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Resumen 
El estudio de las redes de interacción de proteínas ha recibido una gran atención por 

parte de la comunidad investigadora en los últimos años. Sin embargo, los estudios 

experimentales para la reconstrucción de este tipo de estructures son caros. 

Consecuentemente, varios métodos de aprendizaje automático para inferir redes de 

interacción de proteínas han sido desarrollados. En este trabajo presento la 

implementación y el análisis del Input-Output Kernel Regression (IOKR) desarrollado 

por [9, 10] para llevar a cabo la inferencia utilizando varios conjuntos de datos 

experimentales. IORK está basado en el aprendizaje de un kernel de salida que nos 

permita aplicar modelos de regresión en un espacio de características donde podemos 

calcular la similitud de pares de proteínas para inferir la existencia de interacción. 

Además, esta aproximación extiende el Kernel Ridge Regression a una aproximación 

semi-supervisada donde la inferencia se convierte en completar una red. La técnica de 

aprendizaje de múltiples kernels es aplicada en los datos de entrada para tratar las 

diferentes fuentes de datos. Finalmente, comparo el rendimiento de la implementación 

con otras aproximaciones supervisadas para la inferencia de redes de interacción de 

proteínas. 

Palabras clave: proteína, inferencia de redes, interacción, output kernel, regresión, 

aprendizaje de kernel, inferencia, Saccharomyces cerevisiae 

Abstract 
 The study of protein-protein interaction networks has received a lot of attention by 

the research community lately. However, the experimental studies to reconstruct this 

kind of structures are expensive. Consequently, several machine learning approaches 

have been developed that automatically infer PPI networks. In this work I present the 

implementation and analysis of the Input-Output Kernel Regression (IOKR) developed 

by [9, 10] to compute the inference using various experimental data sets. IOKR is based 

on the learning of an output kernel that let us apply regression models on a feature 

space where we can compute the similarity of pairs of proteins to infer the existence of 

interactions. Furthermore, this approach extends the Kernel Ridge Regression to a 

semi-supervised approach where the inference turns into a matrix completion. The 

Multiple Kernel Learning is applied on the input side to deal with the different data 

sources. Finally, I compare the performance of the implementation with other 

supervised approaches for the inference of PPI networks. 

Keywords: protein, network inference, interaction, output kernel, regression, kernel 

learning, Saccharomyces cerevisiae 
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1. Introduction 
 

1.1. Motivation 

Nowadays, the understanding of biological networks is one of the major challenges on 

the study of the systems biology. These structures comprise among others protein-

protein networks, metabolic pathways and gene regulatory networks. 

The knowledge extracted from this kind of biological structures has many applications. 

Drug production can be improved with a better level of knowledge of the protein 

interactions of a living cell, leading to produce better drugs. Furthermore, the 

interaction between proteins can be used to annotate proteins based on the properties 

of their neighboring proteins in the network. Also, the understanding of metabolic 

pathways helps to understand how biological processes are performed in an organism, 

for instance degradation or synthesis. 

With the appearance of new high-throughput technologies for analysis of biological 

material, such as next generation sequencing techniques, the amount of experimental 

data have highly increased. This fact demands new approaches to analyze huge 

amounts of data with reasonable and feasible computational time and space. 

1.2. Problem statement 

Currently, the amount of experimental data of biological networks is still not enough to 

reconstruct most of these structures. Moreover, the extraction of this data in wet 

experiments in a laboratory is a difficult task that implies high costs.  

Because of that, several machine learning approaches have been developed to infer the 

structure of biological networks. The inference of this kind of networks can be seen as a 

classification problem, so machine learning techniques can be used in order to solve it 

[5]. 

The aim of the machine learning models is the classification of each link of the network. 

In the case of PPI networks, it is a binary classification task because we look for the 

existence or absence of an interaction between two proteins. 

The inference of a biological structure, in this case a PPI network, consists of training a 

model using some kind of input data in order to be able to predict the labels of the links 
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of the network. As said above, the amount of well-known protein-protein interactions is 

low, therefore, this setup can help to correct existing data and find new interactions. 

Several machine learning models can be used for this purpose. I have selected the 

Input-Output Kernel Regression because it has shown in previous applications a better 

performance and it requires less computational time and space [9, 10]. 

1.3. Objectives 

The goal of this project is the implementation and testing of the machine learning 

approach based on Kernel Ridge Regression named Input-Output Kernel Regression 

(IOKR) [9, 10] for the inference of protein-protein interaction networks. Multiple 

Kernel Learning is applied to combine the different input data sources to get a better 

performance. 

The implementation has been done in MATLAB. Experiments have been carried out in 

order to tune the parameters of the model and the validation with curated data of the 

PPI interaction network of the yeast Saccharomyces cerevisiae’s protein secretory 

machinery [1].  Moreover, I compare the performance of our model with other 

implementations on the inference of PPI networks. 

Therefore, specific tasks were defined in order to clarify the different stages of the 

project: 

1. Review the state-of-the-art methods for the inference of PPI networks using 

machine learning. 

2. Implementation of the Input-Output Kernel Regression (IOKR) as given in [9, 

10] from a given MATLAB code developed in the work [9]. 

3. Testing the model with data from the yeast Saccharomyces cerevisiae. Different 

experiments have been carried out: parameter tuning, supervised vs. semi-

supervised performance and Multiple Kernel Learning (MKL) vs. no MKL 

performance. 

4. Comparing the results of the IOKR with other state-of-the-art methods. 

1.4. Structure of the project 

This work is structured as follows. First, in Section 2, I am going to present the 

background of the studied problem, which is the inference of protein-protein 

interaction networks. Moreover, I describe other state-of-the-art methods that have 
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been used to solve the problem and the regression methods, which are the basis of the 

model I have used. 

In Section 3, once I have presented the background of our project I describe the 

methods that I have used. The section is divided in two main parts. First, I describe the 

Input-Output Kernel Regression which is used for inferring the interaction labels. 

Then, I introduce the Multiple Kernel Learning for improving the fusion of the data 

sources on the input side. 

Section 4 covers the experimental setup which includes the parameter tuning. I present 

the experiments that are used to analyze the performance of the classifier and the 

comparison between the different settings of the model. Furthermore, I compare the 

performance of IOKR with other state-of-the-art methods. 

In Section 5, I discuss the experimental results from the previous section. Finally, I 

summarize the work of the project in the conclusions in Section 6. 
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2. Background 
 

In the following sections, I describe the necessary background to understand the 

implemented model. First, I explain the concept of PPI networks. Later, I give a brief 

description of the kernel trick used in high dimensional spaces. Then, I briefly describe 

previous approaches for the inference of graphs. Finally, I introduce the Kernel Ridge 

Regression, which is the basis of the IOKR. These concepts will help the reader to 

understand the Input-Output Kernel Regression. 

2.1. Protein-protein interaction networks 

Proteins are large biological molecules made of a chain of amino acids held together by 

peptide bonds. They are the most abundant biological material in a cell, almost 50% of 

it. These molecules are the product of transcription and translation of DNA (Figure 1). 

The DNA sequence determines the amino acids that are produced when it is read. 

Proteins are versatile molecules, meaning that the same protein can show different 

amino acid chains [2]. 

This kind of molecule is involved in the 

cell functionality, performing different 

biological functions depending on the 

protein type. For example, enzymes are 

in charge of catalyzing chemical 

reactions in the cells, for instance 

accelerating or delaying them. 

Furthermore, there are antibodies 

which are the defenses of the body 

against foreign invasions, as viruses or 

bacteria, and transport proteins in 

charge of moving molecules around the 

organism [2]. 

 

Figure 1: Process for generating the proteins [17]

Changes in the protein production or protein properties can have external effects. The 

lack or the excess of a certain protein can lead to a disease in the organism [2]. For 

instance, the Proteinuria, which is the excess of the serum protein, can cause kidney 

diseases. On the other hand, some changes in a protein can lead to health benefits, in 

such cases the mutation is known as evolution. 
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A protein-protein interaction (PPI) network defines the physical and functional 

contacts between a set of proteins in a cell or a living organism. These interactions are 

not with other molecules such as DNA, RNA or ligands. The interactions needed for 

basic functionality of the proteins, such as production or degradation, are not included 

in this kind of structure [2]. Figure 2 shows an example of a PPI network where the 

protein TMEM8A is involved. 

 

Figure 2: Protein Interaction Network for TMEM8A in humans (2013) [18] 

The analysis of PPI networks is part of the field of study called interactomics [3]. 

Interactomics is the study of the interactions among proteins and between proteins and 

other molecules. The mapping of all the interactions of a living being is called 

interactome. 

As described in [3], several experimental techniques have been developed to measure 

biological interactions in the laboratory. For example, the yeast two-hybrid system 

allows the identification of physical interactions between proteins under in vivo 

conditions using a bay-prey system. There exist other experimental methods such as 

the Affinity purification-mass spectrometry (APMS). 

2.2. The Kernel Trick 

Basic Machine Learning methods model the input output relations linearly. However, 

real problems tend to be more complex and require high dimensional representation of 

the data. As described in [4], we can use kernels to avoid working in such high 

dimensional spaces.  

In inference tasks we have the domain   which is represented by a nonempty set of 

inputs    (predictor variables) and the domain   that represents the targets (response 

variables). In Machine Learning the aim is to predict the target     of an unseen 

input instance    . 
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The   is selected by choosing a pair       similar to the training instances [4]. 

Consequently, we need to measure the similarity between instances in the domains   

and  . A kernel           can be used as the similarity measure. For all       , a 

kernel satisfies: 

        〈          〉 

Where        is a mapping to a dot product space  . This space   is an infinite 

dimensional product space, usually high dimensional, sometimes called feature space. 

This property defined for the input domain can be transferred to the output domain  . 

The equation above is known as the Kernel Trick. Consequently, we can compute the 

similarity of two instances by the evaluation of a kernel instead of computing it as a dot 

product in a high dimensional feature space [4].  

2.3. Graph inference 

A protein-protein interaction network can be seen as an undirected graph, where each 

vertex represents a protein of the network [5, 6, 16]. In this graph, there is an edge 

between two vertices if the proteins interact. 

Let         be an undirected graph that represents a PPI network. The finite set of 

vertices                is the set of proteins of an organism. The set of edges 

      defines how the vertices of the graph are connected, which means how the 

proteins of the network interact with each other [5]. A feature vector        is provided 

for each protein    of the network.  

The graph inference can be considered as a pattern recognition problem, due to the fact 

that we can assign a label value    to an edge that defines whether two vertices are 

connected [4]. An edge will be labeled with 1 if its vertices represent two proteins that 

interact with each other in the PPI network, otherwise, the edge will be marked with 0. 

As a result, I am interested in learning a model that can predict if two proteins interact. 

As I have already mentioned, many Machine Learning approaches have been developed 

to solve this problem. We can divide them in two groups, unsupervised and supervised 

inference models. Unsupervised methods consist of inferring the labels of the edges 

directly from data of the proteins without using the data from the labeled edges. For 

this purpose several techniques have been used like probabilistic methods such as 

Bayesian networks or dynamical system equations [5]. 
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As I explained in the previous section, various experimental techniques have provided 

well-known interactions and non-interactions that can be used for performing 

supervised machine learning. Supervised approaches aim for training a binary classifier 

using the given labeled edges as training set to infer unknown edges in a PPI network. 

Let   be the training set for a supervised model, then                       (     )  

where      is an edge of the graph,    is the label of the edge and   | |. 

In this work I am focusing on supervised methods, where the Input-Output Kernel 

Regression is included, because it has been shown that these methods outperform the 

unsupervised models [16]. In the following sections I review two general supervised 

models for the graph inference based on local models and global models as described in 

[5] and the Output Kernel Tree [6]. 

2.3.1. Local Models 

This approach uses each vertex of the graph as seed and infers the label of the edges 

between this vertex and the other vertices of the graph. For each seed vertex, we solve a 

local pattern recognition task for the subgraph around the seed. 

First, we select a vertex from   as seed vertex      . Then, we extract a subset from   

that includes the       and the other vertexes of the graph connected with      . This 

model labels the vertices instead of the edges, so the resulting training set is       

(   
    

        
    

  ) where   
    is a vertex connected with       and   

  is the label of 

edge between   
  and       [5]. 

Then, we use the set       to train a machine learning algorithm, for example Support 

Vector Machine, in order to infer the labels of every vertex    that are not in      . The 

label of    is assigned to the edge between    and      . Each of the previous steps is 

repeated for each vertex of the set  , choosing it as      . Finally, we combine the 

predictions of the iterations over an edge’s label to obtain the final label of the edge. 

The pattern recognition algorithm used in this approach exploits the idea that if a 

vertex   , which is known to be connected with the      , is similar to a vertex    , then, 

it is likely that     is also connected to       [5]. 

2.3.2. Global Models 

The previously introduced local models do not take advantage of the whole training set 

to infer new edges due to the fact that in each iteration only the labeled edges around 
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the seed vertex are used. Consequently, global models have been developed in order to 

train a classifier using the whole training set. 

These models are based on the idea of inferring unknown edges between two vertices 

using data of similar pairs of vertices with known edges. Then, we try to find two 

vertices     and     , where     is similar to   and      is similar to   . Consequently, it is 

reasonable to think that the label of the edge between     and      will be the same of the 

edge        [5]. This inference cannot be done on local models. 

Vert describes in [5] the use of the Kernel Trick to compute the similarity of pairs of 

vertices. First, we use the direct product         to represent the pair of vertices   and 

   in a feature space where a binary classification of the pairs can be done. 

                    

Where      and       are the feature vectors of the vertices   and   . This 

representation allows for applying the kernel trick to compute the similarity between 

two pairs of vertices. Let    be the kernel between two pairs of vertices        and 

           [5]. 

  (                 )                         (          )
 
(              )

                                  
        

        

Where          is a kernel that computes the similarity between two vertices. 

Basically for the similarity between        and            we compare   to     and    to 

    . The measure of similarity of the kernel    can be used in a machine learning 

method such as Support Vector Machines to do the classification of new edges. 

2.3.3. Output Kernel Trees 

As mentioned, several machine learning approaches have been developed for the 

inference of biological networks. The Output Kernel Trees (OK3) [5] is one of the 

supervised models for this task. This approach proposes the kernelization of regression 

trees to learn a kernel that allows making predictions about the edge between two 

vertices in a graph. Moreover, this model uses the original input space that gives more 

interpretability contrary to other methods with black-box models [6]. 

Based on the formulation of a graph that I have introduced at the beginning of this 

section, this method defines a positive definite symmetric kernel         that 

encodes the proximity of two vertices in the graph. The kernel   gives a higher value to 
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pairs of connected vertices. As explained in Section 2.2 this kernel induces a feature 

map   into a Hilbert Space  . 

        〈          〉 

The aim is to find an approximation of   denoted as  ̂ described by their input features 

[5]. The OK3 method tries to find an approximation  ̂    of the output feature vector 

     by growing a binary classification tree on the input vectors of the training set [5]. 

The construction of the tree using binary tests over the input features of the vertices is 

based on the minimization of the square distance in   between the training samples in 

the different nodes and leafs. Each leaf   of the tree is labeled with the average of the 

output feature vectors  ̂  of the different learning samples of the leaf. An 

approximation  ̂     of the output feature vector of a new vertex   is given by 

searching in the tree the proper leaf. 

Given two vertices   and   , we have found that they lie on the leafs    and    

respectively. Then, we can approximate its kernel value  ̂       averaging the sum of 

the kernel values between the learning samples of    and    given by the kernel  . OK3 

predicts the binary label of the edge between a pair of vertices        thresholding 

 ̂       [6]. If we obtain a value over the threshold, we will predict that there exists 

interaction between the proteins represented by the vertices   and   . 

2.4. Regression methods 

The Input-Output Kernel Regression is based on the application and extension of 

Kernel Ridge Regression. Regression models are widely used in machine learning. 

Before describing the IOKR model, a brief introduction to regression methods is given. 

2.4.1. Linear Regression models 

The linear regression consists of finding a function    |   that shows how the features 

of the input data (X) condition the output (Y). Let X be the vector that represents the 

features of an input object               , where    represents the ith-feature. 

Moreover, let   be a vector of regression parameters. The linear function between the 

input and output is: 

        ∑     
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In order to learn the values of   I have a set of training data                       

         where    is the feature vector of the ith instance and    is the target or output 

value. We use the least square method to choose the   that minimizes the residual sum 

of squares (RSS). 

       ∑          
 

 

   

 ∑(   (   ∑     

 

   

))

 
 

   

 

As described in [6] we can minimize the previous cost function by taking derivatives. 

First, we rewrite the residual sum-of-squares as follows. 

                     

Where X is a matrix with size           with each row is an input vector from the 

training set with an additional first column with 1,   is the number of samples in the 

training set and   is size of the input vectors. Then, we derive by   obtaining the unique 

solution of the minimization problem [6]. 

 ̂            

The unique solution is an approximation of the vector of regression parameters. This 

approximation is used in the initial function   to predict the output of a new input 

vector. 

2.4.2. Ridge Regression  

The Ridge Regression, also known as Tikhonov regularization, is a type of linear 

regression model where a regularization constant is introduced to achieve “weight 

decay” [7]. The purpose of the regularization term is to penalize the norm of the 

parameter vector   to avoid overfitting. Consequently, the cost function can be written 

as follows. 

     ∑          
 

 

   

   ‖ ‖  ∑(   (   ∑     

 

   

))

 
 

   

   ‖ ‖  

Where   is the vector of regression parameters,    is an input vector of the training set, 

   is the output of such input vector and   is the regularization term. As described in [7] 

the optimum vector   can be computed by taking the derivatives from the previous cost 

function. 
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  (   ∑    
 

 

)

  

 (∑    

 

) 

Where   is the identity matrix. The value of the regularization parameter   has to be 

determined experimentally. For this purpose, we can use for example cross validation 

methods. 

2.4.3. Kernel Ridge Regression  

The Ridge Regression algorithm can be combined with kernels to carry out the task of 

learning a non-linear function between input and output. The input feature vectors are 

not anymore defined by a value   , instead a transformed feature vector       is used. 

As a consequence, we can rewrite the derivation of the parameter vector   as follows 

[7]. 

            
    

Where   is a matrix where each row   contains the feature vector of the instance   ,    is 

the identity matrix of size   and   is a vector with the output value of each instance. In 

order to predict the value of a new instance   I project its feature vector onto the 

hyperplane defined by  . The linear regression model that retrieves the prediction  ̂ of 

a new data-case can be defined as follows. 

 ̂              

This formulation let us introduce a kernel   and its Gram matrix   to encode the 

similarity between the different instances. Then,  ̂ can be written as follows. 

 ̂            
                  

       

Where the values of the Gram matrix are defined as  (     )       
      , where    

and    are two different instances. This Gram matrix defines the kernel             . 
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3. Methods 
 

The approach used for the network inference in this work is based on the framework 

called Input-Output Kernel Regression introduced in [9, 10]. This method extends the 

regression models explained in Section 2.4. Moreover, the work in [9, 10] extends the 

IOKR to a semi-supervised setting. Both settings have been reviewed and implemented 

to be analyzed in this work. 

IOKR contrary to OK3, described in the Section 2.3.3, uses the kernelized input space 

to learn an output kernel. Using this output kernel we can encode the proximity of the 

proteins to each other in the PPI network. As in OK3 does, the proximity value of a pair 

of proteins is thresholded to infer whether an interaction exists or not. Although I focus 

in this work on the inference of PPI networks, IOKR can be applied on the link 

prediction of other graph-based structures such as social networks [9]. 

The data for PPI network inference usually comes from different sources. 

Consequently, I need to implement methods to combine the input data sources in order 

to learn the input kernel. The selected methods are a simple average sum and a 

Multiple Kernel Learning using the Kernel Centered Alignment to compute a weighted 

combination of the data sources. 

First of all, the following information is available for the network inference: 

 A set of proteins  , where a protein     is represented by a feature vector      

that describes different properties of the protein, where         . This set 

defines the full graph  . 

 We define a subset      that represents the proteins of the training set, where 

              . This set contains a total of   proteins from a random split of   

and defines a subgraph   . 

 We are given an adjacency matrix   of size    . Let    and    be two proteins 

of the training set,          is the label of the edge between the vertices that 

represent    and    on the graph  . 

Once I have defined the available data, I review the applied methods based on the 

Input-Output Kernel Regression and the Centered Alignment used for Multiple Kernel 

Learning of the input kernel.  
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3.1. Input-Output Kernel Regression 

Previously, supervised approaches revised in the Section 2.3 are based on the 

classification of the edges of the graph using a binary pairwise classifier that has two 

vertices as an input. The Input-Output Kernel Regression transforms this classification 

problem into the learning of an approximation of the output kernel. 

The IOKR is based on the kernelization of the output side defining an output feature 

space   . In this output feature space we can encode the proximity of the vertices in the 

graph using an output kernel    in order to predict the label of the edges thresholding 

this proximity value. The method consists of the use of the Kernel Trick in the output 

feature space, similarly to OK3, to learn the output kernel to encode the proximity of 

the vertices in such feature space. 

Let           be a PDS kernel that gives the proximity of two nodes in a PPI 

network.  There exists a Hilbert Space    which corresponds to the output feature 

space. The proteins of the network are mapped in    using the function       . The 

proximity of two proteins of the PPI network encoded by the output kernel can be 

defined as the dot product of their images in the output feature space. 

               
   〈          〉  

 

The output kernel    is unknown, thus, I need to learn an approximation  ̂  based on 

the input data. 

          ̂     
   〈          〉  

 

In that way, the aim is learning a mapping function        which predicts the output 

feature vector      of a protein   in the feature space    (Figure 3) where we can 

measure its proximity. This is similar to the OK3 where the prediction is given by the 

label of a leaf of the tree. Then, the IOKR proposes a classifier function        

      that thresholds the proximity value given by the output kernel  ̂  to infer whether 

two proteins   and    of the PPI network interact [9]. 

      
        ̂     

          〈          〉  
    

As I have mentioned, we do not know the output kernel   , however, we know the 

output Gram matrix    
 that gives information about the proximity of two proteins of 
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the training set   in   . Let    
 be a positive semi-definite matrix of dimension     

where                    
         (     ).  

We need to compute a kernel that encodes the proximity between the vertices in the 

graph. The diffusion kernel is suitable to encode the proximity [6, 9, 10]. Then, the 

Gram matrix is defined as    
          , where        is the Laplacian matrix, 

  is the degree matrix for the vertices of the training set and    is the adjacency matrix 

of the graph   . The parameter    controls the diffusion over the graph and its value 

will be set by cross validation. 

IOKR kernelizes the input space   to encode the similarity between proteins of a PPI 

network. Consequently, the input data is defined by a Gram matrix    that encodes the 

similarity of each possible pair of proteins of  .    is defined by a PDS kernel       

   , so each component of the matrix is given by                           . 

Contrary to the output kernel, the input kernel    is known. The computation of the 

matrix    is discussed in the Section 3.2. 

As I described above, this model extends the Kernel Ridge Regression. In this case I am 

looking for the function   that computes an approximation of the output feature vector 

of a protein in   .To develop the IOKR, we assume that there exists a general matrix   

with dimension that projects the feature vector      of a protein   into the feature 

space    as the parameter vector   does in Kernel Ridge Regression (KRR) described in 

Section 2.4.3.  

                      

The computation of the matrix  , as the computation of the vector   in Ridge 

Regression, corresponds to the solution of a minimization problem. 

The IOKR implemented in this work and described in [9, 10] extends the Input-Output 

Kernel Regression to a transductive setting, where I attempt to complete an existing 

network using the data of the nodes of the whole network. This setting is referred as a 

semi-supervised approach for network inference and is detailed in the Section 3.1.2. 

The next sections describe the two settings of the model: supervised and semi-

supervised. The main differences between both are the input side and the cost function 

used to learn the function  . 
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3.1.1. Supervised setting 

In the supervised approach of the IOKR we use the input data of the proteins of the 

training set    to infer the labels of the rest of the edges of the network. Therefore, as 

input kernel matrix, I use a submatrix    
 of the Gram matrix    with only those rows 

and columns that correspond to proteins of the training set. 

As in Ridge Regression, for the weight vector  , an optimization problem has to be 

resolved to learn the matrix  . I need a function    that minimizes the distance between 

the output feature vector       of a protein    and the prediction of its feature vector 

       in the output feature space   . Therefore, the optimization problem consists of 

the minimization of a square loss function with a regularization parameter [9]. 

   ∑‖            ‖  

  

 

   

  ‖ ‖ 
  

This cost function can be seen as an extension of the Ridge Regression, where    is the 

regularization term to avoid the overfitting of the model defined by the function   . The 

minimization of the previous cost functions leads to a closed form solution for 

computing the model parameters [9]. 

 ̂        
      

     
  

Where    is a matrix of dimension           whose ith column corresponds to the 

output feature vector       of the protein    of the training set,    is the identity matrix 

of dimension    . Moreover,     is the matrix of dimension           where the ith 

column corresponds to the input feature vector       of the protein    in the feature 

space   . The value of the regularization term    will be set testing the performance of a 

range of values and selecting the best. 

3.1.2. Semi-supervised setting 

The semi-supervised model consists of using additionally the input information of the 

proteins of the test set to train the classifier. The task of inference of the PPI network 

using the semi-supervised approach can be seen as the completion of the missing 

values of the matrix    
[9]. 

The work [10] describes how the cost function of the supervised is extended to this new 

model introducing the unlabeled data. A smoothness constraint    is introduced on the 

regression model. This constraint penalizes protein pairs         with a high similarity 
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in  the input features and a high distance between them in the output feature space   . 

Consequently, we can define the optimization problem to learn the matrix   as follows. 

   ∑‖            ‖  

  

 

   

  ‖ ‖ 
    ∑∑   ‖             ‖  

 
 

   

 

   

 

Where   is a matrix that encodes the similarity of the proteins in the input space [10]. 

As in the supervised setting, the minimization of the previous cost function leads to a 

closed form solution for computing the model parameters [9]. 

 ̂         
               

   
      

  

Where    
               is a diffusion kernel matrix of the whole graph, where   

is the degree matrix of the vertices, W is the adjacency matrix of the graph and    is the 

identity matrix of dimension    . Moreover, the matrix U is a matrix of dimension 

   , where the left side is the identity matrix of size     and the right side is a zero 

matrix of size    , where       is the size of the test set.    is defined as a matrix of 

dimension           where each column corresponds to the projection of the feature 

vector of the protein    in the feature space   . 

The values of the regularization term    and the smoothness constraint    will be set by 

cross validation. The same process will be done for selecting the value of the 

parameters    and    of the diffusion kernels. 

3.2. Multiple Kernel Learning 

Studies of PPI networks usually involve several data sources of a protein in order to 

infer its interaction. Different data sources are used because they should contain 

complementary information about PPIs that can be helpful to improve the performance 

of the PPI network inference. 

The use of different data sources requires the use of methods to fuse them to compute 

the input Gram matrix   . I have implemented two methods. The first one is the 

average sum of the different data sources. The second one is a Multiple Kernel Learning 

that uses the correlation between the data sources and the output kernel matrix given 

by the kernel centered alignment to weight the data sources. 
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3.2.1. Average sum 

This solution can be seen as a naive approach of combining kernels, by computing a 

uniform combination. Basically, I sum the different Gram matrices of the data sources 

and normalize the sum. The combined input kernel    is defined as follows. 

   
 

 
∑   

 

   

 

Where    is the Gram matrix that results from the application of some kernel on the k-

th data set and   is the number of data sets. 

Due to its simplicity this algorithm takes into account each data source equally. 

However, previous study [16] has shown that if we analyze the power of prediction of 

each data source individually, we can find differences in their performance. Because of 

this, several approaches have been developed to implement a weighted combination of 

kernels. 

3.2.2. Kernel Centered alignment 

The goal of the following method is to compute weights for the kernels of different data 

sources during combination or Multiple Kernel Learning. This method, described and 

tested in [11], shows better performance than uniform combination. 

First of all, let us introduce the notion of centered kernel matrices. Let   be a kernel 

matrix defined by a PSD kernel function         . Centering a kernel matrix 

consists of centering the feature map        associated with   removing its 

expectation. Consequently, each component of the centered matrix    can be computed 

from   as follows. 

        [  ]       
 

 
∑   

 

   

 
 

 
∑   

 

   

 
 

  
∑   

 

   

 

The alignment is computed between one data source and the target kernel, this 

correlation value is used as a weight during combination of the data sources. The 

centered alignment provides us correlation measure between two kernels. As described 

in [11] we can obtain the correlation between two kernel matrices   and    as follows. 

 ̂       
〈     

 〉 
‖  ‖ ‖  

 ‖ 
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Where 〈     
 〉  and ‖  ‖  denote the Frobenius product and the Frobenius norm 

respectively [11]. 

〈     
 〉    [  

   
 ]  ∑    

    
 

   

 

‖  ‖  √〈     〉  

The method consists of computing the centered alignment between a base kernel 

matrix and the target kernel matrix individually [11]. The computed correlation is used 

as a weight for the base kernel   . Then, the input Gram matrix    can be computed as 

a weighted sum of the base kernels. 

   ∑  ̂         

 

   

 

Where    is the target kernel matrix, a Laplacian matrix        , where   is the 

degree matrix for the vertices of the training set and    is the adjacency matrix of the 

graph   .    is the Gram matrix that results from the application of some kernel on the 

k-th data source and   is the number of data sources. I assume that a data source whose 

matrix kernel is more correlated to    will perform the PPI network inference better, 

then, a higher weight is given to this data source. 
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4. Experimental setup and results 
 

The programming language selected for this work is MATLAB. This was based on the 

fact that the model has a great mathematical complexity and this language offers 

several advantages. It provides a huge range of already implemented mathematical 

functions and an automatic parallelization of operations, for example loops. The code of 

the implementation of the IOKR can be consulted in the Section Appendix I of this 

work. 

4.1. Performance analysis methods 

In this work I use two methods to analyze the results of the experiments: the Receiver 

Operating Characteristic (ROC) and the Area Under the Curve (AUC). The first one 

gives visualization of the classifier’s performance and the second one is a performance 

measure [12]. 

The “raw data” from the execution of a binary classifier are the counts of how many 

instances of the problem have been classified correctly and wrongly. In the design of 

the binary classifier for the inference of PPI network I try to find a classifier that 

increases the number of existing interactions classified as existing interactions {1} 

(True positives (TP)) and decreases the number of non-interactions classified as 

existing interaction {1} (False positives (FP)). 

The Receiver Operating Characteristic (ROC) is a way of visualizing a classifier’s 

performance represented as a curve in a two-dimensional graph [12]. It consists of 

plotting the True positive rate against the False positive rate varying the decision 

threshold of the classifier [12]. A classifier with a ROC curve closer to the upper-left 

corner is better. 

This curve is also used to select the optimal threshold of the classifier. The decision 

threshold or operating point of the classifier will be the proximity value of the instance 

represented by the closest point of the curve to the upper-left corner [12]. 

The Area Under the Curve is a performance measure that consists of calculate the area 

under the ROC curve. A higher AUC value indicates a better performance of the 

classifier. 
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4.2. Experimental setup 

In order to get truthful measures of the performance of the different methods and 

setups we run each experiment ten times. Each time, I randomly sub-sample a training 

set of proteins that represents a specific percentage of the total amount of proteins of 

the PPI network and consider the other proteins as testing set. After the runs I average 

the different ROC and AUC results over the different runs. This repeated evaluation of 

performance on random subsets is called cross validation and guarantees unbiased 

performance measurements. 

Secondly, as [6] does, I consider two sets of interactions in the inference of a PPI 

network: 

 The interactions between proteins of the training set and proteins of the testing 

set (TR/TS). This means that one of the interaction partners has been seen 

during training. 

 The interactions between proteins of the testing set (TS/TS). This means that 

none of the interaction partners has been seen during training, thus the 

inference of this group is more difficult than the previous. 

 

Figure 3: Representation of the interactions between proteins in a symmetric binary matrix. The 
interactions are split in three sets, which are represented by different colors. 

Figure 3 shows how the interactions are represented in a symmetric binary matrix of 

size    , where the columns and rows are the proteins of the PPI network and the 

cells are the label of the edge between two vertices of the network. It includes the 

interactions between proteins of the training set (TR/TR), this means that both of the 
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interaction partners have been seen during training. This set is not considered in the 

performance analysis because it is expected that a classifier will obtain an AUC close to 

1. Therefore, its analysis was used only during the development to detect errors in the 

implementation. 

I analyze the performance of the classifier on each set separately. The first set of 

interactions usually gets a better performance due to the classifier has been trained 

using the input and output data of one of the interaction partners versus none for the 

second case. 

4.3. Experimental data 

The protein-protein interaction network considered in this work for analyzing the 

performance of the implementation of the IOKR is the PPI network of the Protein 

Secretory Machinery of the yeast Saccharomyces cerevisiae [1]. This PPI network is 

formed by 161 proteins directly involved in several functions of the Secretory 

Machinery.  

A total of 14 data sources have been used to represent the features of the proteins of the 

network: 

 Microarray expression data contains scores that represents the level of co-

expression of proteins obtained by microarray experiments. 

 Cell localization data. Each protein has a binary vector where 13 cell 

localizations are considered, for instance the cytoplasm. The ith value of the 

vector is set to 1 if the protein has been found in the ith localization. 

 BLAST sequence alignment score of the protein sequence with sequences of the 

UniProt database. BLAST is a sequence similarity search program that provides 

statistical information about an alignment [13]. 

 Global Trace Graph (GTG) is an improved sequence alignment score of the 

protein sequence with genetic sequences of interest. GTG is a cluster algorithm 

to perform sequence alignments [14]. 

 InterProScan is a tool that unifies several protein signature databases and 

provides functional analysis of a given protein sequence [15]. The available data 

comes from the following protein signatures databases: FingerPRINTScans, 

CATH-Gene3D, HAMAP, PANTHER, patternscans, Pfam, PIRSF, ProDom, 

pfscan, SMART, SUPERFAMILY and TIGRFAMs. 
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The work [16] found by testing different kernels that Microarray expression data 

achieves the best performance using the RBF kernel. On the other hand, the other data 

sources have obtained the best performance with linear kernel. I have used this kernel 

selection in the following experiments. 

4.4. Parameter tuning 

In this section I show the results of the experiments for setting the values of the 

different parameters of the model. First, I start with the parameters    and    of the 

diffusion kernels. Then, I present the result of the experiments to set the values of the 

regularization term    and the smoothness constraint   . 

I have tested different values of    for the supervised setting and different pairs of 

        for the semi supervised setting. The range of values for both parameters was 1, 

2 and 3. In both settings I used 80% of the proteins as training set. 

After analyzing the AUC scores of the different experiments I did not find noticeable 

performance differences in any of the settings between the different values of    and   . 

Consequently, I set the value of    and    to 1 in both settings. 

Supervised setting 

In the case of the supervised setting the regularization term    in the cost function has 

to be set to a value that gives the best performance. I have tested different values and 

selected the one which gives the best AUC. 

Table 1 shows the AUC scores obtained testing a range of values for    from 0.1 to 1. I 

have analyzed the performance on the two sets of interactions as explained above. We 

can see that the performance of the classifier is increased when we choose a higher 

value. Nevertheless, when we choose a value higher than 0.6 the penalization applied 

on the cost function produces a worse performance. 

    0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

AUC 
tr/ts 0.856 0.865 0.87 0.872 0.873 0.874 0.873 0.872 0.871 0.87 

ts/ts 0.78 0.786 0.789 0.79 0.79 0.791 0.79 0.789 0.788 0.787 

Table 1: AUC of the Supervised setting varying the regularization parameter   , using 80% 

of the data for training and       . tr/ts is the inference of interactions between proteins of 

the training set and proteins of the test set, and ts/ts is the inference of interactions between 

proteins of the test set. 
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This situation can be seen easily in the Figure 4, where a greater range of values of    is 

shown. We can see that there is an increment of the AUC in both sets of interactions 

from 0.05 to 0.5. Then, if we increase the value there is a stabilization of the AUC from 

0.5 to 0.6, followed by a decrement from 0.65 to 1. Consequently, in the following 

experiments with the supervised setting I will set the value of    to 0.6. 

 

Figure 4: AUC error bars of the supervised setting using different values of    for the interactions between 

the training set and testing set and between the testing set. 80% of the proteins are used as training set. 

Semi-supervised setting 

In the case of the semi-supervised setting the regularization term   and the 

smoothness constraint    of the cost function have to be set to a value that gives the 

best performance. I have tested different pairs of values and selected the one that gives 

the best AUC. 

First, I have run the semi-supervised setting varying the   and    from 0.1 to 1.0. Table 

2 shows a subset of the experiments that are representative to show the behavior of the 

AUC when we vary   and   . 

It can be seen in Table 2 that there is an increment of the AUC with    from 0.2 to 0.8. 

Then, the performance of the classifier decreases when we use a value of   higher than 

0.8. On the other hand, we can see that there is a slight difference on the performance 

when we vary the value   . However, we can appreciate a slight improvement when we 

use low    values. 
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   0.2 0.4 0.6 0.8 1.0 

0.2 0.841 0.8408 0.8407 0.8407 0.8406 

0.4 0.865 0.865 0. 865 0.8649 0. 8649 

0.6 0.8716 0.8716 0.8714 0.8714 0.8713 

0.8 0.8731 0.873 0.8729 0. 8729 0.8728 

1.0 0.8727 0.8726 0.8725 0.8725 0.8725 

Table 2: AUC of the Supervised setting for the different value pairs of    and   . The 

interactions are between proteins of the training set and proteins of the test set. 80% of the 

proteins are for training,        and       . 

The results of Table 2 lead me to carry out another experiment using a fixed value of 

  and varying    using a bigger range. I select the    value with the best AUC, in this 

case is 0.8. Given the behavior of the AUC when we decrease the   , I try lower values 

of    in order to see if there is an improvement of the performance. The Table 3 shows 

the results of the experiment. 

    0.0001 0.001 0.01 0.05 0.15 0.25 0.5 0.75 1.0 

AUC 
tr/ts 0.879 0.882 0.881 0.875 0.874 0.873 0.873 0.873 0.873 

ts/ts 0.7427 0.76 0.7481 0.7301 0.7263 0.7255 0.7249 0.725 0.725 

Table 3: AUC of the Supervised setting for the different values of     with a fixed        . 

The interactions are between proteins of the training set and proteins of the test set. 80% of the 

data is for training,        and       . 

In the Table 3 we can see that decreasing the value of    improves the performance of 

the classifier. Figure 5 shows clearly the mentioned improvement for both sets of 

interactions. 

The value 0.001 for    achieves the best performance in the classification of the two 

types of interactions sets. A slight decrement on the value of    would harm the 

performance of the classifier in both set of interactions. 

Given the results of this last experiment I can state that the best performance is 

achieved when we set the values of    and    with 0.8 and 0.001 respectively. 

Therefore, I will set the values of    and    to 0.8 and 0.001 respectively for the 

following experiments. 
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Figure 5:  AUC of the Supervised setting for the different values of     with a fixed        . 80% of the 

proteins are used as training set. 

4.5. Performance analysis 

After I have analyzed the values of the parameters of the model that achieve the best 

performance, I describe the results of the different experiments that have been carried 

out to analyze the performance of the IOKR using different settings. 

4.5.1. Supervised vs. Semi-Supervised 

In this section I present the results of several experiments to compare the two settings 

of the Input-Output Kernel Regression. Both settings use the average sum to combine 

the data sources to generate the input kernel. I have run the IOKR for the different 

settings using different percentages of data in the training phase. 

First, I will show the results of the inference of TR/TS interactions. In Figure 7 we can 

see that both settings improve their performance when we increase the size of the 

training set. This behavior can be considered as normal because the classifier build 

during the training phase has more information about the PPI network, and therefore 

its prediction should be more precise. 

A relatively large improvement of the performance is appreciated in both settings when 

we increase the training data percentage from 10% to 50%. However, the performance 

improvements flatten down when more than 50% of the data is used in the training 

phase. Moreover, we can see that in both methods the use of more than 80% of the 

proteins as training set has no significant effects on the performance. 
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Figure 6:  AUC error bars of the inference of TR/TS interactions using the supervised and semi-

supervised setting and varying the percentage of proteins used in the training phase.  

There is no a dominant setting in this case. The supervised setting seems to have a 

better performance when we use less data in the training phase, from 10% to 40%. On 

the other hand, the semi-supervised setting achieves a better performance in higher 

percentage, especially from 50% to 80%, obtaining the highest performance with 80% 

of data as training set. 

Figure 7 represents the comparison of the AUC scores of both settings on the inference 

of TS/TS interactions of the PPI network. The plot represents the variation of the 

performance when the amount of proteins used in the training phase is increased. 

 

Figure 7:  AUC error bars of the inference of TS/TS interactions using the supervised and semi-supervised 

setting and varying the percentage of proteins used in the training phase. 
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As noticed for the TR/TS interactions the performance of the classifier increases when 

the size of the training set is bigger. However, we can see that the semi-supervised 

setting experiments a decrement of the performance when 90% of the proteins are used 

as training set. However, this anomalous behavior can be caused by the high variation 

of the AUC of this last percentage.  

In this case the supervised setting outperforms the semi-supervised setting using from 

10% to 80% of the data in the training phase. Using 90% of the data we can see that the 

average AUC is higher for the supervised setting. Nevertheless, there is a high 

overlapping of the error bars of both settings, which indicates a high variation of the 

AUC for this percentage. 

4.5.2. Individual data sources 

As I explained in Section 3.2.2 the Multiple Kernel Learning gives a weight to each data 

source in order to build the input kernel using a weighted sum of the data sources. 

Consequently, I want to analyze if the given weight of the data source is correlated with 

the performance of a classifier trained only with this data source. 

First, I show the weights of the different sources given by the MKL. Later, I will show 

the correlation between the weights of the data sources and the performance (AUC) of 

the classifier trained with individual data sources. 

Table 4a and Table 4b show the weights of the data sources computed using the Kernel 

Centered alignment. The data sources BLAST and GTG, which are sequence alignment 

scores, show the highest weights. One could think that these two data sources will 

achieve the best classification results when used individually to train a classifier. In the 

next paragraphs I analyze whether this idea is correct. 
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Weight 0.3638 0.3528 0.7191 0.2975 0.5440 0.7079 0.5632 

Table 4a: Average of the weight of each data source given by the MKL for the weighted sum of 

the data sources. The first row corresponds to the numeric identifier of the data source. Using 

80% of data in the training phase. 
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ID 8 9 10 11 12 13 14 
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Weight 0.3699 0.5837 0.2746 0.3814 0.4069 0.419 0.5319 

Table 4b: Average of the weight of each data source given by the MKL for the weighted sum of 

the data sources. The first row corresponds to the numeric identifier of the data source. Using 

80% of data in the training phase. 

I have run an experiment where I trained a classifier using each data source isolated. 

Both settings of the IOKR were taken into account in this experiment. Then, I 

performed the classification of the TR/TS interactions and TS/TS interactions using 

these classifiers. Figure 8 and Figure 9 show the AUC vs. weight points of the different 

data sources and the regression line of such points of the classifiers trained with single 

data source using the supervised and semi-supervised setting. 

 

Figure 8: AUC vs. Weight linear regression of inference of TR/TS interactions using individual data 

sources on the supervised and semi-supervised settings. 80% of the proteins are used in the training phase. 

Red points correspond to the AUC of the supervised setting and blue points correspond to the AUC of the 

semi-supervised method. The labels of the points correspond to the data source identifiers of tables 4a and 

4b. 
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First, I will analyze the performance of the data sources on the set of TR/TS 

interactions. In Figure 8 we can see that the BLAST and GTG, which obtained the 

highest weights, have the best performances. GTG outperforms all the other data 

sources on both settings while BLAST is in the same range of performance on the semi-

supervised setting. 

If we analyze the performance of the data sources with the lowest values we can see for 

example that FPrintScan with a weight of 0.2975 has an AUC around 0.5, which means 

a random performance. On the other hand, the HMMPanther with a high weight shows 

small AUCs, but they are better than the data sources with lower weights, which show 

AUCs around 0.5. 

The expression data and localization data, at the bottom on the left of the figure, 

achieve a classifier with a great performance, reaching the BLAST data source in the 

supervised setting. However, the Multiple Kernel Learning gives them small weight to 

generate the combined kernel. 

 

Figure 9: AUC vs. Weight linear regression of inference of TS/TS interactions using individual data 

sources on the supervised and semi-supervised settings. 80% of the proteins are used in the training phase. 

Red points correspond to the AUC of the supervised setting and blue points correspond to the AUC of the 

semi-supervised method. The labels of the points correspond to the data source identifiers of tables 4a and 

4b. 
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Analyzing the linear regression in Figure 8 we can see that in the inference of TR/TS 

interaction the weight of the data sources is somewhat related with its performance as 

individual data source for training a classifier. The performance of a classifier in the 

inference of TR/TS interactions tends to be better when it its trained with a data source 

with higher weight. 

If we analyze the performance on the set of TS/TS interactions shown in Figure 9 we 

find a contradiction with the hypothesis mentioned at the beginning of this section. 

BLAST shows a poor performance in both settings. However, GTG maintains some of 

the highest performance in the supervised and the semi-supervised setting. On the 

other hand, the expression data and localization data have the highest AUC in both 

settings. However, both data sources have received a low weight.  

Analyzing the linear regression in Figure 9 we can see that in the inference of TS/TS 

interaction the weight of the data sources are not very related with its performance as 

individual data source for training a classifier. 

4.5.3. Multiple Kernel Learning 

In this section I describe the results of the experiments to analyze the performance of 

the implementation of the Multiple Kernel Learning to build the input kernel. I 

compare the performance of the MKL on the supervised and semi-supervised settings 

with the performance of the average sum of kernels, both described in Section 3.2. 

The following figures show the evolution of the AUC scores and their variation for both 

settings when we vary the training data percentage using the MKL and the average on 

the input side. First, I will analyze the performance of the settings in the inference of 

interactions of the TR/TS set. 

In Figure 10 we can see that for the supervised setting the use of the average 

outperforms the MKL. Only when we use 60% of the data in the training phase both 

settings achieve the same performance. 

The increment of performance is similar in both cases, specially from 10% to 70%. 

Using more than 80% of the data as training set has slight improvements in the 

performance. 



Input-Output Kernel Regression applied to protein-protein interaction network inference 

38 

 

Figure 10: AUC of the inference of TR/TS interactions using the supervised with various setups. The 

setups consist of using the Weighted Sum to build the input kernel or the Average Sum of the data sources. 

80% of the proteins are used as training set. 

If we analyze the Figure 11 we can see that in general the semi-supervised setting works 

better when we use the MKL in the input side. The difference is slight when we use 

small percentages of data in the training phase. However, the differences are bigger 

when we use from 40% to 80% of the data as training set. 

The case of 90% is confusing because of both the error bars of both setups are 

overlapped. So, the selection of the better setup in this case is a bit difficult. We should 

take into account the whole graph.  

 

Figure 11: AUC of the inference of TS/TS interactions using the supervised with various setups. The 

setups consist of using the Weighted Sum to build the input kernel or the Average Sum of the data sources. 

80% of the proteins are used as training set. 
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In the next paragraphs I show the results of the different setups for the inference of 

TS/TS interactions. First, in Figure 12 we can see clearly that the average combination 

outperforms the MKL when we use the supervised setting. 

The differences in the performance are bigger when we use larger percentages of data 

in the training phase, from 60% to 90%. Using smaller training percentages, from 10% 

to 30%, the differences are slight.  

 

Figure 12: AUC of the inference of TR/TS interactions using the semi-supervised settings with various 

setups. The setups consist of using the Weighted Sum to build the input kernel or the Average Sum of the 

data sources. 80% of the proteins are used as training set. 

Finally, in Figure 13 we can see the performance of the semi-supervised setting using 

the different setups for the inference of TS/TS interactions. 

 

Figure 13: AUC of the inference of TS/TS interactions using the semi-supervised settings with various 

setups. The setups consist of using the Weighted Sum to build the input kernel or the Average Sum of the 

data sources. 80% of the proteins are used as training set. 
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Both setups show similar performance when we use small training percentages, from 

10% to 40%. However, the MKL outperforms the average combination when larger 

percentages are used. The MKL achieves the highest AUC when we use 80%. 

When we increase the data until we use 90% of the data in the training phase, almost 

the whole set of proteins, we can see that both setup experiment a performance 

decrement. 

4.6. Comparison with other inference methods 

It is interesting to compare the performance of the implementation of the IOKR done in 

this work with other state-of-the-art machine learning methods for the inference of PPI 

networks. I have chosen the support vector machine classifier with kernels on pairs of 

proteins developed in [16] and described in Section 2.3.2, and the OK3 developed in [6] 

and described in Section 2.3.3. 

The three methods have been tested using the data from the Secretory Machinery of the 

yeast Saccharomyces cerevisiae. In every method, 80% of the proteins of the PPI 

network have been used in the training phase. As I have done in the previous 

experiments, I will analyze separately the performance of the methods over the two 

types of interactions. 

I have chosen the best setup for each setting of the IOKR to be compared with the other 

methods. In the case of the supervised setting I have selected the Multiple Kernel 

Learning to build the input kernel and the parameters selected on the Section 5.4. On 

the other hand, for the semi-supervised setting the Average sum performs better, thus, 

this setup is used in the comparison. 

Figure 11 shows the ROC curves of the different methods. Analyzing the ROC curves I 

can state that there is a slight difference between the support vector machine classifier 

with kernels on pairs of proteins and the semi-supervised setting of the IOKR. These 

two methods show better ROC curves than the others. 

If we focus our attention on the AUC scores given in the legend of Figure 11 we can 

confirm the slight differences of performance of the methods. Moreover, I would point 

out the improvement of performance of the support vector machine classifier with 

kernels on pairs of proteins over the OK3, with the lowest AUC. I can state that the 

support vector machine classifier with kernels on pairs of proteins is the best to infer 

the TR/TS interactions of the PPI network of the methods considered. 
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Figure 14: ROC curves of state-of-the-art-methods compared to the implementation of the IOKR on the 

inference of the TR/TS interactions. The IOKR is represented by the supervised and semi-supervised 

setting. I choose the best setup of each setting for the comparison, which is the Average Sum on the 

supervised setting and the Weighted Sum on the semi-supervised. All methods use 80% of the proteins as 

training set. 

In Figure 12 we can see the visualization of the ROC curves of the methods for the 

inference of the TS/TS interactions. Contrary to the previous figure, we observe huge 

differences on the ROC curves. In this case the OK3, with the lowest performance on 

the TR/TS interactions, has the best ROC curve. On the other hand, the support vector 

machine classifier with kernels on pairs of proteins has the worst performance. I would 

point out that the differences between the settings of the IOKR are greater in this 

experiment. 

Analyzing the AUC scores, we can find that the difference of performance between the 

OK3 and the support vector machine classifier with kernels on pairs of proteins is really 

significant. I can state that the OK3 is the best for the inference of TS/TS interactions in 

the PPI network considered. 
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Figure 15: ROC curves of state-of-the-art-methods compared to the implementation of the IOKR on the 

inference of the TS/TS interactions. The IOKR is represented by the supervised and semi-supervised 

setting. I choose the best setup of each setting for the comparison, which is the Average Sum on the 

supervised setting and the Weighted Sum on the semi-supervised. All methods use 80% of the proteins as 

training set. 
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5. Discussion 
 

After I have presented the experiments to analyze the performance of the 

implementation of the IOKR, I discuss in this section the obtained results. I go over the 

subsections of the previous sections to explain the findings. 

Parameter tuning 

I have found that in the supervised setting the value of the parameter   , which controls 

the grade of diffusion of the diffusion kernel, does not affect the performance of the 

classifier significantly. In the case of the semi-supervised setting, after testing different 

pairs of values of    and    I could state that using different values of this parameters 

does not change the performance of the classifier significantly, meaning that diffusing 

more into the graph [6] does not affect the performance of the classifier. 

In the parameter tuning of the semi-supervised setting, testing a range of values for    

from 0.1 to 1.0, I have found that the best performance is achieved when I use a value 

around 0.6. This means that the complexity of the model still being not too complex.  

In the parameter tuning of the semi-supervised setting I have found that it works better 

with a high value of   , around 0.8. The range of values of    tested initially did not 

show significant differences to select one of them as the value with the best 

performance. However, I noticed a slight decrement when the value of    was 

decreased. 

A new experiment with a larger range of    values showed that lower values of   , 

around 0.001, produce a classifier with better performance. A small smoothness 

constraint is sufficient effective for improving the performance of the semi-supervised 

approach over the supervised. On the other hand, the high value of    indicate that the 

method requires the use of a complex model to predict the label of the interactions.  

Supervised vs. semi-supervised 

In the experiments I could compare the performance of the settings of the IOKR. I have 

not found significant differences in the performance of the settings for the inference of 

TR/TS interactions. A setting outperforms the other in some data percentages. 
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On the other hand, in the inference of TS/TS interactions there exists a dominant, 

which is the semi-supervised setting. This setting has outperformed the supervised 

setting in each of the percentages tested. 

Consequently, although the computation of the semi-supervised setting has a higher 

cost due to the introduction of information about the proteins of the testing set, this 

approach is worthy for the inference of the PPI network. This is more remarkable when 

we try to infer TS/TS interactions which are more difficult due to the lack of 

information about the instances of the testing set. 

Individual Data Sources 

The experiments of the individual data sources have provided interesting findings. 

First, I have found that the MKL gives the highest weights to BLAST and GTG data 

source. 

Analyzing the performance of the individual data sources we can see that in the 

inference of TR/TS interactions the GTG and BLAST outperform most of the other data 

sources. Moreover, in this case the linear regression shows that a data source with a 

greater weight usually has a better performance. 

On the other hand, I have found differences in the results of the inference of TS/TS 

interactions. In this case the BLAST data source obtains a performance of medium 

quality. However, the GTG data source still outperforms most of the other data sources. 

Analyzing the linear regression, we can see that a greater weight is no a sign of better 

performance. 

In both sets of interactions I have found that the expression and localization data 

sources have some of the best performance, although the MKL gives them small 

weights. The great performance of this data sources is not strange, it is the cause that 

these kinds of data has been used in most of the PPI inference tasks [16]. 

Multiple Kernel Learning 

After the experiments done using the Multiple Kernel Learning on the two settings I 

have found interesting results. First, I can state that the semi-supervised setting 

improves its performance using the weighted sum to compute the input kernel. 

However, the supervised setting obtains worse results, achieving better performance 

using the uniform combination of the data sources. 
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The semi supervised setting works better with training percentages from 50% to 80%, 

experimenting performance decrements when we use 90% of the data in the training 

phase. However, the supervised setting has experimented greater increments of 

performance using training percentages from 60% to 90%. 

I have observed that in both settings the differences between the setups are slighter 

using small training percentages, up to 40%. Moreover, supervised and semi-

supervised setting shows greater differences in the performance in the inference of 

TS/TS interactions. This is because this set is harder to infer, then, improvements in 

the methods are more visible in this set of interactions. 

Comparison with other models 

The results presented in the Section 4.7 has given a general picture of the position of 

the implementation of the IOKR of this work respect to some state-of-the-art machine 

learning methods for the inference of PPI networks. 

The model has not achieved the best performance in any of the two cases considered: 

the inference of TR/TS interactions and the inference of TS/TS interactions. The 

support vector machine classifier with kernels on pairs of proteins and the OK3 have 

shown the best performance. However, the semi-supervised setting has shown a good 

performance on the TR/TS interactions, very close to the support vector machine 

classifier with kernels on pairs of proteins, with an AUC of 0.87. 

On the other hand, even though the support vector machine classifier with kernels on 

pairs of proteins and OK3 have shown high performance on the inference of one kind of 

protein interactions they have failed on the other type. Nevertheless, the settings of the 

IOKR have shown acceptable performances in both types of interactions. 
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6. Conclusion 
 

The implementation of the IOKR has not shown the best results on the inference of 

PPI. However, the obtained results for this implementation and the OK3 support the 

idea of the Kernelization of Regression models to build classifiers. 

After analyzing the results of the Multiple Kernel Learning, I can state that in task 

inferences more data is not a synonym of a better performance. However, the 

importance is how the different features are combined to extract rich information from 

the different data sources. 

The tested protein-protein prediction network has a small size. This causes those 

experiments with high percentage of training data gives a huge variation. In future 

experiments I would like to test the implementation with bigger PPI networks. 

After finishing this project, I have been able to notice the difficulty of the application of 

machine learning methods for the inference of biological networks. Specially, about 

how to treat the data sources. 

As a future work, I would propose a transfer learning using the semi-supervised IOKR 

to infer PPI networks of other organisms such as other kinds of yeast or humans while 

training the model on Saccharomyces cerevisiae. 

  



Input-Output Kernel Regression applied to protein-protein interaction network inference 
 

47 

7. Bibliography 
 

[1]  Feizi A,  Österlund T, Petranovic D, Bordel S, Nielsen J, Genome-Scale Modeling 

of the Protein Secretory Machinery in Yeast (PLoS ONE 8(5): e63284. 

doi:10.1371/journal.pone.0063284, 2013). 

[2]  Alberts B, Johnson A, Lewis J, et al, Molecular Biology of the Cell  (Garland 

Science, 4th edition, 2002) 

[3]  De Las Rivas J., Fontanillo C., Protein–Protein Interactions Essentials: Key 

Concepts to Building and Analyzing Interactome Networks (PLoS Comput Biol 

6(6): e1000807. doi: 10.1371/journal.pcbi.1000807, June 24, 2010). 

[4]  Thoms Hofmann, Bernhard Schölkopf, Alexander J. Smola, Kernel Methods in 

Machine Learning (The Annal of Statistics, 2008, Vol. 36, No. 3) 1171–1220. 

[5]  Jean-Philippe Vert, Reconstruction of biological network by supervised machine 

learning approaches (H. Lodhi and S. Muggleton (Eds.), Elements of 

Computational Systems Biology, Wiley, 2010) 189-212. 

[6]  Pierre Geurts, Nizar Touleimat, Marie Dutreix, Florence d’Alché-Buc, Inferring 

biological networks with output kernel trees (BMC Bioinformatics, 8 (Suppl 

2):S4, 2007). 

[7]  Trevor Hastie, Robert Tibshirani, Jerome Friedman, The Elements of Statistical 

Learning: Data Mining, Inference and Prediction (Springer Series in Statistics, 

February 2009), chapter 3. 

[8]  Max Welling, Kernel ridge Regression (University of California, class notes). 

[9]  Céline Brouard, Marie Szafranski, Florence d’Alché-Buc, Regularized Output 

Kernel Regression applied to protein-protein interaction network inference 

(Whistler, BC, Networks Across Disciplines: Theory and Applications, 2010). 

[10]  Céline Brouard, Marie Szafranski, Florence d’Alché-Buc, Semi-supervised 

Penalized Output Kernel Regression for Link Prediction (ICML, 2011) 593-600. 

[11]  Corinna Cortes, Mehryar Mohri, Afshin Rostamizadeh, Algorithms for Learning 

Kernels Based on Centered Alignment (Journal of Machine Learning Resarch 13, 

2012) 795-828. 



Input-Output Kernel Regression applied to protein-protein interaction network inference 

48 

[12]  Andrew P. Bradley, The use of the Area Under the Curve in the evaluation of 

machine learning algorithms (Pattern Recognition, Vol. 30, No. 7, pp. 1997) 

1145-1159 

[13]  Ye J., McGinnis S, & Madden T.L., BLAST: improvements for better sequence 

analysis (Nucleic Acids Res. 34:W6-W9, 2006). 

[14]  Heger A., Mallick S., Wilson C., Holm L., The global trace graph, a novel 

paradigm for searching protein sequence database (Bioinformaticas 23 (18), 

2007), 2361-7. 

[15]  Arvas M., Biau G., Vert J.P., InterProScan - An integration platform for the 

signature-recognition methods in InterPro (Bioinformaticas 17 (9), 2001), 847-8. 

[16]  Jana Kludas, Fitsum Tamene, Juho Rousu, Supervised and unsupervised 

biological network inference from multiple ‘omic data. 

[17]  Frank Starmer, At: http://frank.itlab.us/photo_essays/wrapper.php?nephila 

_2002_dna.html (Accessed on 05.06.14) 

[18]  Fimon006, Protein Interaction Network for TMEM8A (2013) At: 

http://commons.wikimedia.org/wiki/File:Protein_Interaction_Network_for_T

MEM8A.png (Accessed on 01.06.14) 

  

http://frank.itlab.us/photo_essays/wrapper.php?nephila_2002_dna.html
http://frank.itlab.us/photo_essays/wrapper.php?nephila_2002_dna.html
http://commons.wikimedia.org/wiki/File:Protein_Interaction_Network_for_TMEM8A.png
http://commons.wikimedia.org/wiki/File:Protein_Interaction_Network_for_TMEM8A.png


Input-Output Kernel Regression applied to protein-protein interaction network inference 
 

49 

Appendix I: MATLAB Code 
 

I. Main function 

 

% New framework to implement input-output kernel regression 

% Option = 1 -> Supervised setting 

% Option = 2 -> Semi-supervised setting 

% res_filename -> Name of the file where the results will be saved 

(without extension) 

% method -> 'summean': sum of the input kernels (default), 'mkl': 

multiple kernel learning 

 

function ppiPredictionFramework(option, method), 

 

  %%%%%%%%% Fixed parameters %%%%%%%%%%%%% 

   

  % Betas 

  Beta1 = 1.0; 

  Beta2 = 1.0; 

   

  % Lambdas 

  lambda1 = 0.6; 

  lambda2 = 0.001; 

   

  % Cross validation 

  cross_validation_limit = 10; 

   

  % training percentage value range 

  tr_perc_range = [0.1, 0.2, 0.3, 0.5, 0.8, 0.9]; 

  tr_perc_labels = [10, 20, 30, 50, 80, 90]; 

   

  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

   

  binarize = @(x,y) x>y; 

  isequpos = @(x,y) x==y && y==1; 

  isequneg = @(x,y) x==y && y==0; 

 

  %%%% DATA Top14 %%%%%%%%%%%%%%% 

  featureNames = 

{'expression','localization','blasts_2012','FPrintScan_2012','Gene3

D_2012', 'gtgs_new_red', 'HMMPanther_2012', 'PatternScan_2012', 

'HMMPfam_2012', 'HMMPIR_2012', 'ProfileScan_2012', 

'protein_clusters', 'HMMSmart_2012', 'superfamily_2012'}; 

  feat_id = [1 2 3 4 5 6 7 8 9 10 11 12 13 14]; 

  featureNames(feat_id); 

 

  selectLabels = 'SecrModel'; 

  

  % LABELS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  

  load(['labels' selectLabels '.mat'], 'ppinteraction','prunique'); 
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  % INPUT FEATURES %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  load(['feature' selectLabels 'Top14.mat'], 'feats','counts', 

'featnames_new'); 

  fnames = featnames_new; 

  % Binary version of the features 

  featsBin = feats;  

  if ~isempty(find(feats(:)>0 & feats(:)<1)),  

    featsBin(find(featsBin(:)>0 & featsBin(:)<1))=1;  

  end 

    

  for tr_perc_index=1:size(tr_perc_range,2), 

    training_percentage = tr_perc_range(tr_perc_index) 

     

    %% Cross validation 

    for cv=1:cross_validation_limit, 

        fprintf('Processing iteration %d.\n', cv); 

 

        % size(ppinteraction,1) -> Number of files = Number of 

proteins 

        [trset,tsset] = createFold(size(ppinteraction,1), 

training_percentage); 

 

        labels = ppinteraction([trset; tsset],[trset; tsset]); % 

Sorting the matrix 

        features = feats([trset; tsset],:); % Sorting the feature 

matrix 

        featuresBin = featsBin([trset; tsset],:); % Sorting the 

binary feature matrix 

     

        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

        %                    OUTPUT KERNEL                    % 

        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

        % Compute the Degree Matrix 

        labels_aux = labels(1:size(trset,1),1:size(trset,1)); 

        % Laplacian unnormalized 

        L = diag(sum(labels_aux)) - labels_aux; 

        % Difussion output kernel matrix 

        Diff_Kernel = expm(-Beta1*L); 

        % Normalize 

        Diff_Kernel =  Diff_Kernel ./ (sqrt(diag(Diff_Kernel)) * 

sqrt(diag(Diff_Kernel))'); 

         

        % Center Laplacian unnormalized matrix 

        L_center = L - repmat(mean(L,1),size(L,1),1)... 

            - repmat(mean(L,2),1,size(L,1))... 

            + repmat(mean(L(:)),size(L,1),size(L,1)); 

         

        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

        %                    INPUT KERNEL                     % 

        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

         

        if(strcmp(method, 'mkl')), 

            % MultipleKernelLearning 

            [KKAll, rcorr_aux, KKsingle_ds] = mk_learning(feat_id, 

counts, features, featuresBin, 

L_center(1:size(trset,1),1:size(trset,1))); 
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            rcorr(cv,:) = rcorr_aux; 

        else, 

            [KKAll, rcorr_aux, KKsingle_ds] = input_mk(feat_id, 

counts, features, featuresBin, 

L_center(1:size(trset,1),1:size(trset,1))); 

            rcorr(cv,:) = rcorr_aux; 

        end 

         

         

        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

        %                COMPUTE PREDICTIONS                  % 

        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

         

        if option == 1, 

          % SUPERVISED SETTING %%%%%%%%%%%%%%%%%%%%%%%%%% 

          A = supervised_setting(trset, KKAll, lambda1); 

        else, 

          % SEMI-SUPERVISED SETTING %%%%%%%%%%%%%%%%%%%%% 

          A = semi_supervised_setting(trset, labels, KKAll, 

lambda1, lambda2);     

        end 

 

        % Predictions 

        predictions = A' * Diff_Kernel * A; 

         

 

        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

        %                EVALUATE CLASSIFIER                  % 

        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

         

         

        % TRAINING/TEST 

        %%%%%%%%%%%%%%%%%%%% 

        [AUC, ROC, bthresh, accuracy] = 

evaluate_trts(ppinteraction, trset, labels, predictions); 

        AUC_trts_matrix(cv) = AUC; 

        ROC_trts_matrix(cv) = {ROC}; 

        bthresh_v_trts_matrix(cv) = bthresh; 

        accuracy_trts_matrix(cv) = accuracy; 

         

         

        % TEST/TEST 

        %%%%%%%%%%%%%%%%%%%% 

        [AUC, ROC, bthresh, accuracy] = 

evaluate_tsts(ppinteraction, trset, labels, predictions); 

        AUC_tsts_matrix(cv) = AUC; 

        ROC_tsts_matrix(cv) = {ROC}; 

        bthresh_v_tsts_matrix(cv) = bthresh; 

        accuracy_tsts_matrix(cv) = accuracy; 

         

         

        % TRAINING/TEST AND TEST/TEST 

        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

        [AUC, ROC, bthresh, accuracy] = 

evaluate_trts_and_tsts(ppinteraction, trset, labels, predictions); 

        AUC_comb_matrix(cv) = AUC; 
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        ROC_comb_matrix(cv) = {ROC}; 

        bthresh_v_comb_matrix(cv) = bthresh; 

        accuracy_comb_matrix(cv) = accuracy; 

         

         

        % Each data source alone 

        %%%%%%%%%%%%%%%%%%%%%%%%%%%% 

        for ds=1:size(feat_id,2), 

             

            if option == 1, 

              %%%%%%%%% SUPERVISED SETTING %%%%%%%%%%%%%% 

              A = supervised_setting(trset, KKsingle_ds(:,:,ds), 

lambda1); 

            else, 

              %%%%%%%% SEMI-SUPERVISED SETTING %%%%%%%%%% 

              A = semi_supervised_setting(trset, labels, 

KKsingle_ds(:,:,ds), lambda1, lambda2); 

            end 

             

            % Predictions 

            predictions = A' * Diff_Kernel * A; 

             

            % TRAINING/TEST 

            %%%%%%%%%%%%%%%%%%%% 

            [AUC, ROC, bthresh, accuracy] = 

evaluate_trts(ppinteraction, trset, labels, predictions); 

            AUC_trts_matrix_ds(cv, ds) = AUC; 

 

            % TEST/TEST 

            %%%%%%%%%%%%%%%%%%%% 

            [AUC, ROC, bthresh, accuracy] = 

evaluate_tsts(ppinteraction, trset, labels, predictions); 

            AUC_tsts_matrix_ds(cv, ds) = AUC; 

 

            % TRAINING/TEST AND TEST/TEST 

            %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

            [AUC, ROC, bthresh, accuracy] = 

evaluate_trts_and_tsts(ppinteraction, trset, labels, predictions); 

            AUC_comb_matrix_ds(cv, ds) = AUC; 

             

        end 

         

    end; % for cv 

 

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

    %                    SAVE RESULTS                     % 

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

     

    if(strcmp(method, 'mkl')), 

        if option == 1, 

            resultfile = [ 'MKL_SUPERVISED_RESULTS_PATH' 

int2str(tr_perc_labels(tr_perc_index)) ]; 

        else, 

            resultfile = [ 'MKL_SEMISUPERVISED_RESULTS_PATH' 

int2str(tr_perc_labels(tr_perc_index)) ]; 

        end 

    else, 
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        if option == 1, 

            resultfile = [ 'SUM_SUPERVISED_RESULTS_PATH' 

int2str(tr_perc_labels(tr_perc_index)) ]; 

        else, 

            resultfile = [ 'SUM_SEMISUPERVISED_RESULTS_PATH' 

int2str(tr_perc_labels(tr_perc_index)) ]; 

        end 

    end 

 

    % TRAINING/TEST 

    %%%%%%%%%%%%%%%%%%% 

    ROC_trts = squeeze(ROC_trts_matrix(:)); 

    AUC_trts = squeeze(AUC_trts_matrix(:)); 

    accuracy_trts = squeeze(accuracy_trts_matrix(:)); 

 

    ROC_trts_average = averageROC(ROC_trts); 

    AUC_trts_average = sum(AUC_trts)/size(AUC_trts,1); 

    accuracy_trts_avg = sum(accuracy_trts)/size(accuracy_trts,1); 

 

    % TEST/TEST 

    %%%%%%%%%%%%%%%%%%% 

    ROC_tsts = squeeze(ROC_tsts_matrix(:)); 

    AUC_tsts = squeeze(AUC_tsts_matrix(:)); 

    accuracy_tsts = squeeze(accuracy_tsts_matrix(:)); 

 

    ROC_tsts_average = averageROC(ROC_tsts); 

    AUC_tsts_average = sum(AUC_tsts)/size(AUC_tsts,1); 

    accuracy_tsts_avg = sum(accuracy_tsts)/size(accuracy_tsts,1); 

 

    % TRAINING/TEST AND TEST/TEST 

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

    ROC_comb = squeeze(ROC_comb_matrix(:)); 

    AUC_comb = squeeze(AUC_comb_matrix(:)); 

    accuracy_comb = squeeze(accuracy_comb_matrix(:)); 

 

    ROC_comb_average = averageROC(ROC_comb); 

    AUC_comb_average = sum(AUC_comb)/size(AUC_comb,1); 

    accuracy_comb_avg = sum(accuracy_comb)/size(accuracy_comb,1); 

     

    % Save results 

     

    % Average the correlation scores for each data source 

    for ds=1:size(feat_id,2), 

        for cv=1:cross_validation_limit, 

            rcorr_aux(cv) = rcorr(cv,ds); 

        end 

        rcorr_avg(ds) = sum(rcorr_aux)/cross_validation_limit; 

    end  

 

    save(resultfile , 'rcorr', 'rcorr_avg', 'lambda1','lambda2',... 

        'AUC_trts', 'AUC_trts_average', 'ROC_trts', 

'ROC_trts_average', 'accuracy_trts',... 

        'AUC_tsts', 'AUC_tsts_average', 'ROC_tsts', 

'ROC_tsts_average', 'accuracy_tsts',... 

        'AUC_comb', 'AUC_comb_average', 'ROC_comb', 

'ROC_comb_average', 'accuracy_comb'); 
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    % Each data source alone 

    %%%%%%%%%%%%%%%%%%%%%%%%%%%% 

    for ds=1:size(feat_id,2), 

         

        if(strcmp(method, 'mkl')), 

            if option == 1, 

                resultfile = ['MKL_SUP_DATASOURCE_RESULT_PATH'   

                    'ppi_prediction_sup_tr_perc_'  

int2str(tr_perc_labels(tr_perc_index)) '_' 

featureNames{feat_id(ds)} ]; 

            else, 

                resultfile = ['MKL_SEMISUP_DATASOURCE_RESULT_PATH'   

                    'ppi_prediction_semisup_tr_perc_' 

int2str(tr_perc_labels(tr_perc_index)) '_' 

featureNames{feat_id(ds)} ]; 

            end 

        else, 

            if option == 1, 

                resultfile = ['SUM_SUP_DATASOURCE_RESULT_PATH'  

                    'ppi_prediction_sup_tr_perc_' 

int2str(tr_perc_labels(tr_perc_index)) '_' 

featureNames{feat_id(ds)} ]; 

            else, 

                resultfile = ['SUM_SEMISUP_DATASOURCE_RESULT_PATH'  

                    'ppi_prediction_semisup_tr_perc_' 

int2str(tr_perc_labels(tr_perc_index)) '_' 

featureNames{feat_id(ds)} ]; 

            end 

        end 

 

        % TRAINING/TEST 

        %%%%%%%%%%%%%%%%%%% 

        AUC_trts = squeeze(AUC_trts_matrix_ds(:,ds)); 

 

        AUC_trts_average = sum(AUC_trts)/size(AUC_trts,1); 

 

        % TEST/TEST 

        %%%%%%%%%%%%%%%%%%% 

        AUC_tsts = squeeze(AUC_tsts_matrix_ds(:,ds)); 

 

        AUC_tsts_average = sum(AUC_tsts)/size(AUC_tsts,1); 

         

        % TRAINING/TEST AND TEST/TEST 

        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

        AUC_comb = squeeze(AUC_comb_matrix_ds(:,ds)); 

        

        AUC_comb_average = sum(AUC_comb)/size(AUC_comb,1); 

         

        % Save results 

        save(resultfile , 'lambda1', 'lambda2',... 

        'AUC_trts', 'AUC_trts_average', ... 

        'AUC_tsts', 'AUC_tsts_average', ... 

        'AUC_comb', 'AUC_comb_average'); 

 

    end 

  end % end training percentage for 
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  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  %             HELP FUNCTIONS (next sections)             % 

  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

end 
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II. Input kernel 

   

  % Split the samples in trainging and test sets 

  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  function [trset,tsset] = createFold(Nall, tr_percentage), 

 

    prRand = randperm(Nall); 

     

    Ntr = round(Nall*tr_percentage); 

 

    trset = prRand(1:Ntr)'; 

    tsset = prRand(Ntr+1:end)'; 

 

  end 

 

  % Input Multiple Kernel 

  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  function [KKAll, rcorr, KKsingle] = input_mk(feat_id, counts, 

feats, featsBin, labelsC), 

    % Input Kernel based on combining different data sources 

 

    for ds=1:size(feat_id,2), % over all data sources 

   

      % aid -> first index of feats from data source ds 

      % bid -> last index of feats from data source ds 

      if ds==1, 

        aid = 1; 

        bid = counts(ds); 

      else, 

        aid = sum(counts(1:ds-1))+1; 

        bid = sum(counts(1:ds)); 

      end; 

 

      % Take only current data source and reorder samples in 

training/testing 

      feat_cur = feats(:,aid:bid); 

      feat_cur_bin = featsBin(:,aid:bid); 

       

      if strcmp(featureNames{feat_id(ds)},'expression'),  

        % RBF kernel, improves correlation and accuracy %%%% 

        sigm = 1; 

 

        n1sq = sum(feat_cur'.^2,1); 

        n1 = size(feat_cur',2); 

         

        D = (ones(n1,1)*n1sq)' + ones(n1,1)*n1sq -

2*feat_cur*feat_cur'; 

         

        KKsingle(:,:,ds) = exp(-D/(2*sigm^2)); 

         

        % Normalize kernel - 1-diagonal 

        KKsingle(:,:,ds) = KKsingle(:,:,ds)./ 

(sqrt(diag(KKsingle(:,:,ds)))*sqrt(diag(KKsingle(:,:,ds)))' + 

0.00000001); 
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      else, % Otherwise 

        % Linear kernel %%%%%%%%%% 

        KKsingle(:,:,ds) = full(feat_cur*feat_cur'); 

        % Normalize kernel - 1-diagonal 

        KKsingle(:,:,ds) = KKsingle(:,:,ds)./ 

(sqrt(diag(KKsingle(:,:,ds)))*sqrt(diag(KKsingle(:,:,ds)))' + 

0.00000001); 

      end; 

       

      % Correlation 

      KKdatasource = KKsingle(:,:,ds); 

       

      % Center kernel matrix of the datasource ds 

      KKdatasource = KKdatasource - 

repmat(mean(KKdatasource,1),size(KKdatasource,1),1)... 

          - repmat(mean(KKdatasource,2),1,size(KKdatasource,1))... 

          + 

repmat(mean(KKdatasource(:)),size(KKdatasource,1),size(KKdatasource

,1)); 

       

      % Compute the correlation between the data source and the 

output 

      KKdatasource_aux = KKdatasource(1:size(labelsC,1), 

1:size(labelsC,1)); 

      rcorr(ds) = 

sum(KKdatasource_aux(:).*labelsC(:))/(sqrt(sum(KKdatasource_aux(:).

^2))*sqrt(sum(labelsC(:).^2))); 

       

    end; % for ds 

     

    % Sum 

    % KKAll = sum(KKsingle,3); 

    % Mean  

    KKAll = sum(KKsingle,3)/size(feat_id,2); 

     

    % Normalize the input kernel matrix 

    KKAll = KKAll./ (sqrt(diag(KKAll))*sqrt(diag(KKAll))' + 

0.00000001); 

     

  end 

   

  % Multiple Kernel Learning on different data sources 

  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  function [KKAll, rcorr, KKsingle_aux] = mk_learning(feat_id, 

counts, feats, featsBin, labelsC), 

    % Input kernel based on combining different data sources 

 

    for ds=1:size(feat_id,2), % over all data sources 

   

      % aid -> first index of feats from data source ds 

      % bid -> last index of feats from data source ds 

      if ds==1, 

        aid = 1; 

        bid = counts(ds); 

      else, 

        aid = sum(counts(1:ds-1))+1; 
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        bid = sum(counts(1:ds)); 

      end; 

       

      % Take only current data source and reorder samples in 

training/testing 

      feat_cur = feats(:,aid:bid); 

      feat_cur_bin = featsBin(:,aid:bid); 

       

      if strcmp(featureNames{feat_id(ds)},'expression'), 

        % RBF kernel, improves correlation and accuracy %%%%%%%%%% 

        sigm = 1; 

 

        n1sq = sum(feat_cur'.^2,1); 

        n1 = size(feat_cur',2); 

         

        D = (ones(n1,1)*n1sq)' + ones(n1,1)*n1sq - 

2*feat_cur*feat_cur'; 

         

        KKsingle(:,:,ds) = exp(-D/(2*sigm^2)); 

         

        % Normalize kernel - 1-diagonal 

        KKsingle(:,:,ds) = KKsingle(:,:,ds)./ 

(sqrt(diag(KKsingle(:,:,ds)))*sqrt(diag(KKsingle(:,:,ds)))' + 

0.00000001); 

         

      else, % Otherwise 

        % Linear kernel %%%%%%% 

        KKsingle(:,:,ds) = full(feat_cur*feat_cur'); 

        % Normalize kernel - 1-diagonal 

        KKsingle(:,:,ds) = KKsingle(:,:,ds)./ 

(sqrt(diag(KKsingle(:,:,ds)))*sqrt(diag(KKsingle(:,:,ds)))' + 

0.00000001); 

      end; 

       

      KKsingle_aux(:,:,ds) = KKsingle(:,:,ds); 

       

      KKdatasource = KKsingle(:,:,ds); 

       

      % Center kernel matrix of the datasource ds 

      KKdatasource = KKdatasource - 

repmat(mean(KKdatasource,1),size(KKdatasource,1),1)... 

          - repmat(mean(KKdatasource,2),1,size(KKdatasource,1))... 

          + 

repmat(mean(KKdatasource(:)),size(KKdatasource,1),size(KKdatasource

,1)); 

       

      % Compute the correlation between the data source and the 

output 

      KKdatasource_aux = KKdatasource(1:size(labelsC,1), 

1:size(labelsC,1)); 

      rcorr(ds) = 

sum(KKdatasource_aux(:).*labelsC(:))/(sqrt(sum(KKdatasource_aux(:).

^2))*sqrt(sum(labelsC(:).^2))); 

       

      % Weight the datasource 

      KKsingle(:,:,ds) = KKsingle(:,:,ds).*rcorr(ds); 

    end; % for ds 
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    % Mean 

    KKAll = sum(KKsingle,3)/size(feat_id,2); 

     

    % Normalize the input kernel matrix 

    KKAll = KKAll./(sqrt(diag(KKAll))*sqrt(diag(KKAll))' + 

0.00000001); 

 

  end 
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III. Kernel Regression 

 

  % SUPERVISED setting 

  %%%%%%%%%%%%%%%%%%%%%%% 

  function [A] = supervised_setting(trset, KKAll, lambda1), 

    B = lambda1 * eye(size(trset,1),size(trset,1)) + 

KKAll(1:size(trset,1),1:size(trset,1)); 

    A = B \ KKAll(1:size(trset,1),:); 

  end 

 

  % SEMI-SUPERVISED setting 

  %%%%%%%%%%%%%%%%%%%%%%%%%%% 

  function [A] = semi_supervised_setting(trset, labels, KKAll, 

lambda1, lambda2), 

       

    U = zeros(size(trset,1), size(labels,1)); 

    U(:,1:size(trset,1)) = eye(size(trset,1)); 

 

    LKKAll = diag(sum(KKAll)) - KKAll; 

    LKKAll = expm(-Beta2 * LKKAll); 

    % Normalize matrix 

    LKKAll = LKKAll ./ (sqrt(diag(LKKAll)) * sqrt(diag(LKKAll))'); 

 

    B = U/(lambda1 * eye(size(labels,1)) + KKAll * (U'*U) + 

2*lambda2*KKAll*LKKAll); 

    A = B * KKAll; 

     

  end 
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IV. Result processing 

   

  % Evaluate TR/TS 

  %%%%%%%%%%%%%%%%%%% 

  function [AUC, ROC, bthresh, accuracy] = 

evaluate_trts(ppinteraction, trset, labels, predictions), 

 

    Mat_test = ones(size(ppinteraction,1),size(ppinteraction,1)); 

    Mat_test(1:size(trset,1), 1:size(trset,1)) = 0; 

    Mat_test(size(trset,1)+1:end, size(trset,1)+1:end) = 0; 

    Mat_test = triu(Mat_test,1); 

    indices_test = find(Mat_test == 1)'; 

 

    % Compare prediction and known labels 

    [AUC, ROC, bthresh] = getAUCandROC(labels(indices_test)', 

predictions(indices_test)'); 

 

    % Balanced accuracy 

    accuracy = getAccuracy(labels(indices_test)', 

predictions(indices_test)', bthresh); 

 

  end 

 

  % Evaluate TS/TS 

  %%%%%%%%%%%%%%%%%%% 

  function [AUC, ROC, bthresh, accuracy] = 

evaluate_tsts(ppinteraction, trset, labels, predictions), 

 

    Mat_test = ones(size(ppinteraction,1),size(ppinteraction,1)); 

    Mat_test(1:size(trset,1), :) = 0; 

    Mat_test(:, 1:size(trset,1)) = 0; 

    Mat_test = triu(Mat_test,1); 

    indices_test = find(Mat_test == 1)'; 

 

    % Compare prediction and known labels 

    [AUC, ROC, bthresh] = getAUCandROC(labels(indices_test)', 

predictions(indices_test)'); 

 

    % Balanced accuracy 

    accuracy = getAccuracy(labels(indices_test)', 

predictions(indices_test)', bthresh); 

 

  end 

 

  % Evaluate TR/TS and TS/TS 

  %%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  function [AUC, ROC, bthresh, accuracy] = 

evaluate_trts_and_tsts(ppinteraction, trset, labels, predictions), 

 

    Mat_test = ones(size(ppinteraction,1),size(ppinteraction,1)); 

    Mat_test(1:size(trset,1), 1:size(trset,1)) = 0; 

    Mat_test = triu(Mat_test,1); 

    indices_test = find(Mat_test == 1)'; 
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    % Compare prediction and known labels 

    [AUC, ROC, bthresh] = getAUCandROC(labels(indices_test)', 

predictions(indices_test)'); 

 

    % Balanced accuracy 

    accuracy = getAccuracy(labels(indices_test)', 

predictions(indices_test)', bthresh); 

     

  end 
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V. Accuracy, ROC and AUC analysis 

 

  % Get accuracy 

  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  function [accall] = getAccuracy(labels, predictions, bthresh), 

 

    predict_label_bin = binarize(predictions,bthresh); 

     

    TPos = 

size(find(arrayfun(isequpos,predict_label_bin,labels)),1); 

    TNeg = 

size(find(arrayfun(isequneg,predict_label_bin,labels)),1); 

     

    Pos = size(find(labels==1),1); 

    if Pos==0,  

      'loocv Warning - no positive examples!' 

    end; 

 

    Neg = size(find(labels==0),1); 

    if Neg==0,  

      'loocv Warning - no negative examples!' 

    end; 

     

    accall =  (0.5*TPos/Pos + 0.5*TNeg/Neg); 

     

  end 

 

 

  % Analysis using AUC and ROC 

  %%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  function [AUC, ROC, bthresh] = getAUCandROC(labels, predictions),   

     

    TPR = 0; % True positive rate 

    FPR = 0; % False positive rate 

    TPRprev = 0; 

    FPRprev = 0; 

    AUC = 0; 

    [pred_sort,idsort] = sort(predictions,'descend'); 

    labelsort = labels(idsort); 

 

    Pos = size(find(labels==1),1); 

    if Pos==0,  

      'ppiFrame: Warning - no positive examples!' 

    end; 

 

    Neg = size(find(labels==0),1); 

    if Neg==0,  

      'ppiFrame: Warning - no negative examples!' 

    end;  

 

    %[pred_sort labelsort] 

    i=1; 

    lprev = -1000; 

    ROC = []; 

    min_distance = 100000; 
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   min_distance_index = -1; 

     

    while i<=size(pred_sort,1), 

        if pred_sort(i)~=lprev, 

            ROC = [ROC; FPR/Neg TPR/Pos]; 

            AUC = AUC + calcarea(FPR,FPRprev,TPR,TPRprev); 

 

            lprev = pred_sort(i); 

            TPRprev = TPR; 

            FPRprev = FPR; 

        end; 

         

        % Work out distance to point (0,1) 

        distance = sqrt((0-FPR/Neg)^2+(1-TPR/Pos)^2); 

        if distance < min_distance, 

           min_distance = distance; 

           min_distance_index = i; 

        end 

         

        if labelsort(i)==1, 

            TPR = TPR+1; 

        else 

            FPR = FPR+1; 

        end; 

 

        i = i+1; 

    end; % end for while 

     

    % Work out distance to point (0,1) 

    distance = sqrt((0-FPR/Neg)^2+(1-TPR/Pos)^2); 

    if distance < min_distance, 

       min_distance = distance; 

       min_distance_index = i; 

    end 

     

    ROC = [ROC; FPR/Neg TPR/Pos]; 

    AUC = AUC + calcarea(FPR,FPRprev,TPR,TPRprev); 

    AUC = AUC/(Pos * Neg); 

    bthresh = pred_sort(min_distance_index); 

 

  end 

 

  % Calcule area under the ROC 

  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  function A=calcarea(X1,X2,Y1,Y2), 

 

    base = abs(X1-X2); 

    height = (Y1+Y2)/2; 

    A = base*height; 

 

  end 

 

  % Average ROC 

  %%%%%%%%%%%%%%% 

  function [ROCav] = averageROC(ROCset), 
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    ROCav = []; 

     

    if size(ROCset,2)>size(ROCset,1), 

      ROCset = ROCset'; 

    end; 

 

    % Average ROC 

    s = 1;  

    for i=0:0.05:1, 

      ROCav(s,1) = i; 

      tprsum = 0; 

 

      for k=1:size(ROCset,1) 

        tprsum = tprsum+TPR_FOR_FPR(i,ROCset{k},size(ROCset{k},1)); 

      end; 

 

      ROCav(s,2) = tprsum/size(ROCset,1); 

      s = s+1; 

    end; 

 

  end 

   

  % TPR for FPR 

  %%%%%%%%%%%%%%% 

  function [tpr] = TPR_FOR_FPR(fprsamp, ROC, npts), 

     

    tpr = 0; 

    j=1; 

 

    while j<npts & ROC(j+1,1)<fprsamp, 

      j=j+1; 

    end; 

    

    if ROC(j,1) == fprsamp, 

      tpr = ROC(j,2); 

    else, 

      tpr = INTERPOLATE(ROC(j,:),ROC(j+1,:),fprsamp); 

    end; 

 

  end 

 

  % Interpolate two ROC adjacent points 

  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  function [tpr] = INTERPOLATE(roc_point1, roc_point2, fprsamp), 

    % Linear interpolation 

    tpr = roc_point1(2)+(roc_point2(2)-roc_point1(2))*(fprsamp-

roc_point1(1))/(roc_point2(1)-roc_point1(1)); 

  end 

 

 

 

 


