where I trained a classifier using each data source isolated.

Both settings of the IOKR were taken into account in this experiment. Then, I

performed the classification of the TR/TS interactions and TS/TS interactions using

these classifiers. Figure 8 and Figure 9 show the AUC vs. weight points of the different

data sources and the regression line of such points of the classifiers trained with single

data source using the supervised and semi-supervised setting.

Figure 8: AUC vs. Weight linear regression of inference of TR/TS interactions using individual data

sources on the supervised and semi-supervised settings. 80% of the proteins are used in the training phase.

Red points correspond to the AUC of the supervised setting and blue points correspond to the AUC of the

semi-supervised method. The labels of the points correspond to the data source identifiers of tables 4a and

4b.

Input-Output Kernel Regression applied to protein-protein interaction network inference

36

First, I will analyze the performance of the data sources on the set of TR/TS

interactions. In Figure 8 we can see that the BLAST and GTG, which obtained the

highest weights, have the best performances. GTG outperforms all the other data

sources on both settings while BLAST is in the same range of performance on the semi-

supervised setting.

If we analyze the performance of the data sources with the lowest values we can see for

example that FPrintScan with a weight of 0.2975 has an AUC around 0.5, which means

a random performance. On the other hand, the HMMPanther with a high weight shows

small AUCs, but they are better than the data sources with lower weights, which show

AUCs around 0.5.

The expression data and localization data, at the bottom on the left of the figure,

achieve a classifier with a great performance, reaching the BLAST data source in the

supervised setting. However, the Multiple Kernel Learning gives them small weight to

generate the combined kernel.

Figure 9: AUC vs. Weight linear regression of inference of TS/TS interactions using individual data

sources on the supervised and semi-supervised settings. 80% of the proteins are used in the training phase.

Red points correspond to the AUC of the supervised setting and blue points correspond to the AUC of the

semi-supervised method. The labels of the points correspond to the data source identifiers of tables 4a and

4b.

Input-Output Kernel Regression applied to protein-protein interaction network inference

37

Analyzing the linear regression in Figure 8 we can see that in the inference of TR/TS

interaction the weight of the data sources is somewhat related with its performance as

individual data source for training a classifier. The performance of a classifier in the

inference of TR/TS interactions tends to be better when it its trained with a data source

with higher weight.

If we analyze the performance on the set of TS/TS interactions shown in Figure 9 we

find a contradiction with the hypothesis mentioned at the beginning of this section.

BLAST shows a poor performance in both settings. However, GTG maintains some of

the highest performance in the supervised and the semi-supervised setting. On the

other hand, the expression data and localization data have the highest AUC in both

settings. However, both data sources have received a low weight.

Analyzing the linear regression in Figure 9 we can see that in the inference of TS/TS

interaction the weight of the data sources are not very related with its performance as

individual data source for training a classifier.

4.5.3. Multiple Kernel Learning

In this section I describe the results of the experiments to analyze the performance of

the implementation of the Multiple Kernel Learning to build the input kernel. I

compare the performance of the MKL on the supervised and semi-supervised settings

with the performance of the average sum of kernels, both described in Section 3.2.

The following figures show the evolution of the AUC scores and their variation for both

settings when we vary the training data percentage using the MKL and the average on

the input side. First, I will analyze the performance of the settings in the inference of

interactions of the TR/TS set.

In Figure 10 we can see that for the supervised setting the use of the average

outperforms the MKL. Only when we use 60% of the data in the training phase both

settings achieve the same performance.

The increment of performance is similar in both cases, specially from 10% to 70%.

Using more than 80% of the data as training set has slight improvements in the

performance.

Input-Output Kernel Regression applied to protein-protein interaction network inference

38

Figure 10: AUC of the inference of TR/TS interactions using the supervised with various setups. The

setups consist of using the Weighted Sum to build the input kernel or the Average Sum of the data sources.

80% of the proteins are used as training set.

If we analyze the Figure 11 we can see that in general the semi-supervised setting works

better when we use the MKL in the input side. The difference is slight when we use

small percentages of data in the training phase. However, the differences are bigger

when we use from 40% to 80% of the data as training set.

The case of 90% is confusing because of both the error bars of both setups are

overlapped. So, the selection of the better setup in this case is a bit difficult. We should

take into account the whole graph.

Figure 11: AUC of the inference of TS/TS interactions using the supervised with various setups. The

setups consist of using the Weighted Sum to build the input kernel or the Average Sum of the data sources.

80% of the proteins are used as training set.

Input-Output Kernel Regression applied to protein-protein interaction network inference

39

In the next paragraphs I show the results of the different setups for the inference of

TS/TS interactions. First, in Figure 12 we can see clearly that the average combination

outperforms the MKL when we use the supervised setting.

The differences in the performance are bigger when we use larger percentages of data

in the training phase, from 60% to 90%. Using smaller training percentages, from 10%

to 30%, the differences are slight.

Figure 12: AUC of the inference of TR/TS interactions using the semi-supervised settings with various

setups. The setups consist of using the Weighted Sum to build the input kernel or the Average Sum of the

data sources. 80% of the proteins are used as training set.

Finally, in Figure 13 we can see the performance of the semi-supervised setting using

the different setups for the inference of TS/TS interactions.

Figure 13: AUC of the inference of TS/TS interactions using the semi-supervised settings with various

setups. The setups consist of using the Weighted Sum to build the input kernel or the Average Sum of the

data sources. 80% of the proteins are used as training set.

Input-Output Kernel Regression applied to protein-protein interaction network inference

40

Both setups show similar performance when we use small training percentages, from

10% to 40%. However, the MKL outperforms the average combination when larger

percentages are used. The MKL achieves the highest AUC when we use 80%.

When we increase the data until we use 90% of the data in the training phase, almost

the whole set of proteins, we can see that both setup experiment a performance

decrement.

4.6. Comparison with other inference methods

It is interesting to compare the performance of the implementation of the IOKR done in

this work with other state-of-the-art machine learning methods for the inference of PPI

networks. I have chosen the support vector machine classifier with kernels on pairs of

proteins developed in [16] and described in Section 2.3.2, and the OK3 developed in [6]

and described in Section 2.3.3.

The three methods have been tested using the data from the Secretory Machinery of the

yeast Saccharomyces cerevisiae. In every method, 80% of the proteins of the PPI

network have been used in the training phase. As I have done in the previous

experiments, I will analyze separately the performance of the methods over the two

types of interactions.

I have chosen the best setup for each setting of the IOKR to be compared with the other

methods. In the case of the supervised setting I have selected the Multiple Kernel

Learning to build the input kernel and the parameters selected on the Section 5.4. On

the other hand, for the semi-supervised setting the Average sum performs better, thus,

this setup is used in the comparison.

Figure 11 shows the ROC curves of the different methods. Analyzing the ROC curves I

can state that there is a slight difference between the support vector machine classifier

with kernels on pairs of proteins and the semi-supervised setting of the IOKR. These

two methods show better ROC curves than the others.

If we focus our attention on the AUC scores given in the legend of Figure 11 we can

confirm the slight differences of performance of the methods. Moreover, I would point

out the improvement of performance of the support vector machine classifier with

kernels on pairs of proteins over the OK3, with the lowest AUC. I can state that the

support vector machine classifier with kernels on pairs of proteins is the best to infer

the TR/TS interactions of the PPI network of the methods considered.

Input-Output Kernel Regression applied to protein-protein interaction network inference

41

Figure 14: ROC curves of state-of-the-art-methods compared to the implementation of the IOKR on the

inference of the TR/TS interactions. The IOKR is represented by the supervised and semi-supervised

setting. I choose the best setup of each setting for the comparison, which is the Average Sum on the

supervised setting and the Weighted Sum on the semi-supervised. All methods use 80% of the proteins as

training set.

In Figure 12 we can see the visualization of the ROC curves of the methods for the

inference of the TS/TS interactions. Contrary to the previous figure, we observe huge

differences on the ROC curves. In this case the OK3, with the lowest performance on

the TR/TS interactions, has the best ROC curve. On the other hand, the support vector

machine classifier with kernels on pairs of proteins has the worst performance. I would

point out that the differences between the settings of the IOKR are greater in this

experiment.

Analyzing the AUC scores, we can find that the difference of performance between the

OK3 and the support vector machine classifier with kernels on pairs of proteins is really

significant. I can state that the OK3 is the best for the inference of TS/TS interactions in

the PPI network considered.

Input-Output Kernel Regression applied to protein-protein interaction network inference

42

Figure 15: ROC curves of state-of-the-art-methods compared to the implementation of the IOKR on the

inference of the TS/TS interactions. The IOKR is represented by the supervised and semi-supervised

setting. I choose the best setup of each setting for the comparison, which is the Average Sum on the

supervised setting and the Weighted Sum on the semi-supervised. All methods use 80% of the proteins as

training set.

Input-Output Kernel Regression applied to protein-protein interaction network inference

43

5. Discussion

After I have presented the experiments to analyze the performance of the

implementation of the IOKR, I discuss in this section the obtained results. I go over the

subsections of the previous sections to explain the findings.

Parameter tuning

I have found that in the supervised setting the value of the parameter , which controls

the grade of diffusion of the diffusion kernel, does not affect the performance of the

classifier significantly. In the case of the semi-supervised setting, after testing different

pairs of values of and I could state that using different values of this parameters

does not change the performance of the classifier significantly, meaning that diffusing

more into the graph [6] does not affect the performance of the classifier.

In the parameter tuning of the semi-supervised setting, testing a range of values for

from 0.1 to 1.0, I have found that the best performance is achieved when I use a value

around 0.6. This means that the complexity of the model still being not too complex.

In the parameter tuning of the semi-supervised setting I have found that it works better

with a high value of , around 0.8. The range of values of tested initially did not

show significant differences to select one of them as the value with the best

performance. However, I noticed a slight decrement when the value of was

decreased.

A new experiment with a larger range of values showed that lower values of ,

around 0.001, produce a classifier with better performance. A small smoothness

constraint is sufficient effective for improving the performance of the semi-supervised

approach over the supervised. On the other hand, the high value of indicate that the

method requires the use of a complex model to predict the label of the interactions.

Supervised vs. semi-supervised

In the experiments I could compare the performance of the settings of the IOKR. I have

not found significant differences in the performance of the settings for the inference of

TR/TS interactions. A setting outperforms the other in some data percentages.

Input-Output Kernel Regression applied to protein-protein interaction network inference

44

On the other hand, in the inference of TS/TS interactions there exists a dominant,

which is the semi-supervised setting. This setting has outperformed the supervised

setting in each of the percentages tested.

Consequently, although the computation of the semi-supervised setting has a higher

cost due to the introduction of information about the proteins of the testing set, this

approach is worthy for the inference of the PPI network. This is more remarkable when

we try to infer TS/TS interactions which are more difficult due to the lack of

information about the instances of the testing set.

Individual Data Sources

The experiments of the individual data sources have provided interesting findings.

First, I have found that the MKL gives the highest weights to BLAST and GTG data

source.

Analyzing the performance of the individual data sources we can see that in the

inference of TR/TS interactions the GTG and BLAST outperform most of the other data

sources. Moreover, in this case the linear regression shows that a data source with a

greater weight usually has a better performance.

On the other hand, I have found differences in the results of the inference of TS/TS

interactions. In this case the BLAST data source obtains a performance of medium

quality. However, the GTG data source still outperforms most of the other data sources.

Analyzing the linear regression, we can see that a greater weight is no a sign of better

performance.

In both sets of interactions I have found that the expression and localization data

sources have some of the best performance, although the MKL gives them small

weights. The great performance of this data sources is not strange, it is the cause that

these kinds of data has been used in most of the PPI inference tasks [16].

Multiple Kernel Learning

After the experiments done using the Multiple Kernel Learning on the two settings I

have found interesting results. First, I can state that the semi-supervised setting

improves its performance using the weighted sum to compute the input kernel.

However, the supervised setting obtains worse results, achieving better performance

using the uniform combination of the data sources.

Input-Output Kernel Regression applied to protein-protein interaction network inference

45

The semi supervised setting works better with training percentages from 50% to 80%,

experimenting performance decrements when we use 90% of the data in the training

phase. However, the supervised setting has experimented greater increments of

performance using training percentages from 60% to 90%.

I have observed that in both settings the differences between the setups are slighter

using small training percentages, up to 40%. Moreover, supervised and semi-

supervised setting shows greater differences in the performance in the inference of

TS/TS interactions. This is because this set is harder to infer, then, improvements in

the methods are more visible in this set of interactions.

Comparison with other models

The results presented in the Section 4.7 has given a general picture of the position of

the implementation of the IOKR of this work respect to some state-of-the-art machine

learning methods for the inference of PPI networks.

The model has not achieved the best performance in any of the two cases considered:

the inference of TR/TS interactions and the inference of TS/TS interactions. The

support vector machine classifier with kernels on pairs of proteins and the OK3 have

shown the best performance. However, the semi-supervised setting has shown a good

performance on the TR/TS interactions, very close to the support vector machine

classifier with kernels on pairs of proteins, with an AUC of 0.87.

On the other hand, even though the support vector machine classifier with kernels on

pairs of proteins and OK3 have shown high performance on the inference of one kind of

protein interactions they have failed on the other type. Nevertheless, the settings of the

IOKR have shown acceptable performances in both types of interactions.

Input-Output Kernel Regression applied to protein-protein interaction network inference

46

6. Conclusion

The implementation of the IOKR has not shown the best results on the inference of

PPI. However, the obtained results for this implementation and the OK3 support the

idea of the Kernelization of Regression models to build classifiers.

After analyzing the results of the Multiple Kernel Learning, I can state that in task

inferences more data is not a synonym of a better performance. However, the

importance is how the different features are combined to extract rich information from

the different data sources.

The tested protein-protein prediction network has a small size. This causes those

experiments with high percentage of training data gives a huge variation. In future

experiments I would like to test the implementation with bigger PPI networks.

After finishing this project, I have been able to notice the difficulty of the application of

machine learning methods for the inference of biological networks. Specially, about

how to treat the data sources.

As a future work, I would propose a transfer learning using the semi-supervised IOKR

to infer PPI networks of other organisms such as other kinds of yeast or humans while

training the model on Saccharomyces cerevisiae.

Input-Output Kernel Regression applied to protein-protein interaction network inference

47

7. Bibliography

[1] Feizi A, Österlund T, Petranovic D, Bordel S, Nielsen J, Genome-Scale Modeling

of the Protein Secretory Machinery in Yeast (PLoS ONE 8(5): e63284.

doi:10.1371/journal.pone.0063284, 2013).

[2] Alberts B, Johnson A, Lewis J, et al, Molecular Biology of the Cell (Garland

Science, 4th edition, 2002)

[3] De Las Rivas J., Fontanillo C., Protein–Protein Interactions Essentials: Key

Concepts to Building and Analyzing Interactome Networks (PLoS Comput Biol

6(6): e1000807. doi: 10.1371/journal.pcbi.1000807, June 24, 2010).

[4] Thoms Hofmann, Bernhard Schölkopf, Alexander J. Smola, Kernel Methods in

Machine Learning (The Annal of Statistics, 2008, Vol. 36, No. 3) 1171–1220.

[5] Jean-Philippe Vert, Reconstruction of biological network by supervised machine

learning approaches (H. Lodhi and S. Muggleton (Eds.), Elements of

Computational Systems Biology, Wiley, 2010) 189-212.

[6] Pierre Geurts, Nizar Touleimat, Marie Dutreix, Florence d’Alché-Buc, Inferring

biological networks with output kernel trees (BMC Bioinformatics, 8 (Suppl

2):S4, 2007).

[7] Trevor Hastie, Robert Tibshirani, Jerome Friedman, The Elements of Statistical

Learning: Data Mining, Inference and Prediction (Springer Series in Statistics,

February 2009), chapter 3.

[8] Max Welling, Kernel ridge Regression (University of California, class notes).

[9] Céline Brouard, Marie Szafranski, Florence d’Alché-Buc, Regularized Output

Kernel Regression applied to protein-protein interaction network inference

(Whistler, BC, Networks Across Disciplines: Theory and Applications, 2010).

[10] Céline Brouard, Marie Szafranski, Florence d’Alché-Buc, Semi-supervised

Penalized Output Kernel Regression for Link Prediction (ICML, 2011) 593-600.

[11] Corinna Cortes, Mehryar Mohri, Afshin Rostamizadeh, Algorithms for Learning

Kernels Based on Centered Alignment (Journal of Machine Learning Resarch 13,

2012) 795-828.

Input-Output Kernel Regression applied to protein-protein interaction network inference

48

[12] Andrew P. Bradley, The use of the Area Under the Curve in the evaluation of

machine learning algorithms (Pattern Recognition, Vol. 30, No. 7, pp. 1997)

1145-1159

[13] Ye J., McGinnis S, & Madden T.L., BLAST: improvements for better sequence

analysis (Nucleic Acids Res. 34:W6-W9, 2006).

[14] Heger A., Mallick S., Wilson C., Holm L., The global trace graph, a novel

paradigm for searching protein sequence database (Bioinformaticas 23 (18),

2007), 2361-7.

[15] Arvas M., Biau G., Vert J.P., InterProScan - An integration platform for the

signature-recognition methods in InterPro (Bioinformaticas 17 (9), 2001), 847-8.

[16] Jana Kludas, Fitsum Tamene, Juho Rousu, Supervised and unsupervised

biological network inference from multiple ‘omic data.

[17] Frank Starmer, At: http://frank.itlab.us/photo_essays/wrapper.php?nephila

_2002_dna.html (Accessed on 05.06.14)

[18] Fimon006, Protein Interaction Network for TMEM8A (2013) At:

http://commons.wikimedia.org/wiki/File:Protein_Interaction_Network_for_T

MEM8A.png (Accessed on 01.06.14)

http://frank.itlab.us/photo_essays/wrapper.php?nephila_2002_dna.html
http://frank.itlab.us/photo_essays/wrapper.php?nephila_2002_dna.html
http://commons.wikimedia.org/wiki/File:Protein_Interaction_Network_for_TMEM8A.png
http://commons.wikimedia.org/wiki/File:Protein_Interaction_Network_for_TMEM8A.png

Input-Output Kernel Regression applied to protein-protein interaction network inference

49

Appendix I: MATLAB Code

I. Main function

% New framework to implement input-output kernel regression

% Option = 1 -> Supervised setting

% Option = 2 -> Semi-supervised setting

% res_filename -> Name of the file where the results will be saved

(without extension)

% method -> 'summean': sum of the input kernels (default), 'mkl':

multiple kernel learning

function ppiPredictionFramework(option, method),

 %%%%%%%%% Fixed parameters %%%%%%%%%%%%%

 % Betas

 Beta1 = 1.0;

 Beta2 = 1.0;

 % Lambdas

 lambda1 = 0.6;

 lambda2 = 0.001;

 % Cross validation

 cross_validation_limit = 10;

 % training percentage value range

 tr_perc_range = [0.1, 0.2, 0.3, 0.5, 0.8, 0.9];

 tr_perc_labels = [10, 20, 30, 50, 80, 90];

 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

 binarize = @(x,y) x>y;

 isequpos = @(x,y) x==y && y==1;

 isequneg = @(x,y) x==y && y==0;

 %%%% DATA Top14 %%%%%%%%%%%%%%%

 featureNames =

{'expression','localization','blasts_2012','FPrintScan_2012','Gene3

D_2012', 'gtgs_new_red', 'HMMPanther_2012', 'PatternScan_2012',

'HMMPfam_2012', 'HMMPIR_2012', 'ProfileScan_2012',

'protein_clusters', 'HMMSmart_2012', 'superfamily_2012'};

 feat_id = [1 2 3 4 5 6 7 8 9 10 11 12 13 14];

 featureNames(feat_id);

 selectLabels = 'SecrModel';

 % LABELS %%

 load(['labels' selectLabels '.mat'], 'ppinteraction','prunique');

Input-Output Kernel Regression applied to protein-protein interaction network inference

50

 % INPUT FEATURES %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

 load(['feature' selectLabels 'Top14.mat'], 'feats','counts',

'featnames_new');

 fnames = featnames_new;

 % Binary version of the features

 featsBin = feats;

 if ~isempty(find(feats(:)>0 & feats(:)<1)),

 featsBin(find(featsBin(:)>0 & featsBin(:)<1))=1;

 end

 for tr_perc_index=1:size(tr_perc_range,2),

 training_percentage = tr_perc_range(tr_perc_index)

 %% Cross validation

 for cv=1:cross_validation_limit,

 fprintf('Processing iteration %d.\n', cv);

 % size(ppinteraction,1) -> Number of files = Number of

proteins

 [trset,tsset] = createFold(size(ppinteraction,1),

training_percentage);

 labels = ppinteraction([trset; tsset],[trset; tsset]); %

Sorting the matrix

 features = feats([trset; tsset],:); % Sorting the feature

matrix

 featuresBin = featsBin([trset; tsset],:); % Sorting the

binary feature matrix

 %%%

 % OUTPUT KERNEL %

 %%%

 % Compute the Degree Matrix

 labels_aux = labels(1:size(trset,1),1:size(trset,1));

 % Laplacian unnormalized

 L = diag(sum(labels_aux)) - labels_aux;

 % Difussion output kernel matrix

 Diff_Kernel = expm(-Beta1*L);

 % Normalize

 Diff_Kernel = Diff_Kernel ./ (sqrt(diag(Diff_Kernel)) *

sqrt(diag(Diff_Kernel))');

 % Center Laplacian unnormalized matrix

 L_center = L - repmat(mean(L,1),size(L,1),1)...

 - repmat(mean(L,2),1,size(L,1))...

 + repmat(mean(L(:)),size(L,1),size(L,1));

 %%%

 % INPUT KERNEL %

 %%%

 if(strcmp(method, 'mkl')),

 % MultipleKernelLearning

 [KKAll, rcorr_aux, KKsingle_ds] = mk_learning(feat_id,

counts, features, featuresBin,

L_center(1:size(trset,1),1:size(trset,1)));

Input-Output Kernel Regression applied to protein-protein interaction network inference

51

 rcorr(cv,:) = rcorr_aux;

 else,

 [KKAll, rcorr_aux, KKsingle_ds] = input_mk(feat_id,

counts, features, featuresBin,

L_center(1:size(trset,1),1:size(trset,1)));

 rcorr(cv,:) = rcorr_aux;

 end

 %%%

 % COMPUTE PREDICTIONS %

 %%%

 if option == 1,

 % SUPERVISED SETTING %%%%%%%%%%%%%%%%%%%%%%%%%%

 A = supervised_setting(trset, KKAll, lambda1);

 else,

 % SEMI-SUPERVISED SETTING %%%%%%%%%%%%%%%%%%%%%

 A = semi_supervised_setting(trset, labels, KKAll,

lambda1, lambda2);

 end

 % Predictions

 predictions = A' * Diff_Kernel * A;

 %%%

 % EVALUATE CLASSIFIER %

 %%%

 % TRAINING/TEST

 %%%%%%%%%%%%%%%%%%%%

 [AUC, ROC, bthresh, accuracy] =

evaluate_trts(ppinteraction, trset, labels, predictions);

 AUC_trts_matrix(cv) = AUC;

 ROC_trts_matrix(cv) = {ROC};

 bthresh_v_trts_matrix(cv) = bthresh;

 accuracy_trts_matrix(cv) = accuracy;

 % TEST/TEST

 %%%%%%%%%%%%%%%%%%%%

 [AUC, ROC, bthresh, accuracy] =

evaluate_tsts(ppinteraction, trset, labels, predictions);

 AUC_tsts_matrix(cv) = AUC;

 ROC_tsts_matrix(cv) = {ROC};

 bthresh_v_tsts_matrix(cv) = bthresh;

 accuracy_tsts_matrix(cv) = accuracy;

 % TRAINING/TEST AND TEST/TEST

 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

 [AUC, ROC, bthresh, accuracy] =

evaluate_trts_and_tsts(ppinteraction, trset, labels, predictions);

 AUC_comb_matrix(cv) = AUC;

Input-Output Kernel Regression applied to protein-protein interaction network inference

52

 ROC_comb_matrix(cv) = {ROC};

 bthresh_v_comb_matrix(cv) = bthresh;

 accuracy_comb_matrix(cv) = accuracy;

 % Each data source alone

 %%%%%%%%%%%%%%%%%%%%%%%%%%%%

 for ds=1:size(feat_id,2),

 if option == 1,

 %%%%%%%%% SUPERVISED SETTING %%%%%%%%%%%%%%

 A = supervised_setting(trset, KKsingle_ds(:,:,ds),

lambda1);

 else,

 %%%%%%%% SEMI-SUPERVISED SETTING %%%%%%%%%%

 A = semi_supervised_setting(trset, labels,

KKsingle_ds(:,:,ds), lambda1, lambda2);

 end

 % Predictions

 predictions = A' * Diff_Kernel * A;

 % TRAINING/TEST

 %%%%%%%%%%%%%%%%%%%%

 [AUC, ROC, bthresh, accuracy] =

evaluate_trts(ppinteraction, trset, labels, predictions);

 AUC_trts_matrix_ds(cv, ds) = AUC;

 % TEST/TEST

 %%%%%%%%%%%%%%%%%%%%

 [AUC, ROC, bthresh, accuracy] =

evaluate_tsts(ppinteraction, trset, labels, predictions);

 AUC_tsts_matrix_ds(cv, ds) = AUC;

 % TRAINING/TEST AND TEST/TEST

 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

 [AUC, ROC, bthresh, accuracy] =

evaluate_trts_and_tsts(ppinteraction, trset, labels, predictions);

 AUC_comb_matrix_ds(cv, ds) = AUC;

 end

 end; % for cv

 %%%

 % SAVE RESULTS %

 %%%

 if(strcmp(method, 'mkl')),

 if option == 1,

 resultfile = ['MKL_SUPERVISED_RESULTS_PATH'

int2str(tr_perc_labels(tr_perc_index))];

 else,

 resultfile = ['MKL_SEMISUPERVISED_RESULTS_PATH'

int2str(tr_perc_labels(tr_perc_index))];

 end

 else,

Input-Output Kernel Regression applied to protein-protein interaction network inference

53

 if option == 1,

 resultfile = ['SUM_SUPERVISED_RESULTS_PATH'

int2str(tr_perc_labels(tr_perc_index))];

 else,

 resultfile = ['SUM_SEMISUPERVISED_RESULTS_PATH'

int2str(tr_perc_labels(tr_perc_index))];

 end

 end

 % TRAINING/TEST

 %%%%%%%%%%%%%%%%%%%

 ROC_trts = squeeze(ROC_trts_matrix(:));

 AUC_trts = squeeze(AUC_trts_matrix(:));

 accuracy_trts = squeeze(accuracy_trts_matrix(:));

 ROC_trts_average = averageROC(ROC_trts);

 AUC_trts_average = sum(AUC_trts)/size(AUC_trts,1);

 accuracy_trts_avg = sum(accuracy_trts)/size(accuracy_trts,1);

 % TEST/TEST

 %%%%%%%%%%%%%%%%%%%

 ROC_tsts = squeeze(ROC_tsts_matrix(:));

 AUC_tsts = squeeze(AUC_tsts_matrix(:));

 accuracy_tsts = squeeze(accuracy_tsts_matrix(:));

 ROC_tsts_average = averageROC(ROC_tsts);

 AUC_tsts_average = sum(AUC_tsts)/size(AUC_tsts,1);

 accuracy_tsts_avg = sum(accuracy_tsts)/size(accuracy_tsts,1);

 % TRAINING/TEST AND TEST/TEST

 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

 ROC_comb = squeeze(ROC_comb_matrix(:));

 AUC_comb = squeeze(AUC_comb_matrix(:));

 accuracy_comb = squeeze(accuracy_comb_matrix(:));

 ROC_comb_average = averageROC(ROC_comb);

 AUC_comb_average = sum(AUC_comb)/size(AUC_comb,1);

 accuracy_comb_avg = sum(accuracy_comb)/size(accuracy_comb,1);

 % Save results

 % Average the correlation scores for each data source

 for ds=1:size(feat_id,2),

 for cv=1:cross_validation_limit,

 rcorr_aux(cv) = rcorr(cv,ds);

 end

 rcorr_avg(ds) = sum(rcorr_aux)/cross_validation_limit;

 end

 save(resultfile , 'rcorr', 'rcorr_avg', 'lambda1','lambda2',...

 'AUC_trts', 'AUC_trts_average', 'ROC_trts',

'ROC_trts_average', 'accuracy_trts',...

 'AUC_tsts', 'AUC_tsts_average', 'ROC_tsts',

'ROC_tsts_average', 'accuracy_tsts',...

 'AUC_comb', 'AUC_comb_average', 'ROC_comb',

'ROC_comb_average', 'accuracy_comb');

Input-Output Kernel Regression applied to protein-protein interaction network inference

54

 % Each data source alone

 %%%%%%%%%%%%%%%%%%%%%%%%%%%%

 for ds=1:size(feat_id,2),

 if(strcmp(method, 'mkl')),

 if option == 1,

 resultfile = ['MKL_SUP_DATASOURCE_RESULT_PATH'

 'ppi_prediction_sup_tr_perc_'

int2str(tr_perc_labels(tr_perc_index)) '_'

featureNames{feat_id(ds)}];

 else,

 resultfile = ['MKL_SEMISUP_DATASOURCE_RESULT_PATH'

 'ppi_prediction_semisup_tr_perc_'

int2str(tr_perc_labels(tr_perc_index)) '_'

featureNames{feat_id(ds)}];

 end

 else,

 if option == 1,

 resultfile = ['SUM_SUP_DATASOURCE_RESULT_PATH'

 'ppi_prediction_sup_tr_perc_'

int2str(tr_perc_labels(tr_perc_index)) '_'

featureNames{feat_id(ds)}];

 else,

 resultfile = ['SUM_SEMISUP_DATASOURCE_RESULT_PATH'

 'ppi_prediction_semisup_tr_perc_'

int2str(tr_perc_labels(tr_perc_index)) '_'

featureNames{feat_id(ds)}];

 end

 end

 % TRAINING/TEST

 %%%%%%%%%%%%%%%%%%%

 AUC_trts = squeeze(AUC_trts_matrix_ds(:,ds));

 AUC_trts_average = sum(AUC_trts)/size(AUC_trts,1);

 % TEST/TEST

 %%%%%%%%%%%%%%%%%%%

 AUC_tsts = squeeze(AUC_tsts_matrix_ds(:,ds));

 AUC_tsts_average = sum(AUC_tsts)/size(AUC_tsts,1);

 % TRAINING/TEST AND TEST/TEST

 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

 AUC_comb = squeeze(AUC_comb_matrix_ds(:,ds));

 AUC_comb_average = sum(AUC_comb)/size(AUC_comb,1);

 % Save results

 save(resultfile , 'lambda1', 'lambda2',...

 'AUC_trts', 'AUC_trts_average', ...

 'AUC_tsts', 'AUC_tsts_average', ...

 'AUC_comb', 'AUC_comb_average');

 end

 end % end training percentage for

Input-Output Kernel Regression applied to protein-protein interaction network inference

55

 %%

 % HELP FUNCTIONS (next sections) %

 %%

end

Input-Output Kernel Regression applied to protein-protein interaction network inference

56

II. Input kernel

 % Split the samples in trainging and test sets

 %%

 function [trset,tsset] = createFold(Nall, tr_percentage),

 prRand = randperm(Nall);

 Ntr = round(Nall*tr_percentage);

 trset = prRand(1:Ntr)';

 tsset = prRand(Ntr+1:end)';

 end

 % Input Multiple Kernel

 %%

 function [KKAll, rcorr, KKsingle] = input_mk(feat_id, counts,

feats, featsBin, labelsC),

 % Input Kernel based on combining different data sources

 for ds=1:size(feat_id,2), % over all data sources

 % aid -> first index of feats from data source ds

 % bid -> last index of feats from data source ds

 if ds==1,

 aid = 1;

 bid = counts(ds);

 else,

 aid = sum(counts(1:ds-1))+1;

 bid = sum(counts(1:ds));

 end;

 % Take only current data source and reorder samples in

training/testing

 feat_cur = feats(:,aid:bid);

 feat_cur_bin = featsBin(:,aid:bid);

 if strcmp(featureNames{feat_id(ds)},'expression'),

 % RBF kernel, improves correlation and accuracy %%%%

 sigm = 1;

 n1sq = sum(feat_cur'.^2,1);

 n1 = size(feat_cur',2);

 D = (ones(n1,1)*n1sq)' + ones(n1,1)*n1sq -

2*feat_cur*feat_cur';

 KKsingle(:,:,ds) = exp(-D/(2*sigm^2));

 % Normalize kernel - 1-diagonal

 KKsingle(:,:,ds) = KKsingle(:,:,ds)./

(sqrt(diag(KKsingle(:,:,ds)))*sqrt(diag(KKsingle(:,:,ds)))' +

0.00000001);

Input-Output Kernel Regression applied to protein-protein interaction network inference

57

 else, % Otherwise

 % Linear kernel %%%%%%%%%%

 KKsingle(:,:,ds) = full(feat_cur*feat_cur');

 % Normalize kernel - 1-diagonal

 KKsingle(:,:,ds) = KKsingle(:,:,ds)./

(sqrt(diag(KKsingle(:,:,ds)))*sqrt(diag(KKsingle(:,:,ds)))' +

0.00000001);

 end;

 % Correlation

 KKdatasource = KKsingle(:,:,ds);

 % Center kernel matrix of the datasource ds

 KKdatasource = KKdatasource -

repmat(mean(KKdatasource,1),size(KKdatasource,1),1)...

 - repmat(mean(KKdatasource,2),1,size(KKdatasource,1))...

 +

repmat(mean(KKdatasource(:)),size(KKdatasource,1),size(KKdatasource

,1));

 % Compute the correlation between the data source and the

output

 KKdatasource_aux = KKdatasource(1:size(labelsC,1),

1:size(labelsC,1));

 rcorr(ds) =

sum(KKdatasource_aux(:).*labelsC(:))/(sqrt(sum(KKdatasource_aux(:).

^2))*sqrt(sum(labelsC(:).^2)));

 end; % for ds

 % Sum

 % KKAll = sum(KKsingle,3);

 % Mean

 KKAll = sum(KKsingle,3)/size(feat_id,2);

 % Normalize the input kernel matrix

 KKAll = KKAll./ (sqrt(diag(KKAll))*sqrt(diag(KKAll))' +

0.00000001);

 end

 % Multiple Kernel Learning on different data sources

 %%%

 function [KKAll, rcorr, KKsingle_aux] = mk_learning(feat_id,

counts, feats, featsBin, labelsC),

 % Input kernel based on combining different data sources

 for ds=1:size(feat_id,2), % over all data sources

 % aid -> first index of feats from data source ds

 % bid -> last index of feats from data source ds

 if ds==1,

 aid = 1;

 bid = counts(ds);

 else,

 aid = sum(counts(1:ds-1))+1;

Input-Output Kernel Regression applied to protein-protein interaction network inference

58

 bid = sum(counts(1:ds));

 end;

 % Take only current data source and reorder samples in

training/testing

 feat_cur = feats(:,aid:bid);

 feat_cur_bin = featsBin(:,aid:bid);

 if strcmp(featureNames{feat_id(ds)},'expression'),

 % RBF kernel, improves correlation and accuracy %%%%%%%%%%

 sigm = 1;

 n1sq = sum(feat_cur'.^2,1);

 n1 = size(feat_cur',2);

 D = (ones(n1,1)*n1sq)' + ones(n1,1)*n1sq -

2*feat_cur*feat_cur';

 KKsingle(:,:,ds) = exp(-D/(2*sigm^2));

 % Normalize kernel - 1-diagonal

 KKsingle(:,:,ds) = KKsingle(:,:,ds)./

(sqrt(diag(KKsingle(:,:,ds)))*sqrt(diag(KKsingle(:,:,ds)))' +

0.00000001);

 else, % Otherwise

 % Linear kernel %%%%%%%

 KKsingle(:,:,ds) = full(feat_cur*feat_cur');

 % Normalize kernel - 1-diagonal

 KKsingle(:,:,ds) = KKsingle(:,:,ds)./

(sqrt(diag(KKsingle(:,:,ds)))*sqrt(diag(KKsingle(:,:,ds)))' +

0.00000001);

 end;

 KKsingle_aux(:,:,ds) = KKsingle(:,:,ds);

 KKdatasource = KKsingle(:,:,ds);

 % Center kernel matrix of the datasource ds

 KKdatasource = KKdatasource -

repmat(mean(KKdatasource,1),size(KKdatasource,1),1)...

 - repmat(mean(KKdatasource,2),1,size(KKdatasource,1))...

 +

repmat(mean(KKdatasource(:)),size(KKdatasource,1),size(KKdatasource

,1));

 % Compute the correlation between the data source and the

output

 KKdatasource_aux = KKdatasource(1:size(labelsC,1),

1:size(labelsC,1));

 rcorr(ds) =

sum(KKdatasource_aux(:).*labelsC(:))/(sqrt(sum(KKdatasource_aux(:).

^2))*sqrt(sum(labelsC(:).^2)));

 % Weight the datasource

 KKsingle(:,:,ds) = KKsingle(:,:,ds).*rcorr(ds);

 end; % for ds

Input-Output Kernel Regression applied to protein-protein interaction network inference

59

 % Mean

 KKAll = sum(KKsingle,3)/size(feat_id,2);

 % Normalize the input kernel matrix

 KKAll = KKAll./(sqrt(diag(KKAll))*sqrt(diag(KKAll))' +

0.00000001);

 end

Input-Output Kernel Regression applied to protein-protein interaction network inference

60

III. Kernel Regression

 % SUPERVISED setting

 %%%%%%%%%%%%%%%%%%%%%%%

 function [A] = supervised_setting(trset, KKAll, lambda1),

 B = lambda1 * eye(size(trset,1),size(trset,1)) +

KKAll(1:size(trset,1),1:size(trset,1));

 A = B \ KKAll(1:size(trset,1),:);

 end

 % SEMI-SUPERVISED setting

 %%%%%%%%%%%%%%%%%%%%%%%%%%%

 function [A] = semi_supervised_setting(trset, labels, KKAll,

lambda1, lambda2),

 U = zeros(size(trset,1), size(labels,1));

 U(:,1:size(trset,1)) = eye(size(trset,1));

 LKKAll = diag(sum(KKAll)) - KKAll;

 LKKAll = expm(-Beta2 * LKKAll);

 % Normalize matrix

 LKKAll = LKKAll ./ (sqrt(diag(LKKAll)) * sqrt(diag(LKKAll))');

 B = U/(lambda1 * eye(size(labels,1)) + KKAll * (U'*U) +

2*lambda2*KKAll*LKKAll);

 A = B * KKAll;

 end

Input-Output Kernel Regression applied to protein-protein interaction network inference

61

IV. Result processing

 % Evaluate TR/TS

 %%%%%%%%%%%%%%%%%%%

 function [AUC, ROC, bthresh, accuracy] =

evaluate_trts(ppinteraction, trset, labels, predictions),

 Mat_test = ones(size(ppinteraction,1),size(ppinteraction,1));

 Mat_test(1:size(trset,1), 1:size(trset,1)) = 0;

 Mat_test(size(trset,1)+1:end, size(trset,1)+1:end) = 0;

 Mat_test = triu(Mat_test,1);

 indices_test = find(Mat_test == 1)';

 % Compare prediction and known labels

 [AUC, ROC, bthresh] = getAUCandROC(labels(indices_test)',

predictions(indices_test)');

 % Balanced accuracy

 accuracy = getAccuracy(labels(indices_test)',

predictions(indices_test)', bthresh);

 end

 % Evaluate TS/TS

 %%%%%%%%%%%%%%%%%%%

 function [AUC, ROC, bthresh, accuracy] =

evaluate_tsts(ppinteraction, trset, labels, predictions),

 Mat_test = ones(size(ppinteraction,1),size(ppinteraction,1));

 Mat_test(1:size(trset,1), :) = 0;

 Mat_test(:, 1:size(trset,1)) = 0;

 Mat_test = triu(Mat_test,1);

 indices_test = find(Mat_test == 1)';

 % Compare prediction and known labels

 [AUC, ROC, bthresh] = getAUCandROC(labels(indices_test)',

predictions(indices_test)');

 % Balanced accuracy

 accuracy = getAccuracy(labels(indices_test)',

predictions(indices_test)', bthresh);

 end

 % Evaluate TR/TS and TS/TS

 %%%%%%%%%%%%%%%%%%%%%%%%%%%%

 function [AUC, ROC, bthresh, accuracy] =

evaluate_trts_and_tsts(ppinteraction, trset, labels, predictions),

 Mat_test = ones(size(ppinteraction,1),size(ppinteraction,1));

 Mat_test(1:size(trset,1), 1:size(trset,1)) = 0;

 Mat_test = triu(Mat_test,1);

 indices_test = find(Mat_test == 1)';

Input-Output Kernel Regression applied to protein-protein interaction network inference

62

 % Compare prediction and known labels

 [AUC, ROC, bthresh] = getAUCandROC(labels(indices_test)',

predictions(indices_test)');

 % Balanced accuracy

 accuracy = getAccuracy(labels(indices_test)',

predictions(indices_test)', bthresh);

 end

Input-Output Kernel Regression applied to protein-protein interaction network inference

63

V. Accuracy, ROC and AUC analysis

 % Get accuracy

 %%%

 function [accall] = getAccuracy(labels, predictions, bthresh),

 predict_label_bin = binarize(predictions,bthresh);

 TPos =

size(find(arrayfun(isequpos,predict_label_bin,labels)),1);

 TNeg =

size(find(arrayfun(isequneg,predict_label_bin,labels)),1);

 Pos = size(find(labels==1),1);

 if Pos==0,

 'loocv Warning - no positive examples!'

 end;

 Neg = size(find(labels==0),1);

 if Neg==0,

 'loocv Warning - no negative examples!'

 end;

 accall = (0.5*TPos/Pos + 0.5*TNeg/Neg);

 end

 % Analysis using AUC and ROC

 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%

 function [AUC, ROC, bthresh] = getAUCandROC(labels, predictions),

 TPR = 0; % True positive rate

 FPR = 0; % False positive rate

 TPRprev = 0;

 FPRprev = 0;

 AUC = 0;

 [pred_sort,idsort] = sort(predictions,'descend');

 labelsort = labels(idsort);

 Pos = size(find(labels==1),1);

 if Pos==0,

 'ppiFrame: Warning - no positive examples!'

 end;

 Neg = size(find(labels==0),1);

 if Neg==0,

 'ppiFrame: Warning - no negative examples!'

 end;

 %[pred_sort labelsort]

 i=1;

 lprev = -1000;

 ROC = [];

 min_distance = 100000;

Input-Output Kernel Regression applied to protein-protein interaction network inference

64

 min_distance_index = -1;

 while i<=size(pred_sort,1),

 if pred_sort(i)~=lprev,

 ROC = [ROC; FPR/Neg TPR/Pos];

 AUC = AUC + calcarea(FPR,FPRprev,TPR,TPRprev);

 lprev = pred_sort(i);

 TPRprev = TPR;

 FPRprev = FPR;

 end;

 % Work out distance to point (0,1)

 distance = sqrt((0-FPR/Neg)^2+(1-TPR/Pos)^2);

 if distance < min_distance,

 min_distance = distance;

 min_distance_index = i;

 end

 if labelsort(i)==1,

 TPR = TPR+1;

 else

 FPR = FPR+1;

 end;

 i = i+1;

 end; % end for while

 % Work out distance to point (0,1)

 distance = sqrt((0-FPR/Neg)^2+(1-TPR/Pos)^2);

 if distance < min_distance,

 min_distance = distance;

 min_distance_index = i;

 end

 ROC = [ROC; FPR/Neg TPR/Pos];

 AUC = AUC + calcarea(FPR,FPRprev,TPR,TPRprev);

 AUC = AUC/(Pos * Neg);

 bthresh = pred_sort(min_distance_index);

 end

 % Calcule area under the ROC

 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

 function A=calcarea(X1,X2,Y1,Y2),

 base = abs(X1-X2);

 height = (Y1+Y2)/2;

 A = base*height;

 end

 % Average ROC

 %%%%%%%%%%%%%%%

 function [ROCav] = averageROC(ROCset),

Input-Output Kernel Regression applied to protein-protein interaction network inference

65

 ROCav = [];

 if size(ROCset,2)>size(ROCset,1),

 ROCset = ROCset';

 end;

 % Average ROC

 s = 1;

 for i=0:0.05:1,

 ROCav(s,1) = i;

 tprsum = 0;

 for k=1:size(ROCset,1)

 tprsum = tprsum+TPR_FOR_FPR(i,ROCset{k},size(ROCset{k},1));

 end;

 ROCav(s,2) = tprsum/size(ROCset,1);

 s = s+1;

 end;

 end

 % TPR for FPR

 %%%%%%%%%%%%%%%

 function [tpr] = TPR_FOR_FPR(fprsamp, ROC, npts),

 tpr = 0;

 j=1;

 while j<npts & ROC(j+1,1)<fprsamp,

 j=j+1;

 end;

 if ROC(j,1) == fprsamp,

 tpr = ROC(j,2);

 else,

 tpr = INTERPOLATE(ROC(j,:),ROC(j+1,:),fprsamp);

 end;

 end

 % Interpolate two ROC adjacent points

 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

 function [tpr] = INTERPOLATE(roc_point1, roc_point2, fprsamp),

 % Linear interpolation

 tpr = roc_point1(2)+(roc_point2(2)-roc_point1(2))*(fprsamp-

roc_point1(1))/(roc_point2(1)-roc_point1(1));

 end

