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Abstract

Despite the continuous evolution in computers and information technology, real-world
combinatorial optimization problems are NP-problems, in particular in the domain of
planning and scheduling. Thus, although exact techniques from the Operations Research
(OR) field, such as Linear Programming, could be applied to solve optimization problems,
they are difficult to apply in real-world scenarios since they usually require too much com-
putational time, i.e: an optimized solution is required at an affordable computational time.
Furthermore, decision makers often face different and typically opposing goals, then re-
sulting multi-objective optimization problems. Therefore, approximate techniques from
the Artificial Intelligence (AI) field are commonly used to solve the real world problems.
The AI techniques provide richer and more flexible representations of real-world (Gomes
2000), and they are widely used to solve these type of problems. AI heuristic techniques
do not guarantee the optimal solution, but they provide near-optimal solutions in a reason-
able time. These techniques are divided into two broad classes of algorithms: constructive
and local search methods (Aarts and Lenstra 2003). They can guide their search processes
by means of heuristics or metaheuristics depending on how they escape from local optima
(Blum and Roli 2003). Regarding multi-objective optimization problems, the use of AI
techniques becomes paramount due to their complexity (Coello Coello 2006).

Nowadays, the point of view for planning and scheduling tasks has changed. Due to
the fact that real world is uncertain, imprecise and non-deterministic, there might be un-
known information, breakdowns, incidences or changes, which become the initial plans
or schedules invalid. Thus, there is a new trend to cope these aspects in the optimization
techniques, and to seek robust solutions (schedules) (Lambrechts, Demeulemeester, and
Herroelen 2008).

In this way, these optimization problems become harder since a new objective function
(robustness measure) must be taken into account during the solution search. Therefore,
the robustness concept is being studied and a general robustness measure has been de-
veloped for any scheduling problem (such as Job Shop Problem, Open Shop Problem,
Railway Scheduling or Vehicle Routing Problem). To this end, in this thesis, some tech-
niques have been developed to improve the search of optimized and robust solutions in
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planning and scheduling problems. These techniques offer assistance to decision makers
to help in planning and scheduling tasks, determine the consequences of changes, provide
support in the resolution of incidents, provide alternative plans, etc.

As a case study to evaluate the behaviour of the techniques developed, this thesis fo-
cuses on problems related to container terminals. Container terminals generally serve
as a transshipment zone between ships and land vehicles (trains or trucks). In (Henesey
2006a), it is shown how this transshipment market has grown rapidly. Container termi-
nals are open systems with three distinguishable areas: the berth area, the storage yard,
and the terminal receipt and delivery gate area. Each one presents different planning and
scheduling problems to be optimized (Stahlbock and Voß 2008). For example, berth al-
location, quay crane assignment, stowage planning, and quay crane scheduling must be
managed in the berthing area; the container stacking problem, yard crane scheduling, and
horizontal transport operations must be carried out in the yard area; and the hinterland
operations must be solved in the landside area.

Furthermore, dynamism is also present in container terminals. The tasks of the container
terminals take place in an environment susceptible of breakdowns or incidences. For
instance, a Quay Crane engine stopped working and needs to be revised, delaying this
task one or two hours. Thereby, the robustness concept can be included in the scheduling
techniques to take into consideration some incidences and return a set of robust schedules.

In this thesis, we have developed a new domain-dependent planner to obtain more effi-
cient solutions in the generic problem of reshuffles of containers. Planning heuristics and
optimization criteria developed have been evaluated on realistic problems and they are
applicable to the general problem of reshuffling in blocks world scenarios.

Additionally, we have developed a scheduling model, using constructive metaheuristic
techniques on a complex problem that combines sequences of scenarios with different
types of resources (Berth Allocation, Quay Crane Assignment, and Container Stacking
problems). These problems are usually solved separately and their integration allows
more optimized solutions.

Moreover, in order to address the impact and changes that arise in dynamic real-world
environments, a robustness model has been developed for scheduling tasks. This model
has been applied to metaheuristic schemes, which are based on genetic algorithms. The
extension of such schemes, incorporating the robustness model developed, allows us to
evaluate and obtain more robust solutions. This approach, combined with the classical
optimality criterion in scheduling problems, allows us to obtain, in an efficient in way,
optimized solution able to withstand a greater degree of incidents that occur in dynamic
scenarios. Thus, a proactive approach is applied to the problem that arises with the pres-
ence of incidences and changes that occur in typical scheduling problems of a dynamic
real world.
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Resumen

A pesar de la continua evolución de los ordenadores y en la tecnología de la información,
los problemas combinatorios de optimización del mundo real son problemas NP, en par-
ticular del dominio de la planificación y scheduling. Por eso, aunque técnicas exactas del
campo de la investigación operativa, como la Programación Lineal, podrían ser aplicadas
para resolver estos problemas de optimización, éstas son difíciles de aplicar a escenarios
del mundo real ya que normalmente requieren demasiado tiempo de cómputo, por ejem-
plo,se requiere una solución optimizada en un tiempo de cómputo asequible. Además, los
responsables a menudo se enfrentan a diferentes y típicamente objetivos opuestos, convir-
tiéndose en problemas de optimización multi-objetivo. Por lo tanto, técnicas aproximadas
del campo de la Inteligencia Artificial (IA) normalmente se emplean para resolver los
problemas del mundo real. Las técnicas de la IA proporcionan representaciones más ricas
y flexibles del mundo real (Gomes 2000), y son ampliamente utilizados para resolver este
tipo de problemas. Las técnicas heurísticas de IA no garantizan la solución óptima, sino
que proporcionan soluciones cercanas a la óptima en un tiempo razonable. Estas técnicas
se dividen en dos grandes grupos de clases de algoritmos: los métodos constructivos y los
métodos de búsqueda local (Aarts and Lenstra 2003). Estos pueden guiar sus procesos de
búsqueda a través de heurísticas o metaheurísticas dependiendo de como ellos escapan de
los óptimos locales (Blum and Roli 2003). Haciendo referencia a los problemas de opti-
mización multi-objetivo, el uso de las técnicas de IA pasan a ser imprescindibles debido
a la complejidad de estos problemas (Coello Coello 2006).

Actualmente, el punto de vista para las tareas de planificación y scheduling ha cambiado.
Debido a que el mundo real es incierto, impreciso y no determinístico, puede haber infor-
mación desconocida, fallos, incidencias o cambios que convierten los planes iniciales in-
validos. Por eso, hay una nueva tendencia para hacer frente a estos aspectos en las técnicas
de optimización y buscar soluciones robustas (schedules) (Lambrechts, Demeulemeester,
and Herroelen 2008).

De esta manera, estos problemas de optimización se vuelven más difíciles ya que una
nueva función objetivo (medida de robustez) debe ser tenida en cuenta durante la búsqueda
de solución. Por lo tanto, el concepto de robustez se ha estudiado y una medida de ro-
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bustez general ha sido desarrollado para cualquier problema de scheduling (como Job
Shop Problem, Open Shop Problem, Railway Scheduling o Vehicle Routing Problem).
Con este fin, en esta tesis, algunas técnicas se han desarrollado para mejorar la búsqueda
de soluciones optimizadas y robustas en problemas de planificación y scheduling. Estas
técnicas ofrecen asistencia a los responsables para ayudar en las tareas de planificación y
scheduling, determinar las consecuencias de los cambios, proporcionar asistencia para la
resolución de incidentes, proporcionan planes alternativos, etc.

Como caso de estudio para evaluar el comportamiento de las técnicas desarrolladas, esta
tesis se centra en problemas relacionados con terminales de contenedores. Las termi-
nales de contenedores sirven como zona de transbordo entre los buques y otros medios de
transporte (trenes o camiones). En (Henesey 2006a), se muestra como este mercado de
transbordo ha crecido rápidamente. Las terminales de contenedores son sistemas abiertos
con tres áreas distinguibles: el área del muelle, el patio de contenedores, y el área de la
puerta de entrada y recepción de la terminal. Cada área presenta diferentes problemas
de planificación y scheduling que deben ser optimizados (Stahlbock and Voß 2008). Por
ejemplo, la asignación de muelles, la asignación de grúas, la planificación de la estiba de
los buques, la planificación de las grúas deben ser gestionados en la zona del muelle; el
problema del apilamiento de contenedores, la planificación de las grúas del patio y las
operaciones del transporte horizontal deben ser llevados a cabo en el área del patio de
contenedores; y, las operaciones con el interior del país deben ser resueltas en el área de
la puerta de la terminal.

Las tareas de las terminales de contenedores tienen lugar en un entorno susceptible de fal-
los o incidencias. Por ejemplo, el motor de una grúa del muelle podría dejar de funcionar
y necesitaría ser revisado, retrasando esta tarea una o dos horas. De ese modo, el concepto
de robustez puede ser incluido en las técnicas de scheduling para tener en cuenta algunas
incidencias y devolver un conjunto de planes robustos.

En esta tesis, se ha desarrollado un nuevo planificador dependiente del dominio a fin de
obtener soluciones más eficientes en el problema genérico de la remoción de contene-
dores. Las heurísticas y criterios de optimización de planificación desarrollados han sido
evaluados en problemas realistas y resultan aplicables para el problema genérico de re-
moción en escenarios del mundo de bloques.

Adicionalmente, se ha desarrollado un modelo de scheduling, aplicando técnicas meta-
heurísticas constructivas, sobre un complejo problema que combina secuencias de es-
cenarios con distintas tipologías de recursos (Berth Allocation, Quay Crane Assignment,
and Container Stacking problems). Estos problemas habitualmente son resueltos de forma
desjunta y su integración permite obtener soluciones más optimizadas.

Por otra parte, a fin de tratar las incidencias y cambios que surgen en entornos dinámicos
del mundo real, se ha desarrollado un modelo de robustez para tareas de scheduling. Este
modelo se ha aplicado sobre esquemas metaheurísticos, basados en algoritmos genéticos.
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La extensión de dichos esquemas, incorporando el modelo de robustez desarrollado, per-
mite evaluar y obtener soluciones más robustas. Este criterio, combinado con el clásico
criterio de optimalidad de los problemas de scheduling, permite obtener, de forma efi-
ciente, soluciones optimizadas capaces de soportar un mayor grado de incidencias que
ocurren en escenarios dinámicos. De esta forma, se aplica una aproximación proactiva al
problema que surge con la presencia de incidencias y cambios, que ocurren en los típicos
problemas de scheduling de un mundo real dinámico.
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Resum

Tot i la contínua evolució dels ordinadors i la tecnologia de la informació, els prob-
lemes combinatoris d’optimització del món real són problemes NP, en particular del do-
mini de la planificació i scheduling. Per això, encara que tècniques exactes del camp
de la investigació operativa, com la Programació Lineal, podrien ser aplicades per a
resoldre aquests problemes d’optimització, aquestes són difícils d’aplicar a escenaris
del món real ja que normalment requereixen massa temps de còmput, per exemple, se
requereix una solució optimizada en un temps de còmput assequible. A més, els re-
sponsables sovint s’enfronten a diferents i típicament objectius oposats, convertint-se en
problemes d’optimització multi-objectiu. Per tant, tècniques aproximades del camp de
la Intel·ligència Artificial (IA) normalment s’empren per resoldre els problemes del món
real. Les tècniques de la IA proporcionen representacions més riques i flexibles del món
real (Gomes 2000), i són àmpliament utilitzats per resoldre aquest tipus de problemes.
Les tècniques heurístiques d’IA no garanteixen la solució òptima, sinó que proporcionen
solucions pròximes a l’òptima en un temps raonable. Aquestes tècniques es divideixen
en dos grans grups de classes d’algorismes: els mètodes constructius i els mètodes de
cerca local (Aarts and Lenstra 2003). Aquests poden guiar els seus processos de cerca a
través d’heurístiques o metaheurístiques depenent de com ells escapen dels òptims locals
(Blum and Roli 2003). Fent referència als problemes d’optimització multi-objectiu, l’ús
de les tècniques d’IA passen a ser imprescindibles per la complexitat d’aquests problemes
(Coello Coello 2006).

Actualment, el punt de vista per a les tasques de planificació i scheduling ha canviat. Com
que el món real és incert, imprecís i no determinístic, pot haver informació desconeguda,
errors, incidències o canvis que converteixen els plans inicials invàlids. Per això, hi ha
una nova tendència per fer front a aquests aspectes en les tècniques d’optimització i buscar
solucions robustes (schedules) (Lambrechts, Demeulemeester, and Herroelen 2008).

D’aquesta manera, aquests problemes d’optimització es tornen més difícils ja que una
nova funció objectiu (mesura de robustesa) s’ha de tenir en compte durant la recerca de la
solució. Per tant, el concepte de robustesa ha de ser estudiat i una mesura de la robustesa
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general ha estat desenvolupada per a qualsevol problema de scheduling (com Job Shop
Problem, Open Shop Problem, Railway Scheduling o Vehicle Routing Problem).

Amb aquesta finalitat, en aquesta tesi, algunes tècniques s’han desenvolupat per millorar
la recerca de solucions optimitzades i robustes en problemes de planificació i schedul-
ing. Aquestes tècniques ofereixen assistència als responsables per ajudar en les tasques
de planificació i scheduling, determinar les conseqüències dels canvis, proporcionar as-
sistència per a la resolució d’incidents, proporcionar plans alternatius, etc

Com a cas d’estudi per avaluar el comportament de les tècniques desenvolupades, aquesta
tesi se centra en problemes relacionats amb terminals de contenidors. Les terminals de
contenidors serveixen com a zona de transbord entre els vaixells i altres mitjans de trans-
port (trens o camions). A (Henesey 2006a), es mostra com aquest mercat de transbord
ha crescut ràpidament. Les terminals de contenidors són sistemes oberts amb tres àrees
distingibles: l’àrea del moll, el pati de contenidors, i l’àrea de la porta d’entrada i recepció
de la terminal. Cada àrea presenta diferents problemes de planificació i scheduling que
han de ser optimitzats (Stahlbock and Voß 2008). Per exemple, l’assignació de molls,
l’assignació de grues, la planificació de l’estiba dels vaixells, la planificació de les grues
han de ser gestionats a la zona del moll; el problema de l’apilament de contenidors, la
planificació de les grues del pati i les operacions del transport horitzontal s’han de dur a
terme en l’àrea del pati de contenidors; i, les operacions amb l’interior del país han de ser
resoltes en l’àrea de la porta de la terminal.

Les tasques de les terminals de contenidors tenen lloc en un entorn susceptible d’errors
o incidències. Per exemple, el motor d’una grua del moll podria deixar de funcionar i
necessitaria ser revisat, retardant aquesta tasca una o dues hores. D’aquesta manera, el
concepte de robustesa pot ser inclòs en les tècniques de scheduling per a tenir en compte
algunes incidències i retornar un conjunt de plans robustos.

En aquesta tesi, s’ha desenvolupat un nou planificador dependent del domini per tal
d’obtenir solucions més eficients en el problema genèric de la remoció de contenidors.
Les heurístiques i criteris d’optimització de planificació desenvolupats han estat avalu-
ats en problemes realistes i resulten aplicables per al problema genèric de remoció en
escenaris del món de blocs.

A més, s’ha desenvolupat un model de scheduling, aplicant tècniques metaheurístiques
constructives, sobre un complex problema que combina seqüències d’escenaris amb difer-
ents tipologies de recursos (Berth Allocation, Quay Crane Assignment, and Container
Stacking problems). Aquests problemes habitualment són resolts de forma desjunta i la
seva integració permet obtenir solucions més optimitzades.

D’altra banda, per tal de tractar les incidències i canvis que sorgeixen en entorns dinàmics
del món real, s’ha desenvolupat un model de robustesa per a tasques de scheduling.
Aquest model s’ha aplicat sobre esquemes metaheurístics, basats en algorismes genètics.
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L’extensió d’aquests esquemes, incorporant el model de robustesa desenvolupat, permet
avaluar i obtenir solucions més robustes. Aquest criteri, combinat amb el clàssic criteri
d’optimalitat dels problemes de scheduling, permet obtenir, de forma eficient, solucions
optimitzades capaces de suportar un major grau d’incidències que ocorren en escenaris
dinàmics. D’aquesta manera, s’aplica una aproximació proactiva al problema que sorgeix
amb la presència d’incidències i canvis, que ocorren en els típics problemes de scheduling
d’un món real dinàmic.
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Chapter 1

Introduction

1.1 Motivation

1.1.1 Optimization in Planning & Scheduling

Large companies must make important decisions in different levels (Schmidt and Wilhelm
2000): strategic (long term), tactical (mid term) and operational (short term) (Figure 1.1).
Examples of questions in each level might be:

• Strategic decisions: What is your vision for the business? Which direction is the
business headed?

• Tactical decisions: Should the company increase the number of operators?

• Operational decisions: What is our procedure for delivering and order? How many
quay cranes must be assigned to that container ship?

All these decisions involve many human and material resources (logistics) and need to be
studied and planned carefully. Since they have reached a high degree of complexity, just
operations experts or decision makers can not longer make these decisions. Companies
need scientific methods to keep improving their activities.

Planning and scheduling are forms of decision making that are used on a regular basis
in many manufacturing and service industries (Pinedo 2005). For instance, production,
transportation and logistics, information processing, communication, etc. On the one
hand, planning consists in, given an initial state and a finite set of actions, getting a plan
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Strategic: 
Determine the best 

design

Tactical:
Best utilization of 

resources

Operational:
Create optimized 

schedules

Figure 1.1: Representation of the decision levels

which reaches a goal state by choosing and establishing an ordering of those actions
(Ghallab, Nau, and Traverso 2004). On the other hand, scheduling deals with assigning
the given tasks according to the available resources and constraints over given time pe-
riods (Pinedo 2012). The goal of both planning and scheduling problems is to optimize
one or more objective functions. Moreover, both planning and scheduling problems take
advantage of mathematical techniques from the Operations Research field or heuristics
and other complete techniques from the Artificial Intelligence field. In (Gomes 2000), it
is showed how techniques from these two fields could be integrated to be competitive in
real-world problems.

Operational research (OR) deals with the application of advanced analytical methods such
as linear programming, queueing theory or simulation to help make better decisions.

Artificial Intelligence (AI) provides techniques which are able to produce near-optimal
solutions in a reasonable computational time. Among AI techniques, metaheuristics such
as Simulated Annealing (SA) (Kirkpatrick, Gelatt, and Vecchi 1983), Genetic Algorithms
(GA) (Goldberg 1985) or Tabu Search (Glover and Laguna 1999) have been applied suc-
cessfully to a wide range of different real-world combinatorial problems. Each of these
metaheuristics has its own historical background. Some metaheuristics are inspired from
optimization processes that occur in the nature such as evolution (e.g. genetic algorithms)
or statistical mechanics (e.g. simulated annealing). Others are extensions of less so-
phisticated algorithms such as greedy heuristics and local searches (Greedy Randomized
Adaptive Search Process or GRASP (Feo and Resende 1995)). A classification of the
most common metaheuristics in the literature is depicted in Figure 1.2.

Over the last years, new algorithms are originated from algorithms of different research
areas on optimization, exploiting their different optimization strategies. These new algo-
rithms are commonly referred to as hybrid metaheuristics (Blum, Puchinger, et al. 2011).
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1.1 Motivation

Figure 1.2: Classification of metaheuristics (image from http://en.wikipedia.org/wiki/

Metaheuristic).

For instance, metaheuristics which are population-based (e.g. evolutionary algorithms
or ant colony algorithms) are good concerning the exploration of the search space and
therefore they are good to find promising regions of the search space. However, they
are usually not so effective concerning the exploitation. On the other hand, local search
methods (e.g. simulated annealing or tabu search) are good to find better solutions in the
neighborhood of given starting solutions. Thereby, a hybrid metaheuristic composed by
a population-based and a local search methods will identify the promising regions of the
search space and find the good solutions in those regions.

All these previous algorithms just take into account single optimization problems. Nev-
ertheless, real-world optimization problems commonly involve more than one conflicting
objective function to be optimized. In a multi-objective optimization problem, usually
there is no single solution wherein all its objectives are simultaneously optimized.

EXAMPLE. The routing school bus problem has two different objectives: (1) minimiz-
ing the total number of buses (operational cost); and, (2) minimizing the longest time a
student would have to stay in the bus, or in other words, minimizing the maximum route
length (service level) (Pacheco and Martí 2006).

However, there may exist a set of Pareto optimal solutions with different trade-offs among
their objective functions. Pareto efficient, or Pareto optimal, is a solution in which is
impossible to make any one criteria better off without making at least one criteria worse
off (Zhou et al. 2011).
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Chapter 1. Introduction

The Pareto optimal set is the set of all the solutions that are Pareto optimal solution (Zhou
et al. 2011). In general, generating the Pareto optimal set is expensive computationally
and it is often impracticable. Therefore, algorithms try to find a good approximation of
the Pareto optimal set. In this work, we refer to each approximation as Pareto front, which
contains solutions that, although are non-dominated among them, could be dominated by
other solutions not found by our algorithms. An example of a Pareto front is showed in
Figure 1.3.

Figure 1.3: Example of a Pareto front in Berth Allocation and Quay Crane Assignment problem
(Rodriguez-Molins, Salido, and Barber 2014b).

As mentioned above, multi-objective optimization problems do not have a unique opti-
mal solution. Thus, multi-objective optimization algorithms cannot be compare directly.
(Zitzler, Knowles, and Thiele 2008) propose different measures to compare Pareto front
approximations. Among these measures, the size of the dominated space or the hypervol-
ume of the Pareto front approximations obtained by the algorithms is one of the most used
measures to compare two different algorithms (While, Bradstreet, and Barone 2012).

As in single optimization problems, hybrid metaheuristics have been also designed for
multi-objective optimization problems (Ehrgott and Gandibleux 2008). These hybrid
metaheuristics take advantage from each algorithm or techniques on which they are based
on for achieving a better representation of the Pareto front. Examples of multi-objective
hybrid metaheuristics are Multiple Objective Genetic Tabu Search (MOGTS) (Gambardella,
Taillard, and Agazzi 1999) and Multi-Colony Ant System (MCAS) (Barichard and Hao
2002).

In optimization problems, there is a new trend focused on finding near-optimal solutions
by handling uncertainty, dynamism or unknown information of the real world environt-
ments. These strategies are classified mainly in two classes: proactives and reactives
(Lambrechts, Demeulemeester, and Herroelen 2008). On the one hand, the objective of
a proactive approach is to build robust schedules which could keep being valid after un-
expected events during the schedule’s execution. On the other hand, reactive approaches
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1.1 Motivation

create a baseline schedule and then, if any unexpected event occurs, these baseline sched-
ules are revised or re-optimized.

In this thesis, we have focused our attention on proactive strategies, and most of the
proactive approaches in the literature make use of multi-objective optimization techniques
to build robust schedules (Surico et al. 2007; Zhen and Chang 2012).

1.1.2 Contributions of this thesis

The first contribution of this thesis is the development of a domain-dependent planner and
its comparison with domain-independent and domain-dependent planners. As domain-
dependent planners can take advantage of the knowledge of the own problems, they could
offer better solutions with less computational time. In this thesis, a domain-dependent
planner has been developed to solve a real-world problem: the Container Stacking prob-
lem or Remarshalling problem (Salido, Sapena, et al. 2009; Rodriguez-Molins, Salido,
and Barber 2012; Salido, Rodriguez-Molins, and Barber 2012). Furthermore, it is im-
portant to note that these domain-dependent planners offer the chance to handle different
optimization criteria to cope different real-world scenarios.

The second contribution of this thesis is related to the development of a scheduling
model, using constructive and population-based metaheuristics and mathematical models
(Rodriguez-Molins, Barber, et al. 2012; Rodriguez-Molins, Salido, and Barber 2014a),
on a complex problems that combines sequences of scenarios with different optimization
problems: the above mentioned Container Stacking problem, and Berth Allocation and
Quay Crane Assignment problem (BAP+QCAP) (Salido, Rodriguez-Molins, and Barber
2011; Salido, Rodriguez-Molins, and Barber 2012). These problems are usually solved
separately, but it is likely that focusing on optimizing just one problem will not lead to the
optimal solution. Thereby, their integration allows to obtain more efficient solutions and
thus, a decision support system has been designed to help the decision makers and offer
efficient solutions to all these problems at the same time.

The last contribution of this thesis is a proactive approach which is based on a new ro-
bustness model to deal with dynamism, uncertain or imprecise environments in schedul-
ing problems without any previous knowledge about the incidences (Rodriguez-Molins,
Salido, and Barber 2014b). This robustness model is based on the available operational
buffers after each task related to the durations of these tasks. In general, the greater the
operational buffers, the higher the robustness of the schedule. However, due to the lack
of the knowledge about incidences, operational buffers should be distributed among ves-
sels proportionally to be able to absorb as many incidences as possible. The aim of this
proactive approach is to offer a wide range of different schedules to the decision makers
where the trade-off between the classical optimality criterion and the robustness measure
have been taken into consideration. These schedules must be part of an approximation of
the Pareto optimal set. To this end, a multi-objective approach was considered to seek an

5



Chapter 1. Introduction

approximation of the Pareto optimal set by means of a mixed-integer lineal programming
model and a hybrid multi-objective genetic algorithm. The developed proactive approach
was applied to and evaluated with the BAP+QCAP.

1.1.3 Case study: Container Terminals

Throughout our study, we use the Port of Valencia, specifically the Valencian Port Founda-
tion and the maritime container terminal MSC (Mediterranean Shipping Company S.A.)
as a case of reference, although our models are applicable to any container terminal.

The overall collaboration goal of our group at the Universitat Politècnica de València
(UPV) with the Valencia Port Foundation and the maritime container terminal MSC
(Mediterranean Shipping Company S.A.) is to offer assistance and help in the planning
and scheduling tasks such as the allocation of spaces to outbound containers, to identify
bottlenecks, to determine the consequences of changes, to provide support in the resolu-
tion of incidents, to provide alternative berthing plans, etc. Thus, the development of the
techniques presented in this thesis will provide the terminal operators with different tools
to simulate new configurations or settings for their container terminal (what if. . . ? ques-
tions) as well as to provide several plans which are able to deal with different scenarios,
e.g. plans to integrate berthing allocation and container stacking problem or even berth
schedules which keep valid after the ocurrence of incidences.

Containers were standardized by the International Organization for Standardization (ISO)
based upon the US Department of Defense standards between 1968 and 1970, ensuring
interchangeability between different modes of transportation worldwide. The standard
sizes and fitting and reinforcement norms that exist now evolved out of a series of com-
promises among international shipping companies, European railroads, U.S. railroads,
and U.S. trucking companies.

Four important ISO recommendations helped the standardization of the containerisation
globally (Rushton, Croucher, and Baker 2006):

R-668 in January 1968 defined the terminology, dimensions and ratings;

R-790 in July 1968 defined the identification markings;

R-1191 in January 1970 made recommendations about corner fittings;

R-1897 in October 1970 set out the minimum internal dimensions of general-purpose
freight containers.

The standardization of the containerization allowed the interchangeability between dif-
ferent modes of transport around the world (trucks, ships, trains and even aircrafts). Fur-
thermore, it made managing multiple products easier, improved security, reduced loss
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Figure 1.4: Comparison between containers of 20ft and 40ft (image from http://en.
wikipedia.org/wiki/Twenty-foot_equivalent_unit).

and damage and above all speed up the whole process of freight transportation (Rushton,
Croucher, and Baker 2006).

The term twenty-foot equivalent unit (TEU) is used to refer to one container with a length
of twenty foot (approximately 6.1 meters). Thereby, a container of 40 feet (forty-foot
equivalient unit or FEU) is expressed by 2 TEU (see Figure 1.4). This measure is also used
to identify the capacity of the vessels, e.g. the vessel Triple-E MÆRSK (first delivered in
2013) is one of the largest vessels which can carry 18340 TEU1. Figure 1.5 showed how
container ships have evolved over the last years.

Container terminals are open systems which generally serve as a transshipment on ships
and land vehicles (trains or trucks) for containers. Operations related to move these con-
tainers can be divided into four different subsystems (Henesey 2006b) (see Figure 1.6):

1. ship-to-shore movements to unload the containers from ship to berth (or in reverse
order, to load them onto the ship). Quay cranes are assigned to ships to perform
these movements (loading/unloading).

2. transfer bi-directional movement of containers from berth to stack (storage area),
from one stack to another stack and from the hinterland (or gate) to a stack;

3. storage stack or area where containers are placed to wait until their next ship, train
or truck; and

1Updated on July 2014,
http://www.maerskline.com/link/?page=brochure&path=/our_services/vessels
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Chapter 1. Introduction

Figure 1.5: Evolution of container ships (image from http://people.hofstra.edu/

geotrans/eng/ch3en/conc3en/containerships.html)

4. delivery/receipt movement of containers from stack to the hinterland transport, and
vice versa.

Ship-to-Shore Transfer Storage
Delivery 

Receipt

Figure 1.6: Subsystems in a Container terminal.

The different processes that a container terminal must perform can be described following
the steps a container does within one terminal. All these activities are described in detail
in (Vis and De Koster 2003).
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Succinctly, when a container ship (or vessel) arrives at the port, it must wait at the road-
stead until the permission is granted to moor at the quay. This permission is granted when
all the resources needed are available (quay cranes, berth length, labour, etc.). Once the
container ship moors, all the import containers must be unloaded to the container yard.
This process is carried out by means of different handling equipments: quay cranes (QCs),
automated guided vehicles (AGV), straddle carriers (SCs) and rubber-tired cranes (RTGs)
among others. A description and a brief description of the handling equipments used in
container terminals can be found at (Henesey 2006b; Stahlbock and Voß 2008). All this
equipment must be handled wisely to avoid bottlenecks and congestions in the yard. For a
detailed overview about the internal transport operations and material handling equipment
see (Carlo, Vis, and Roodbergen 2014).

(a) Aerial view of a storage yard (courtesy of MSC).

(b) Schema of a block of containers.

Figure 1.7: Storage yard area.

The container yard consists of a number of lanes or blocks, and each block consists of
20-30 yard-bays (Figure 1.7(a)). Each yard-bay usually contains 6 rows (width) and a
maximum height of 4 or 5 tiers, where containers can be stored for a certain period of
time (Figure 1.7(b)). After this certain period, containers are retrieved to be loaded into
other transportation modes (trucks, trains or barges) or even other container ships. This
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retrieval operation must be planned carefully in order to increase the handling time of the
container ships as little as possible (Kim and Bae 1998). Containers should be stacked in
the same order as the loading operation needs to be, but at the arrival of the containers
this order is not available. Thereby, the layout of the block of the containers should be
reorganized in order to speed up the loading operations of the incoming vessels. This
operation is known as Remarshalling problem.

With 80 per cent of global merchandise trade by volume carried by sea and handled by
ports worldwide, the competition among container terminals and the global economic
crisis of the 2008/2009 make necessary to increase productivity and container throughput
from quayside to landside and vice versa as well as ensure reliability (delivery dates or
handling times) to the shipping companies. Thereby, as suggested in (Asariotis et al.
2013), investments in ports will lead to increases in efficiency diminishing transport costs
by optimizing all the operations within a container terminal. (Vis and De Koster 2003;
Steenken, Voß, and Stahlbock 2004; Stahlbock and Voß 2008) provide an extensive survey
about operations at seaport container terminals.

1.2 Objectives

The main objective of this thesis is to contribute to the state of the art, by developing new
robust planning and scheduling optimization techniques. The techniques developed will
be applied in a case study related to container terminal problems. The detailed objectives
can be summarized as:

• Review the single and multi-objective optimization techniques proposed in the lit-
erature for planning and scheduling problems, by analyzing their advantages and
disadvantages.

• Review the two main strategies (proactive and reactive) reported in the literature to
handle the uncertainty or dynamism of real-world environments.

• Review and analyze the robustness of the schedules from the proactive perspective.

• Develop new optimization planning techniques with domain-dependent heuristics.

– Define the metric to evaluate the obtained plans.

– Define domain-dependent heuristics to be applied to planning tasks within
container terminals (Remarshalling tasks) .

– Evaluate and compare the domain-dependent planner with a general and well-
known planner: Metric-FF (Hoffmann 2003).
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• Develop new optimization scheduling techniques to be applied to container termi-
nals:

– Define the metric to evaluate the obtained schedules.

– Develop mathematical models to obtain the optimal schedules.

– Apply these techniques to tasks within container terminals: Berth Allocation
and Quay Crane Assignment Problems.

– Evaluate and compare these techniques .

• Design a proactive approach with a new robustness model as well as develop new
robust optimization techniques (multi-objective optimization) to be applied to con-
tainer terminals:

– Define and normalize the metric to evaluate (robust measure) how robust the
obtained schedules are.

– Develop mathematical models to obtain robust schedules.

– Apply these techniques to tasks within container terminals: Berth Allocation
and Quay Crane Assignment Problems.

– Evaluate and compare the developed techniques.

1.3 Structure

This thesis is structured in four chapters organized as follows:

• Chapter 1. Introduction: In this chapter, the state of the art and the motivation of
this thesis are described. It also presents the real-world environment chosen as case
study: container terminals. All the developed techniques were applied and assessed
using this case study.

• Chapter 2. Selected Papers: This chapter consists on a collection of articles (con-
ferences and journals) published by the PhD. student which support this thesis. The
articles are divided according to their scope.

• Chapter 3. General Discussion of the Results: This chapter provides a discussion
about all the obtained results presented in the articles from the previous chapter.

• Chapter 4. Conclusions: This last chapter is devoted to present a final review of
the conclusions as well as promising directions for further works.
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1.4 Publications List

In this section, all the international publications related to this thesis are listed. They are
classified according to their type (journals or international conferences) as well as whether
they are listed in JCR2 or in CORE3, respectively.

• Journals listed in JCR.

– Salido, M.A. and Rodriguez-Molins, M. and Barber, F.. Integrated intelligent
techniques for remarshaling and berthing in maritime terminals. Advanced
Engineering Informatics, Elsevier, 25(3), 435–451 (2011). (Q2, JCR: 1.489)
DOI: 10.1016/j.aei.2010.10.001

– Salido, M.A. and Rodriguez-Molins, M. and Barber, F.. A Decision Sup-
port System for Managing Combinatorial Problems in Container Terminals.
Knowledge Based Systems, Elsevier, 29(0), 63–74 (2012). (Q1, JCR: 4.104)
DOI: 10.1016/j.knosys.2011.06.021

– Rodriguez-Molins, M. and Salido, M.A. and Barber, F.. Intelligent Planning
for Allocating Containers in Maritime Terminals. Expert Systems with Ap-
plications, Elsevier, 39(1), 978–989 (2012). (Q2, JCR: 1.854)
DOI: 10.1016/j.eswa.2011.07.098

– Rodriguez-Molins, M. and Salido, M.A. and Barber, F.. A GRASP-based
Metaheuristic for the Berth Allocation Problem and the Quay Crane Assign-
ment Problem by Managing Vessel Cargo Holds. Applied Intelligence, Springer
US, 40(2), 273–290 (2014). (Q2, JCR 2012: 1.853)
DOI: 10.1007/s10489-013-0462-4

– Rodriguez-Molins, M. and Salido, M.A. and Barber F.. Robust scheduling
for Berth Allocation and Quay Crane Assignment Problem. Mathematical
Problems in Engineering, 1–17 (2014). (JCR 2013: 1.082).
DOI: 10.1155/2014/834927

• Other international journals.

– Rodriguez-Molins, M. and Ingolotti, L. and Barber F. and Salido, M.A. and
Sierra, M.R. and Puente J.. A Genetic Algorithm for Robust Berth Allocation
and Quay Crane Assignment. Progress in Artificial Intelligence, Springer
Berlin Heidelberg, 2(4), 177–192 (2014).
DOI: 10.1007/s13748-014-0056-3

2Journal Citation Reports http://thomsonreuters.com/journal-citation-reports/
3Conference Ranking Exercise http://core.edu.au/index.php/categories/conference%

20rankings/1
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1.5 Abbreviations and Acronyms

AI Artificial Intelligence
BAP Berth Allocation Problem
CSP, CStackP Container Stacking Problem
CT Container Terminal
FCFS First-Come, First-Served
FEU Forty-foot equivalent unit
GA Genetic Algorithm
GRASP Greedy Randomized Adaptive Search Procedure
ISO International Organization for Standardization
LIFO Last-In, Last-Out
LP Linear Programming
LS Local Search
MILP Mixed Integer Linear Programming
MOGA Multi-Objective Genetic Algorithm
MSC Mediterranean Shipping Company S.A.
OC Optimization Criteria
OR Operations Research
PDDL Planning Domain Definition Language
QC Quay Crane
QCAP Quay Crane Assignment Problem
RMG Rail Mounted Gantry crane
RTG Rubber Tyre Gantry crane
SA Simulated Annealing
SC Straddle Carrier
TEU Twenty-foot equivalent unit
TS Tabu Search
UPV Universitat Politècnica de València
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A Planning Tool for Minimizing Reshuffles in
Containers Terminals

Miguel A. Salido, Oscar Sapena, Mario Rodriguez, Federico Barber
Instituto de Automática e Informática Industrial.

Universidad Politécnica de Valencia.
Valencia, Spain

Abstract
One of the more important problems in container terminal is related to the Con-

tainer Stacking Problem. A container stack is a type of temporary store where con-
tainers await further transport by truck, train or vessel. The main efficiency problem
for an individual stack is to ensure easy access to containers at the expected time of
transfer. Since stacks are ’last-in, first-out’, and the cranes used to relocate contain-
ers within the stack are heavily used, the stacks must be maintained in a state that
minimizes on-demand relocations. In this paper, we present a new domain-dependent
planning heuristic for finding the best configuration of containers in a bay. Thus,
given a set of outgoing containers, our planner minimizes the number of relocations
of containers in order to allocate all selected containers in an appropriate order to
avoid further reshuffles.

1 Introduction
Loading and offloading containers on the stack is performed by cranes. In order to access

a container which is not at the top of its pile, those above it must be relocated. This reduces
the productivity of the cranes.

Maximizing the efficiency of this process leads to several requirements. First, each
incoming container should be allocated a place in the stack which should be free and sup-
ported at the time of arrival. Second, each outgoing container should be easily accessible,
and preferably close to its unloading position, at the time of its departure. In addition, the
stability of the stack puts certain limits on, for example, differences in heights in adjacent
areas, the placement of empty and ’half’ containers and so on.

Since the allocation of positions to containers is currently done more or less manually,
this has convinced us that it should be possible to achieve significant improvements of lead
times, storage utilization and throughput using appropriate and improved techniques.

c© 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all
other users, including reprinting/ republishing this material for advertising or promotional purposes, creating
new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of
this work in other works.
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Figure 1: A container yard (courtesy of Hi-Tech Solutions)

Figure 1 shows a container yard. A yard consists of several blocks, and each block
consists of 20-30 yard-bays [6]. Each yard-bay contains several (usually 6) rows. Each
row has a maximum allowed tier (usually tier 4 or tier 5 for full containers). Figure 2
shows a transfer crane that is able to move a container within a stacking area or to another
location on the terminal. For safety reasons, it is usually prohibited to move the transfer
crane while carrying a container [7], therefore these movements only take place in the
same yard-bay.

When an outside truck delivers an outbound container to a yard, a transfer crane picks
it up and stacks it in a yard-bay. During the ship loading operation, a transfer crane picks
up the container and transfers it to a truck that delivers it to a quay crane.

In container terminals, the loading operation for export containers is carefully pre-
planned by load planners. For load planning, a containership agent usually transfers a load
profile (an outline of a load plan) to a terminal operating company several days before a
ship’s arrival. The load profile specifies only the container group, which is identified by
container type (full or empty), port of destination, and size to be stowed in each particular
ship cell. Since a ship cell can be filled with any container from its assigned group,
the handling effort in the marshalling yard can be made easier by optimally sequencing
export containers in the yard for the loading operation. In sequencing the containers, load
planners usually pursue two objectives:

1. Minimizing the handling effort of quay cranes and yard equipment.

2. Ensuring the vessel’s stability.

The output of this decision-making is called the ”load sequence list”. In order to
have an efficient load sequence, storage layout of export containers must have a good

ICTAI - 2009
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Figure 2: A Rubber-tired gantry crane (courtesy of Kalmar Industries).

configuration. The main focus of this paper is optimally reallocating outgoing containers
for the final storage layout from which a load planner can construct an efficient load
sequence list. In this way, the objective is therefore to plan the movement of the cranes so
as to minimize the number of reshuffles of containers.

Given a layout, the user selects the set of containers that will be moved to the vessel.
Our tool is able to organize the layout in order to allocate these containers at the top of the
stacks in order to minimize the number of relocations. Thus a solution of our problem is a
layout where all outgoing containers can be available without carrying out any reshuffle.

2 The problem modeled as an Artificial Intelligence plan-
ning problem

A classical AI planning problem can defined by a tuple 〈A, I,G〉, where A is a set of
actions with preconditions and effects, I is the set of propositions in the initial state, and
G is a set of propositions that hold true in any goal state. A solution plan to a problem in
this form is a sequence of actions chosen from A that when applied transform the initial
state I into a state of which G is a subset.

The container stacking problem is a slight modification of the Blocks World planning
domain [8], which is a well-known domain in the planning community. This domain
consists of a finite number of blocks stacked into towers on a table large enough to hold
them all. The positioning of the towers on the table is irrelevant. The Blocks World
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planning problem is to turn an initial state of the blocks into a goal state, by moving one
block at a time from the top of a tower onto another tower (or on a table). The optimal
Blocks World planning problem is to do so in a minimal number of moves.

This problem is closed to the container stacking problem, but there are some important
differences:

• The number of towers is limited in the container stacking problem: a yard-bay
contains usually 6 rows, so it is necessary to include an additional constraint to
limit the number of towers on the table to 6.

• The height of a tower is also limited.

• The main difference is in the problem goal specification. In the Blocks World do-
main the goal is to get the blocks arranged in a certain layout, specifying the final
position of each block. In the container stacking problem the goal state is not de-
fined as accurately, so many different layouts can be a solution for a problem. The
goal is that the most immediate containers to load are in the top of the towers,
without indicating which containers must be in each tower.

We can model our problem by using the standard encoding language for classical
planning tasks called PDDL (Planning Domain Definition Language) [4]. Following this
standard, a planning task is defined by means of two text files: the domain file, which
contains the common features for all problems of this type, and the problem file, which
describes the particular characteristics of each problem.

2.1 The container stacking domain

The main elements in a domain specification are (1) the types of objects we need to
handle, (2) the types of propositions we use to describe the world, (3) the actions we
can perform to modify the state of the world and (4) the function to optimize which is
the number of relocations movements. For our proposals, we are going to consider two
separate domains, D1 and D2, with a different complexity degree. In the first domain
D1, all containers have the same properties and the objective is to place a selected subset
of containers, which must be loaded into the next vessel, on top of the stacks. In the
second domain D2, four subsets of containers are selected according to their departure
time: contF, contE, contM, contL. contF is the first set of containers to leave, the next
ones are contE, then contM and the last ones contL. In Figure 3 they are identified by
means of different colors: red, light gray, dark gray and black, respectively. The red ones
(contF containers) are the first ones to be loaded into the next vessel and, as it can be
observed in the final layout in the figure, they are located on top of the stacks to facilitate
their loading.
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Figure 3: Initial state example (left), and final layout achieved (right) in the domain D2.

3 A domain-dependent planning heuristic for solving the
container stacking problem

Since the container stacking problem can be formalized in PDDL format, we can use a
general planner to solve our problem instances. Currently we can found several general
planners which work well in many different domains, such as LPG-TD [3], MIPS-XXL [2]
and SGPlan [1]. However, and due to the high complexity of the domain we are handling,
these planners are not able to find good plan solutions efficiently. LPG-TD, for example,
spends too much time in the preprocessing stages, so it takes a long time to provide a
solution. On the contrary, MIPS-XXL and SGPlan can compute a solution rapidly, but the
quality of the obtained solution is not good enough, including some additional relocation
movements to achieve the goal configuration.

Algorithm 1: Pseudo-code of the domain-dependent heuristic function
Data: s: state to evaluate
Result: h, heuristic value of s
h = 0;1
if ∃ x - container / holding(x) ∈ s then2

if goal-container(x) then3
h = 0.1;4

else5
h = 0.5;6

end7
end8
for each row r in the yard-bay do9

∆h = 0;10
for x - container / at(x, r) ∈ s ∧ goal-container(x) do11

if ∄ y - container / goal-container(y) ∧ on(y, x) ∈ s then12
∆h = max(∆h, numContainersOn(x));13

end14
end15
h += ∆h;16

end17

We have implemented a local search domain-independent planner which can solve
quite efficiently many problem instances. This planner has several interesting properties
for the container stacking problem:
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• It is an anytime planning algorithm [9]. This means that the planner can found
a first, probably suboptimal, solution quite rapidly and that this solution is being
improved while time is available.

• The planner is complete, so it will always find a solution if exists.

• The planner is optimal. It guarantees finding the optimal plan if there is time enough
for computation.

This planner follows an enforced hill-climbing [5] approach with some modifications:

• We apply a best-first search strategy to escape from plateaux. This search is guided
by a combination of two heuristic functions and it allows the planner to escape from
a local minima very efficiently.

• If a plateau exit node is found within a search limit imposed, the hill-climbing
search is resumed from the exit node. Otherwise, a new local search iteration is
started from the best open node (the one with the best heuristic value).

This planner solves many problem instances but it can take too much time to find a
solution in the hardest problems (usually when the number of containers is high and many
reshuffles are required to achieve a goal layout). To improve the planning performance we
have designed a new heuristic function specific for this domain. This heuristic computes
an estimate of the number of container movements that must be carried out to reach a
goal state (see Algorithm 1). Replacing the traditional heuristic function, based on a
relaxed planning graph [5], by this domain-dependent heuristic function we outstandingly
improve the planner performance: it solves many more problems and finds better quality
plans with considerably less search effort. The plan is returned by the planner as a totally
ordered sequence of actions that the transfer crane must carry out to achieve our objective.

3.1 Heuristic improvement
The main goal in the container stacking problem is to minimize the number of reshuffles
required to reach a valid final layout. However, several different layouts can be usually
achieved making the same number of reshuffles and some of them can be more interesting
than the rest according to other important questions:

• It can be interesting to minimize the distance of the goal containers to the right side
of the yard-bay, where the transfer crane is located. Achieving this we can spend
considerably less time during the truck loading operations.

• It also could be interesting to balance the heights of the stacks to increase the con-
tainers stability.

These additional optimization functions have been easily incorporated in our planner
by defining the heuristic function as a linear combination of two functions: h(s) = α ∗
h1(s) + β ∗ h2(s), where:
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• h1(s) is the main heuristic function, which estimates the number of movements
required to reach the goal layout (outlined in Algorithm 1). Since this is the main
optimization function, α value should be significantly higher than β.

• h2(s) is the secondary function we want to optimize. This can be, for example,
the sum of the distances of the selected containers to the right side of the yard-bay,
which can be computed as Algorithm 2 shows.

Algorithm 2: Pseudo-code to calculate the distance
Data: s: state to evaluate
Result: d, distance value of s
d = 0;1
for each row r in the yard-bay do2

for x - container / at(x, r) ∈ s ∧ goal-container(x) do3
d = d + (numRows(s)−r);4

end5
end6

The benefits of using this combined heuristic function can be observed in Figure 4
and Figure 5. In the first one we want only to minimize the number of reshuffles, i.e.
h(s) = h1(s). In the second one, we also want to minimize the distance of the selected
containers to the forklift truck, so we have set h(s) = 9 ∗ h1(s) + h2(s). As a result,
none of the selected containers (the red ones) are placed in the most left rows, reducing
the required time to load the truck.

Figure 4: Obtained plan with the initial domain-dependent heuristic.

4 Evaluation
In this section, we have evaluated the minimum number of reshuffles needed to allocate
all selected containers at the top of the stacks or under another selected containers in such
a way that no reshuffles is needed to load outgoing containers.

The experiments were performed on random instances. A random instance is charac-
terized by the tuple < n, s >, where n is the number of containers and s is the number of
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Figure 5: Obtained plan with the distance domain-dependent heuristic.

selected containers. Each instance is a random configuration of all containers distributed
along the six stack with 4 or 5 tiers. We evaluated 100 test cases for each type of problem.

In Table 1, we present the average running time (in milliseconds) to achieve a solution
in both a domain-independent heuristic and our domain-dependent heuristic in problems
< n, 4 >. Thus, we fixed the number of selected containers to 4 and we increased
the number of containers n from 15 to 20. It can be observed that our new domain-
dependent heuristic is able to find a solution in a few milliseconds, meanwhile the domain-
independent heuristic needs some more time for finding the first solution.

Table 1: Running time of the domain-independent heuristic and our domain-dependent
heuristic in problems < n, 4 > with 4 tiers.

Instance A Domain Independent Our New Domain Dependent
Heuristic Heuristic

< 15, 4 > 180 6
< 17, 4 > 320 10
< 19, 4 > 533 15
< 20, 4 > 1210 40

In Table 2, we present the average sum of distances between the selected containers
and the right side of the layout in both our domain-independent heuristic and our domain-
dependent heuristic with distance optimization for problems < n, 4 >. As mentioned
above, we fixed the number of selected containers to 4 and we increased the number of
containers n from 13 to 19. It can be observed that the heuristic for distance optimization
helps finding solution plans that place the selected containers closer to the right side of
the yard-bay.

5 Conclusions and Further Works
This paper presents the modelling of the container stacking problem form the Artificial
Intelligence point of view. We have developed a domain-dependent planning tool for
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Table 2: Average distance obtained by considering distance or not in our domain-
dependent heuristic < n, 4 > with 4 tiers.

Instance without Heuristic distance with Heuristic distance

< 13, 4 > 8.15 7.45
< 15, 4 > 10.05 8.90
< 17, 4 > 10.70 9.55
< 19, 4 > 10.85 8.40

finding an appropriate configuration of containers in a bay. Thus, given a set of outgoing
containers, our planner minimizes the number of necessary reshuffles of containers in
order to allocate all selected containers at the top of the stacks or under another selected
containers in such a way that no further reshuffles are needed to load them.

The initial heuristic function proposed to guide the search has been also improved to
allow the optimization of secondary interesting functions as the containers’ distance to
the right side of the yard-bay, in order to reduce the required time during the loading
operations. We have also presented an expanded version of the domain which allow
to organize all the containers in the yard-bay according to their departure time. And,
as expected, our domain-dependent tool outperforms the existing domain-independent
planners, allowing to obtain high quality solution plans in few milliseconds.

In further works, we will focus our attention in the development of a more complex
domain-dependent planning heuristic to manage new hard and soft constraints.
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Universidad Politécnica de Valencia.
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Abstract

Maritime container terminals are facilities where cargo containers are transshipped
between ships or between ships and land vehicles (tucks or trains). These terminals
involve a large number of complex and combinatorial problems. One of them is re-
lated to the Container Stacking Problem. A container yard is a type of temporary store
where containers await further transport by truck, train or vessel. The main efficiency
problem for an individual stack is to ensure easy access to containers at the expected
time of transfer.

Stacks are ’last-in, first-out’ storage structures where containers are stocked in
the order they arrive. But they should be retrieved from the stack in the order (usu-
ally different) they should be shipped. This retrieval operation should be efficiently
performed, since berthing time of vessels and the terminal operations should be op-
timized. To do this, cranes can relocate containers in the stacks to minimize the
rearrangements required to meet the expected order of demand for containers.

In this paper, we present a domain-dependent heuristically guided planner for ob-
taining the optimized reshuffling plan, given a stacking state and a container demand.
The planner can also be used for finding the best allocation of containers in a yard-
bay in order to minimize the number of reshuffles as well as to be used for simulation
tasks and obtaining conclusions about possible yard configurations.

Keywords Planning, Heuristics, Optimizing, Container Stacking Problem

1 Introduction
Maritime container terminals are the most important locations for transshipment and in-
termodal container transfers (Figure 1). [5] shows how this transshipment market is grow-
ing fast (container throughput has increased by 58 per cent over 2000-2004) and needs
further studies to analyze it. In order to ensure reliability, e.g. delivery dates or handling
times, to the different shipping companies as well as increasing productivity and container
throughput from the quayside and landside and vice versa, there are several issues which
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need optimization. [18, 17] provide an extensive survey about operations at seaport con-
tainer terminals and methods for their optimization. Moreover, other problems could be
faced as for instance planning the routes for liner shipping services to obtain the maximal
profit [2]. Another important issue for the success at any container terminal is to forecast
container throughput accurately [1]. With this data they could develop better operational
strategies and investment plans.

Containers are an ISO standardized metal box and can be stacked on top of each other.
Loading and offloading containers on the stack is performed by cranes following a ’last-
in, first-out’ (LIFO) storage. In order to access a container which is not at the top of its
pile, those above it must be relocated. It occurs since other ships have been unloaded later
or containers have been stacked in the wrong order due to lack of accurate information.
This reduces the productivity of the cranes. Maximizing the efficiency of this process
leads to several requirements:

1. Each incoming container should be allocated a place in the stack which should be
free and supported at the time of arrival.

2. Each outgoing container should be easily accessible, and preferably close to its
unloading position, at the time of its departure.

In addition, there exist a set of hard/soft constraints regarding the container locations, for
example, small differences in height of adjacent yard-bays, dangerous containers must be
allocated separately by maintaining a minimum distance and so on.

Berth area

Storage yard

Gate and Rail Area

Figure 1: Container Terminal at Valencia

Nowadays, the allocation of positions to containers is usually done manually. There-
fore, using appropriate Artificial Intelligent techniques is possible to achieve significant
improvements of lead times, storage utilization and throughput.
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Figure 2 left shows a container yard. A yard consists of several blocks, and each block
consists of 20-30 yard-bays [11]. Each yard-bay contains several (usually 6) rows. Each
row has a maximum allowed tier (usually tier 4 or tier 5 for full containers). Figure 2 right
shows a gantry crane that is able to move a container within a stacking area or to another
location on the terminal. For safety reasons, it is usually prohibited to move the gantry
crane while carrying a container [12], therefore these movements only take place in the
same yard-bay.

 

Figure 2: A container yard (left) and gantry cranes (right) (Photos by Stephen Berend)

When a container arrives at the terminal port, a transfer crane picks it up and stacks it
in a yard-bay. During the ship loading operation, a transfer crane picks up the container
and transfers it to a truck that delivers it to a quay crane.

In container terminals, the loading operation for export containers is pre-planned by
load planners. For load planning, a containership agent usually transfers a load profile
(an outline of a load plan) to a terminal operating company several days before a ship’s
arrival. The load profile specifies only the container group. In order to have an efficient
load sequence, storage layout of export containers must have a good configuration.

The main focus of this paper is to present a planning system which optimally real-
locates outgoing containers for the final storage layout from which a load planner can
construct an efficient load sequence list. In this way, the objective is therefore to plan
the movement of the cranes so as to minimize the number of reshuffles of containers in
a complete yard. To this end, the yard is decomposed in yard-bays, so that the problem
is distributed into a set of subproblems. Thus, each yard-bay generates a subproblem,
but containers of different yard-bays must satisfy a set of constraints among them, so that
subproblems will be sequentially solved taken into account the set of constraints with
previously solved subproblems.

In the literature, generally this problem can be seen in two different ways according
to when it should be done the optimization:

1. minimizing the number of relocations during the pickup operation.

2. getting a desirable layout for the bay before the pickup operation is done in order
to minimize (or eliminate) the number of relocations during this process.
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[8] proposes a methodology to estimate the expected number of rehandles to pick
up an arbitrary container and the total number of rehandles to pick up all the containers
in a bay for a given initial stacking configuration. In a similar way, [10] compares two
methods, branch-and-bound algorithm and a heuristic rule based on an estimator, which
they minimize the number of relocations during the pickup operation.

In [9], they also propose a methodology to convert the current bay layout into the
desirable layout by moving the fewest possible number of containers (remarshalling) and
in the shortest possible travel distance although it takes a considerable time since they
use mathematical programming techniques. Cooperative coevolutionary algorithms have
been developed in [13] to obtain a plan for remarshalling in automated container termi-
nals.

This paper focuses on this latter issue. But we present a new heuristic with a set of
optimization criteria in order to achieve efficiency and take into account constraints that
should be considered in real-world problems in the provided solutions.

2 Problem description (The Container Stacking Problem)
The Container Stacking Problem can be viewed as a modification of the Blocks World
planning domain [19], which is a well-known domain in the planning community. This
domain consists of a finite number of blocks stacked into towers on a table large enough
to hold them all. The Blocks World planning problem is to turn an initial state of the
blocks into a goal state, by moving one block at a time from the top of a tower onto
another tower (or on a table). The optimal Blocks World planning problem is to do so in a
minimal number of moves.

Blocks World problem is closed to the Container Stacking Problem, but there are some
important differences:

• The number of towers is limited to 6 because a yard-bay contains usually 6 rows.

• The height of a tower is also limited to 4 or 5 tiers depending on the employed
cranes.

• There exist a set of constraints that involve different rows such as balanced adjacent
rows, dangerous containers located in different rows, etc.

• The main difference is in the problem goal specification. In the Blocks World do-
main the goal is to get the blocks arranged in a certain layout, specifying the final
position of each block. In the container stacking problem the goal state is not de-
fined as accurately, so many different layouts can be a solution for a problem. The
goal is that the most immediate containers to load are in the top of the towers,
without indicating which containers must be in each tower.

We can model our problem by using the standard encoding language for classical
planning tasks called PDDL (Planning Domain Definition Language) [3] whose purpose
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is to express the physical properties of the domain under consideration and it can be
graphically represented by means of tools as [4]. A classical AI planning problem can be
defined by a tuple 〈A, I,G〉, where A is a set of actions with preconditions and effects, I
is the set of propositions in the initial state, and G is a set of propositions that hold true in
any goal state. A solution plan to a problem in this form is a sequence of actions chosen
from A that when applied transform the initial state I into a state of which G is a subset.

Following the PDDL standard, a planning task is defined by means of two text files.
The domain file, which contains the common features for problems of this domain and
the problem file, which describes the particular characteristics of each problem. These
two files will be described in the following subsections.

2.1 Domain specification
In this file, we will specify the objects which may appear in the domain as well as the
relations among them (propositions). Moreover, in order to make changes to the world
state, actions must be defined.

• Object types: containers and rows, where the rows represent the areas in a yard-bay
in which a tower or stack of containers can be built.

• Types of propositions:

– Predicate for indicating that the container ?x is on ?y, which can be another
container or, directly, the floor of a row (stack).
on ?x - container ?y - (either row container)

– Predicate for indicating that the container ?x is in the tower built on the row
?r.
at ?x - container ?r - row

– Predicate for stating that ?x, which can be a row or a container, is clear, that
is, there are no containers stacked on it.
clear ?x - (either row container)

– Predicate for indicating that the crane used to move the containers is not hold-
ing any container.
crane-empty

– Predicate for stating that te crane is holding the container ?x.
holding ?x - container

– Predicates used to describe the problem goal. The first one specifies the most
immediate containers to load, which must be located on the top of the towers
to facilitate the ship loading operation. The second one becomes true when
this goal is achieved for the given container.
goal-container ?x - container and ready ?x - container
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– Numerical predicates. The first one stores the number of containers stacked
on a given row and the second one counts the number of container movements
carried out in the plan.
height ?s - row and num-moves

• Actions:

– The crane picks the container ?x which is in the floor of row ?r.
pick (?x - container ?r - row)

– The crane puts the container ?x, which is holding, in the floor of row ?r.
put (?x - container ?r - row)

– The crane unstacks the container ?x, which is in row ?r, from the container
?y.
unstack (?x - container ?y - container ?r - row)

– The crane stacks the container ?x, which is currently holding, on container
?y in the row ?r.
stack (?x - container ?y - container ?r - row)

– Finally, we have defined two additional actions that allow to check whether
a given (goal) container is ready, that is, it is in a valid position. When a
container is clear:
fict-check1 (?x - container)

The container is under another (goal) container which is in a valid position.
fict-check2 (?x - container ?y - container)

As an example of PDDL format, we show in Figure 3 the specification of the stack
operator. Preconditions describe the conditions that must hold to apply the action: crane
must be holding container ?x, container ?y must be clear and at row ?r, and the number
of containers in that row must be less than 4. With this constraint we limit the height of
the piles. The effects describe the changes in the world after the execution of the action:
container ?x becomes clear and stacked on ?y at row ?r, and the crane is not holding
any container. Container ?y becomes not clear and the number of movements and the
containers in ?r is increased in one unit.

2.2 Problem specification
Once the problem domain has been defined, we can define problem instances. These files
describe the particular characteristics of each problem:

• Objects: the rows available in the yard-bay (usually 6) and the containers stored in
them.

• Initial state: the initial layout of the containers in the yard.
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(:action stack
:parameters (?x - container ?y - container ?r - row)
:precondition (and

(holding ?x) (clear ?y)
(at ?y ?r) (< (height ?r) 4))

:effect (and
(clear ?x) (on ?x ?y)
(at ?x ?r) (crane-empty)
(not (holding ?x))
(not (ready ?y))
(not (clear ?y))
(increase (num-moves) 1)
(increase (height ?r) 1)))

Figure 3: Formalization of the stack operator in PDDL.

• The goal specification: the selected containers to be allocated at the top of the stacks
or under other selected containers.

• The metric function: the function to optimize. In our case, we want to minimize the
number of relocation movements (reshuffles).

Since the Container Stacking Problem can be formalized with these two files, we
can use a general domain independent planner to solve our problems as Metric FF [7].
The plan, which is returned by the planner, is a totally ordered sequence of actions or
movements which must be carried out by the crane to achieve the objective. Figure 4
shows an example of the obtained plan for a given problem. The performance of this
general planner will be analyzed in Section 6, which will be compared with the domain-
oriented planner presented in next Sections.

Figure 4: The obtained plan solution to be carried out by the transfer crane.
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3 A Domain-Dependent Heuristically Guided Planner
Metric FF planner might obtain plans, but it is very inefficient. Therefore, we propose a
domain-dependent planner in order to provide more efficiency, it means at least reducing
the number of crane operations required to achieve a desirable layout.

The proposed planner is built on the basis of a local search domain-independent plan-
ner called Simplanner [16]. This planner has several interesting properties for the con-
tainer stacking problem:

• It is an anytime planning algorithm. This means that the planner can found a first,
probably suboptimal, solution quite rapidly and that this solution is being improved
while time is available.

• It is complete, so it will always find a solution if exists.

• It is optimal, so that it guarantees finding the optimal plan if there is time enough
for computation.

It follows an enforced hill-climbing [6] approach with some modifications:

• It applies a best-first search strategy to escape from plateaux. This search is guided
by a combination of two heuristic functions and it allows the planner to escape from
a local minima very efficiently.

• If a plateau exit node is found within a search limit imposed, the hill-climbing
search is resumed from the exit node. Otherwise, a new local search iteration is
started from the best open node.

The initial approach, based on Simplanner, was firstly used to solve individual sub-
problems (yard-bays). To improve the solutions obtained by Simplanner we have further
developed a domain-dependent heuristic to guide the search in order to accelerate and
guide the search toward a optimal or sub-optimal solutions.

This heuristic (called h1) was developed to efficiently solve one yard-bay. h1 com-
putes an estimator of the number of container movements that must be carried out to reach
a goal state (see Algorithm 1). The essential part of this algorithm is to count the num-
ber of containers located on the selected ones, but also keeps track of the containers that
are held by the crane distinguishing between whether they are selected containers or not.
When the crane is holding a selected container, the value h has a smaller increase since,
although this state is not a solution, this container will be at the top of some row in the
next movement.

4 Optimization criteria for one-bay yards
Despite we are able to obtain good solutions (layouts) from Simplanner enhanced with
h1, we also want solutions more realistic for instance taking into account safety standards.
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Algorithm 1: Pseudo-code of the domain-dependent heuristic h1

Data: b: state of the yard-bay;
Result: h: heuristic value of b;
h← 0;1
// Container hold by the crane
if ∃x−container / Holding(x) ∈ b then2

if GoalContainer(x) then3
h← 0.1;4

else5
h← 0.5;6

end7
end8
// Increasing the ∆h value
for r ← 1 to numRows(b) do9

∆h← 0;10
for x−container / At(x, r) ∧ GoalContainer(x) ∈ b do11

if ∄y−container / GoalContainer(y) ∧ On(y, x) ∈ b then12
∆h← max(∆h, NumContainersOn(x));13

end14
end15
h← h + ∆h;16

end17

From this heuristic h1, we have developed some optimization criteria each one of
them achieving one of the requirements we could face at Container Terminals [15]. These
criteria are centered in the next issues:

1. Reducing distance of the goal containers to the cargo side (OC1d).

2. Increasing the range of the move actions set for the cranes allowing to move a
container to 5th tier (OC1t).

3. Applying different ways of balancing within the same bay in order to avoid sinks
(OC1b).

These criteria have been easily incorporated in our planner by defining a heuristic
function as a linear combination of two functions:

h(s) = α · h1(s) + β · h2(s) (1)

being this secondary function a combination of these three criteria described:

h2(s) = OC1d +OC1t +OC1b (2)

Note that although we want to guarantee balancing with this last optimization crite-
rion, unbalanced states (states with sinks) are allowed during this process of remarshalling
in order to get better solutions according to the number of reshuffles done.
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4.1 OC1d: Placing goal containers close to cargo side
Given an initial state, several different layouts can be usually achieved making the same
number of reshuffles and some of them can be more interesting than the rest according
to other important questions. In this case, since the transfer crane is located at the right
side of the yard-bay, we want to obtain a layout where it is minimized the distance of the
goal containers to this side of the yard-bay. Achieving this we can spend considerably
less time during the truck loading operations.

Figure 5: Obtained plan with the initial domain-dependent heuristic.

Following the heuristic function presented in Equation 1:

• h1(s) is the main heuristic function, which estimates the number of movements
required to reach the goal layout (outlined in Algorithm 1). Since this is the main
optimization function, α value should be significantly higher than β.

• h2(s) is the secondary function we want to optimize. In this case, it is just OC1d.
This means the sum of the distances of the selected containers to the right side of
the yard-bay, which can be computed as Algorithm 2 shows.

Algorithm 2: Pseudo-code to calculate the distance
Data: s: state to evaluate
Result: d: distance value of s
d← 0;1
for r ← 1 to numRows(s) do2

for x−container / At(x, r) ∈ s ∧ GoalContainer(x) do3
d← d + (numRows(s)− r);4

end5
end6

The benefits of using this combined heuristic function can be observed in Figure 5
and Figure 6. In the first one we want only to minimize the number of reshuffles, i.e.
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h(s) = h1(s). In the second one, we also want to minimize the distance of the selected
containers to the forklift truck, so we have set h(s) = 9 ∗ h1(s) + h2(s). As a result,
none of the selected containers (the red ones) are placed in the most left rows, reducing
the required time to load the truck.

Figure 6: Obtained plan with the distance optimization function.

4.2 OC1t: Allowing the 5th tier during the remarshalling process

In this optimization criterion as well as the next ones, we will include the new given
heuristic value with the same factor as the initial one. One of the decisions that must be
done in Container Terminals is about which cranes have to be bought depending on how
many tiers cranes work. This topic has been considered in [14]. But, another approach
is to reach the fifth tier only during the remarshalling process. Thereby, there would be 4
tiers at the beginning and the end keeping the first requirements.

Following this concept, we will use instances of problems < n, 4 > with a domain
whose move actions allow 5 tiers at the stacks. This function is showed in Algorithm
3 and it follows the same steps than the original but increasing the value of h when the
height of one of the stacks is higher than 4. Thereby, we assure that the final layout will
always have 4 tiers.

4.3 OC1b: Balancing one yard-bay

In this section we present an extension for the heuristic h1 (Algorithm 1) to include the
balancing of the stacks within one yard-bay as a requirement. It is considered that there
is a sink when the height difference between two adjacent stacks in the same yard-bay is
greater than a maximum number of containers, in our case two containers.

Considering the time when the goal containers are removed from the yard, we can
distinguish three ways to get balanced one yard-bay presented in the next subsections.
The last mode is the consequence of applying the first two ones.
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Algorithm 3: Pseudo-code of the domain-dependent heuristic function to allow 5
tiers

Data: s: state to evaluate
Result: h: heuristic value of s
h← 0;1
if ∃x−container / Holding(x) ∈ s then2

if GoalContainer(x) then3
h← 0.1;4

else5
h← 0.5;6

end7
end8
for r ← 1 to numRows(s) do9

∆h← 0;10
if Height[r, s] > 4 then11

if x−container / Clear(x, r) ∈ s ∧ GoalContainer(x) then12
∆h← 0.5;13

else14
∆h← 1;15

end16
end17
for x−container / At(x, r) ∈ s ∧ GoalContainer(x) do18

if ∄y−container / GoalContainer(y) ∧ On(y, x) ∈ s then19
∆h← max(∆h, NumContainersOn(x));20

end21
end22
h← h + ∆h;23

end24

1. Balanced before loading operation In this case, we consider that the layout must
be balanced before the goal containers are removed from that yard-bay. This func-
tion is showed in Algorithm 4, it compares the height of each row of the yard-bay
with the next one, and if the difference is higher than 2, the value heuristic h is in-
creased. As it appears in Figure 7, this criterion avoids the sinks in the final layout
while all the containers are still in the yard-bay.

However, when these containers are removed, it might cause that the new layout is
unbalanced as it happens in Figure 7(c).

Algorithm 4: Pseudo-code to balance before the goal containers are removed
Data: s: state to evaluate; h: Initial heuristic;
Result: h: heuristic value of s;
for r ← 1 to numRows(s)− 1 do1

∆h← Abs(Height[r, s]− Height[r + 1, s])− 2;2
if ∆h > 0 then3

h← h + ∆h;4
end5

end6

2. Balanced after loading operation In contrast to the method seen above, we can
consider that the layout must remain balanced after the goal containers are removed
from the yard-bay. Figure 8 shows the layouts we get after execute the plan returned
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(a) Initial Layout (b) With goal containers (c) Without goal containers

Figure 7: Effects of using function seen in Algorithm 4

by our planner.

Algorithm 5: Function HeightsWithoutGoals to calculate heights of each
row without taking into account the goal containers at the top

Data: b: state of the yard-bay;
Result: MinHeight, heights calculated;
for r ← 1 to numRows(b) do1

MinHeight[r, b]← Height[r, b];2
// Decrease till the first no goal-container
while MinHeight[r, b] > 0 ∧ GoalContainer(MinHeight[r, b], r) ∈ b do3

MinHeight[r, b]← MinHeight[r, b]− 1;4
end5

end6

Algorithm 6 shows this function. It uses the Function HeightsWithoutGoals (Algo-
rithm 5) in order to calculate for the yard-bay b the height for each stack where the
first no-goal container is. These values are employed to get the difference of height
between two adjacent stacks once the goal containers have been removed from the
yard. Heights of each row are stored as soon as the planner gets the final solution
plan for one yard-bay. After we obtain these values, we increase the heuristic value
h according to whether or not there are goal containers on the floor. Then, we use
the values given by HeightsWithoutGoals to calculate the difference between two
adjacent stacks, when this difference is higher than 2 we consider that there is a
sink, so h is increased again.

However, this process might also cause some unbalanced layouts (Figure 8(b)). But
in this case, non-desirable layouts will appear while the goal containers are in the
yard-bay. Once they have been removed from it, these layouts will be balanced
ones (Figure 8(c)).

3. Balanced before and after loading operation Finally, we present an optimization
criterion which obtains a layout where is balanced both before and after the goal
containers are removed from this yard-bay. With this function we want to solve the
problems seen in the last subsections as we can see it in Figure 9.
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Algorithm 6: Pseudo-code to balance after the goal containers are removed
Data: s: state to evaluate; h: Initial heuristic;
Result: h: heuristic value of s;
HeightsWithoutGoals(s);1
∆h← 0;2
// Not allow containers on the floor
for r ← 1 to numRows(s) do3

if ∃x−container / On(x, r) ∧ GoalContainer(x) then4
if MinHeight[r, s] > 0 then5

∆h← ∆h + NumContainersOn(x);6
end7

end8
end9
h← h + ∆h;10
for r ← 1 to numRows(s)− 1 do11

∆h← Abs(MinHeight[r, s]− MinHeight[r + 1, s]);12
if ∆h > 2 then13

h← h + ∆h− 2;14
end15

end16

(a) Initial Layout (b) With goal containers (c) Without goal containers

Figure 8: Effects of using function seen in Algorithm 6

This function (Algorithm 7) is a mixture of the last two ones. First, we increase
h when there are goal containers on the floor. When this is achieved, we in-
crease h when the difference between the heights values obtained by the function
HeightsWithoutGoals (Algorithm 5) are higher than 2 for two contiguous rows.
And finally, if h value is low enough (in our case lower than 1), we increase h again
if the difference between the actual heights of two contiguous rows is higher than
2.

5 Optimization criteria for one block

This initial heuristic (h1) was unable to solve a complete yard or block (in our case, one
block consists of 20 yard-bays) due to the fact that they only solve individual yard-bays. In
this paper, we also have developed two optimization criteria that include new constraints
that involve several yard-bays. These constraints are:
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Algorithm 7: Pseudo-code to balance the yard-bay before and after the goal con-
tainers are removed

Data: s: state to evaluate; h: Initial heuristic;
Result: h: heuristic value of s;
HeightsWithoutGoals(s);1
∆h← 0;2
// Not allow containers on the floor
for r ← 1 to numRows(s) do3

if ∃x−container / On(x, r) ∧ GoalContainer(x) then4
if MinHeight[r, s] > 0 then5

∆h← ∆h + NumContainersOn(x);6
end7

end8
end9
h← h + ∆h;10
if h < 2 then11

∆h← 0;12
// Balancing with containers which are not objective
for r ← 1 to numRows(s)− 1 do13

∆h← Abs(MinHeight[r, s]− MinHeight[r + 1, s]);14
if ∆h > 2 then15

h← h + 0.6× (∆h− 2);16
end17

end18
if h < 2 then19

// Balancing with containers which are objective
for r ← 1 to numRows(s)− 1 do20

∆h← Abs(Height[r, s]− Height[r + 1, s]);21
if ∆h > 2 then22

h← h + 0.4× (∆h− 2);23
end24

end25
end26

end27

(a) Initial Layout (b) With goal containers (c) Without goal containers

Figure 9: Effects of using function seen in Algorithm 7

• Balancing contiguous yard-bays: rows of adjacent yard-bays must be balanced, that
is, the difference between the number of containers of row j in yard-bay i and row
j in yard-bay i − 1 must be lower than a maximum (in our case lower than 3).
Figure 10 shows which rows must be get balanced when we consider one yard-bay
and Figure 11 left shows an example of non-balanced yard-bays (rows in dotted
points).
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• Dangerous containers: two dangerous containers must maintain a minimum secu-
rity distance. Figure 11 right shows an example of two dangerous containers that
does not satisfy the security distance constraint.

(i,j)(i-1,j)

(i,j+1)

(i+1,j)

(i,j-1)

Bays

S
ta
c
k
s

Figure 10: Balancing scheme

These constraints interrelate the yard-bays so the problem must be solved as a com-
plete problem. However, it is a combinatorial problem and it is not possible to find an
optimal or sub-optimal solution in a reasonable time. Following the previous philosophy
of solving each subproblem independently (each yard-bay separately), we can distribute
the problem into subproblems and solve them sequentially taken into account related yard-
bays. Thus a solution to the first yard-bay is taken into account to solve the second yard-
bay. A solution to the second yard-bay is taken into account to solve the third yard-bay.
Furthermore, if there exist a dangerous container in a first bay, its location is taken into
account to solve a dangerous container located in the third yard-bay (if it exists); and so
on. Taken into account this distributed and synchronous model, we present two different
optimization criteria to manage these types of constraints.

These two criteria are added to the heuristic function seen in Equation 1 as h3 (Equa-
tion 3); and Equation 4 shows the exact combination of them. This makes possible to
follow a criterion with major priority than the other one.

h = α · h1 + β · h2 + γ · h3 (3)

h3 = δ1 ·OCnB + δ2 ·OCnD (4)

As a consequence of the solving mode followed, depending on the order the yard-
bays are resolved may not be possible to achieve a solution. Moreover, as mentioned in
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Section 4, although we want to guarantee balancing and/or minimum distance between
dangerous containers, during relocation of container process we will allow the presence
of non-desirable sates, e.g. with some sinks between two contiguous rows or bays. These
intermediate states are allowed because through them we will be able to get better solu-
tions taking into account as metric function the number of reshuffles done.
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i

( ) ( ) ( )
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Figure 11: (Left) Non-balanced yard-bays. (Right) Proximity of two dangerous contain-
ers.

5.1 OCnB: Balancing contiguous yard-bays
In this section we present an extension for the heuristic h1 (Algorithm 1) to include the
balancing of continuous yard-bays as a requirement. It is considered that there is a sink
when a difference higher than two containers exists between two adjacent rows in con-
tiguous yard-bays. This criterion is an extension of the balanced heuristic presented in
Algorithm 7, which avoids sinks in the same yard-bay (horizontal balance) both before
and after the outbound containers have been removed from the yard. However, in this
case a sink represents a constraint between two subproblems. Thus, we also consider that
there is a sink when a difference of two exits between the same row r in two contiguous
yard-bays (vertical balance).

This process is showed in Algorithm 8. This also uses the Function HeightsWithout-
Goals (Algorithm 5) in order to calculate for the yard-bay b the height for each stack
where the first no-goal container is. Heights of each row are stored as soon as the planner
gets the final solution plan for one yard-bay.

First, we apply the criterion seen in Algorithm 7 on the yard-bay b. Through heights’
calculated by Algorithm 5 and the real heights of the actual yard-bay we obtain the differ-
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ences between the row r and r−1 to calculate the value of h. When this value is zero (the
yard-bay b is horizontally balanced), then we introduce our function to balance it with
respect to the last yard-bay bl. To do so, we must also calculate the heights’ through
the Algorithm 5 over bl and use the real heights of it in order to obtain the differences
between the row r situated in b and bl. When these differences are higher than 2, we
increase h proportionally. After that process, b will be balanced horizontally with respect
to their rows, and vertically with respect to the last yard-bay. Repeating this process for
each yard-bay in the block, this will be completely balanced.

Algorithm 8: Pseudo-code to balance two adjacent yard-bays
Data: b: state of the actual yard-bay; h: Initial heuristic; bl: last yard-bay;
Result: h: heuristic value of b
// Getting the balance horizontally
HeightsWithoutGoals(b);1
h← h + BalBeforeAfter(b);2
// This heuristic will be executed after a partial solution
if h < 1 ∧ NumBay(b) 6= 1 then3

∆h← 0;4
HeightsWithoutGoals(bl);5
// Balancing with containers which are not objective
for r ← 1 to numRows(b) do6

∆h← Abs(MinHeight[r, bl]− MinHeight[r, b]);7
if ∆h > 2 then8

h← h + 0.6× (∆h− 2);9
end10

end11
if h = 0 then12

// Balancing with containers which are objective
for r ← 1 to numRows(b) do13

∆h← Abs(Height[r, bl]− Height[r, b]);14
if ∆h > 2 then15

h← h + 0.4× (∆h− 2);16
end17

end18
end19

end20

5.2 OCnD: Dangerous containers
Within a block, there are different types of containers depending on the goods they trans-
port, being some of them dangerous. If they do not satisfy certain restrictions, it may
become a hazard situation for the yard since e.g. if one of them explodes and they are not
enough far between them, it will set off a chain of explosions.

With this added objective, the next optimization criterion (Algorithm 9) ensures a
minimum distance (Dmin) between every two dangerous containers (Cd) in the yard.
Dmin is set as one parameter for the planner and the distance is calculated as the Euclidean
distance, considering each container located in a 3-dimensional space (X,Y,Z) where X is
the number of yard-bays, Y is the number of rows and Z is the tier.

Generally, in container terminals, at most, there is only one dangerous container in two
contiguous yard-bays, so that we take into account this assumption in the development of
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this function.
This function increases h value when a dangerous container Cd1 exists in a yard-bay

b and the distance constraints between dangerous containers are not hold. Thereby, for
each dangerous container Cd2 allocated in the previous Dmin yard-bays is calculated
by Euclidean distance to Cd1. If this distance is lower than Dmin, for any dangerous
container Cd2, then h value is increased with the number of containers n on Cd1 because
it indicates that removing those n containers is necessary to reallocate the container Cd1.

Algorithm 9: Pseudo-code to avoid locating two dangerous containers closer to a
distance Dmin

Data: B: whole block; b: state of the actual yard-bay; h: Initial heuristic; Dmin: Minimum distance;
Result: h: heuristic value of b;
nBay ← NumBay(b);1
if nBay > 1 ∧ ∃Cd1 ∈ b then2

∆h← 0;3
L1 ← Location(Cd1);4
foreach bl ∈ Y / NumBay(bl) ∈ {max(nBay −Dmin + 1, 1), nBay − 1} do5

if ∃Cd2 ∈ bl then6
L2 ← Location(Cd2);7
dist← EuclideanDistance(L1, L2);8
if dist < Dmin then9

∆h← ∆h + NumContainersOn(Cd1);10
if Clear(Cd1) ∈ b then11

∆h← ∆h + (Dmin − dist);12
end13

end14
end15

end16
h← h + ∆h;17

end18

Algorithm 10: Sinks within a whole block
Data: B: whole block;
Result: nSinks: number of Sinks;
nSinks← 0;1
for b← 1 to numYards(B) do2

for r ← 1 to numRows(b)− 1 do3
∆h← Abs(Height[r, b]− Height[r + 1, b]);4
if ∆h > 2 then5

nSinks← nSinks + 1;6
end7

end8
if NumBay(b) > 1 then9

for r ← 1 to numRows(b) do10
∆h← Abs(Height[r, b]− Height[r, b− 1]);11
if ∆h > 2 then12

nSinks← nSinks + 1;13
end14

end15
end16

end17
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Algorithm 11: Unfeasible relationships between two dangerous containers within
a whole block

Data: B: whole block;
Result: nDang: number of Sinks;
nDang ← 0;1
for b← 1 to numYards(B) do2

nBay ← NumBay(b);3
if nBay > 1 ∧ ∃Cd1 ∈ b then4

L1 ← Location(Cd1);5
foreach bl ∈ Y / NumBay(bl) ∈ {max(nBay −Dmin + 1, 1), nBay − 1} do6

if ∃Cd2 ∈ bl then7
L2 ← Location(Cd2);8
dist← EuclideanDistance(L1, L2);9
if dist < Dmin then10

nDang ← nDang + 1;11
end12

end13
end14

end15
end16

6 Evaluation

In this section, we evaluate the behavior of the heuristic with the set of optimization
criteria presented in this paper. The experiments were performed on random instances.
A random instance of a yard-bay is characterized by the tuple < n, s >, where n is the
number of containers in a yard-bay and s is the number of selected containers in the yard-
bay. Each instance is a random configuration of all containers distributed along six stacks
with 4 tiers. They are solved on a personal computer equipped with a Core 2 Quad Q9950
2.84Ghz with 3.25Gb RAM.

First, we present a comparison between our basic domain dependent heuristic h1

against a domain independent one (Metric FF). Thus, Table 1 presents the average run-
ning time (in milliseconds) to achieve a first solution as well as the best solution found
(number of reshuffles) in 10 seconds for our domain-dependent planner and the average
running time (in milliseconds) and the quality of the solution for Metric FF. Both planners
have been tested in problems < n, 4 > evaluating 100 test cases for each one. Thus, we
fixed the number of selected containers to 4 and we increased the number of containers n
from 15 to 21.

It can be observed that our new domain-dependent heuristic is able to find a solution
in a few milliseconds, meanwhile the domain-independent planner (Metric FF) needs
much time for finding a solution and also, this solution needs more moves to get a goal
state. Furthermore, due to the fact that our tool is an anytime planner, we evaluate the best
solution found in a given time (10 seconds).

Now we show the effects of using each one of the criteria described in Section 4
separately. In Table 2, we present the average sum of distances between the selected
containers and the right side of the layout in both our domain-independent heuristic and
our domain-dependent heuristic with distance optimization for problems < n, 4 >. As
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Table 1: Average number of reshuffles and running time of Metric FF and h1 in problems
< n, 4 >.

Instance
Metric FF Heuristic (h1)

Running Solution Time first Best Solution
time solution in 10 secs

< 13, 4 > 22 3.07 2 3.07
< 15, 4 > 3102 4.04 5 3.65
< 17, 4 > 4669 5.35 11 4.35
< 19, 4 > 6504 6.06 22 4.72
< 20, 4 > 22622 7.01 33 5.22
< 21, 4 > 13981 6.82 62 5.08

mentioned above, we fixed the number of selected containers to 4 and we increased the
number of containers n from 13 to 21. It can be observed that distance optimization
function helps finding solution plans that place the selected containers closer to the cargo
side of the yard-bay.

Table 2: Average distance obtained by considering distance or not in our domain-
dependent heuristic < n, 4 > with 4 tiers.

Instance Metric FF OC1d

Distance Reshuffles Distance Reshuffles

< 13, 4 > 11.28 3.07 10.91 3.07
< 15, 4 > 10.60 4.04 9.21 3.65
< 17, 4 > 10.58 5.35 8.87 4.46
< 19, 4 > 12.28 6.06 8.33 4.85
< 20, 4 > 12.71 7.01 7.75 5.55
< 21, 4 > 12.20 6.82 8.22 5.33

Applying the criterion or function showed in Algorithm 3 we obtain the results ap-
peared in Table 3. These results are the comparison between the number of solved prob-
lems over 100 problems < n, 4 > using or not that criterion in just one second. Through
this table we can conclude that:

• The greater number of containers, the fewer problems are solved. This is because
as we increase the number of containers there are less positions or gaps where
containers could be remarshalled.

• Allowing movements to the 5th helps us to solve more problems. It is remarkable
with instances < 23, 4 > with H1 only three problems could be solved, however
OC1t solves 84 over 100 problems.
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Table 3: Number of solved problems < n, 4 > with 4 and 5 tiers during the process.

Instance 4 tiers h1 5 tiers OC1t

< 19, 4 > 100 100
< 20, 4 > 100 100
< 21, 4 > 95 99
< 23, 4 > 3 84

Last criterion for solving problems where we only take into account one yard-bay is
showed in Section 4.3. As we mentioned in this section, since the last function (Algorithm
7) presents the best results after the whole process of remarshalling, we do the comparison
in Table 4 among the solutions given by Metric FF planner, the initial one h1 and OC1b

(Both) in 50 test cases. These results are the average of the best solutions found given a
time limit of 1 second for the instances of both < 15, 4 > and < 17, 4 >.

Sinks are calculated by Algorithm 10. As we mentioned above, we consider that there
is a sink where the difference in tiers between two adjacent rows is higher than 2. Thereby,
in this algorithm we are counting sinks produced between two contiguous stacks at the
same yard-bay as well as between two rows in one yard-bay and the previous one. This
process takes into account the goal containers in final yard-bays.

Table 4: Average number of movements, sinks and time for the first solution in problems
< 15, 4 > (1) and < 17, 4 > (2) using or not balanced heuristics.

Metric FF h1 OC1b

(1) (2) (1) (2) (1) (2)

Reshuffles 3.72 4.24 3.42 3.72 4.76 5.04
Sinks 0.62 0.50 0.94 0.66 0 0
Time First 2621 2961 5 9 32 44

From here we realize an evaluation for the criteria presented in Section 5. Table 5
shows the performance of the criteria for solving the whole block of yard-bays. These ex-
periments were performed in blocks of 20 yard-bays and each one of them are instances
< 15, 4 >. This evaluation was carried out in a yard with 2 blocks of 20 yard-bays.
Thus, the results showed in Table 5 represent the average number of reshuffles, the av-
erage number of sinks generated along the block and the average number of unsatisfied
dangerous containers. Results given by these optimization criteria are the average of the
best solutions found in 10 seconds.

The number of unfeasible relationships between dangerous containers is calculated by
means of Algorithm 11. Basically, we look for those pairs of dangerous containers whose
distance between them is shorter than minimum distance (Dmin).

In this table, it can be observed that h1 still outperforms Metric FF in the average
number of reshuffles. However, due to the fact that they do not take into account the

Expert Systems with Applications - 2012

50



balancing constraints, Metric FF generated an average of 18.00 sinks in the block of
yard-bay and h1 generated and average of 29.50 sinks. And the same thing happens for
the average number of unfeasible constraints for dangerous containers, Metric FF gives
us 16.00 and h1 obtains 7.50.

Taking into account that OCN is a junction of OCnB and OCnD, both OCnB and
OCnD solved their problems, that is, OCnB obtained its solutions with no sinks and
OCnD obtained its solutions by satisfying all dangerous constraints. Furthermore, OCN

was able to solve its problems by satisfying both types of constraints. However we could
state that balancing problem is harder than the problem related to dangerous containers
because OCnB needs more reshuffles to obtain a solution plan than OCnD. Moreover,
we observe with OCnB , OCnD and OCN ensure the established requirements however
the average reshuffles is increased with respect to h1.

Table 5: Average results with blocks of 20 yard-bays each one being a < 15, 4 > problem.

Metric FF h1 OCnB OCnD OCN

Reshuffles 3.65 3.38 4.85 4.00 5.65
Sinks 18.00 29.50 0 40.33 0
Non-Safe 16.00 7.50 8.00 0 0Dangerous

7 Conclusions

This paper presents domain-dependent heuristics and a set of optimization criteria for
solving the Container Stacking problem by means of planning techniques from Artificial
Intelligence. We have developed a domain-dependent planning tool for finding optimized
plans to obtain an appropriate configuration of containers in a yard-bay. Thus, given a
set of outgoing containers, our planner minimizes the number of necessary reshuffles of
containers in order to allocate all selected containers at the top of the stacks. The proposed
planner is able to satisfy both balancing constraints and keeping a security distance among
dangerous containers, as well as reducing the distance of the goal containers to the cargo
side or allowing a fifth tier during the remarshalling process.

Additional criteria have been defined for management of blocks of yard-bays. How-
ever, as the problems involve a larger number of constraints, the solution becomes harder
and the number of reshuffles increases. Due to the fact that a solution of a yard-bay in-
fluences on the solution of the following yard-bay, the order of solving the yard-bays will
vary and determine the minimal number of reshuffles.

This proposed planner with a domain-dependent heuristic allows us obtaining opti-
mized and efficient solutions. This automatic planner can help to take decisions in the
port operations dealing with real problems. Moreover, it can help to simulate operations
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to obtain conclusions about the operation of the terminal, evaluate alternative configura-
tions, obtain performance measures, etc. Particularly, in [14] the proposed planner has
been applied for obtaining an evaluation of alternative 4 or 5 tiers stacks configuration.
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Abstract

Container terminals are facilities where cargo containers are transshipped between
different transport vehicles, for onward transportation. They are open systems that
carry out a large number of different combinatorial problems that can be solved by
means of Artificial Intelligence techniques. In this work, we focus our attention on
scheduling a number of incoming vessels by assigning to each a berthing position, a
mooring time and a number of Quay Cranes. This problem is known as the Berthing
Allocation and Quay Crane Assignment problem. To formulate the problem, we first
propose a mixed integer linear programming model to minimize the total weighted
service time of the incoming vessels. Then, a meta-heuristic algorithm (Genetic Al-
gorithm (GA)) is presented for solving the proposed problem. Computational ex-
periments are performed to evaluate the effectiveness and efficiency of the proposed
method.

Keywords Scheduling, Planning, Genetic Algorithms, Metaheuristics, Berthing Al-
location, Quay Crane Assignment

1 Introduction
A container terminal is an open system with three distinguishible areas (berth, container
yard and lanside areas) where there exist different complex optimization problems. For
instance, berthing allocation or stowage planning problems are related to the berth area
[13]; remarshalling problem or transport optimization in the yard area; and, planning and
scheduling hinterland operations related to trains and trucks in the landside area [14].

Two planning and scheduling problems are studied in this paper, the Berth Allocation
Problem (BAP) and the Quay Crane Assignment Problem (QCAP). The former is a well-
known combinatorial optimization problem [10], which consists in assigning incoming
vessels to berthing positions. The QCAP deals with assigning a certain number of QCs to
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each vessel that is waiting at the roadstead such that all required movements of containers
can be fulfilled [1]. Once a vessel arrives at the port, it waits at the roadstead until it has
permission to moor at the quay. The locations where mooring can take place are called
berths. These are equipped with giant cranes, known as Quay Cranes (QC), that are used
to load and unload containers which are transferred to and from the yard by a fleet of
vehicles. These QCs are mounted on the same track (or rail) and, therefore they cannot
pass each other. In a transshipment terminal, the yard allows temporary storage before
containers are transferred to another ship or to another transportation mode (e.g., rail or
road).

A comprehensive survey of BAP and QCAP is given by [1]. These problems have
been mostly considered separately and with an interest mainly focused on BAP. However,
there are some studies on the combined BAP+QCAP considering different characteristics
of the berths and cranes ([2], [7], [9], [12], [15]). In this paper, we present a formal mixed
integer lineal programming for the combined BAP+QCAP that extends the model pre-
sented in [8], by managing a continuous quay line. In order to obtain optimized solutions
in an efficient way, we develop a metaheuristic GA, so that compared with mathematical
solvers obtains near-optimal solutions in competitive computational times.

The rest of the paper is organized as follows. In the next two sections we give a
thorough description and a mathematical formulation of the problem. In Section 4 we
give the details of the GA designed for the BAP+QCAP. Section 5 reports the results of
the experimental study. Finally, in Section 6 we give the main conclusions of this work.

2 Problem description
The objective in BAP+QCAP is to obtain an schedule of the incoming vessels with an
optimum order of vessels mooring and a distribution of the docks and QCs for these
vessels. Figure 1(b) shows an example of the graphical space-time representation of a
berth plan with 6 vessels. Each rectangle represents a vessel with its handling time and
length.

Our BAP+QCAP case is classified according to the classification given by [1] as:

• Spatial attribute: Continuous layout. We assume that the quay is a continuous
line, so there is no partitioning of the quay and the vessel can berth at arbitrary
positions within the boundaries of the quay. It must be taken into account that for
a continuous layout, berth planning is more complicated than for a discrete layout,
but it better utilizes the quay space [1].

• Temporal attribute: Dynamic arrival. Fixed arrival times are given for the vessels,
so that vessels cannot berth before their expected arrival times.

• Handling time attribute: Unknown in advance. The handling time of a vessel de-
pends on the number of assigned QCs (QCAP) and the moves required.

• Performance measure: wait and handling times The objective is to minimize the
sum of the waiting (wi) and handling times (hi) of all vessels.
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Figure 1: Representation of the BAP+QCAP problem

Let V be the set of incoming vessels. Following, we introduce the notation used for
each vessel i ∈ V (Figure 1(a)). The data variables are:

• QC : Available QCs in the container terminal. All QCs carry out the same number
of movements per time unit (movsQC), given by the container terminal.

• L : Total length of the berth in the container terminal.

• ai : Arrival time of the vessel i at port.

• ci : Number of required movements to load and unload containers of i.

• li : Vessel length.

• pri : Vessel priority.

The decision variables are:

• mi : Mooring time of i. Thus, waiting time (wi) of i is calculated as (wi = mi−ai).

• pi : Berthing position where i moors.

• qi : Number of assigned QCs to i.

• uik : Indicates whether the QC k works (1) or not (0) on the vessel i.

The variables derived from the previous ones are:

• hi : Loading and unloading time at quay (handling time) of vessel i. This time
depends on qi and ci, that is :

(
ci

qi×movsQC

)
.

• tik : Working time of the QC k that is assigned to vessel i.
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• di : Departure time of vessel i (di = mi + hi).

• si, ei : indexes for the first and last QC used in vessel i, respectively.

Our objective is to allocate all vessels according to several constraints minimizing the
total weighted waiting and service time for all vessels:

Ts :=
∑

i∈V
(wi + hi)× pri (1)

Note that this problem is a very special case of a multi-mode resource-constrained
scheduling problem, where there exist shared resources (berth length), the duration of
activities (mooring time) depends on the assigned resources (QCs), and the objective
function is minimizing both the waiting as the processing times of vessels.

Moreover, the following assumptions are considered:

• Number of QCs assigned to a vessel do not vary along the moored time. Once
a QC starts a task in a vessel, it must complete it without any pause or shift (non-
preemptive tasks). Thus, all QCs assigned to the same vessel have the same working
time (tik = hi, ∀k ∈ QC, uik = 1)

• All the information related to the waiting vessels is known in advance (arrival,
priority, moves and length).

• Every vessel has a draft that is lower than or equal to the draft of the quay.

• Movements of QCs along the quay as well as berthing and departure times of ves-
sels are not considered since it supose a constant penalty time for all vessels.

• The components of the optimization function (Equation 1) can be independently
weighted without requiring changes to our proposal.

• Simultaneous berthing is allowed, subject to the length of the berth.

And the following constraints must be accomplished:

• Moored time must be at least the same that its arrival time (mi ≥ ai).

• It must be enough contiguous space at berth to moor a vessel of length (li).

• There is a safety distance (safeDist) between two moored ships. We assume 5%
of the maximum length of two contiguous vessels.

• There must be at least one QC to assign to each vessel. The maximum number of
assigned QCs by vessel depends on its length, since a safety distance is required
between two contiguous QCs (safeQC), and the maximum number of QCs that the
container terminal allows per vessel (maxQC). Both parameters are given by the
container terminal.
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3 Mathematical formulation
In this section, the mathematical formulation for BAP+QCAP is presented. The given
MILP model solves the BAP+QCAP by minimizing the function given by the Equation
1, where M denotes a sufficiently large number, subject to the given constraints:

mi ≥ ai ∀i ∈ V (2)
wi = mi − ai ∀i ∈ V (3)
pi + li ≤ L ∀i ∈ V (4)

qi =
∑

k∈QC

uik ∀i ∈ V (5)

1 ≤ qi ≤ QC+
i ∀i ∈ V (6)

1 ≤ si, ei ≤ |QC| ∀i ∈ V (7)
si ≥ ei ∀i ∈ V (8)
qi = ei − si + 1 ∀i ∈ V (9)
∑

k∈QC

tik × movsQC ≥ ci ∀i ∈ V (10)

hi = max
k∈QC

tik ∀i ∈ V (11)

tik − uik ×M ≤ 0 ∀i ∈ V, ∀k ∈ QC (12)
hi −M × (1− uik)− tik ≤ 0 ∀i ∈ V, ∀k ∈ QC (13)
uik + ujk + zxij ≤ 2 ∀i, j ∈ V, ∀k ∈ QC (14)

M × (1− uik) + (ei − k) ≥ 0 ∀i ∈ V, ∀k ∈ QC (15)
M × (1− uik) + (k − si) ≥ 0 ∀i ∈ V, ∀k ∈ QC (16)
pi + li ≤ pj − sdij +M × (1− zxij) ∀i, j ∈ V, i 6= j (17)

ei + 1 ≤ sj +M × (1− zxij) ∀i, j ∈ V, i 6= j (18)

mi + hi ≤ mj +M × (1− zyij) ∀i, j ∈ V, i 6= j (19)

zxij + zxji + zyij + zyji ≥ 1 ∀i, j ∈ V, i 6= j (20)

zxij , z
y
ij , uik 0/1 integer ∀i, j ∈ V, i 6= j, ∀k ∈ QC (21)

The given formulation expands the model presented in [8] by adding the needed con-
straints to take into consideration QCs. Thereby, the handling time of vessels depends on
the number of QCs and these QCs cannot pass each other when are relocated.

In the proposed model, there are two auxiliary variables: zxij is a decision variable that
indicates if vessel i is located to the left of vessel j on the berth (zxij = 1); and, zyij = 1
indicates that vessel i is moored before vessel j in time (see constraint 21). Moreover,
Constraint 2 ensures that vessels must moor once they arrive at the terminal. Constraint
4 guarantees that a moored vessel does not exceed the length quay. Constraints 5, 6, 7,
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8 and 9 assign the number of QCs to the vessel i. Constraint 10 establishes the needed
handling time to load and unload their containers. Constraint 12 ensures that QCs that are
not assigned QCs to i have tik zero. Constraint 13 forces all assigned QCs to i working
the same number of hours. Constraint 11 assigns the handling time for vessel i. Constraint
14 avoids that one QC is assigned to two different vessels at the same time. Constraints
15 and 16 force the QCs to be assigned contiguously (from si up to ei). Constraint 17
takes into account the safety distance between each two vessels. Constraint 18 avoids that
one vessel uses a QC which should cross through the others QCs. Constraint 19 avoids
that vessel j moors while the previous vessel i is still at the quay. Finally, constraint 20
establishes the relationship between each pair of vessels.

This mathematical model has been coded in IBM ILOG CPLEX Optimization Studio
12.3 as detailed in the Evaluation Section 5.

4 Genetic Algorithm
Algorithm 1 shows the structure of the GA we have considered herein. The core of this
algorithm is taken from [5, 4] and is quite similar to others generational genetic algo-
rithms described in the literature ([6], [3] or [11]). In the first step, the initial population
is generated and evaluated. Then, the genetic algorithm iterates over a number of steps or
generations. In each iteration, a new generation is built from the previous one by apply-
ing the genetic operators of selection, reproduction and replacement. These operators can
be implemented in a variety of ways and, in principle, are independent from each other.
However, in practice all of them should be chosen considering their effect on the remain-
ing ones in order to get a successful overall algorithm. The approach taken in this work
is the following. In the selection phase all chromosomes are grouped into pairs, and then
each one of these pairs is mated or not in accordance with a crossover probability (Pc) to
obtain two offspring. Each offspring, or parent if the parents were not mated, undergoes
mutation in accordance with the mutation probability (Pm). Finally, the replacement is
carried out as a tournament selection (4:2) among each pair of parents and their offspring.

The coding schema is based on permutations of vessels, each one with a given number
of QCs. So a gene is a pair (i, qi), 1 ≤ qi ≤ min(maxQCi,maxQC), and a chromosome
includes a gene like this for each one of the vessels. For example, for an instance with 5
vessels where the maximum number of QCs are 2, 3, 4, 3 and 2 respectively, two feasible
chromosomes are the following ones:

c1: ( (1 1) (2 1) (3 1) (4 2) (5 1) )

c2: ( (3 2) (1 2) (2 2) (5 2) (4 3) )

Note that, the same vessel may have different number of QCs in each chromosome.
In accordance with this encoding, a chromosome expresses the number of QCs that each
vessel is assigned in the solution and an order for building the schedule.

The order of vessels in chromosomes is used as a dispatching rule. Hence, we use the
following decoding algorithm: the genes are visited from left to right in the chromosome
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Algorithm 1: The genetic algorithm

Require: A BAP-QCAP instance P
Ensure: A mooring schedule for instance P

1. Generate the initial population;
2. Evaluate the population;
while No termination criterion is satisfied do

3. Select chromosomes from the current population;
4. Apply the reproduction operators to the chromosomes selected at step 3. to
generate new ones;
5. Evaluate the chromosomes generated at step 4;
6. Apply the replacement criterion to the set of chromosomes selected at step 3.
together with the chromosomes generated at step 4.;

end while
return The schedule from the best chromosome evaluated so far;

sequence. For each gene (i, qi) the vessel i is scheduled at the earliest mooring time
with qi consecutive QCs available, so that none of the constraints is violated. If there are
several positions available at the earliest time, that closest to one of the berth extremes is
selected. Also, the QCs are chosen starting from the same extreme of the berth.

For chromosome mating we have considered a classical crossover operator such as
Generalized Position Crossover (GPX) which is commonly used in permutation based
encodings. This is a two points crossover operator which work as follows. Let us consider
two parents like:

p1: ( (1 1) | (2 1) (3 1) | (4 2) (5 1) )

p2: ( (3 2) | (1 2) (2 2) | (5 2) (4 3) )

Symbols ”|” represent crossover positions, 1 and 3 respectively in this example, which
are selected at random for each mating. Then two offsprings are built taking the substrings
between positions 1 and 3 in each parent and then filling the remaining positions with the
genes representing the remaining vessels taken from the other parent keeping their relative
order. So in this case the two offsprings are:

o1: ( (1 2) | (2 1) (3 1) | (5 2) (4 3) )

o2: ( (3 1) | (1 2) (2 2) | (4 2) (5 1) )

For mutation we have implemented an operator that shuffles a random substring of
the chromosome and at the same time changes the number of QCs assigned to each one
of the shuffled genes at random, provided that the number of QCs is kept in between the
proper limits for the vessel.

The initial population in generated at random, i.e. a random order for the vessels is
chosen and each vessel i is assigned a number of QCs chosen uniformly in [1,min(maxQCi,maxQC)].
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The termination condition is given in one of these three forms: (1) a number of genera-
tions, (2) a time limit or (3) a number of evaluations.

5 Evaluation

The experiments were performed in a corpus of 100 instances generated randomly, each
one is composed of a queue from 5 to 20 vessels. These instances follow an exponential
distribution for the inter-arrival times of the vessels (λ = 1

20 ). The number of required
movements and length of vessels are generated uniformly in [100, 1000] and [100, 500]
respectively. In all cases, the berth length (L) is fixed to 700 meters; the number of QCs
is 7 (corresponding to a determined MSC berth line) and the maximum number of QCs
per vessel is 5 (maxQC); the safety distance between QCs (safeQC) is 35 meters and the
number of movements that QCs carry out is 2.5 (movsQC) per time unit.

The two approaches developed in this paper, the GA and the MILP model, were coded
using C++ and the IBM ILOG CPLEX Optimization Studio 12.3, respectively. They were
solved on a Linux PC 2.26Ghz.

In the GA, the population size is 200. Mutation and crossover probabilities are Pm =
0.1 and Pc = 0.8, respectively. Due to the stochastic nature of the GA process, each one
of the instances were solved 30 times and the results show the average obtained values.

Table 1 shows the results form CPLEX and GA averaged for each group of 100 in-
stances with the same number of vessels (5 to 20). The timeout was 10 seconds. For
CPLEX, the reported values are the average value of Ts for the solutions reached, the
number of instances solved to optimality (#Opt), the number of instances solved without
certify optimality (#NOpt) and the number of instances for which no solution is reached
by the timeout (#NSol) The last two columns show the best and the average values of the
solutions obtained by the GA in 30 runs. Obviously, in all cases, the objective function
(Ts) increases as the number of incoming vessels increases from 5 up to 20.

From these results, we can observe that CPLEX is not able to reach any optimal
solution by the given timeout in at least 30% of the instances with 7 vessels or more. In
addition, it can not get any optimal solution from 15 up to 20 vessels with this timeout.
Moreover, for a number of instances with more than 14 vessels CPLEX is not able to
reach a feasible solution. Regarding GA, all instances are solved and we can observe
that the average values are better than those from CPLEX, the differences being in direct
ratio with the number of vessels. Here, it is important to remark that GA reaches 1063
generations in 10 seconds. However, the GA is able to converge in lower times. Figure
2 shows the GA convergence for one representative instance of 20 vessels, so that near-
optimal values are obtained after 100 generations, taking 0.94 seconds. Furthermore,
Figure 3 shows how the average Ts for 10 vessels decreases as more computation time is
allowed. In this experiment, the timeout was set to 5, 10, 20, and 60 seconds. As it can
be observed, the GA approach does not require a large timeout (the improvement is lower
than 1% beyond 5 seconds).

We remark that we have not been able to use previous test cases proposed in the
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Table 1: Comparision CPLEX with GA (timeout 10 secs)

|V| CPLEX GA

Avg Ts #Opt #NOpt #NSol Best Ts Avg Ts

5 1723.75 98 2 0 1723.75 1723.75
6 2193.06 88 12 0 2189.63 2189.63
7 2702.46 66 34 0 2681.14 2681.67
8 3287.66 41 59 0 3219.80 3222.13
9 3891.09 24 76 0 3729.78 3734.72

10 4642.23 14 86 0 4337.10 4350.23
11 5453.31 6 94 0 4946.66 4971.86
12 6557.60 3 97 0 5552.09 5589.16
13 7944.50 2 98 0 6181.67 6236.60
14 9332.26 1 98 1 6854.33 6931.59
15 11578.40 0 98 2 7526.27 7631.98
16 13518.00 0 97 3 8290.95 8438.06
17 15105.80 0 94 6 8972.13 9163.65
18 17253.80 0 85 15 9694.16 9927.06
19 18390.40 0 65 35 10506.20 10787.79
20 20410.50 0 46 54 11395.52 11725.64

literature because we assume a continuous berthing and non-preemtitive tasks ([15], [9]).
However, even considering this more complex case, we can see that the results achieved
are highly competitive against these previous approaches.
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6 Conclusions
The competitiveness among container terminals causes the need to improve the efficiency
of each one of the subprocesses that are performed within them. This paper focuses on
two of the main related problems, the Berth Allocation and Quay Crane Assignment Prob-
lems, in an integrated way. To this end, a mixed integer lineal programming model and
a Genetic Algorithm were developed. The MILP model was unable to get optimal solu-
tions when a reasonable timeout is set or when the problem becomes harder (more than
10 vessels). Moreover, many of the instances were solved but without any guarantees
of being the optimal ones since the timeout was reached. However, the GA approach is
able to obtain near-optimal solutions in lower computational times and it also maintains
a rapid convergence of the results even with large vessel queues. From these results,
it is concluded the adequacy of a metaheuristic approach based on GA for solving the
BAP+QCAP problem. This approach also extends the previous approaches given in the
literature by adding features (as continuous quay line and non-preemptitive QC assign-
ments) and it gives near-optimal solutions in a very competitive computational time. For
future research, we propose devising some local search strategy that can be then combined
with the GA or other metaheuristics such as GRASP, Tabu or Scatter Search.
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Abstract

Container terminals are open systems that generally serve as a transshipment zone
between vessels and land vehicles. These terminals carry out a large number of plan-
ning and scheduling tasks. In this paper, we consider the problem of scheduling a
number of incoming vessels by assigning a berthing position, a berthing time, and a
number of Quay Cranes to each vessel. This problem is known as the Berth Allo-
cation Problem and the Quay Crane Assignment Problem. Holds of vessels are also
managed in order to obtain a more realistic approach. Our aim is to minimize the
total waiting time elapsed to serve all these vessels. In this paper, we deal with the
above problems and propose an innovative metaheuristic approach. The results are
compared against other allocation methods.

Keywords Planning, Scheduling, Optimization methods, Algorithms, Metaheuristic,
GRASP

1 Introduction
Container terminals generally serve as a transshipment zone between ships and land ve-
hicles (trains or trucks). In [12], it is shown how this transshipment market has grown
rapidly. Between 1990 and 2008, container traffic grew from 28.7 million TEU (Twenty-
foot Equivalent Unit) to 152.0 million TEU, an increase of about 430%. This corresponds
to an average annual compound growth of 9.5%. In the same period, container throughput
went from 88 million TEU to 530 million TEU, an increase of 500%, which is equivalent
to an average annual compound growth of 10.5%. The surge of both container traffic and
throughput is linked with the growth of international trade as well as to the adoption of
containerization as the privileged vector for maritime shipping and inland transportation
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Figure 1: Container Terminal in Valencia.

[5]. However, the Global Economic Crisis of 2008 has had a negative impact over the
container traffic [25].

The evolution of the container traffic has motivated the artificial intelligence research
community to develop optimization techniques to manage combinatorial problems related
to seaport terminals efficiently. These problems occur in transportation [34, 4] as well as
within the container terminals. Container terminals are open systems where terminal
operators must face up to combinatorial optimization problems to ensure the fast loading
and unloading of the vessels. In container terminals, there are three distinguishable areas
(see Figure 1): the berth area, where vessels are berthed for service; the storage yard,
where containers are temporarily stored to be exported or imported; and the terminal
receipt and delivery gate area, which connects the container terminal to the hinterland.
Each one presents different planning and scheduling problems to be optimized [33, 15,
32]. For example, berth allocation, quay crane assignment, stowage planning, and quay
crane scheduling must be managed in the berthing area; the container stacking problem,
yard crane scheduling, and horizontal transport operations must be carried out in the yard
area; and the hinterland operations must be solved in the land side area. Figure 2 shows
the main planning and scheduling problems that must be managed in a container terminal
[37].

We focus our attention on the Berth Allocation Problem (BAP) and the Quay Crane
Assignment Problem (QCAP) taking into account the holds of each vessel. The former
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is a well-known, NP-hard combinatorial optimization problem [22], which consists of
assigning incoming vessels to berthing positions. The latter deals with assigning a certain
number of QCs to each vessel such that all required movements of containers can be
fulfilled.

Arrival of 

Vessels

Unloading and 

Loading 

Operations

Planning and 

Scheduling 

Problems in Yard

Berth Allocation 

Problem

Quay Crane 

Assigment 

Quay Crane 

Scheduling 

Stowage 

Planning

Container Stacking 

Problem

Figure 2: Planning and scheduling problems in container terminals.

Containers to be loaded/unloaded in the vessel are stored on the deck as well as in the
holds. The holds of the vessels are structures that speed up both loading and unloading
and keep the containers secure while at sea. Once a vessel arrives at the port, it waits
at the roadstead until it has permission to moor at the quay. The quay is a platform that
protrudes into the water to facilitate the loading and unloading of cargo. The locations
where mooring can take place are called berths. These are equipped with giant cranes,
called pier or Quay Cranes (QCs), that are used to load and unload containers, which
are transferred to and from the yard by a fleet of vehicles. In a transshipment terminal,
the yard allows temporary storage before containers are transferred to another ship or to
another transportation mode (e.g., rail or road).

Managers at container terminals are confronted with two interrelated decisions: where
and when the vessels should moor. First, they have to take into account physical restric-
tions such as length or draft, and they also have to take into account priorities and other
aspects to minimize both port and user costs, which are usually opposites. Generally,
this process is solved manually. It is usually solved by means of a policy to serve the
first vessel that arrives (FCFS). Figure 3 shows an example of the graphical space-time
representation of a berth plan with 6 vessels. Each rectangle represents a vessel with its
handling time and length. For instance, vessel 4 must moor after vessels 1 and 2 depart.

The overall collaboration goal of our group at the Universitat Politècnica de València
(UPV), the Valencia Port Foundation, and the maritime container terminal MSC (Mediter-
ranean Shipping Company S.A.) is to offer assistance to help in planning and scheduling
tasks such as to allocate spaces to outbound containers [29, 28], to berth incoming vessels
[31], to identify bottlenecks, to determine the consequences of changes [30], to provide
support in the resolution of incidences, to provide alternative berthing plans, etc. Re-
searchers commonly develop mathematical or statistical models that represent real-world
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Figure 3: A berth plan with 6 vessels.

Figure 4: Simulator developed within the Masport Project [36].

systems. Nevertheless, these systems are very complex and composed of different prob-
lems that sometimes have opposing goals. These problems must be simplified with several
assumptions in order to be appropriately modeled. Mathematical models are necessary but
exact optimization methods algorithms cannot obtain the optimal solution in a reasonable
time. Thus, techniques from artificial intelligence field (such as local search or meta-
heuristics) must be applied in order to solve these combinatorial optimization problems
efficiently and get near-optimal solutions in an efficient way [1]. Our artificial intelligence
techniques are included within a simulator that is able to represent a given state of the ter-
minal and simulate the behavior in different parts of the terminal (see Figure 4). In this
paper, a metaheuristic has been developed to schedule the incoming vessels and has been
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compared with several real world rules, commonly used by expert terminal operators.
The remainder of this paper is organized as follows: Section 2 presents a review of

the literature about the BAP and QCAP and different techniques to manage them. Section
3 presents the problem definition. Section 4 explains the whole process of mooring one
vessel and Section 5 describes the developed metaheuristic technique. Section 6 presents
the computational results, and Section 7 summarizes our conclusions.

2 Literature review

In [35], the authors present a complete comparative study about different solutions for the
BAP according to their efficiency in addressing key operational and tactical questions re-
lating to vessel service. They also study the relevance and applicability of the solutions to
the different strategies and contractual service arrangements between terminal operators
and shipping lines.

To show similarities and differences in the existing models for berth allocation, a clas-
sification scheme is presented in [2] (see Figure 5). They classify the BAP according to
four attributes. The spatial attribute concerns the berth layout and water depth restric-
tions. The temporal attribute describes the temporal constraints for the service process
of vessels. The handling time attribute determines the way that vessel handling times are
considered in the problem. The fourth attribute defines the performance measure to re-
flect different service quality criteria. The most important are the criteria that minimize
the waiting time (wait) and the handling time (hand) of a vessel. Both these measures aim
at providing a competitive service to vessel operators. If both objectives are pursued (i.e.,
wait and hand are set), the port stay time of vessels is minimized. Other measures are
focused on minimizing the completion times of vessels. Thus, by using the above classifi-
cation scheme, a certain type of BAP is described by a selection of values for each one of
the attributes. For instance, given a problem where the quay is assumed to be a continuous
line (cont). The arrival times restrict the earliest berthing of vessels (dyn), and handling
times depend on the berthing position of the vessel (pos). The objective is to minimize
the sum of the waiting time (wait) and the handling time (hand). According to the scheme
proposed by [2], this problem is classified by cont—dyn—pos—Σ(wait+hand).

One of the early works that appeared in the literature developed a heuristic algo-
rithm by considering a First-Come-First-Served (FCFS) rule [17]. However, some au-
thors maintain the idea that for high port throughput, optimal vessel-to-berth assignments
should be found without considering the FCFS policy [14]. Therefore, in this paper, we
use the FCFS policy in order to get an upper bound. Nevertheless, this approach may
result in some vessels’ dissatisfaction regarding the order of service.

Several heuristic and metaheuristic approaches have been developed to solve different
problems in container terminals. In [2], the authors give a comprehensive survey of berth
allocation and quay crane assignment formulations from the literature. Some authors out-
line approaches more or less informally while others provide precise optimization models.
More than 40 formulations that are distributed among discrete problems, continuous prob-

A GRASP-based Metaheuristic for the BAP and the QCAP by Managing Vessel Cargo Holds

73



Value Description

1. Spatial attribute

disc The quay is partitioned in discrete berths

cont The quay is assumed to be a continuous line

hybr The hybrid quay mixes up properties of discrete and continuous berths

draft Vessels with a draft exceeding a minimum water depth cannot be berthed arbitrarily

2. Temporal attribute

stat In static problems there are no restrictions on the berthing times

dyn In dynamic problems arrival times restrict the earliest berthing times

due Due dates restrict the latest allowed departure times of vessels

3. Handling time attribute

fix The handling time of a vessel is considered fixed

pos The handling time of a vessel depends on its berthing position

QCAP The handling time of a vessel depends on the assignment of QCs

QCSP The handling time of a vessel depends on a QC operation schedule

4. Performance measure

wait Waiting time of a vessel

hand Handling time of a vessel

compl Completion time of a vessel

speed Speedup of a vessel to reach the terminal before the expected arrival time

tard Tardiness of a vessel against the given due date

order Deviation between the arrival order of vessels and the service order

rej Rejection of a vessel

res Resource utilization effected by the service of a vessel

pos Berthing of a vessel apart from its desired berthing position

misc Miscellaneous

Figure 5: A classification scheme for BAP formulation [2].

lems, and hybrid problems are presented. These problems have been mostly considered
separately and with an interest mainly focused on BAP [6, 3, 11].

In the integration of both problems, BAP+QCAP, different approaches have been de-
veloped considering a discrete quay line, specially genetic algorithms. In [13], a solution
based on genetic algorithms is presented for the integration of BAP with the QCAP with
the objective of minimizing the total service time. A hybrid genetic algorithm is also
presented in [21] where they minimize the sum of the handling time, the waiting time,
and the delay time for every ship. In this sense, [10] presents the integration through
two mixed integer programming formulations including a tabu search method (adapted
from [6]), with the objective of minimizing the yard-related housekeeping costs that are
generated by the flows of containers exchanged between vessels.

The integration of BAP+QCAP when the quay line is continuous was first introduced
in [26] with a method of two phases. In the first phase, a Lagrangian relaxation based
heuristic is used to obtain the berthing position and the number of QCs, and the second
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phase applies a dynamic programming to obtain the detailed schedule of the QCs. In [24],
two different heuristics are presented to solve this model: squeaky wheel optimization and
tabu search that show significant results compared with solutions reported by [26].

Focusing only on the holds of one vessel, a genetic algorithm able to solve the quay
crane scheduling problem is presented in [20] by determining a handling sequence of
holds for the quay cranes assigned to a vessel. Furthermore, in [20], the NP-completeness
of this problem for one vessel was proved. The integration of BAP+QCAP problems
considering the holds of vessels was first studied by [7] and [27], but they did not consider
the interference among QCs. There are similar problems solved by MILP approaches
[23]. Results obtained by these exact approaches show that this problems needs to be
decomposed into two phases and they cannot solve realistic problems of medium size in
a reasonable time.

Our approach deals with the integration of these two problems (BAP+QCAP) through
a metaheuristic called Greedy Randomized Adaptive Search Procedures (GRASP) [8],
taking into account the requirements of container operators of MSC (Mediterranean Ship-
ping Company S.A.). This metaheuristic is able to find optimized solutions within an ac-
ceptable computation time in a very efficient way and it has been applied in a wide range
of combinatorial optimization problems [9]. Moreover, several GRASP-based approaches
have been developed and applied in different container terminal problems [19, 16].

Following the classification scheme in [2], our approach is represented by BAP,QCAP;
and specifically, the BAP is defined as by cont—dyn—QCAP—Σwait. Thus, we focused
on the following attributes and performance measure:

• Spatial attribute: we assume that the quay is a continuous line (cont), so there is
no partitioning of the quay and the vessel can berth at arbitrary positions within the
boundaries of the quay. It must be taken into account that for a continuous layout,
berth planning is more complicated than for a discrete layout, but it utilizes quay
spaces better [2].

• Temporal attribute: we assume dynamic problems (dyn) where arrival times restrict
the earliest berthing times. Since fixed arrival times are given for the vessels, vessels
cannot berth before their expected arrival time.

• Handling time attribute: we assume that the handling time of a vessel depends on
the assignment of QCs (QCAP).

• Performance measure: Our objective is to minimize the sum of the waiting time
(wait) of all the scheduled vessels to be served.

This paper presents two approaches for modelling QCAP:

• Static: QCs are assigned to one vessel i and they cannot move to another vessel j
until the vessel i leaves the container terminal.

• Dynamic: QCs are assigned to the holds of the vessel. Thus, once all the movements
of one hold are done, the QC can move to another location (another hold in the same
or other vessel).
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Our approach presents a dynamic and continuous berthing model that takes into ac-
count the QCs and the holds of the vessels in order to obtain the handling time. Most of
the studies presented above are focused on discrete models without managing the holds of
the vessels. Unlike the models presented above having regard to the holds, our approach
manages the constraints related to the cranes. Furthermore, our approach differs from
crane scheduling problems in that several vessels with different arrival times are the input
data.

In the rest of the paper, we specify the above problems (BAP+QCAP, including man-
agement of holds) and propose an innovative GRASP-based metaheuristic approach. The
results obtained with several scenarios are compared to other allocation methods, con-
trasting the usefulness of our proposal by efficiently obtaining optimized solutions to
these problems.

3 Problem description
The objective in BAP+QCAP is to obtain an optimal distribution of the docks and cranes
for vessels waiting to berth. An optimal distribution that takes into account specific con-
straints (length and depth of vessels, ensuring a correct order for vessels that exchange
containers, ensuring departure times, etc.) and optimization criteria (priorities, minimiza-
tion of waiting and staying times of vessels, satisfaction with the order of berthing, mini-
mizing of crane moves, degree of deviation from a pre-determined service priority, etc.).
When the quay is discrete (it is divided in berths), the BAP could be considered as a spe-
cial kind of machine scheduling problem, where the job and machine are the vessel and
the berth, respectively. In machine scheduling, only the starting times of jobs are deter-
mined, but in continuous BAPs the berthing positions are also necessary for the output
schedule.

In the following, we introduce the notation used for each vessel:

V The set of incoming vessels. Each vessel is denoted as Vi ∈ V .

QC Available QCs in the container terminal. These QCs are identical in terms of the
productivity of loading/unloading containers. The parameters of QCs are:

movsQC Number of QC moves per time unit.
HHQC Time units required to reallocate the QC to another hold from the same vessel

(Hold-to-Hold movement).
VVQC Time units required to move the QC to another vessel (Vessel-to-Vessel move-

ment).

L Total length of the berth in the container terminal.

a(Vi) Arrival time of the vessel Vi at port.

l(Vi) Length of Vi. There is a safety distance (safeLength) between two moored ves-
sels: we assume 5% of the length of the vessels.
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pr(Vi) Vessel priority.

h(Vi) Number of holds in Vi. All the holds of the vessels have the same width.

cj(Vi) Number of required movements to load or unload containers from/into the hold j,
1 ≤ j ≤ h(Vi). The handling time of each hold j (1 ≤ j ≤ h(Vi)) is given by:
cj(Vi)
movsQC

.

m(Vi) Mooring time of Vi.

p(Vi) Berthing position where Vi will moor.

q(Vi) Number of assigned QCs to Vi. The maximum number of assigned QCs by vessel
depends on its length since a safety distance is required between two contiguous
QCs (safeQC) and the maximum number of QCs that the container terminal allows
per vessel (maxQC).

stj(Vi) Starting time of QC j at Vessel Vi, 1 ≤ j ≤ q(Vi). Only one QC can be assigned
to one hold.

htj(Vi) Handling time of the QC j, 1 ≤ j ≤ q(Vi).

hj(Vi) Set of handling times of each hold assigned to the QC j, 1 ≤ j ≤ q(Vi).

d(Vi) Departure time of Vi, which depends on m(Vi), c(Vi), and q(Vi).

w(Vi) Waiting time of Vi from its arrival at port until it moors: w(Vi) = m(Vi)− a(Vi).

To simplify the problem, we assume that mooring and unmooring does not consume
time, simultaneous berthing is allowed, and every vessel has a draft lower than or equal
to the water-depth of the berth. Furthermore, once a QC starts to work in a hold, it must
complete it without any pause or shift (non-preemptive tasks). When a QC finishes the
movements of one hold, it can move to another hold from the same vessel or to another
vessel.

The goal of the BAP+QCAP is to allocate each vessel according to the existing con-
straints and to minimize the total weighted waiting time of all the vessels:

Tw =
∑

Vi∈V

[[
w(Vi)

]γ × pr(Vi)

]
(1)

The parameter γ (γ ≥ 1) prevents lower priority vessels from being systematically
delayed. Thus, the component of each vessel in the optimization function is not exactly
linear with its waiting time (w(Vi)). In this way, vessels with large waiting times (w(Vi))
will have a proper weighting in the objective function, although they have low priority
values (p(Vi)). For instance, let A and B be two alternative schedules for two vessels V1

and V2 with pr(V1) = 6 and pr(V2) = 2, respectively (see Table 1). In the schedule A,
the waiting time of V2 (w(V2) = 500) is much larger than V1 (w(V1) = 150); whereas
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the waiting times in schedule B are closer to each other (w(V1) = 220;w(V2) = 310).
Table 1 also shows the values of the objective functions with respect to the γ value for
both schedules. If γ is not considered in the objective function (γ = 1), it is preferable to
chose the schedule A (Tw = 1900) although V2 must wait 500 time units. However, with
a γ value greater than 1 (γ = 1.2), the schedule B, which balances the waiting times of
V1 and V2, is chosen as the best schedule (Tw = 5835) avoiding that the vessel with the
lowest priority (V2) is delayed.

Table 1: Example of the γ parameter over two different schedules.

Schedule pr(V1) pr(V2) w(V1) w(V2)
Tw Tw

(γ = 1) (γ = 1.2)

A 6 2 150 500 1900 5917
B 6 2 220 310 1940 5835

There are two other key factors within container terminals: the ratio of berth usage
(Bu), and the quay crane throughput (Tqc). Berth usage is obtained by Equation (4). It
reflects the area held by vessels with respect to the maximum area. The maximum area
depends on the length of the quay (L) and the mooring time of the first vessel calculated
by (2) and the departure time of the last vessel calculated by (3).

firstArrival = min
Vi∈V

{m(Vi)} (2)

lastDeparture = max
Vi∈V

{d(Vi)} (3)

Thus, the ratio of the berth usage (Bu) is:

Bu =

∑
Vi∈V

[
l(Vi)× (d(Vi)−m(Vi))

]

L× (lastDeparture− firstArrival)
(4)

The QC throughput factor (Tqc) depends on the model for the QCAP under consider-
ation. The static QCAP model calculates Tqc by means of (5), taking into consideration
that one QC remains at the same vessel until it departs. Thereby, all the QCs are assigned
to vessel Vi up to its departure time d(Vi) even though these QCs are not moving any
container from/to the vessel:

Static QCAP: Tqc =
∑

Vi∈V

[
q(Vi)× (d(Vi)−m(Vi))

]
(5)

Dynamic QCAP: Tqc =
∑

Vi∈V

∑

1≤j≤q(Vi)

htj(Vi) (6)

However, the dynamic QCAP model uses (6). This model considers that once one QC
finishes its task at one hold, it can move to another location. Therefore, the time that each
QC is busy is just its handling time.
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Figure 6 shows an example of a vessel containing 5 holds with different number of
containers each, thus with different handling times each hold. In this example, a QC
has been allocated to each hold. The shaded rectangle indicates the time a QC works
on a hold and the arrow represents the time that the QC is assigned to the vessel. In the
static QCAP model (see Figure 6(a)), they stay until the vessel departs, while the dynamic
QCAP model allows to move one QC to another hold or vessel before the vessel departs
(see Figure 6(b)).

(a) Static (b) Dynamic

Figure 6: Differences between static and dynamic models for calculating Tqc for QCAP.

By taking into consideration the holds (h(Vi)) of each vessel, our model makes better
use of the resources (QCs and berth) as shown in Figure 7. In this figure, a schedule of 5
vessels is shown. Each dashed rectangle represents a vessel with its id number and each
bold rectangle represents the time that one QC is working on a hold.

Figure 7(a) shows the static QCAP model. Thus, when one QC is assigned to one
vessel i, this QC cannot be moved to another vessel j until vessel i leaves the container
terminal. Figure 7(b) shows the dynamic QCAP model and introduces the concept of
holds. Once a QC finishes a task that is related to one hold in the vessel i, it could
keep working on another hold of the same vessel or move to another vessel j. Thus, the
dynamic model obtains the following: a departure time of the last vessel (TLD) that is
earlier than the static model (from 12 to 9 time units); a waiting time (Tw) that is lower
than the static one (from 26 to 13 time units). Thus, we can see that the berth usage ratio
is increased by 20%. In other words, with dynamic QCAP model more QCs are used per
time unit than with static QCAP, and the total time that the QCs are tied to one vessel
(Tqc) is also reduced.
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Figure 7: Plans obtained with and without the holds.

4 Mooring one vessel
Once the problem has been defined, the whole process to moor one vessel is presented.
The MoorVessel function (Algorithm 1) moors one vessel Vi as early as possible, starting
at its arrival time (a(Vi)). This function checks whether Vi can moor at time t or when
a QC has completed its task (steps 9 to 16). The data required for this function is the
vessel to allocate resources (Vi) and the set of moored vessels scheduled previously by
the algorithm (Vm). There are three steps in this mooring process (see Figure 8):

1. To verify whether there are QCs available during the handling time of Vi (Algorithm
2).

2. To make sure there is enough continuous length at the berth to moor Vi.

3. To assign more QCs when it is possible (Algorithm 4).

The InsertVessel function (Algorithm 2) performs, if it is possible, the steps needed to
allocate one vessel at the given time t. First, a quick check of the available quay length
is carried out in order to know if there would be enough space to moor Vi (steps 1 to
4). Then, the maximum number of QCs for Vi is calculated from its mooring time until
its departure (steps 5 to 31). This process starts assigning just one QC and increases
this number according to the available QCs found during the vessel handling time (t, tf ).
Available QCs are obtained by counting the number of cranes used by the other vessels
(CranesWorking function) at their mooring time and whenever one of their assigned QCs
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InsertVessel Function

Allocating one vessel at time t

(Algorithm 5)

PositionBerth Function

Determine the position of Vi at the 

berth

MoorVessel Function

Allocating one vessel in the berth

(Algorithm 4)

HandlingTime Function

Distribute the holds among the 

available QC

(Algorithm 6)

AssignQCtoHold Function

Choose one hold to be assigned 

to a new QC

(Algorithm 8)

AddingCranes Function

Insert another QC to Vi

(Algorithm 7)

Figure 8: Execution order of the presented algorithms.

has completed its task. As we have mentioned above, in this paper, we consider that each
QC is assigned to just one hold; therefore initially, the holds of one vessel (h(Vi)) are
distributed among the different QCs by the HandlingTime function (Algorithm 3). Finally,
the berthing position is calculated by the PositionBerth function, and, when it is possible,
additional QCs are assigned to Vi by the AddingQuayCranes function (Algorithm 4).

The allocation of the holds of Vi to the different QCs is done in two phases (Algorithm
3). Step 1 calculates the time needed to complete all the movements of each hold. Later,
in steps 4-13, each hold is assigned to the given QCs in descending order according to
their handling times.

After determining this first number of QCs, we must determine if there is enough
continuous length and assign a berthing position. At this moment, the length of the safety
distance between two contiguous vessels is taken into account (safeLength). Every
space between each two vessels is examined and among all the possible positions, the
one chosen will be the closest to the ends of the berth. This strategy is followed because
if vessels are moored at these positions, the incoming vessels will have more contiguous
available length each time that a vessel departs.

Then, if the vessel Vi has QCs and the length available to get moored at time t, more
QCs are assigned in order to reduce the vessel service time. This process is carried out
by the AddingCranes function (Algorithm 4) and is based on obtaining the period of
time between (m(Vi), d(Vi)) in which there is at least one available QC without reaching
the limit of QCs (maxQC) assigned to Vi. Once a period (tj , tk) has been found, the
AssignQCtoHold function (Algorithm 5) searches among the holds assigned to QCs to
determine which hold H carried out by the QC k begins later and can be completed in the
given interval (start, end). The selected hold H could be moved to the list of tasks of an
already assigned QC to Vi (steps 11 to 17), or a new QC could be assigned to Vi to work
on this selected hold H (steps 18 to 33). In either case, if any QC becomes idle because
it has no assigned holds (steps 14 or 20), it performs the tasks of the last QC assigned to
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Algorithm 1: MoorVessel function. Allocating exactly one vessel in the berth.
Data: Vi: vessel to moor; Vm: Vessels already moored;
Result: Vi: vessel with all the resources allocated;
if |Vm| = 0 then1

// There is no other moored vessel

nQC := max
(
1,min

(
maxQC,

⌊
l(v)
safeQC

⌋))
;2

HandlingTime(Vi, nQC);3
m(Vi) := a(Vi);4
d(Vi) := m(Vi) + max1≤j≤q(Vi)

(stj(Vi) + htj(Vi));5
q(Vi) := nQC;6
p(Vi) := 0;7

end8
// There are other vessels. Moor at the earliest possible time
T ← {a(Vi)} ∪ {(stk(j) + htk(j)) | j ∈ Vm, 1 ≤ k ≤ q(j) ∧ stk(j) + htk(j) > a(Vi)};9
Sort(T ); // Sort in ascending order10
forall tk ∈ T do11

inst :=InsertVessel(Vi, tk + VVQC, Vm);12
if inst then13

break;14
end15

end16
return Vi;17

Vi, which then becomes available for the other vessels.
Finally, if the vessel Vi cannot be moored at time t, the whole process described above

is repeated taking into consideration another time (tk) to moor Vi (Algorithm 1). Each
time tk represents the moment in time that a QC finishes working on the hold of another
vessel.

5 A metaheuristic method for BAP+QCAP
For the BAP+QCAP problem addressed in this paper, we developed different methods,
which allow us compare their results. First, different rules R have been developed follow-
ing different criteria. Algorithm 6 shows the schema to schedule all the incoming vessels
according to a specific rule R. Following the order given by the rule R, all vessels are
chosen one by one to be moored. Each scheduled vessel is added to the set of moored
vessels Vm. Generally, a vessel can be allocated at time t when there is no vessel moored
in the berth or there is available contiguous quay length as well as enough free QCs to be
assigned.

The rules R implemented for its application in Algorithm 6 are:

• FCFS: Vessels moor according to their arrival order, thus ∀i,m(Vi) ≤ m(Vi+1).

• FCMP (First Come Maximum Priority): Similar to FCFS where the next vessel is
chosen according to their arrival order but, in this case, there is no restriction with
the time the vessels can moor.

• MWWT (Maximum Weighted Waiting Time): Each vessel is ranked according to
their weighted waiting time. The vessel with the greatest value is moored first.
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Algorithm 2: InsertVessel function. Allocating one vessel in the berth at time t.
Data: Vi: Vessel to allocate; t: Actual time; Vm: Vessels already moored;
Result: A boolean indicating whether Vi could moor or not;
// Check the length available at the quay

Lavail ← L−
(∑

vj∈Vm
l(vj) |m(vj) ≤ t ∧ d(vj) > t

)
;1

if Lavail ≤ l(v) then2
return false;3

end4
cranes := −1; cranesm := −1;5
repeat6

nc := max(1, cranes);7
HandlingTime(Vi, nc); // Handling time given the nc QCs8
tf := t + max(stj(Vi) + htj(Vi)), 1 ≤ j ≤ q(Vi);9
// Vessels which coincide with Vi

W ← {v ∈ Vm | d(v) > t ∧m(v) < tf};10
// Find the maximum number of QCs available to be used in the interval

(t, tf )
cranesm := nc;11

cranes := max
(
1,min

(
maxQC,

⌊
l(Vi)

safeQC

⌋))
;12

QCu :=
∑

∀v∈W CranesWorking(v, t);13
cranes := min(cranes,QC −QCu);14
forall i ∈ W do15

if m(i) ≥ t then16
QCu :=

∑
∀v∈W CranesWorking(v,m(i));17

cranes := min(cranes,QC −QCu);18
end19
for j ← 1 to q(i) do20

tq := stj(v) + htj(v);21
if tq ≥ m(Vi) ∧ tq < d(Vi) then22

QCu :=
∑

∀v∈W CranesWorking(v, tq);23
cranes := min(cranes,QC −QCu);24

end25
end26

end27
if cranes ≤ 0 then28

return false;29
end30
// Repeat until the number of available QCs does not change

until cranesm ≤ cranes ;31
// Assign the number of QCs and the mooring and departure times
q(Vi) := cranesm;32
m(Vi) := t; d(Vi) := tf ;33
// Look for a berthing position for the vessel
insert := PositionBerth(Vi,W );34
if insert then35

// Once Vi is scheduled, try to assign it more QCs
AddingCranes(Vi, Vin);36

end37
return insert;38
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Algorithm 3: HandlingTime function. Distribute the holds among the available
QCs.

Data: Vi: Vessel to allocate; nQC: number of QCs;
Result: Vi with the holds allocated to the QCs;

// Calculate the handling time required of each hold

T ←
{

cj(Vi)

movsQC
| 1 ≤ j ≤ h(Vi)

}
;1

Sort(T ) ; // Sort the values of T in descending order2
q(Vi) := nQC;3
// Allocate the holds with more containers to each QC
for j ← 1 to nQC do4

stj(Vi) := m(Vi);5
htj(Vi) := ⌈Tj⌉;6
hj(Vi)← {⌈Tj⌉};7

end8
// Do a greedy allocation for the rest of holds
for j ← nQC + 1 to h(Vi) do9

// choose the QC which ends earlier
qm := argmin(stj(Vi) + htj(Vi), 1 ≤ j ≤ nQC);10
hqm (Vi)← hqm (Vi) ∪ {Tj};11
htqm (Vi) := htqm (Vi) + ⌈Tj⌉+ HHQC;12

end13
Sort QCs in descending order according to their finish times;14
return Vi;15

Algorithm 4: AddingCranes function. Insert another QC to Vi.
Data: Vi: Vessel to insert QCs; Vm: Vessels already moored;
Result: Vi: Vessel with QCs reallocated;

// Obtain the period of time (tj , tk) that at least there is 1 available QC
repeat1

changes:= 0;2
// Set of vessels W which are moored at the same time as Vi

W ← {v ∈ Vm | d(v) > a(Vi) ∧ m(v) < d(Vi)};3
// T is the set of mooring and ending times of each QC of W
T ← {m(v) | v ∈ W ∧ m(v) ≥ m(Vi)};4
T ← T ∪ {stj(v) + htj(v) | v ∈ W, 1 ≤ j ≤ q(v) ∧5
(stj(v) + htj(v)) ≥ m(Vi) ∧ (stj(v) + htj(v)) < d(Vi)};
// Sort the set of time units T in ascending order
sort(T );6
forall tj ∈ T do7

if CranesWorking(Vi , tj ) ¡ maxQC then8
forall tk ∈ T | tk > tj do9

Obtain the number of available QCs (Qa) in the interval (tj , tk);10
if Qa ¿ 0 then11

changes := changes + AssignQCtoHold(Vi, Tj , tk);12
else13

// Continue with the next time unit tj
break;14

end15
end16

end17
end18
// This loop is repeated while there is any change

until changes = 0 ;19
return Vi;20

Applied Intelligence - 2014

84



Algorithm 5: AssignQCtoHold function. Choose one hold to be assigned to a new
QC.

Data: Vi: vessel to moor; start: starting time; end: ending time;
Result: QC added (1) or not (0);

// Search a hold whose handling task is lower or equal to end− start;
// last(hj(Vi)) points to the last hold assigned to this QC

Sort Cranes by their finish time in descending order;1
// Handling time of the hold
H := max(last(hj(Vi))), 1 ≤ j ≤ q(Vi) ∧ last(hj(Vi)) < (end− start);2
// QC k which works on this hold
k := argmax(last(hj(Vi))), 1 ≤ j ≤ q(Vi) ∧ last(hj(Vi)) < (end− start);3
// QC m which finishes at start time
m := j | 1 ≤ j ≤ q(Vi) ∧ stj(Vi) = start;4
if H 6= ∅ then5

// There is a hold H that fits in the given interval
if (start + H) ≥ d(Vi) ∨ (start + H) ≥ (stk(Vi) + htk(Vi)) then6

// Move the H to another QC would not improve the actual schedule
return 0;7

end8
// Delete the hold from the list of tasks of QC k
hk(Vi)← hk(Vi)− {H};9
htk(Vi) := htk(Vi)−H − HHQC;10
if m 6= ∅ ∧ k 6= m then11

// There is a QC m finishing its tasks at start. Add task H to QC m
htm(Vi) := htm(Vi) + H + HHQC;12
hm(Vi)← hm(Vi) ∪ {H};13
if |hk(Vi)| = 0 then14

// As QC k becomes idle
Reallocate the tasks of the last QC of Vi to the QC k;15
q(Vi) := q(Vi)− 1;16

end17
else18

// There is no QC that finishes at start, so a new QC will be assigned
to Vi

if |hk(Vi)| > 0 then19
// Check whether the tasks can be joined in the same QC
for j ← k + 1 to q(Vi) do20

if stk(Vi) + htk(Vi) = stj(Vi) then21
htk(Vi) := htk(Vi) + htj(Vi) + HHQC;22
hk(Vi)← hk(Vi) ∪ hj(Vi);23
// As QC j becomes idle
Reallocate the tasks of the last QC of Vi to the QC j;24
q(Vi) := q(Vi)− 1;25

end26
end27
// Assign the new QC to vessel Vi and increase the number of QCs
q(Vi) := q(Vi) + 1;28
k := q(Vi);29

end30
stk(Vi) := start + VVQC; htk(Vi) := H;31
hk(Vi)← {H};32

end33
// Obtain the new departure time of Vi according to the QCs assigned
d(Vi)← max∀j∈q(Vi)

(stj(Vi) + htj(Vi));34

Sort cranes by their finish time in descending order;35
end36
return 1;37
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Algorithm 6: Vessels Allocation according to rule R.
Data: Vin: set of ordered incoming vessels; R: rule applied;
Result: Vm: set of vessels with all the resources allocated;

Vlast := ∅;1
Vm ← ∅;2
while Vin 6= ∅ do3

// Next vessel according to the rule R
v := nextByRule(R);4
t := a(v);5
// For FCFS rule, the earliest mooring time possible is the mooring time of

the previous vessel
if R = FCFS then6

t := max(m(Vlast), a(v));7
end8
// Schedule the chosen vessel at the earliest possible time
inst := InsertVessel(v, t, Vm);9
if ! inst then10

T := {stk(vj) + htk(vj) | vj ∈ Vm, 1 ≤ k ≤ q(vj) ∧ stk(vj) + htk(vj) > t};11
while tk ∈ T ∧ ! inst do12

inst := InsertVessel(v, tk + VVQC, Vm);13
end14

end15
// Store the last scheduled vessel
Vlast := v;16
// Update the moored and the unscheduled vessels
Vm ← Vm ∪ {v}; Vin ← Vin − {v};17

end18
return Vm;19

• EWMT (Earliest Weighted Mooring Time): Among the vessels that can moor ear-
lier, the operator chooses the vessel with the highest priority.

In this study, these rules are compared with our new method for the Berth Alloca-
tion and Quay Crane Assignment Problem: a metaheuristic GRASP approach. This is a
randomly-biased multi-start method to obtain optimized solutions of hard combinatorial
problems in a very efficient way. This method consists of two phases (Procedure 7) and
these two phases are performed consecutively until a termination condition is met. This
termination condition is given in one of these two forms: (1) a number of iterations; or
(2) a time limit. The best solution obtained in those iterations is returned as the solution
for the instance.

The first phase focuses on building a solution by means of adding one element at a
time. In order to choose the next element for the solution, the elements that are not moored
yet are evaluated using a greedy function that indicates how a candidate contributes to the
final solution. Then, a random degree (δ) determines the number of candidates that could
be eligible for this random choice election. If δ = 1, all the elements are eligible, and
therefore this choice is completely random. If δ = 0, then it results in a completely greedy
search. The second phase of the GRASP metaheuristic carries out a local search algorithm
in order to improve each constructed solution in the previous phase. This local search
algorithm works in an iterative manner by successively replacing the current solution by
a better solution in the neighborhood of the current solution. It terminates when no better
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solution is found in the neighborhood [8].

Algorithm 7: GRASP framework
Data: Max iterations or Time Limit;
Read input();1
while No Termination condition is satisfied do2

// Construction phase
S ← ∅;3
Evaluate the incremental costs of the candidate elements;4
while S is not a complete solution do5

Build the restricted candidate list (RCL);6
Select an element s from the RCL randomly;7
S ← S ∪ {s};8
Reevaluate the incremental costs;9

end10
// Local Search phase
S ← LocalSearch(S);11
Keep track of the best solution S found in BestSolution;12
Increase the number of iterations;13

end14
return BestSolution15

The GRASP-based procedure developed for the BAP+QCAP problem is detailed in
Algorithm 8. This algorithm receives as parameters: the set of incoming vessels Vin wait-
ing for mooring at the berth, the random degree (δ), the number of neighbors to explore
in the local search algorithm (K) and the maximum number of iterations (Imax). These
parameters will be discussed in Section 6. First, all the waiting vessels Vin are considered
as candidates C. In step 9, each one of the candidate vessels is moored within the current
state (being assigned the mooring and departure times (m(Vi),d(Vi)), the number of QCs
(q(Vi)), and the berthing position (p(Vi)) ); and they are evaluated according to the greedy
function fc. Given a candidate vessel ve, the greedy function assigned to ve is the sum of
weighted service time of each vessel vo that is still waiting (steps 11 to 14).

According to the greedy function fc and the random degree indicated by δ, a Re-
stricted Candidate List (RCL) is created (step 18). Then, one vessel v is chosen randomly
among the elements from the RCL to be moored and can no longer be modified (step 19).
Once v is determined, this is added to the set of vessels Vs and eliminated from the can-
didate list C (step 21). This loop is repeated until C is empty, it means that all the vessels
have been moored.

The solutions given by the construction phase of the GRASP metaheuristic always
obtain valid solutions: The construction phase works as a dispatching rule by choosing
each time a vessel from the RCL and inserting it into the partial schedule (set of vessels
already scheduled, Vs). The Algorithms of the Section 4 check that all the constraints are
met when a vessel is scheduled such as, among others, the safety distance between every
pair of vessels or the number of QCs assigned to it. Repeating this operation for each
incoming vessel obtains a feasible and valid schedule.

The second phase of the GRASP metaheuristic is shown in Algorithm 9. In order
to define the neighborhood structure of the local search algorithm, a dispatching rule
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Algorithm 8: Grasp metaheuristic adapted to BAP+QCAP.
Data: δ: random factor; Vin: incoming Vessels; K: number of neighbors; Imax: maximum number of iterations;
Result: Vm: set of vessels with all the resources allocated;

iters← 0;1
Vm ← ∅;2
while No Termination condition is satisfied (Imax) do3

// Initialize the actual schedule and the candidates
Vs ← {};4
C ← Vin;5
while C 6= ∅ do6

// Evaluate the incremental costs of each candidate
forall ve ∈ C do7

fc(ve) := 0;8
MoorVessel(ve, Vs);9
V ′
s ← Vin ∪ {ve};10

forall vo ∈ C | vo 6= ve ∧ a(vo) ≤ a(ve) do11
MoorVessel(vo, V

′
s );12

fc(ve) := fc(ve) + ((d(vo)− a(vo))× pr(vo));13
end14

end15
// Build the Restricted Candidate List
cinf := min{fc(e) | e ∈ C};16
csup := max{fc(e) | e ∈ C};17
RCL← {e ∈ C | fc(e) ≤ cinf + δ × (csup − cinf )};18
// Choose a vessel randomly
v := Random(RCL);19
MoorVessel(v, Vs);20
// Insert v in the partial schedule
Vs ← Vs ∪ {v}; C ← C − {v};21

end22
// Local search phase
Vs ← LocalSearch(Vs, K);23
Keep track of the best schedule found Vs in Vm;24
iters← iters +1;25

end26
return Vm;27
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Algorithm 9: LocalSearch function. Local Search based on Hill Climbing for
BAP+QCAP

Data: S: Schedule (set of vessels) built by the construction phase; K: number of neighbors to generate;
Result: S∗: Best schedule found from the schedule S;

S∗ ← S; // S∗ is the current schedule. Set of vessels with all resources1
allocated
repeat2

improves := false;3
// Generate K neighbors from the current schedule

S′ ← ∅; // Best neighbour found4
for k ← 1 to K do5

Sn ← ∅; // Generate a new schedule Sn6
// Considering the mooring times of the vessels in S∗ as dispatching

rule, generate a new schedule Sn

Sort the vessels in S∗ by their mooring times;7
Choose randomly two vessels i, j;8
for v ∈ S∗ do9

// Interchange i and j within the order given by schedule S∗

if v = i then10
MoorVessel(j, Sn);11

else if v = j then12
MoorVessel(i, Sn);13

else14
MoorVessel(v, Sn);15

end16
end17
Keep track of the best neighbor schedule found in S′;18

end19

if S′ is better than S∗ then20
S∗ ← S′;21
improves := true;22

end23
until ! improves ;24
return S∗;25
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based on the order of the vessels according to their mooring times is applied. Thereby, a
neighbor of a current schedule is created by means of interchanging (randomly chosen)
two vessels in the dispatching rule (steps 7 to 17). This local search, based on the hill
climbing technique, starts with the set of vessels Vs with all the resources allocated (step
1) as the current schedule S∗. K schedules from the neighborhood of the current schedule
S∗ are generated (step 5). If the best obtained neighbor schedule S′ outperforms the
current schedule S∗ (step 20), according to the objective function Tw, then the current
schedule S∗ is replaced by S′. This loop is repeated until there is no neighbor schedule
better than the current schedule (steps 2 to 24).

According to the GRASP metaheuristic framework, this search is repeated according
to the number of iterations or to the time limit specified by the user. The best solution
found according to the objective function Tw (Vm) is returned as the solution for the
given instance of the problem.

6 Evaluation

Several experiments have been performed with two different corpus: Dens and Spar. Spar
means that the arrival time between two vessels is sparsely distributed, and Dens means
that the arrival time between two vessels is densely distributed. Each corpus contains 100
instances generated randomly, each one composed of a queue from 5 to 20 vessels. The
terminal operators gave us two inter-arrival distributions (exponential with parameters
λDens = 1

2 and λSpar = 1
5 , and poisson with λDens = 1.5 and λSpar = 3 distributions)

for each corpus in order to generate the arrivals for the incoming vessels. The number of
required movements and length of vessels are randomly generated between 100 and 1000
containers, and between 100 and 500 meters, respectively. In all cases, the berth length
(L) is fixed to 700 meters; the number of Quay Cranes is 7 (corresponding to a determined
MSC berth line) and the maximum number of QCs per vessel is 5 (maxQC); the safety
distance between QCs (safeQC) is 35 meters and the number of movements that QCs
carry out is 25 (movsQC) per time unit. The time needed for the QCs to move to another
hold is 5 time units (HHQC), and 15 time units to another vessel (VVQC). These values were
estimated by the terminal operators. Without loss of generality, all the experiments were
conducted assuming γ = 1.

As we mentioned above, our goal is to minimize the total weighted waiting time
elapsed to serve the set of n incoming vessels. A personal computer equipped with a
Intel Core 2 Q9950 2.83Ghz with 4GB RAM was used in all the experiments.

Focusing on the static QCAP model, Figure 9 shows the objective function (Tw) and
the computation times obtained by the GRASP metaheuristic by varying the parameter
K of the local search. This experiment was carried out for the Dens corpus with an
exponential inter-arrival distribution of arrivals. Using just the constructive phase of the
GRASP metaheuristic (K = 0), the best value achieved was 1322.7 with δ = 0.2 (see
Figure 9(a)). In general, the greater the K value, the better Tw values since a deeper
search in the neighborhood is carried out. For instance, the Tw obtained by δ = 0.2
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decreased to 1127 when K = 14 neighbors are generated in each step of the local search.
However, we can see that for K > 12, we did not achieve a significance improvement
in the objective function. Furthermore, it is important to note that the greater the K
value for the local search, the greater the computation time. Given the δ = 0.2, the
computation time increased from 8.23 ms up to 15.97 ms per iteration. Therefore, a
value K = 12 was set for the local search phase of the GRASP metaheuristic for all the
following experiments.
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Figure 9: Local search depending on the k value (Dens corpus with exponential inter-
arrival distribution)

Table 2: Average Tw values for the rules and GRASP in the static QCAP model (20
vessels)

Exp-Dens Exp-Spar Poisson-Dens Poisson-Spar

FCFS 2222.26 484.45 2668.92 1116.9
FCMP 1973.21 443.26 2414.39 922.52
MWWT 2047.52 477.82 2473.57 1042.53
EWMT 1939.64 370.41 2427.8 841.79

GRASP 1414.75 273.06 1762.22 606.25

In Table 2, the dispatching rules detailed in Sect. 5 are evaluated. Each row represents
the average Tw obtained by a rule on each corpus using the static QCAP model. The
EWMT rule turned out to be the one that achieves the best results in three out of the four
corpus studied. Thus, this rule will be used as a baseline for our GRASP metaheuristic
algorithm.

The GRASP-based metaheuristic developed was compared with the EWMT rule using
the two models presented: static and dynamic QCAP. Figure 10 shows the average values
for the objective function (Tw) to allocate 10 vessels with an exponential inter-arrival dis-
tribution over the two corpus. As expected, the dynamic model obtained better solutions
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than the static one. For instance, for the Dens corpus (see Figure 10(a)), for δ = 0.2,
the value of Tw in the static QCAP model was 315.82 and decreased to 260.96 in the
dynamic QCAP model. Moreover, it can be observed that the solutions given by the
GRASP method always outperformed the EWMT solution in the two models, specially
with δ values close to 1.0 for both the Dens and Spar corpus.
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Figure 10: Tw for 10 vessels (Exponential).

Figure 11 shows the average Tw values obtained by the EWMT rule and the GRASP
metaheuristic in the dynamic QCAP model. This experiment was carried out with in-
stances of 20 incoming vessels with an exponential inter-arrival distribution of the Dens
corpus using a different number of iterations for the GRASP method. It can be observed
that as the number of iterations increased, the quality of our GRASP method also in-
creased. For instance, for δ = 0.1, Tw was 1135.4 with 100 iterations, while Tw decreased
to 1110.21 with 400 iterations.
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Figure 11: Tw depending on the number of iterations in GRASP.

In Figure 12, the same evaluation was carried out for a queue of 20 vessels with the
exponential and poisson inter-arrival distributions, respectively. The same tendency as
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in Figure 10 can be observed, but, in this case, δ ∈ [0.1 − 0.3] got the lowest values
for both inter-arrival time distributions in both corpus (Dens and Spar). Moreover, the
GRASP metaheuristic improved the average results given by the EWMT rule for each
corpus. Taking into account the dynamic QCAP model, the results were improved by
about 22% − 25% with respect to the dynamic EWMT rule; and, in the static QCAP
model, they were improved by about 26%− 27% with respect to the static EWMT. These
figures also show how the dynamic QCAP model always outperformed the static one. For
instance, considering the poisson inter-arrival distribution and δ = 0.1 (see Figure 12(d)),
the average value of Tw for the dynamic and the static QCAP model were 606.25 and
388.24, respectively.
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Figure 12: Weighted waiting time for 20 vessels in sparse and dense corpus with expo-
nential and poisson inter-arrival distribution.

Table 3 shows the evolution of the rules with the static QCAP model (solutions that
would be provided by terminal operators) against GRASP with the dynamic QCAP model
varying the number of incoming vessels from 5 vessels up to 20 vessels with an expo-
nential inter-arrival distribution both for the Dens and Spar corpus. For each number
of incoming vessels, the GRASP metaheuristic outperformed the average results given
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by the rules. For instance, given the Spar corpus and 15 vessels, the best rule obtained
249.41 whereas GRASP achieved 136.75. It is important to note that GRASP decreases
the objective function stronger with the Dens corpus (see Figure 13), since given the char-
acteristics of the Spar corpus, the optimal solutions are close to the arrival order of the
vessels.

Table 3: Average Tw values for the rules and GRASP (Exponential)

(a) Dense inter-arrival times

5 10 15 20

FCFS 93.3 488.86 1190.86 2222.26
FCMP 85.66 448.55 1066.46 1973.21
MWWT 92.28 477.81 1117.59 2047.52
EWMT 85.67 443.51 1039.34 1939.64

GRASP 58.92 258.65 597.45 1110.21

(b) Sparse inter-arrival times

5 10 15 20

FCFS 51.04 176.13 312.36 484.45
FCMP 49.65 167.29 296.87 443.26
MWWT 54.62 183.29 319.48 477.82
EWMT 43.34 142.54 249.41 370.41

GRASP 29.1 84.69 136.75 198.67
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Figure 13: Average Tw values for the rules and GRASP (Exponential)

Figure 14 shows the average computation times per iteration of the GRASP meta-
heuristic for the two models: static and dynamic QCAP. This experiment was performed
for the exponential inter-arrival distribution both for the Spar (see Figure14(b)) and Dens
(see Figure 14(a)) corpus. As the optimal solutions in the Spar corpus are close to the
arrival order of the vessels, the average computation times for the Spar corpus are lower
than the Dens corpus. Furthermore, the average time per iteration depends on the δ factor
chosen since the size of the RCL is related to this parameter. Thereby, taking into account
the dynamic QCAP model, this average time per iteration varied from 10.5 ms (δ = 0) up
to 30 ms (δ = 1) for the Spar corpus; and, it varied from 23.2 ms (δ = 0) up to 48.5 ms
(δ = 1) for the Dens corpus.

As mentioned in Sect. 3, the performance of container terminals is also evaluated
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Figure 14: Average computation times for exponential inter-arrival distribution.

according to the berth usage (Bu) (see Table 4). Table 4(a) shows the relationship between
the berth usage (Bu) and the weighted waiting time (Tw) for a queue of 20 incoming
vessels from the Dens corpus with an exponential inter-arrival distribution. In this case,
only the dynamic model is considered since it obtained the best results in the previous
experiments. Note that the lower Tw is, the greater berth usage is. A value of 71.43%
was achieved for δ = 0.2. Furthermore, having evaluated the dynamic and static QCAP
models (see Table 4(b)), the dynamic QCAP model always achieved a better berth usage
of the quay, approx. 1.34% in average.

Table 4: Bu as a key factor in the container terminal.

(a) Relationship between Bu and Tw (dynamic QCAP model)

Factor δ 0 0.2 0.4 0.6 0.8 1

Bu% 0.7136 0.7143 0.7064 0.7065 0.7042 0.7069
Tw 1116.97 1112.41 1127.21 1129.11 1134.88 1133.04

(b) Differences in Bu between Dynamic and Static QCAP models

Factor δ 0 0.2 0.4 0.6 0.8 1

Dynamic Bu% 0.7136 0.7143 0.7064 0.7065 0.7042 0.7069
Static Bu% 0.7009 0.7026 0.7047 0.6941 0.6962 0.6965

Another key factor studied is the QC throughput (Tqc). Table 5 shows that when holds
are taken into account in the model (dynamic QCAP), Tqc is considerably improved for
both Dens and Spar corpus. In other words, QCs spend less time to perform the same
number of movements, e.g. with 20 vessels in Table 5(a), the Tqc was 482.27 in the static
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QCAP model, whereas in the dynamic model was 406.68. Therefore, the dynamic QCAP
model allows better use of the QCs, since they can be used in other vessels immediately.

Table 5: Average time that QCs are busy.

(a) Dense inter-arrival times

|V| Static QCAP Dynamic QCAP

5 122.06 101.05
10 240.36 202.02
15 359.98 303.08
20 482.27 406.68

(b) Sparse inter-arrival times

|V| Static QCAP Dynamic QCAP

5 127.59 104.38
10 241.36 198.41
15 361.01 296.6
20 473.45 388.56

Finally, we remark that the GRASP metaheuristic search has also been applied to
real data given by port operators from MSC where each instance consists of 15 incoming
vessels. Figure 15 shows the average Tw values. For these experiments, the rule employed
was MWWT since it obtained the best average results, and our GRASP method was able to
reduce those Tw values in both models by approximately 53%. Comparing both models,
the dynamic QCAP model reduced the Tw values by approximately 15.6% over the static
model given the same δ factor (δ = 0.4).
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Figure 15: Tw for the real data given by port operators.

7 Conclusions
We present a new process for allocating berth space for a number of vessels that uses
the well-known GRASP metaheuristic. The developed method also adds the Quay Crane
Assignment Problem into the model, taking into account the holds of each incoming ves-
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sel. The holds of the vessels are introduced in the dynamic QCAP model. The pro-
posed GRASP metaheuristic has been compared to usual scheduling methods employed
in container terminals (FCFS, FCMP, MWWT, EWMT). It can be observed how this
metaheuristic reduces the waiting time and increases both the berth utilization and the
throughput of QCs. These benefits are even greater when the dynamic QCAP model is
employed since QCs are assigned in a more efficient way.

Due to the continuous increase of vessels traffic, our proposed metaheuristic could be
employed since the difference between the GRASP-based method and the usual dispatch-
ing rules is becoming more and more significant. Therefore, allocation methods currently
used in container terminals can be improved to a great extent by integrating metaheuristic
approaches from areas of artificial intelligence.

BAP+QCAP solutions are executed in dynamic real-world environments where inci-
dences can occur. Thus, an initial schedule might become invalid due to some incidences
such as breakdowns in the QC engines, delays in the arrival of the vessels or deviations
from the input data given by the shipping companies. Two main approaches are usually
applied to manage these incidences: proactive and reactive [18]. The aim of a proactive
approach is to obtain robust schedules that remain valid against incidences. A reactive
approach gives rise to process of re-scheduling. These issues are interesting and open
questions in real applications.

Acknowledgments
This work has been partially supported by the research projects TIN2010-20976-C02-01
(Ministerio de Ciencia e Innovación, Spain) the fellowship program FPU (AP2010-4405),
and also with the collaboration of the maritime container terminal MSC (Mediterranean
Shipping Company S.A.).

References
[1] D. Ayvaz, H.R. Topcuoglu, and F. Gurgen. Performance evaluation of evolutionary

heuristics in dynamic environments. Applied Intelligence, 37(1):130–144, 2012.

[2] C. Bierwirth and F. Meisel. A survey of berth allocation and quay crane schedul-
ing problems in container terminals. European Journal of Operational Research,
202(3):615–627, 2010.

[3] C.Y. Cheong, K.C. Tan, and D.K. Liu. Solving the berth allocation problem with
service priority via multi-objective optimization. In Computational Intelligence in
Scheduling, 2009. CI-Sched ’09. IEEE Symposium on, pages 95–102, 2009.

[4] M. Christiansen, K. Fagerholt, and D. Ronen. Ship routing and scheduling: Status
and perspectives. Transportation Science, 38(1):1–18, 2004.

A GRASP-based Metaheuristic for the BAP and the QCAP by Managing Vessel Cargo Holds

97



[5] Drewry Shipping Consultants. Global container terminal operators annual review
and forecast. Annual Report, 2010.

[6] J.F. Cordeau, G. Laporte, P. Legato, and L. Moccia. Models and tabu search heuris-
tics for the berth-allocation problem. Transportation Science, 39(4):526–538, 2005.

[7] C.F. Daganzo. The crane scheduling problem. Transportation Research Part B:
Methodological, 23(3):159–175, 1989.

[8] T.A. Feo and M.G.C. Resende. Greedy randomized adaptive search procedures.
Journal of Global Optimization, 6(2):109–133, 1995.

[9] Paola Festa and Mauricio GC Resende. An annotated bibliography of grasp–part ii:
Applications. International Transactions in Operational Research, 16(2):131–172,
2009.

[10] G. Giallombardo, L. Moccia, M. Salani, and I. Vacca. Modeling and solving the
tactical berth allocation problem. Transportation Research Part B: Methodological,
44(2):232–245, 2010.

[11] Y. Guan and R.K. Cheung. The berth allocation problem: models and solution
methods. OR Spectrum, 26(1):75–92, 2004.

[12] L. Henesey. Overview of Transshipment Operations and Simulation. In MedTrade
Conference, Malta, April, pages 6–7, 2006.

[13] A. Imai, H.C. Chen, E. Nishimura, and S. Papadimitriou. The simultaneous berth
and quay crane allocation problem. Transportation Research Part E: Logistics and
Transportation Review, 44(5):900–920, 2008.

[14] A. Imai, K.I. Nagaiwa, and C.W. Tat. Efficient planning of berth allocation for con-
tainer terminals in Asia. Journal of Advanced Transportation, 31(1):75–94, 1997.

[15] K. Kim and H.O. Günther. Container terminals and cargo systems. Springer, 2006.

[16] Kap Hwan Kim and Young-Man Park. A crane scheduling method for port container
terminals. European Journal of Operational Research, 156(3):752–768, 2004.

[17] K. K. Lai and K. Shih. A study of container berth allocation. Journal of Advanced
Transportation, 26(1):45–60, 1992.

[18] Olivier Lambrechts, Erik Demeulemeester, and Willy Herroelen. Proactive and re-
active strategies for resource-constrained project scheduling with uncertain resource
availabilities. Journal of scheduling, 11(2):121–136, 2008.

[19] Der-Horng Lee, Jiang Hang Chen, and Jin Xin Cao. The continuous berth allocation
problem: a greedy randomized adaptive search solution. Transportation Research
Part E: Logistics and Transportation Review, 46(6):1017–1029, 2010.

Applied Intelligence - 2014

98



[20] D.H. Lee, H.Q. Wang, and L. Miao. Quay crane scheduling with non-interference
constraints in port container terminals. Transportation Research Part E: Logistics
and Transportation Review, 44(1):124–135, 2008.

[21] C. Liang, Y. Huang, and Y. Yang. A quay crane dynamic scheduling problem by
hybrid evolutionary algorithm for berth allocation planning. Computers & Industrial
Engineering, 56(3):1021–1028, 2009.

[22] A. Lim. The berth planning problem. Operations Research Letters, 22(2-3):105–
110, 1998.

[23] Jiyin Liu, Yat-wah Wan, and Lei Wang. Quay crane scheduling at container ter-
minals to minimize the maximum relative tardiness of vessel departures. Naval
Research Logistics (NRL), 53(1):60–74, 2006.

[24] F. Meisel and C. Bierwirth. Heuristics for the integration of crane productivity in
the berth allocation problem. Transportation Research Part E: Logistics and Trans-
portation Review, 45(1):196–209, 2009.

[25] E.M. Mohi-Eldin and E.M. Mohamed. The impact of the financial crisis on con-
tainer terminals (a global perspectives on market behavior). In Proceedings of 26th
International Conference for Seaports & Maritime Transport, 2010.

[26] Y.M. Park and K.H. Kim. A scheduling method for berth and quay cranes. OR
Spectrum, 25(1):1–23, 2003.

[27] R.I. Peterkofsky and C.F. Daganzo. A branch and bound solution method for
the crane scheduling problem. Transportation Research Part B: Methodological,
24(3):159–172, 1990.

[28] M. Rodriguez-Molins, M.A. Salido, and F. Barber. Intelligent planning for allocat-
ing containers in maritime terminals. Expert Systems with Applications, 39(1):978–
989, 2012.

[29] Mario Rodrı́guez-Molins, Miguel A. Salido, and Federico Barber. Domain-
dependent planning heuristics for locating containers in maritime terminals. In Pro-
ceedings of the 23rd International Conference on Industrial Engineering and Other
Applications of Applied Intelligent Systems, volume 6096 of LNCS, pages 742–751.
2010.

[30] M. Salido, O. Sapena, and F. Barber. An artificial intelligence planning tool for the
container stacking problem. Proceedings of the 14th IEEE International Conference
on Emerging Technologies and Factory Automation, pages 532–535, 2009.

[31] Miguel A. Salido, Mario Rodriguez-Molins, and Federico Barber. A deci-
sion support system for managing combinatorial problems in container terminals.
Knowledge-Based Systems, 29:63–74, 2012.

A GRASP-based Metaheuristic for the BAP and the QCAP by Managing Vessel Cargo Holds

99



[32] R. Stahlbock and S. Voß. Operations research at container terminals: a literature
update. OR Spectrum, 30(1):1–52, 2008.

[33] D. Steenken, S. Voß, and R. Stahlbock. Container terminal operation and operations
research-a classification and literature review. OR Spectrum, 26(1):3–49, 2004.

[34] Rafal Szlapczynski and Joanna Szlapczynska. On evolutionary computing in multi-
ship trajectory planning. Applied Intelligence, 37:155–174, 2012.

[35] S. Theofanis, M. Boile, and M.M. Golias. Container terminal berth planning.
Transportation Research Record: Journal of the Transportation Research Board,
2100:22–28, 2009.
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Abstract

Maritime container terminals are facilities where cargo containers are transshipped
between ships or between ships and land vehicles (trucks or trains). These terminals
involve a large number of complex and combinatorial problems. Two important prob-
lems are the Container Stacking Problem and the Berth Allocation Problem. Both
problems are generally managed and solved independently but there exist a relation-
ship that must be taken into account to optimize the whole process. The terminal
operator normally demands all containers bound for an incoming vessel to be ready
in the terminal before its arrival. Similarly, customers (i.e., vessel owners) expect
prompt berthing of their vessels upon arrival. This is particularly important for ves-
sels from priority customers who may have been guaranteed berth-on-arrival service
in their contract with the terminal operator. To this end, both problems must be inter-
related.

In this paper, a set of artificial intelligence based-techniques for solving both prob-
lems is presented. We develop a planning technique for solving the Container Stack-
ing Problem and a set of optimized allocation algorithms for solving the Berth Al-
location Problem independently. Finally we have developed an architecture to solve
both problems in an integrated way. Thus, an algorithm for solving the berth allo-
cation problem generates an optimized order of vessels to be served meanwhile our
container stacking problem heuristics calculate the minimum number of reshuffles
needed to allocate the containers in the appropriate place for the obtained ordering of
vessels. Thus combined optimal solutions can be calculated and the terminal operator
could decide which solution is more appropriate in each case. These techniques will
minimize disruptions and facilitate planning in container terminals.

Keywords Planning, Heuristics, Optimization, Container Stacking Problem, Remar-
shaling, Berth allocation problem
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1 Introduction

Container terminals have become an important component of global logistics networks.
Henesey [11] shows how this transshipment market is growing fast (container throughput
has increased by 58 per cent over 2000-2004) and needs further studies to analyze it. In
order to ensure reliability, e.g. delivery dates or handling times, to the different shipping
companies as well as increasing productivity and container throughput from the quayside
and landside and vice versa, there are several issues which need optimization. Extensive
surveys are provided [28, 26] about operations at seaport container terminals and methods
for their optimization. Moreover, other problems could be faced as for instance planning
the routes for liner shipping services to obtain the maximal profit [4]. Another important
issue for the success at any container terminal is to forecast container throughput accu-
rately [2]. With this data they could develop better operational strategies and investment
plans.

In any case, the main objective in the container terminals is to reduce the berthing
time of vessels. This global objective generates a set of interrelated problems divided into
berth allocation, yard-side operation, storage operation and gatehouse operation. Gen-
erally, each problem is managed independently due to the fact that these problems are
combinatorial problems so their complexities remain exponential. However, many of
these problems are interrelated so an optimized solution of a problem could restring the
possibility of obtaining a better solution in a related problem than before.

In this paper, we will focus our attention to the berth allocation problem and the con-
tainer stacking problem (see Figure 1). Briefly, the berth allocation problem consists on
allocating a given set of coming vessels to a berth under certain constraints such as prior-
ities, length and depth of vessels, number of containers, etc. When a vessel berths, export
containers to be loaded should be on top of the stacks in the container-yard. Therefore,
the container stacking problem consists on rearranging the containers so that the yard
crane does not need to do rehandling work at the time of loading. These two problems
are related so that an optimal berth allocation plan may generate a large amount of reloca-
tions for export containers, meanwhile a suboptimal berth allocation plan could generate
a small amount of relocations. The terminal operator could decide which solution is the
most appropriate in every planning.

In this paper, we have developed a set of artificial intelligence based-techniques for
solving both problems concurrently in order to achieve a solution that combines and op-
timizes both problems. To this end, we firstly present a planning technique for generating
a rehandling-free intra-block remarshaling plan for a container yard. Then, we present
a metaheuristic for solving the berth allocation problem as an independent problem. Fi-
nally, we present a integrated system for optimizing both problems. As we have pointed
out before, the terminal operator will decide which solution is the most appropriate one
in each stage due to the integrated problem will generate a multi-objective function: to
minimize the waiting time of each vessel and to minimize the number of relocations.

The overall goal of collaboration between our group at the Technical University of Va-
lencia (UPV) and the maritime container terminal MSC (Mediterranean Shipping Com-
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Figure 1: Integrated Remarshaling and Berthing problems in Maritime Terminals

pany S.A) is to offer assistance in planning and scheduling tasks, such as the allocation of
spaces to outbound containers, the berthing allocation planning in order to identify bot-
tlenecks, determine the consequences of changes, and to provide support in the resolution
of incidents.

1.1 The Container Stacking Problem (CSP)
As we have pointed out, one of the performance measures in container terminals is the
time spent by vessels in the port quays. This time is mainly composed of the container
unloading/loading time. In order to reduce the loading time, it is necessary to maintain the
out containers free of reshuffles by means of remarshaling tasks. This problem is known
as Container Stacking Problem (CSP). It is a NP-complete and an intractable highly com-
binatorial optimization problem. Few studies are dealing with this problem. In [16], the
authors proposed dynamic programming to attain an ideal configuration while minimizing
the number of moved containers and the follow-on traveled distance.

Containers are an ISO standardized metal box and can be stacked on top of each other.
The container capacity is often expressed in twenty-foot equivalent unit (TEU). Loading
and offloading containers on the stack is performed by cranes following a ’last-in, first-
out’ (LIFO) storage.

In order to access a container which is not at the top of its pile, those above it must
be relocated. It occurs since other ships have been unloaded later or containers have been
stacked in the wrong order due to lack of accurate information. Contain relocation reduces
the productivity of the cranes. Maximizing the efficiency of this process leads to several
requirements:

1. Each incoming container should be allocated a place in the stack which should be
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free and supported at the time of arrival.

2. Each outgoing container should be easily accessible, and preferably close to its
unloading position, at the time of its departure.

In addition, there exist a set of hard/soft constraints regarding the container locations, for
example, small differences in height of adjacent yard-bays, dangerous containers must be
allocated separately by maintaining a minimum distance and so on.

Nowadays, the allocation of positions to containers is usually done manually. There-
fore, using appropriate Artificial Intelligent techniques is possible to achieve significant
improvements of lead times, storage utilization and throughput.

Figure 2 (a) shows a container yard. A yard consists of several blocks, and each block
consists of 20-30 yard-bays [18]. Each yard-bay contains several (usually 6) rows. Each
row has a maximum allowed tier (usually tier 4 or tier 5 for full containers). Figure 2 (b)
shows a gantry crane that is able to move a container within a stacking area or to another
location on the terminal. For safety reasons, it is usually prohibited to move the gantry
crane while carrying a container [20], therefore these movements only take place in the
same yard-bay.

 

Figure 2: A container yard (a) and gantry cranes (b) (Photos by Stephen Berend)

When a container arrives at the terminal port, a transfer crane picks it up and stacks it
in a yard-bay. During the ship loading operation, a transfer crane picks up the container
and transfers it to a truck that delivers it to a quay crane.

In container terminals, the loading operation for export containers is pre-planned by
load planners. For load planning, a containership agent usually transfers a load profile
(an outline of a load plan) to a terminal operating company several days before a ship’s
arrival. The load profile specifies only the container group. In order to have an efficient
load sequence, storage layout of export containers must have a good configuration.

One of the main focus of this paper is to present a planning system which optimally
reallocates outgoing containers for the final storage layout from which a load planner can
construct an efficient load sequence list. In this way, the objective of this problem is
therefore to plan the movement of the cranes so as to minimize the number of reshuffles
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of containers in a complete yard. To this end, the yard is decomposed in yard-bays, so
that the problem is distributed into a set of subproblems. Thus, each yard-bay generates
a subproblem, but containers of different yard-bays must satisfy a set of common con-
straints among them, so that subproblems will be sequentially solved taken into account
the common set of constraints.

In the literature, generally this problem can be seen in two different approaches ac-
cording to when it should be done the optimization:

1. minimizing the number of relocations during the pickup operation.

2. getting a desirable layout for the bay before the pickup operation is done in order
to minimize (or eliminate) the number of relocations during this process.

[15] proposes a methodology to estimate the expected number of rehandles to pick
up an arbitrary container and the total number of rehandles to pick up all the containers
in a bay for a given initial stacking configuration. In a similar way, [17] compares two
methods, branch-and-bound algorithm and a heuristic rule based on an estimator, which
they minimize the number of relocations during the pickup operation.

[16] also proposes a methodology to convert the current bay layout into the desir-
able layout by moving the fewest possible number of containers (remarshaling) and in the
shortest possible travel distance although it takes a considerable time since they use math-
ematical programming techniques. Cooperative coevolutionary algorithms have been de-
velop in [21] to obtain a plan for remarshaling in automated container terminals.

This paper focuses on the latter approach. But we present a new heuristic with a set of
optimization criteria in order to achieve efficiency and take into account constraints that
should be considered in real-world problems in the provided solutions.

1.2 The Berth Allocation Problem (BAP)
In [27], the authors show a complete comparison about different solutions for Berth Al-
location Problem (BAP) according to their efficiency in addressing key operational and
tactical questions relating to vessel service and their relevance and applicability to the
different strategies and contractual service arrangements between terminal operator and
shipping lines. They distinguish the models into the following 4 categories:

• static BAP (SBAP), if all the vessels to be served are already in the port at the time
that scheduling begins.

• dynamic BAP (DBAP), if all the vessels to be scheduled for berthing have not yet
arrived but their arrival times are known in advance.

• discrete berthing space, when the quay is viewed as a finite set of berths, in which
each berth is described by fixed-length segments or points.

• continuous berthing space, in this case vessels can berth anywhere along the quay.
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One of the early works that appeared in the literature was [19]. In this paper, they
developed a heuristic algorithm by considering a First-Come-First-Served (FCFS) rule.
However, the idea that for high port throughput, optimal vessel-to-berth assignments
should be found without considering the FCFS bases was introduced by [14]. There-
fore, we will use the FCFS rule in order to get an upper bound. But, this approach may
result in some vessels’ dissatisfaction regarding the order of service.

In [9] multiple vessel mooring per berth is allowed assuming that vessel arrivals can
be grouped into batches. They have developed a tree search procedure which provides an
exact solution and this is improved by a composite heuristic.

Some metaheuristics have been developed to solve the BAP. On the one hand, [5]
introduce two Tabu Search heuristics to solve the discrete and continuous case, respec-
tively to minimize is the weighted sum for every ship of the service time in the port. Both
heuristics are inspired by a Multi-Depot Vehicle Routing Problem with Time Windows al-
gorithm and can handle various features of real-life problems as time windows or favorite
and acceptable berthing areas.

On the other hand, [3] follow an approach based on multi-objective optimization prob-
lem using evolutionary algorithms to minimize the makespan of the port, total waiting
time of the ships, and degree of deviation from a predetermined service priority schedule.

[8] present the integration of BAP with the Quay Crane Assignment Problem (QCAP)
through two mixed integer programming formulations including a tabu search method
which is an adaption of the one of [5], however they minimize the yard-related house-
keeping costs generated by the flows of containers exchanged between vessels. More
information regarding new classification schemes for berth allocation problems and quay
crane scheduling problems is presented in [1]. Particular focus of this paper is put on
integrated solution approaches which receive increasing importance for the terminal man-
agement.

Our approach integrates the both problems (BAP and QCAP) through a metaheuristic
method called Greedy Randomized Adaptive Search Procedure (GRASP) [6] which is
able to find feasible solutions within an acceptable computational time.

2 An Approach for the Container Stacking Problem
The Container Stacking Problem can be viewed, from the artificial intelligence point of
view, as a modification of the Blocks World planning domain [29], which is a well-known
domain in the planning community. This domain consists of a finite number of blocks
stacked into towers on a table large enough to hold them all. The Blocks World planning
problem is to turn an initial state of the blocks into a goal state, by moving one block at a
time from the top of a tower onto another tower (or on a table). The optimal Blocks World
planning problem is to do so in a minimal number of moves.

Blocks World problem is closed to the Container Stacking Problem, but there are some
important differences:

• The number of towers is limited to 6 because a yard-bay contains usually 6 rows.
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• The height of a tower is also limited to 4 or 5 tiers depending on the employed
cranes.

• There exist a set of constraints that involve different rows such as balanced adjacent
rows, dangerous containers located in different rows, etc.

• The main difference is in the problem goal specification. In the Blocks World do-
main the goal is to get the blocks arranged in a certain layout, specifying the final
position of each block. In the container stacking problem the goal state is not de-
fined as accurately, so many different layouts can be a solution for a problem. The
goal is that the most immediate containers to load are in the top of the towers,
without indicating which containers must be in each tower.

We can model our problem by using the standard encoding language for classical
planning tasks called PDDL (Planning Domain Definition Language) [7] whose purpose
is to express the physical properties of the domain under consideration and it can be
graphically represented by means of tools as [10]. A classical AI planning problem can
be defined by a tuple 〈A, I,G〉, where A is a set of actions with preconditions and effects,
I is the set of propositions in the initial state, and G is a set of propositions that hold true
in any goal state. A solution plan to a problem in this form is a sequence of actions chosen
from A that when applied transform the initial state I into a state of which G is a subset.

Following the PDDL standard, a planning task is defined by means of two text files.
The domain file, which contains the common features for problems of this domain and
the problem file, which describes the particular characteristics of each problem. These
two files will be described in the following subsections.

2.1 Domain specification

In this file, we will specify the objects which may appear in the domain as well as the
relations among them (propositions). Moreover, in order to make changes to the world
state, actions must be defined.

• Object types: containers and rows, where the rows represent the areas in a yard-bay
in which a tower or stack of containers can be built.

• Types of propositions:

– Predicate for indicating that the container ?x is on ?y, which can be another
container or, directly, the floor of a row (stack).
on ?x - container ?y - (either row container)

– Predicate for indicating that the container ?x is in the tower built on the row
?r.
at ?x - container ?r - row
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– Predicate for stating that ?x, which can be a row or a container, is clear, that
is, there are no containers stacked on it.
clear ?x - (either row container)

– Predicate for indicating that the crane used to move the containers is not hold-
ing any container.
crane-empty

– Predicate for stating that te crane is holding the container ?x.
holding ?x - container

– Predicates used to describe the problem goal. The first one specifies the most
immediate containers to load, which must be located on the top of the towers
to facilitate the ship loading operation. The second one becomes true when
this goal is achieved for the given container.
goal-container ?x - container and ready ?x - container

– Numerical predicates. The first one stores the number of containers stacked
on a given row and the second one counts the number of container movements
carried out in the plan.
height ?s - row and num-moves

• Actions:

– The crane picks the container ?x which is in the floor of row ?r.
pick (?x - container ?r - row)

– The crane puts the container ?x, which is holding, in the floor of row ?r.
put (?x - container ?r - row)

– The crane unstacks the container ?x, which is in row ?r, from the container
?y.
unstack (?x - container ?y - container ?r - row)

– The crane stacks the container ?x, which is currently holding, on container
?y in the row ?r.
stack (?x - container ?y - container ?r - row)

– Finally, we have defined two additional actions that allow to check whether
a given (goal) container is ready, that is, it is in a valid position. When a
container is clear:
fict-check1 (?x - container)

The container is under another (goal) container which is in a valid position.
fict-check2 (?x - container ?y - container)

As an example of PDDL format, we show in Figure 3 the specification of the stack
operator. Preconditions describe the conditions that must hold to apply the action: crane
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must be holding container ?x, container ?y must be clear and at row ?r, and the number
of containers in that row must be less than 4. With this constraint we limit the height of
the piles. The effects describe the changes in the world after the execution of the action:
container ?x becomes clear and stacked on ?y at row ?r, and the crane is not holding
any container. Container ?y becomes not clear and the number of movements and the
containers in ?r is increased in one unit.

(:action stack
:parameters (?x - container ?y - container ?r - row)
:precondition (and

(holding ?x) (clear ?y)
(at ?y ?r) (< (height ?r) 4))

:effect (and
(clear ?x) (on ?x ?y)
(at ?x ?r) (crane-empty)
(not (holding ?x))
(not (ready ?y))
(not (clear ?y))
(increase (num-moves) 1)
(increase (height ?r) 1)))

Figure 3: Formalization of the stack operator in PDDL.

2.2 Problem specification
In this file, we will specify the particular characteristics of each problem:

• Objects: the rows available in the yard-bay (usually 6) and the containers stored in
them.

• Initial state: the initial layout of the containers in the yard.

• The goal specification: the selected containers to be allocated at the top of the stacks
or under other selected containers.

• The metric function: the function to optimize. In our case, we want to minimize the
number of relocation movements (reshuffles).

Since the Container Stacking Problem can be formalized with these two files (the
domain specification and the problem specification), we can use a general domain inde-
pendent planner to solve our problems as Metric FF [13]. The plan, which is returned by
the planner, is a totally ordered sequence of actions or movements which must be carried
out by the crane to achieve the objective. Figure 4 shows an example of the obtained plan
for a given problem. The performance of this general planner will be analyzed in Section
5, which will be compared with the domain-oriented planner presented in next Sections.
Once the problem domain has been defined, we can define problem instances.
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Figure 4: The obtained plan solution to be carried out by the transfer crane.

2.3 A Domain-Dependent Heuristically Guided Planner
Metric FF planner might obtain plans, but it is very inefficient. Therefore, we propose a
domain-dependent planner in order to provide more efficiency, it means at least reducing
the number of crane operations required to achieve a desirable layout.

The proposed planner is built on the basis of a local search domain-independent plan-
ner called Simplanner [25]. Some characteristics of the tool can be seen in [22]. It has
several interesting properties for the container stacking problem:

• It is an anytime planning algorithm. This means that the planner can found a first,
probably suboptimal, solution quite rapidly and that this solution is being improved
while time is available.

• It is complete, so it will always find a solution if exists.

• It is optimal, so that it guarantees finding the optimal plan if there is time enough
for computation.

It follows an enforced hill-climbing [12] approach with some modifications:

• It applies a best-first search strategy to escape from plateaux. This search is guided
by a combination of two heuristic functions and it allows the planner to escape from
a local minima very efficiently.

• If a plateau exit node is found within a search limit imposed, the hill-climbing
search is resumed from the exit node. Otherwise, a new local search iteration is
started from the best open node.

Simplanner was firstly used to solve individual subproblems (yard-bays). To improve
the solutions obtained, we have further developed a domain-dependent heuristic to guide
the search in order to accelerate and guide the search toward a optimal or sub-optimal
solutions.
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A heuristic (called h1) was developed to efficiently solve each individual subprob-
lems. h1 computes an estimator of the number of container movements that must be
carried out to reach a goal state (see Algorithm 1). The essential part of this algorithm
is to count the number of containers located on the selected ones, but also keeps track of
the containers that are held by the crane distinguishing between whether they are selected
containers or not. When the crane is holding a selected container, the value h has a smaller
value since, although this state is not a solution, this container will be at the top of some
row in the next movement.

Algorithm 1: Pseudo-code of the domain-dependent heuristic h1

Data: b: state of the yard-bay;
Result: h: heuristic value of b;
h = 0;1
Container hold by the crane if ∃x−container/Holding(x) ∈ b then2

if GoalContainer(x) then3
h = 0.1;4

else5
h = 0.5;6

end7
end8
//Increasing the ∆h value for r ← 1 to numRows(b) do9

∆h = 0;10
for x−container/At(x, r) ∧ GoalContainer(x) ∈ b do11

if ∄y−container/GoalContainer(y) ∧ On(y, x) ∈ b then12
∆h = max(∆h, NumContainersOn(x));13

end14
end15
h+ = ∆h;16

end17

2.4 Optimization criteria for one-bay yards
Despite we are able to obtain good solutions (layouts) from Simplanner enhanced with
h1, we also want solutions more realistic for instance taking into account safety standards.

From this heuristic h1, we have developed some optimization criteria each one of
them achieving one of the requirements we could face at Container Terminals [24]. These
criteria are centered in the issues as follows:

1. Reducing distance of the goal containers to the side (OC1d) where the container
will be loaded to a truck.

2. Increasing the range of the move actions set for the cranes allowing to move a
container to 5th tier (OC1t). Generally, the allowed number of tiers is limited to 4.
In some cases, tier 5 is temporally allowed.

3. Applying different ways of balancing within the same bay in order to avoid sinks
(OC1b). It is considered that there is a sink when the height difference between
two adjacent stacks in the same yard-bay is greater than a maximum number of
containers, in our case two containers.
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These criteria have been easily incorporated in our planner by defining an heuristic
function as a linear combination of two functions:

h(s) = ω1 × h1(s) + ω2 × h2(s) (1)

being this secondary function a combination of these three criteria described:

h2(s) = OC1d +OC1t +OC1b (2)

Note that although we want to guarantee balancing with this last optimization crite-
rion, unbalanced states (states with sinks) are allowed during this process of remarshaling
in order to get better solutions according to the number of reshuffles done.

2.4.1 OC1d: Placing goal containers close to cargo side

Given an initial state, several different layouts can be usually achieved making the same
number of reshuffles and some of them can be more interesting than the rest according
to other important questions. In this case, since the transfer crane is located at the right
side of the yard-bay, we want to obtain a layout where it is minimized the distance of the
goal containers to this side of the yard-bay. Achieving this we can spend considerably
less time during the truck loading operations.

Figure 5: Obtained plan with the initial domain-dependent heuristic.

Following the heuristic function presented in Equation 1:

• h1(s) is the main heuristic function, which estimates the number of movements
required to reach the goal layout (outlined in Algorithm 1). Since this is the main
optimization function, α value should be significantly higher than β.

Advanecd Engineering Informatics - 2011

114



• h2(s) is the secondary function we want to optimize. In this case, it is just OC1d.
This means the sum of the distances of the selected containers to the right side of
the yard-bay, which can be computed as Algorithm 2 shows.

Algorithm 2: Pseudo-code to calculate the distance
Data: s: state to evaluate
Result: d: distance value of s
d = 0;1
for r ← 1 to numRows(s) do2

for x−container/At(x, r) ∈ s ∧ GoalContainer(x) do3
d = d + (numRows(s)− r);4

end5
end6

The benefits of using this combined heuristic function can be observed in Figure 5
and Figure 6. In the first one we want only to minimize the number of reshuffles, i.e.
h(s) = h1(s). In the second one, we also want to minimize the distance of the selected
containers to the forklift truck, so we have set h(s) = 9 × h1(s) + h2(s). As a result,
none of the selected containers (the dark ones) are placed in the most left rows, reducing
the required time to load the truck.

Figure 6: Obtained plan with the distance optimization function.

2.4.2 OC1t: Allowing the 5th tier during the remarshaling process

In this optimization criterion as well as the next ones, we will include the new given
heuristic value with the same factor as the initial one. One of the decisions that must be
done in Container Terminals is about which cranes have to be bought depending on how
many tiers cranes work. This topic has been considered in [23]. But, another approach
is to reach the fifth tier only during the remarshaling process. Thereby, there would be 4
tiers at the beginning and the end keeping the first requirements.
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Following this concept, we will use instances of problems < n, 4 > with a domain
whose move actions allow 5 tiers at the stacks. This function is showed in Algorithm
3 and it follows the same steps than the original but increasing the value of h when the
height of one of the stacks is higher than 4. Thereby, we assure that the final layout will
always have 4 tiers.

Algorithm 3: Pseudo-code of the domain-dependent heuristic function to allow 5
tiers

Data: s: state to evaluate
Result: h: heuristic value of s
h = 0;1
if ∃x−container/Holding(x) ∈ s then2

if GoalContainer(x) then3
h = 0.1;4

else5
h = 0.5;6

end7
end8
for r ← 1 to numRows(s) do9

∆h = 0;10
if Height[r, s] > 4 then11

if x−container/Clear(x, r) ∈ s ∧ GoalContainer(x) then12
∆h = 0.5;13

else14
∆h = 1;15

end16
end17
for x−container/At(x, r) ∈ s ∧ GoalContainer(x) do18

if ∄y−container/GoalContainer(y) ∧ On(y, x) ∈ s then19
∆h = max(∆h, NumContainersOn(x));20

end21
end22
h+ = ∆h;23

end24

2.4.3 OC1b: Balancing one yard-bay

In this section we present an extension for the heuristic h1 (Algorithm 1) to include the
balancing of the stacks within one yard-bay as a requirement.

Considering the time when the goal containers are removed from the yard, we can
distinguish three ways to get balanced one yard-bay presented in the next subsections.
The last mode is the consequence of applying the first two ones.

1. Balanced Before loading operation In this case we consider that the layout must
be balanced before the goal containers are removed from that yard-bay. This func-
tion is showed in Algorithm 4, it compares the height of each row of the yard-bay
with the next one, and if the difference is higher than 2, the value heuristic h is in-
creased. As it appears in Figure 7, this criterion avoids the sinks in the final layout
while all the containers are still in the yard-bay.
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However, when these containers are removed, it might cause that the new layout is
unbalanced as it happens in Figure 7(b).

Algorithm 4: Pseudo-code to balance before the goal containers are removed
Data: s: state to evaluate; h: Initial heuristic;
Result: h: heuristic value of s;
for r ← 1 to numRows(s)− 1 do1

∆h = Abs(Height[r, s]− Height[r + 1, s]);2
if ∆h > 2 then3

h = h + ∆h− 2;4
end5

end6

(a) With goal containers (b) Without goal containers

Figure 7: Effects of using function seen in Algorithm 4

2. Balanced after loading operation In contrast to the method seen above, we con-
sider that the layout must remain balanced after the goal containers are removed
from the yard-bay. Figure 8 shows the layouts we get after execute the plan returned
by our planner.

Algorithm 5: Function HeightsWithoutGoals to calculate heights of each
row without taking into account the goal containers at the top

Data: b: state of the yard-bay;
Result: MinHeight, heights calculated;
for r ← 1 to numRows(b) do1

MinHeight[r, b] = Height[r, b];2
//Decrease till the first no goal-container3
while MinHeight[r, b] > 0 ∧ GoalContainer(MinHeight[r, b], r) ∈ b do4

MinHeight[r, b]−−;5
end6

end7

Algorithm 6 shows this function. It uses the Function HeightsWithoutGoals (Algo-
rithm 5) in order to calculate for the yard-bay b the height for each stack where the
first no-goal container is. These values are employed to get the difference of height
between two adjacent stacks once the goal containers have been removed from the
yard. Heights of each row are stored as soon as the planner gets the final solution
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plan for one yard-bay. After we obtain these values, we increase the heuristic value
h according to whether or not there are goal containers on the floor. Then, we use
the values given by HeightsWithoutGoals to calculate the difference between two
adjacent stacks, when this difference is higher than 2 we consider that there is a
sink, so h is increased again.

However, this process might also cause some unbalanced layouts (Figure 8(a)). But
in this case, non-desirable layouts will appear while the goal containers are in the
yard-bay. Once they have been removed from it, these layouts will be balanced
ones (Figure 8(b)).

Algorithm 6: Pseudo-code to balance after the goal containers are removed
Data: s: state to evaluate; h: Initial heuristic;
Result: h: heuristic value of s;
HeightsWithoutGoals(s);1
∆h = 0;2
//Not allow containers on the floor3
for r ← 1 to numRows(s) do4

if ∃x−container/On(x, r) ∧ GoalContainer(x) then5
∆h = ∆h + NumContainersOn(x);6

end7
end8
h = h + ∆h;9
for r ← 1 to numRows(s)− 1 do10

∆h = Abs(MinHeight[r, s]− MinHeight[r + 1, s]);11
if ∆h > 2 then12

h = h + ∆h− 2;13
end14

end15

(a) With goal containers (b) Without goal containers

Figure 8: Effects of using function seen in Algorithm 6

3. Balanced before and after the loading operation Finally, we present an optimiza-
tion criterion which obtains a layout where is balanced both before and after the
goal containers are removed from this yard-bay. With this function we want to
solve the problems seen in the last subsections as we can see it in Figure 9.

This function (Algorithm 7) is a mixture of the last two ones. First, we increase
h when there are goal containers on the floor. When this is achieved, we in-
crease h when the difference between the heights values obtained by the function
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HeightsWithoutGoals (Algorithm 5) are higher than 2 for two contiguous rows.
And finally, if h value is low enough (in our case lower than 1), we increase h again
if the difference between the actual heights of two contiguous rows is higher than
2.

Algorithm 7: Pseudo-code to balance the yard-bay before and after the goal con-
tainers are removed

Data: s: state to evaluate; h: Initial heuristic;
Result: h: heuristic value of s;
HeightsWithoutGoals(s);1
∆h = 0;2
//Not allow containers on the floor3
for r ← 1 to numRows(s) do4

if ∃x−container/On(x, r) ∧ GoalContainer(x) then5
∆h = ∆h + NumContainersOn(x);6

end7
end8
h = h + ∆h;9
if h == 0 then10

∆h = 0;11
//Balancing with containers which are not objective12
for r ← 1 to numRows(s)− 1 do13

∆h = Abs(MinHeight[r, s]− MinHeight[r + 1, s]);14
if ∆h > 2 then15

h = h + (∆h− 2)/2;16
end17

end18
if h < 1 then19

//Balancing with containers which are objective20
for r ← 1 to numRows(s)− 1 do21

∆h = Abs(Height[r, s]− Height[r + 1, s]);22
if ∆h > 2 then23

h = h + (∆h− 2)/2;24
end25

end26
end27

end28

(a) With goal containers (b) Without goal containers

Figure 9: Effects of using function seen in Algorithm 7
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2.5 Optimization criteria for one block

This initial heuristic (h1) was unable to solve a complete yard or block (in our case, one
block consists of 20 yard-bays) due to the fact that they only solve individual yard-bays. In
this paper, we also have developed two optimization criteria that include new constraints
that involve several yard-bays. These constraints are:

• Balancing contiguous yard-bays: rows of adjacent yard-bays must be balanced, that
is, the difference between the number of containers of row j in yard-bay i and row j
in yard-bay i− 1 must be lower than a maximum (in our case lower than 3). Figure
10 shows which rows must be get balanced when we consider one yard-bay and
Figure 11 (a) shows an example of non-balanced yard-bays (rows in dotted points).

• Dangerous containers: two dangerous containers must maintain a minimum secu-
rity distance. Figure 11 (b) shows an example of two dangerous containers that
does not satisfy the security distance constraint.

(i,j)(i-1,j)

(i,j+1)

(i+1,j)

(i,j-1)

Bays

S
ta
c
k
s

Figure 10: Bay and stack numbering

These constraints interrelate the yard-bays so the problem must be solved as a com-
plete problem. However, it is a combinatorial problem and it is not possible to find an
optimal or sub-optimal solution in a reasonable time. To this end, we can distribute the
problem into subproblems and solve them sequentially taken into account related yard-
bays. Thus a solution to the first yard-bay is taken into account to solve the second yard-
bay. A solution to the second yard-bay is taken into account to solve the third yard-bay.
Furthermore, if there exist a dangerous container in a first bay, its location is taken into
account to solve a dangerous container located in the third yard-bay (if it exists); and so
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on. Taken into account this distributed and synchronous model, we present two different
optimization criteria to manage these types of constraints.

These two criteria are added to the heuristic function seen in Equation 1 as h3 (Equa-
tion 3); and Equation 4 shows the exact combination of them. This makes possible to
follow a criterion with major priority than the other one.

h = ω1 × h1 + ω2 × h2 + ω3 × h3 (3)

h3 = δ1 ×OCnB + δ2 ×OCnD (4)

As a consequence of the solving mode followed, depending on the order the yard-
bays are resolved may not be possible to achieve a solution. Moreover, as mentioned in
Section 2.4, although we want to guarantee balancing and/or minimum distance between
dangerous containers, during relocation of container process we will allow the presence of
non-desirable sates, e.g. with some sinks between two contiguous rows or bays. These in-
termediate states are allowed because through them we will be able to get better solutions
taking into account as metric function the number of reshuffles done.
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Figure 11: (a) Non-balanced yard-bays. (b) Proximity of two dangerous containers.

2.5.1 OCnB: Balancing contiguous yard-bays

In this section we present an extension for the heuristic h1 (Algorithm 1) to include the
balancing of continuous yard-bays as a requirement. It is considered that there is a sink
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when a difference higher than two containers exists between two adjacent rows in con-
tiguous yard-bays. This criterion is an extension of the balanced heuristic presented in
Algorithm 7, which avoids sinks in the same yard-bay (horizontal balance) both before
and after the outbound containers have been removed from the yard. However, in this
case a sink represents a constraint between two subproblems. Thus, we also consider that
there is a sink when a difference of two exits between the same row r in two contiguous
yard-bays (vertical balance).

This process is showed in Algorithm 8. This also uses the Function HeightsWithout-
Goals (Algorithm 5) in order to calculate for the yard-bay b the height for each stack
where the first no-goal container is. Heights of each row are stored as soon as the planner
gets the final solution plan for one yard-bay.

First, we apply the criterion seen in Algorithm 7 on the yard-bay b. Through heights’
calculated by Algorithm 5 and the real heights of the actual yard-bay we obtain the differ-
ences between the row r and r−1 to calculate the value of h. When this value is zero (the
yard-bay b is horizontally balanced), then we introduce our function to balance it with
respect to the last yard-bay bl. To do so, we must also calculate the heights’ through
the Algorithm 5 over bl and use the real heights of it in order to obtain the differences
between the row r situated in b and bl. When these differences are higher than 2, we
increase h proportionally. After that process, b will be balanced horizontally with respect
to their rows, and vertically with respect to the last yard-bay. Repeating this process for
each yard-bay in the block, this will be completely balanced.

Algorithm 8: Pseudo-code to balance two adjacent yard-bays
Data: b: state of the actual yard-bay; h: Initial heuristic; bl: last yard-bay;
Result: h: heuristic value of b
//Getting the balance horizontally HeightsWithoutGoals(b);1
h+ = BalBeforeAfter(b);2
//This heuristic will be executed after a partial solution3
if h == 0 ∧ b 6= 1 then4

∆h = 0;5
HeightsWithoutGoals(bl);6
//Balancing with containers which are not objective7
for r ← 1 to numRows(b) do8

∆h = Abs(MinHeight[r, bl]− MinHeight[r, b]);9
if ∆h > 2 then10

h = h + (∆h− 2)/2;11
end12

end13
if h < 1 then14

//Balancing with containers which are objective15
for r ← 1 to numRows(b) do16

∆h = Abs(Height[r, bl]− Height[r, b]);17
if ∆h > 2 then18

h = h + (∆h− 2)/2;19
end20

end21
end22

end23
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2.5.2 OCnD: Dangerous containers

Within a block, there are different types of containers depending on the goods they trans-
port, being some of them dangerous. If they do not satisfy certain restrictions, it may
become a hazard situation for the yard since e.g. if one of them explodes and they are not
enough far between them, it will set off a chain of explosions.

With this added objective, the next optimization criterion (Algorithm 9) ensures a
minimum distance (Dmin) between every two dangerous containers (Cd) in the yard.
Dmin is set as one parameter for the planner and the distance is calculated as the Euclidean
distance, considering each container located in a 3-dimensional space (X,Y,Z) where X is
the number of yard-bays, Y is the number of rows and Z is the tier.

Generally, in container terminals, at most, there is only one dangerous container in two
contiguous yard-bays, so that we take into account this assumption in the development of
this function.

This function increases h value when a dangerous container Cd1 exists in a yard-bay
b and the distance constraints between dangerous containers are not hold. Thereby, for
each dangerous container Cd2 allocated in the previous Dmin yard-bays is calculated
by Euclidean distance to Cd1. If this distance is lower than Dmin, for any dangerous
container Cd2, then h value is increased with the number of containers n on Cd1 because
it indicates that removing those n containers is necessary to reallocate the container Cd1.

Algorithm 9: Pseudo-code to avoid locating two dangerous containers closer to a
distance Dmin

Data: B: whole block; b: state of the actual yard-bay; h: Initial heuristic; Dmin: Minimum distance; NC:
Number of containers;

Result: h: heuristic value of b;
nBay = NumBay(b);1
if nBay > 1 ∧ h < NC ∧ ∃Cd1 ∈ b then2

∆h = 0;3
L1 = Location(Cd1);4
foreach bl ∈ Y/NumBay(bl) ∈ {max(nBay −Dmin + 1, 1), nBay − 1} do5

if ∃Cd2 ∈ bl then6
L2 = Location(Cd2);7
dist = EuclideanDistance(L1, L2);8
if dist < Dmin then9

∆h = ∆h + NumContainersOn(Cd1);10
end11

end12
end13
h+ = ∆h;14

end15
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Algorithm 10: Sinks within a whole block
Data: B: whole block;
Result: nSinks: number of Sinks;
nSinks = 0;1
for b← 1 to numYards(B) do2

for r ← 1 to numRows(b)− 1 do3
∆h = Abs(Height[r, b]− Height[r + 1, b]);4
if ∆h > 2 then5

nSinks + +;6
end7

end8
if NumBay(b) > 1 then9

for r ← 1 to numRows(b) do10
∆h = Abs(Height[r, b]− Height[r, b− 1]);11
if ∆h > 2 then12

nSinks + +;13
end14

end15
end16

end17

Algorithm 11: Unfeasible relationships between two dangerous containers within
a whole block

Data: B: whole block;
Result: nDang: number of Sinks;
nDang = 0;1
for b← 1 to numYards(B) do2

nBay = NumBay(b);3
if nBay > 1 ∧ ∃Cd1 ∈ b then4

L1 = Location(Cd1);5
foreach bl ∈ Y/NumBay(bl) ∈ {max(nBay −Dmin + 1, 1), nBay − 1} do6

if ∃Cd2 ∈ bl then7
L2 = Location(Cd2);8
dist = EuclideanDistance(L1, L2);9
if dist < Dmin then10

nDang + +;11
end12

end13
end14

end15
end16

3 A Metaheuristic Approach for The Berth Allocation
Problem

The berth allocation problem is one of the most relevant problems arising in the manage-
ment of container ports. The objective is to obtain an optimal distribution of the docks
and cranes to vessels waiting to berth. Thus, this problem could be considered as a spe-
cial kind of machine scheduling problem, with specific constrains (length and depth of
vessels, ensure a correct order for vessels going to exchange containers, assuring depart-
ing times, etc.) and optimization criteria (priorities, minimization of waiting and staying
time, satisfaction on order of berthing, minimizing cranes moves, etc.).
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Following, we introduce the notation that we use through this paper:

• a(Vi): Arrival time of the vessel at harbor.

• m(Vi): Moored time of the vessel. All the constraints must be accomplished.

• d(Vi): Departure time of this vessel, depending on:

– c(Vi): Number of movements to load and unload containers.
– q(Vi): Number of assigned QC.

• w(Vi): Waiting time of the vessel from it arrives at harbor until it can moor:

w(Vi) = m(Wi)− a(Wi) (5)

• l(Vi): Length of the vessel.

• dr(Vi): Draft needed at berth for this vessel.

• pr(Vi): Vessels’ priority.

a(Vi) m(Vi) d(Vi)

w(Vi)

Vi

time

B
e
rt

h
 s

p
a
c
e

Figure 12: Representation of a vessel according its position and times

Basically, BAP is to find a good solution to allocate each vessel according to several
constraints. Let’s assume a priority of each vessel in order to avoid the vessels’ dissatis-
faction mentioned above, as:

pr(Vi) = ωl × l(Vi) + ωc × c(Vi) (6)

In this paper, BAP is modeled as a dynamic BAP (DBAP) and time is discretized into
integer units (1, 2, . . . , T ). Moreover, we relax the problem by means of these assump-
tions:

Integrated Intelligent Techniques for Remarshaling and Berthing in Maritime Terminals

125



• Number of quay cranes (QC) assigned to a vessel do not vary along all the moored
time. Moreover, all QC do the same number of movements by unit time (movsQC).

• All the information related to the waiting vessels is known in advance.

• Every vessel has a draft lower or equal than the quay.

• Mooring and exiting is no consuming time.

• Each vessel has a priority according to its length and the number of movements
(loading and unloading operations).

Therefore, in order to allocate one vessel at berth, the following constraints must be
accomplished:

• Moored time must be at least the same that its arrival, therefore m(Vi) ≥ a(Vi).

• There is enough contiguous space at berth to moor the vessel (l(Vi)).

• There is a distance security between two moored ships. This distance is a per-
centage (in our case it is considered 5%) of its length (the maximum of these two
contiguous ships).

• There is at least one QC to assign to each vessel.

• The maximum number of assigned QC by vessels depends on the length of it, since
each QC needs a security distance (seqQC) to work. At most, maxQCV QC can be
assigned to one vessel, in our case it is four.

• The handling time of one vessels is given by:

c(Vi)

q(Vi)× movsQC
(7)

The goal of the allocation process for vessels berthing is to minimize the total weighted
waiting time of vessels. That is:

Tw =
∑

i

w(Vi)× pr(Vi) (8)

In order to prevent lower priority vessels are systematically delayed, it is necessary to
introduce an adjustment factor γ (1 < γ):

Tw =
∑

i

w(Vi)
γ × pr(Vi) (9)

Note that this objective function is different to the tardiness concept in scheduling.
The weighted optimization of tardiness of vessels would be:

Ttard =
∑

i

w(Vi)× (d(Vi)− dueT ime(Vi)) (10)

So that the departure time of vessels d(Vi) with respect to their due times dueT ime(Vi)
is optimized.
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3.1 Strictly arrival order
Firstly, we can apply the simplest solution employed by operators to allocate vessels. This
consists into inserting each ongoing vessel in a way ’First-Come-First-Served’ (FCFS). It
means each vessel Vi (i specifies the arrival order of that vessel) only could moor right
after the entrance of the vessel Vi−1, such as m(Vi) > m(Vi−1) (Algorithm 12).

Algorithm 12: Allocating vessels following FCFS policy
Data: V : set of ordered incoming vessels; b: state of the berth
Result: Sequence for V
Vlast ← ∅;1
Vm ← ∅;2
foreach Vi ∈ V do3

t← max(e(Vlast), a(Vi));4
inst← insertV essel(Vi, t, b);5
if !inst then6

T ← d(Vj)|Vj ∈ Vm ∧ d(Vj) > t;7
while tk ∈ T∧!inst do8

inst← insertV essel(Vi, tk, b);9
end10

end11
update(b) ; /* state of the berth b */12
Vlast← Vi;13
Vm ← Vm ∪ Vi;14

end15

One vessel can be allocated directly at time t when there is no vessel moored in the
berth. However, when there exists one vessel inside, it is likely that this vessel cannot
moor. Two constraints must be accomplished in order to one vessel Vi might moor (Al-
gorithm 13):

1. There must be available length and crane enough for Vi at time t.

2. During the whole stay of Vi (until d(Vi)) these resources must be available.

Therefore, available length and cranes are checked at time t. If there are enough
resources, then departure time (d(Vi)) is calculated using the maximum possible number
of cranes. Finally, it is checked that these resources are available from m(Vi) until (d(Vi)
because it is likely that there were already some vessels scheduled after time t. If they
are not guaranteed, then this process is repeated each time t′, one scheduled vessel exists
d(Vj).

3.2 A Complete Algorithm
In this case, we use a complete algorithm for finding the best combination of the vessels
which give us the lower total waiting time (Tw). We also follow the Algorithm 13 to
know whether or not one vessel could be moored. However, now we do not take into
account the constraint mentioned in the last method about one vessel could moor right
after the previous vessel. In order to achieve that objective we do a search through a
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Algorithm 13: Function insertVessel. Allocating one vessel in the berth at time t
Data: Vi: Vessel for allocating; t: actual time; b: state of the berth at time t;
Result: Vi could moor
if empty(b) then1

m(Vi)← a(Vi);2
q(Vi)← min(maxQCV, l(Vi)/secQC);3
d(Vi)← m(Vi) +

c(Vi)

q(Vi)×movsQC
;4

return true;5
else6

freeQC← QC(b)−∑
q(Vi)|t ≥ a(Vi) ∧ t < d(Vi);7

freeL← l(b)−∑
l(Vi)|t ≥ a(Vi) ∧ t < d(Vi);8

if freeQC > 0 ∧ l(Vi) <= freeL then9
q(Vi)← min(freeQC, l(Vi)/secQC);10
m(Vi)← t;11
d(Vi)← t +

c(Vi)

q(Vi)×movsQC
;12

if checkDisponibility(Vi ,m(Vi),d(Vi)) then13
return true;14

else15
return false;16

end17
else18

return false;19
end20

end21

Branch & Bound method to explore the complete space of solutions, thereby if a new
vessel is allocated and Tw is higher than the best one found earlier we do not continue
examining this branch.

With this method we want to alter the arrival order established to get the best solution
according to the Tw. As this function includes the vessels’ priority (pr(Vi)), we also take
into account the relevance of each vessel to overtake other vessels.

3.3 A Metaheuristic Allocation Method
With a complete search for this problem, only a limited number of ships can be taken
into account since search space grows exponentially. For this reason, we introduce the
use a metaheuristic allocation method (GRASP, [6]). This is a multistart method to solve
hard combinatorial optimization problem and its basic process is showed in Algorithm 14.
Principal characteristic is obtaining optimized solutions in a very efficient way. A local
search should be at the end of this method, but in our problem this process would be very
complex and its benefits would be insignificant.

Factor ρ is a parameter which the higher value has, the more random the process is.
The elements E are the unmoored vessels and the cost function is the one it must be
minimized, this is the waiting time Tw plus the priority of each vessel. And finally, the s
set consists of the E elements with assigned times (entrance and exit) and number of QC.

Algorithm 14 describes the specification of the application of the general GRASP
method described in Algorithm 13 to the berthing problem. The parameter ρ ∈ (0 ≤
ρ ≤ 1) adjusts the random component of the GRASP procedure and the parameter
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Algorithm 14: Pseudocode grasp metaheuristic
Data: ρ factor; E elements
Result: Solution s
s← ∅;1
C ← E;2
evaluate costs c(e)∀e ∈ C;3
while c 6= ∅ do4

cmin ← min{c(e)|e ∈ C};5
cmax ← max{c(e)|e ∈ C};6
RCL← {e ∈ C|c(e) ≤ cmin + ρ(cmax − cmin)};7
t← random(RCL);8
s← s ∪ t;9
C ← C − t;10
re-evaluate costs c(e)∀e ∈ C;11

end12

γ ∈ (0 ≤ γ ≤ 1) penalizes long waiting times of waiting vessels. This algorithm
should be performed in combination with the Algorithm 13 for allocation vessel candi-
dates. The Algorithm 15 orders the queue of waiting vessels and assigns the moor time
for each vessel in order to minimize the balanced overall waiting time. Thus, it obtains
and optimized allocation tail docking. The algorithm is successively executed until the
termination condition (maximum number of executions, solution quality, etc.) is reached.

4 An Integrated Approach for the Container Stacking
Problem and the Berth Allocation Problem

As we have pointed in the introduction, both the container stacking problem and the berth
allocation problem are well-known problems and some techniques have been developed
to solved them separately. However, no techniques have been developed to optimize both
problems in an integrated way. Only some works integrate the berth allocation problem
with the Quay Crane Assignment Problem [8] but there exit a relationship between the op-
timization of maritime operations (the berth allocation problem) and terminal operations
(Quay Crane Assignment Problem, problem stacking problem, etc.). Figure 13 shows an
example of three berth allocation plans and a block of containers to be loaded in the ves-
sels. Containers of type A, B and C must be loaded in vessels A, B and C, respectively. In
the first berth allocation plan the order of vessel is A-B-C, the waiting time for this plan
is 205 time units and the number of reshuffles needed to allocate the white containers at
the top of the stacks is 110. The second berth allocation plan is B-A-C. In this case the
waiting time for this plan is 245 time units and the number of reshuffles is 260. Finally,
The third berth allocation plan is C-B-A, the waiting time for this plan is 139 time units
and the number of reshuffles is 450. The question is straightforward: what is a better
solution? The answer could depend on many factors and the policy of each maritime
terminal, so that we consider a lineal combination of these factors and the port manager
could give the appropriate weight to each parameter α and β in order to minimize the
global cost. In equation 11 a solution to the integrated problem is a lineal combination
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Algorithm 15: Allocating Vessels using GRASP metaheuristic
Data: ρ factor; E elements; b: state of the berth at t0
Result: Solution s
/* current time at which algorithm is performed */
Tassig ← t0;1
V ← {Vi};2
Texit ← {};3
while V 6= ∅ do4

/* Vi which can be allocated in available quay */
SV ← {Vi}|checkDisponibility(Vi,max(Tassig, a(Vi)), d(Vi)) = True;5
if SV 6= ∅ then6

Tassig ← first(Texit) ; // Time of the next exiting vessel7
else8

foreach Vi ∈ SV do9
Allocate(Vi) ; // Procedure allocate Vi10
Cost(Vi)← 0;11
foreach Vj ∈ SV |Vi 6= Vj ∧max(Tassig, a(Vi)),max(Tassig, a(Vi)) + d(Vi) ∩12
max(Tassig, a(Vi)),max(Tassig, a(Vi)) + d(Vi) 6= ∅ do

Cost(Vi)← Cost(Vi)13
+pr(Vj)((max(Tassig, a(Vj)) + d(Vj))−max(Tassig, a(Vj)))

γ ;

end14
MaxCost← maxVi∈SV (Cost(Vi));15
MinCost← minVi∈SV (Cost(Vi));16

Vassig ← {Vi ∈ SV | Cost(Vi) ∈ {MinCost, MinCost+ ρ(MaxCost− MinCost)}};17
Vk ← random(Vassig);18
insertVessel(Vk,max(Tassig, a(Vk)), b);19
update(b) ; // update the state of the berth20
remove(Vk, SV );21
Texit ← Texit ∪ d(Vk);22

end23
end24

end25
; // All waiting vessels have been allocated

of the solution obtained by the berth allocation problem (SBAPi) and the solution to the
container stacking problem (SCSPi).

Soli = α× SBAPi + β × SCSPi (11)

To this end, we have developed an integrated system to achieve the best combined
solution. The data flow diagram of the Integrated System Functioning can be seeing in
Figure 14. Firstly, both the berth allocation problem (BAP) and the container stacking
problem (CSP) are loaded. Then, the parameters α, β and the number of solutions for
the BAP are given by the port operator. In the next step the BAP is solved to achieve a
solution based on the constraints and criteria given by the user. Once a solution to the
BAP is obtained, the CSP is solved by taken into account the order of vessels obtained
in the solution and following the constraints and criteria given by the user. In this step a
global solution is calculated by using the formula 11. Thus, this is the best solution found
so far. Then, iteratively new solutions are found for the BAP while i < NSol. In each
loop, the obtained solution for the BAP is multiplied by α in order to analyze whether this
solution could improve the current global solution. In this case the CSP is solved taken
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Figure 13: Three different plans for the Berth Allocation Problem: What is better?

into account the plan obtained in the BAP. Then a new global solution is found and it is
compared with the best obtained so far. If the new solution is better Soli < BestSol
then the best solution is updated BestSol = Soli. Thus, we obtain the best solution that
minimizes both criteria. It must be taken into account that the BAP will be solved NSol
times meanwhile the CSP could be solved in a smaller number of cases.

For instance, in the example presented in Figure 13 if the user selects α = 0.75 and
β = 0.25, the first solution has a total cost of 0.75 × 205 + 0.25 × 110 = 181.25. The
second solution for the BAP is 245 time units, so α × 245 = 0.75 × 245 = 183.75. In
this case this solution will not take part of a global solution due to the fact that the best
solution will not be achieved so the CSP for this plan is not executed. Some examples
are presented in table 1 for the problem of Figure 13. It must be taken into account that
depending on the parameters α and β the best solution will change. Thus the port operator
will assign these parameters depending on the requirement of the terminal.

In the integrated system, the constraints and criteria for the BAP and the CSP are
given by the user and customized constraints for each terminal could be included in order
to achieve a solution for each problem.

5 Evaluation
In this section we evaluate the behavior of the algorithms developed in the paper. To this
end, we have divided this section in three subsections concerning to the three problems
presented in the paper: the CSP, the BAP and the problem that integrates the both above
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Figure 14: Data flow diagram of the Integrated System Functioning

Table 1: The best solution for the example of figure 13 by varying the parameters α and
β

Parameters A-B-C B-A-C C-B-A

α = 0.5 β = 0.5 157.5 252.5 294.5
α = 0.75 β = 0.25 181.25 - 216.75
α = 0.9 β = 0.1 195.5 - 170.1

problems. The experiments were performed on random instances. A random instance of
a yard-bay in the CSP is characterized by the tuple < n, s >, where n is the number of
containers in a yard-bay and s is the number of selected containers in the yard-bay. Each
instance is a random configuration of all containers distributed along six stacks with 4
tiers.

A random instance for the BAP has 20 vessels with an arrival exponential distribution
with all needed factors randomly fixed (length, draft and moves). As we mentioned above,
our goal is to minimize the total waiting time elapsed to served the n vessels.

All problem instances were solved on a personal computer equipped with a Core 2
Quad Q9950 2.84Ghz with 3.25Gb RAM.

5.1 Evaluation of the Container Stacking Problem

In this subsection, we evaluate the behavior of our heuristic with a set of optimization
criteria presented in this paper. First, we present a comparison between our basic domain

Advanecd Engineering Informatics - 2011

132



dependent heuristic h1 against a domain independent one (Metric FF). Thus, Table 2
presents the average running time (in milliseconds) to achieve a first solution as well as
the best solution found (number of reshuffles) in 10 seconds for our domain-dependent
planner and the average running time (in milliseconds) and the quality of the solution for
Metric FF. Both planners have been tested in problems < n, 4 > evaluating 100 test cases
for each one. Thus, we fixed the number of selected containers to 4 and we increased the
number of containers n from 15 to 21.

It can be observed that our new domain-dependent heuristic is able to find a solution in
a few milliseconds, meanwhile the domain-independent planner (Metric FF) needs much
time for finding a solution and also, this solution needs more moves to get a goal state.
Furthermore, due to the fact that our tool is an anytime planner, we evaluate the best
solution found in a given time (10 seconds).

Table 2: Average number of reshuffles and running time of MetricFF and h1 in problems
< n, 4 >.

Instance
Metric FF Heuristic (h1)

Running time Solution Running time Best Solution
first solution in 10 secs

< 13, 4 > 22 3.07 2 3.07
< 15, 4 > 3102 4.04 6 3.65
< 17, 4 > 4669 5.35 12 4.35
< 19, 4 > 6504 6.06 24 4.72
< 20, 4 > 22622 7.01 36 5.22
< 21, 4 > 13981 6.82 66 5.08

Now we show the effects of using each one of the criteria described in Section 2.4
separately. In Table 3, we present the average sum of distances between the selected
containers and the right side of the layout in both our domain-independent heuristic and
our domain-dependent heuristic with distance optimization for problems < n, 4 >. As
mentioned above, we fixed the number of selected containers to 4 and we increased the
number of containers n from 13 to 21. It can be observed that distance optimization
function helps finding solution plans that place the selected containers closer to the cargo
side of the yard-bay.

Applying the criterion or function showed in Algorithm 3 we obtain the results ap-
peared in Table 4. These results are the comparison between the number of solved prob-
lems over 100 problems < n, 4 > using or not that criterion in just one second. Through
this table we can conclude that:

• The higher number of containers, the lower problems are solved. This is because
as we increase the number of containers there are less positions or gaps where
containers could be remarshaled.
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Table 3: Average distance obtained by considering distance or not in our domain-
dependent heuristic < n, 4 > with 4 tiers.

Instance Metric FF OC1d

Distance Reshuffles Distance Reshuffles

< 13, 4 > 11.28 3.07 10.91 3.07
< 15, 4 > 10.60 4.04 9.21 3.65
< 17, 4 > 10.58 5.35 8.87 4.46
< 19, 4 > 12.28 6.06 8.32 4.86
< 20, 4 > 12.71 7.01 7.75 5.56
< 21, 4 > 12.20 6.82 8.36 5.34

• Allowing movements to the 5th helps us to solve more problems. It is remarkable
with instances < 23, 4 > with H1 only three problems could be solved, however
OC1t solves 84 over 100 problems.

Table 4: Number of solved problems < n, 4 > with 4 and 5 tiers during the process.

Instance 4 tiers h1 5 tiers OC1t

< 19, 4 > 100 100
< 20, 4 > 100 100
< 21, 4 > 95 99
< 23, 4 > 3 84

Last criterion for solving problems where we only take into account one yard-bay is
showed in Section 2.4.3. As we mentioned in this section, since the last function (Al-
gorithm 7) presents the best results after the whole process of remarshaling, we do the
comparison in Table 5 among the solutions given by Metric FF planner, the initial one h1

and OC1b (Both) in 50 test cases. The last two ones look for solutions during 1 second in
instances of < 15, 4 > and 4 seconds in instances of < 17, 4 >. These times are used in
order to achieve a solution for all the instances.

Sinks are calculated by Algorithm 10. As we mentioned above, we consider that there
is a sink where the difference in tiers between two adjacent rows is higher than 2. Thereby,
in this algorithm we are counting sinks produced between two contiguous stacks at the
same yard-bay as well as between two rows in one yard-bay and the previous one. This
process takes into account the goal containers in final yard-bays.

From here we realize an evaluation for the criteria presented in Section 2.5. Table 6
shows the performance of the criteria for solving the whole block of yard-bays. These ex-
periments were performed in blocks of 20 yard-bays and each one of them are instances
< 15, 4 >. This evaluation was carried out in a yard with 3 blocks of 20 yard-bays.
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Table 5: Average number of movements, sinks and time for the first solution in problems
< 15, 4 > (1) and < 17, 4 > (2) using or not balanced heuristics.

Metric FF h1 OC1b

(1) (2) (1) (2) (1) (2)

Reshuffles 3.72 4.24 3.42 3.68 5.36 5.30
Sinks 0.62 0.50 0.92 0.66 0 0
Time First Sol. 2621 2961 6 10 16 22

Thus, the results showed in Table 6 represent the average number of reshuffles, the av-
erage number of sinks generated along the block and the average number of unsatisfied
dangerous containers. Results given by these optimization criteria are the average of the
best solutions found in 10 seconds.

The number of unfeasible relationships between dangerous containers is calculated by
means of Algorithm 11. Basically, we look for those pairs of dangerous containers whose
distance between them is shorter than minimum distance (Dmin).

In this table, it can be observed that h1 still outperforms Metric FF in the average
number of reshuffles. However, due to the fact that they do not take into account the
balancing constraints, Metric FF generated an average of 24.33 sinks in the block of
yard-bay and h1 generated and average of 32.67 sinks. And it occurs the same for the
average number of unfeasible constraints for dangerous containers, Metric FF gives us
15.33 and h1 obtains 7.67.

Taking into account that OCN is a junction of OCnB and OCnD, both OCnB and
OCnD solved their problems, that is, OCnB obtained its solutions with no sinks and
OCnD obtained its solutions by satisfying all dangerous constraints. Furthermore, OCN

was able to solve its problems by satisfying both types of constraints. However we could
state that balancing problem is harder than the problem related to dangerous containers
because OCnB needs more reshuffles to obtain a solution plan than OCnD. Moreover,
we observe with OCnB , OCnD and OCN ensure the established requirements however
the average reshuffles is increased with respect to h1.

Table 6: Average results with blocks of 20 yard-bays each one being a < 15, 4 > problem.

Metric FF h1 OCnB OCnD OCN

Reshuffles 3.98 3.60 5.68 4.30 6.53
Sinks 24.33 32.67 0 33.33 0
Non-Safe Dangerous 15.33 7.67 8.00 0 0
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5.2 Evaluation of the Berth Allocation Stacking Problem
In this section, we evaluate the behavior of the three policies presented in this paper.
Firstly, Table 7 shows the times of employing the complete search against the GRASP
method with 1000 iterations. As observed Complete search is impracticable from 12
vessels (approximately 3 hours). However, GRASP method takes around 30 seconds to
solve a schedule of 20 vessels.

Table 7: Computing time elapsed (seconds)

Number Complete search GRASP

5 < 1 1
10 112 8
11 1105 9
12 11830 10
13 57462 12
15 · · · 15
20 · · · 30

In Table 8 and 9, we show the average waiting times using FIFO and Complete Search
methods described above with two different inter-arrival distributions. Through these
data, it is demonstrated that FIFO method results a schedule which is far away from the
best one.

Table 8: Total waiting time elapsed (Vessels separated)

Vessels FCFS CS

5 73.72 46.10
10 256.53 136.26

Table 9: Total waiting time elapsed (Vessels close)

Vessels FCFS CS

5 117.52 80.25
10 586.65 351.25

Using as minimization function the waiting time, we obtain the results given by Table
10 and Table 11. It is remarkable that using GRASP is more profitable when the inter-
arrival distribution of the vessels is high since over 100 problems are improved around
90%.
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Table 10: Instances that improve the FIFO solution for 10 vessels

Factor α Vessels separated Vessels close

0.0 53 70
0.1 54 74
0.2 57 77
0.3 66 81
0.4 72 91
0.5 65 85
0.6 62 84
0.7 63 85
0.8 63 86
0.9 57 87
1.0 61 81

Table 11: Instances that improve the FIFO solution for 20 vessels

Factor α Vessels separated Vessels close

0.0 42 86
0.1 48 90
0.2 53 90
0.3 56 91
0.4 68 92
0.5 56 93
0.6 55 91
0.7 61 95
0.8 60 91
0.9 59 91
1.0 51 91

5.3 Evaluation of the Integrated System

In this section, we evaluate the behavior of the integrated system in random instances. We
randomly generated a set of 10 vessels for berthing and each vessel must load 17 con-
tainers from the container yard. The containers were randomly located in the yard. Thus
the yard was composed of 170 containers so that it remained empty once the vessels were
loaded. For each problem, we generated 50 random instances with a different configura-
tion of containers in the yard. The average number of reshuffles is presented in the tables
12, 13 and 14.

Figure 12 shows the total cost of both the berth allocation problem and the container
stacking problem by fixing the parameters α = 0.8 and β = 0.2. Due to the fact that the
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makespan was pondered by 0.8, the best solution was achieved for the plan with lower
makespan. The first solution generated a total cost of 307.1 so it was not needed to carry
out the CSP for the second, third and fourth plan due to the fact that a better solution
would not improve the first solution. The fifth plan was selected the best solution with a
makespan of 349 time units and an average number of reshuffles of 100.6.

Table 12: Total cost of BAP and CSP for α = 0.8 and β = 0.2

Plan Makespan Number of α = 0.8
Reshuffles β = 0.2

1 361.0 91.3 307.1
2 430.0 98.6 -
3 440.0 93.3 -
4 411.0 99.4 -
5 349.0 100.6 299.3
6 400.0 98.9 339.8
7 362.0 95.4 308.7
8 419.0 99.4 355.1
9 544.0 92,7 -

10 390.0 98.7 331.7

In table 13, the parameters α and β were set to α = 0.8 and β = 0.2. In this case the
plan number 5 is also considered the best solution with a total cost of 249.6.

Table 13: Total cost of BAP and CSP for α = 0.6 and β = 0.4

Plan Makespan Number of α = 0.6
Reshuffles β = 0.4

1 361.0 91.3 253.1
2 430.0 98.6 -
3 440.0 93.3 -
4 411.0 99.4 286.4
5 349.0 100.6 249.6
6 400.0 98.9 279.5
7 362.0 95.4 291.2
8 419.0 99.4 355.1
9 544.0 92.7 -

10 390.0 98.7 273.5

In table 14, the parameters α and β were set to α = 0.4 and β = 0.6. In this case the
plan number 1 is considered the best solution with a total cost of 199.2. Thus, depending
on the parameters given by the user, the best solution may change. It must be taken into

Advanecd Engineering Informatics - 2011

138



account that in this last case it is necessary to solve almost all container stacking problems
due to the fact that no partial solution can be ruled out by solving only the BAP.

Table 14: Total cost of BAP and CSP for α = 0.4 and β = 0.6

Plan Makespan Number of α = 0.4
Reshuffles β = 0.6

1 361.0 91.3 199.2
2 430.0 98.6 231.1
3 440.0 93.3 232.0
4 411.0 99.4 224.1
5 349.0 100.6 199.9
6 400.0 98.9 219.3
7 362.0 95.4 202.1
8 419.0 99.4 227.3
9 544.0 92.7 -
10 390.,0 98.7 215.2

Due to the fact that all vessels have the same number of out containers, the average
number of reshuffles is ranged between 91.3 and 100.6 so that the standard deviation is
3.3 . However if the number of out containers is randomly selected, the standard deviation
increases considerably.

6 Conclusions
This paper presents a set of artificial intelligence-based heuristics for solving well-known
problems presented in maritime terminals: the berth allocation problem (BAP) and the
container stacking problem (CSP). To this end, we have developed a set of planning tech-
niques for solving the container stacking problem and a set of algorithms for solving the
berth allocation problem independently. Then we have developed an algorithm to solve
both problems in an integrated way.

For the CSP, we have developed a domain-dependent planning tool for finding op-
timized plans to obtain an appropriate configuration of containers in a yard-bay as well
as doing simulations to try different configurations or requirements as it is made in [23].
Thus, given a set of outgoing containers, our planner minimizes the number of necessary
reshuffles of containers in order to allocate all selected containers at the top of the stacks.
This proposed planner is able to satisfy both balancing constraints and dangerous con-
tainer constraints, as well as reducing the distance of the goal containers to the cargo side
or allowing a fifth tier during the remarshaling process.

We have developed two algorithms for solving the BAP. The first one is a complete
algorithm in order to find the best combination of vessels to minimize the total waiting
time. This algorithm is the base for developing new metaheuristics techniques such as
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GRASP-based techniques [6]. Our grasp-based technique looks for an initial solution and
then the greater the number of iterations, the better the solution obtained by this technique.

Finally, we propose an integrated system that combines the previous methods in order
to achieve a solution to both problems. This integrated system obtains a solution to the
BAP and then it carries out the CSP to minimize the number of reshuffles needed for the
obtained berth plan. Thus, a solution that optimizes one problem could not be the more
appropriate for the other problem. An expert human must assign values to the parameters
in order to obtain the customized best solution.

In further work, we will include in the integrate system the Quay Crane Assignment
Problem in order to analyze the relationship among these three problems and to obtained
optimized solutions to the global problem.
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Abstract

A container terminal is a facility where cargo containers are transshipped between
different transport vehicles. We focus our attention on the transshipment between ves-
sels and land vehicles, in which case the terminal is described as a maritime container
terminal. In these container terminals, many combinatorial related problems appear
and the solution of one of the problems may affect to the solution of other related prob-
lems. For instance, the berth allocation problem can affect to the crane assignment
problem and both could also affect to the container stacking problem. Thus, terminal
operators normally demand all containers to be loaded into an incoming vessel should
be ready and easily accessible in the yard before vessel’s arrival. Similarly, customers
(i.e., vessel owners) expect prompt berthing of their vessels upon arrival. However
the efficiency of the loading/unloading tasks of containers in a vessel depends on the
number of assigned cranes and the efficiency of the container yard logistic. In this
paper, we present a decision support system to guide the operators in the develop-
ment of these typical tasks. Due to some of these problems are combinatorial, some
analytical formulas are presented to estimate the behavior of the container terminal.

Keywords Berth allocation problem, Quay Crane Assignment Problem, Container
Stacking Problem, Decision Support System, Artificial Intelligence

1 Introduction
Container terminals generally serve as a transshipment between ships and land vehicles
(trains or trucks). Henesey shows in [17] how this transshipment market is growing fast.
Between 1990 and 2008, container traffic has grown from 28.7 million to 152.0 million
of movements. This corresponds to an average annual compound growth of 9.5%. In
the same period, container throughput went from 88 million to 530 million of containers,
which represents an increase of 500%. The surge of both container traffic and throughput



is linked with the growth of international trade in addition to the adoption of container-
ization as privileged vector for maritime shipping and inland transportation [1].

The efficient management of containers in port requires more analysis and develop-
ment to ensure reliability, delivery dates or handling times in order to improve productiv-
ity and container throughput from quay to landside and vice versa. Extensive surveys are
provided about operations at seaport container terminals and methods for their optimiza-
tion [32, 30]. Moreover, other problems are faced on planning the routes for liner shipping
services to obtain the maximal profit [7]. Another important issue for the success at any
container terminal is to forecast container throughput accurately [5]. Thus, they could
develop better operational strategies and investment plans.

The main research on optimization methods in container terminals is related to reduce
the berthing time of vessels. This objective generates a set of interrelated problems such as
berth allocation, yard-side operation, storage operation and gatehouse operation. Usually,
each one of these problems is managed independently of others due to their exponential
complexity. However, these problems are clearly interrelated so that an optimized solution
of one of them restrings the possibility of obtaining a good solution in another.

The overall goal collaboration between our group at the Technical University of Valen-
cia (UPV), Valencia Port Foundation, and the maritime container terminal MSC (Mediter-
ranean Shipping Company S.A) is to offer assistance to help in planning and scheduling
tasks such as the allocation of spaces to outbound containers, to identify bottlenecks, to
determine the consequences of changes, to provide support in the resolution of incidents,
to provide alternative berthing plans, etc.

In this paper, we focus our attention on three important and interrelated problems:
the Berth Allocation Problem (BAP), the Quay Crane Assignment Problem (QCAP) and
the Container Stacking Problem (CStackP) (see Figure 1). Briefly, the BAP and QCAP
consist of the allocation of docks and quay cranes to incoming vessels under several con-
straints and priorities (length and depth of vessels, number of containers, etc.). On the
other hand, when a vessel berths, export containers stacked to be loaded in the vessel
should be on top of the stacks of the container yard. Therefore, the CStackP consists of
relocating the containers so that the yard crane does not need to do re-handling work at the
time of loading. These two problems are clearly related: an optimal berth allocation plan
may generate a large amount of relocations for export containers; meanwhile a subopti-
mal berth allocation plan could require fewer rearrangements. Terminal operators should
decide which solution is the most appropriate in each scenario.

In order to provide a computer-based decision support system, we integrate a set
of intelligent techniques for solving these problems concurrently in order to achieve a
mixed-solution that combines optimization of BAP, QCAP and CStackP. To this end, we
developed a heuristically-guided planner for generating a rehandling-free intra-block re-
marshaling plan for container yards (CStackP problem). Due to the fact that this is a
time consuming task, we present in this paper an analytic formula to estimate the number
of reshuffles needed to solve this problem. Then, we present a meta-heuristic approach
for solving the BAP+QCAP as an independent problem. Afterwards, we integrate solu-
tions obtained from BAP+QCAP and StackP systems, so that terminal operators should
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Figure 1: Integrated Remarshaling, Berthing and Quay Crane allocation problems in Mar-
itime Terminals.

ultimately decide which solution is the most appropriate in relation to a multi-objective
function: to minimize the waiting times of vessels and to minimize the amount of reloca-
tions of containers.

These techniques will be very useful for terminal operators due to berth allocation is
especially important in case of ship delays because in this case a new berthing place has
to be allocated to the ship whereas containers are already stacked in the yard [30] and a
remarshaling plan remains necessary to minimize the berthing time.

2 Integrating BAP, QCAP and CStackP
As we have pointed out, both the CStackP and the BAP+QCAP are well-known prob-
lems and several techniques have been developed to solve them separately. However, few
systems have been developed to relate and optimize both problems in an integrated way.
Some works consider berth and yard planning in a common optimization model [2, 4, 10],
but they are mainly focused on storage strategies. Moreover, only some works integrate
the BAP with the QCAP. Giallombardo et al. [12] try to minimize the yard-related house-
keeping costs generated by the flows of containers exchanged between vessels. However,
there also exists a relationship between the optimization of maritime and terminal-sides
operations (BAP, QCAP, CStackP, etc.). Figure 2 shows an example of three berth alloca-
tion plans with the corresponding quay crane allocations and a block of containers to be
loaded in the vessels. Containers of type A, B and C must be loaded in vessels A, B and
C, respectively. In the first berth allocation plan, the order of vessels is A-B-C and the
quay crane allocation is two cranes, three cranes and one crane, respectively. The second
berth allocation plan is C-B-A. In this case the quay crane allocation is three, two and one,
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respectively. Finally, the third berth allocation plan is B-C-A and two quay cranes are allo-
cated to all vessels. Each configuration generates a different waiting time for berthing and
different handling times, and the port operator probably selects the best solution to opti-
mize these (BAP and QCAP) problems. However the best solution of these two problems
could generate a large number of reshuffles in the yard so the question is straightforward:
what is a better solution? Perhaps a solution that optimizes the BAP+QCAP could not be
the more appropriate for the CStackP (and vice versa).

B

A

C

A

B

C

B

C

A
BA C

Waiting Time

Number of Reshuffles

What is a better solution?

205 Time Units

110

245 Time Units

260

139 Time Units

450

Figure 2: Different alternatives of BAP and QCAP.

Given a waiting queue of vessels to be allocated and a given state of the containers
in the container yard, each solution for the BAP+QCAP (SBAPi: a feasible sequence of
mooring and a feasible quay crane allocation), requires a different number of container’s
re-locations in the associated CStackP solution (SCStackPi) in order to put on top the
containers to be loaded according to the order of berthing. We can associate a cost to
each SBAPi + SQCAPi related to the total weighted waiting time and handling time of
vessels of this berthing order (Tw). Likewise, we can associate a cost to each SCStackPi

as the number of required container relocations. Therefore, we can qualify the optimality
of each global solution (Soli) of BAP+QCAP and CStackP as a lineal combination of the
quality of each partial solution:

Cost(Soli) = α ∗ Cost(SBAPi + SQCAPi) + β ∗ (SCStackPi) (1)

The best decision will depend on the policy of each maritime terminal (α and β pa-
rameters). The data flow diagram of the Integrated System Functioning can be seeing
in Figure 3. Firstly, the BAP, QCAP and the CStackP data are loaded in the integrated
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system. Next, the BAP+QCAP is solved to achieve a solution (SBAPi) based on their
constraints and optimization criteria. Then, the CStackP is estimated by taking into ac-
count the berthing order of vessels obtained in SBAPi. This estimator returns the number
of reshuffles needed to achieve a solution. After this step, the cost of the global solution
(Soli) can be calculated by using the previous expression (Equation 1). By iterating this
integrated process, the operators can obtain a qualification cost of each feasible Soli, as
well as the best global solution, according to the given α and β parameters. A branch and
bound method has been also applied in the integrated search for the best global solution
(Soli), so that the search can be pruned each time the current solution does not improve
the best solution found so far. Finally, once the best solution is obtained, the CStackP
planner is executed to obtain the specific movements for all remarshaling tasks. This plan
is sequentially obtained for each vessel according to the solution obtained in SBAPi and
the current state of the container yard. Thus, the optimized remarshaling plan for the
berthing order of vessels of SBAPi is obtained.

Load
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Load

Parameters

β   NSol

i=0

BestSol= 

i < NSol

Soli >BestSol

SCStackPi Estimator (CStackPi)

Soli = SBAPi β SCStackPiBestSol=Solii=i+1
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Constraints

Criteria

Constraints

Criteria

i++

SBAPi Solve (BAP+QCAP)i

SCStackPi Solve (CStackPi)

Soli = SBAPi β SCStackPi

Figure 3: Data flow diagram of the Integrated System Functioning.

In next sections we develop our proposed techniques for estimating and solving the
container stacking problem, the berth allocation problem and the quay crane allocation
problem in order to achieve a global solution Soli to the integrated problems.

3 The Container Stacking Problem
Containers are ISO standardized metal boxes which can be stacked on top of each other.
A container yard (see Figure 4) is composed of several blocks, each one consisting of (20
- 30) yard-bays . Each yard-bay contains several (usually 6) rows and each row has a
maximum allowed tier (usually 4 or 5 tiers for full containers).
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Figure 4: A container yard.

Loading and offloading containers on the stack is performed by cranes following a
’last-in, first-out’ (LIFO) criteria. Containers are stacked in the order they arrive. How-
ever, in the loading process of vessels, to access a container which is not at the top of
its pile, those above it must be relocated. This remarshaling process is required since
the stacking order depends on the order in which ships unload or containers have been
stacked. This remarshaling process reduces the productivity of cranes and its optimiza-
tion would minimize the moves required. For safety reasons, it is usually prohibited to
move the gantry crane while carrying a container [22], therefore these movements only
take place in the same yard-bay. In addition, there exist a set of hard/soft constraints
regarding container moves or locations where can be stacked, for example, small differ-
ences in height of adjacent yard-bays, dangerous containers must be allocated separately
by maintaining a minimum distance, etc. The CStackP is a NP-complete combinatorial
optimization problem and different approaches have been proposed ([27], [20], etc.). The
CStackP can be viewed, from the artificial intelligence point of view, as a modification of
the Blocks World planning domain [33].

In [28], a planning system for remarshaling processes was proposed. This system
obtains the optimized plan of reshuffles of containers in order to allocate all selected con-
tainers at the top of the stacks, or under another selected containers, in such a way that no
reshuffles will be needed to load these outgoing containers. This planner was specified
by means of the standard Planning Domain Definition Language (PDDL) [11] and it was
developed on the well-known domain-independent planner MetricFF [18]. The developed
domain file contains the common features of the problem domain: (i) the domain objects:
containers and rows, (ii) the relations among them (propositions), and (iii) allowed moves
to change the status of the problem (actions). The problem file describes each particular
instance: (i) the initial layout of the containers in the yard (Initial state), (ii) the export
containers (goal) which must be allocated at the top of the stacks or under other export
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containers, and (iii) the function to optimize (minimizing the number of relocation move-
ments). Figure 5 shows a simple example of a problem instance in PDDL. This problem
describes a scenario with three containers (X1, X2 and X3) in the yard-bay and the crane
is not holding any of them. X2 is an export container which must be relocated in order to
be easily accessible at loading time of the next vessel.

(define (problem p1) (:domain CStackP)

;;Domain objects

(:objects  X1 X2 X3 - container S1 S2 S3 S4 S5 S6 - slot )

;;Initial state

(:init 

(clear X1)(clear X3)(clear S1)(clear S4)(clear S5)(clear S6)

(on X2 S2)(on X1 X2)(on X3 S3)(at X1 S2)(at X2 S2)(at X3 S3)

(= (height S1) 0)(= (height S2) 2)(= (height S3) 1)

(= (height S4) 0)(= (height S5) 0)(= (height S6) 0)

(= (num-moves) 0)(handempty)

(goal-container X2)

) 

;;Goal state

(:goal (and (handempty) (ready X2)) )

;;function to optimize

(:metric minimize (num-moves)) 

)

X2

X1

X3

S1 S2 S3 S4 S5 S6

Figure 5: Example of problem instance in Container Stacking domain.

In [29] the Metric-FF-based initial planner was improved by integrating a domain-
dependent heuristic (H1) in order to achieve efficiency. H1 computes an estimator of the
number of container movements that must be carried out to reach a goal state, which it
is used to guide search of solutions. However, new constrains and optimization criteria
were included in order to take into account real-world requirements:

C.1. Reducing distance of the outgoing containers to the cargo side (to the left or right
hand side of bays).

C.2. Increasing the range of the move actions set for the cranes allowing moving a con-
tainer to 5th tier (in yard-bays with tiers 4).

C.3. Balancing the number of stacked containers within the same bay in order to avoid
sinks, that is, the difference between the number of containers stacked in adjacent
positions should be limited).

This planner was improved to manage a full container yard by distributing in small
problems. On other issues such as monitoring, distributed approaches have been used
[24]. The container yard was decomposed in yard-bays, so that the problem was dis-
tributed into a set of subproblems. Thus, each yard-bay generated a subproblem. How-
ever, containers of different yard-bays must satisfy a set of constraints among them.
Therefore, subproblems were sequentially solved, so that each subproblem (yard-bay)
took into account the set of constraints with previously solved subproblems. This de-
composition required taking into account these new added constraints. With these new
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Figure 6: Order of execution of yard-bays.

added constraint and criteria, the developed planner could solve more real-world based
problems:

1. Balancing contiguous yard-bays: rows of adjacent yard-bays must be balanced in
order to avoid sinks inter yard-bays (CB).

2. Dangerous containers must maintain a minimum security (Euclidian) distance among
them (DC).

Due to we manage the entire container yard, the requirement C.3 must be extended
to balance the stacks of contiguous yard-bays. Thus the planning of a yard-bay is carried
out taking into account the solution obtained by the previous yard-bay.

3.1 An Ordered Yard-Based Planner: Planner H1 Ordered
In order to insert our planner in the integrated system, we have also improved our version
to minimize the number of reshuffles for a set of outgoing containers to be loaded in
successive berthed vessels. Initially our planner was developed to minimize the number
of reshuffles for one vessel (vessel A in Figure 6). However, the order of the rest of
containers in the yard-bay did not matter. The new planner (Planner H1 Ordered) takes
into account these features and it is able to organize the bay in order to adapt to the berth
schedule. Thus, the reshuffles needed to allocate the outgoing containers for a vessel are
carried out taking into account the outgoing containers for the following vessel to berth.

In the previous version of our planner (Planner H1 Sequential), the order of execution
of yard-bays was sequential. Thus a first plan was obtained for the first yard-bay. Then a
new plan is carried out for the second yard-bay taking into account the balance constraints
generated with the solution obtained for the first yard-bay, and so on.

The new version of our planner classifies the yard-bays by means of tightness. Figure
6 shows the order of execution of a complete yard. A natural order of execution is the
sequential order, from the first yard-bay to the end yard-bay (Planner H1 Sequential).

However, in this version (Planner H1 Ordered), the natural order of execution is mod-
ified. The tightest yard-bays (yard-bays with more export containers) are solved first.
Thus, the number of reshuffles is minimized due to the fact that the tightest yard-bays are
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solved without the need of satisfying the balance constraints with the contiguous ones,
meanwhile their neighbor yard-bays must be committed to these tasks. Thus, following
the example of Figure 6, the yard-bay 11 is executed first without balance constraints be-
cause it has 9 goal containers meanwhile yard-bays 10 and 12 are executed later taking
into consideration the balance constraints generated by the solution of yard-bay 11. In the
evaluation section we will compare the behavior of this planner against the previous ver-
sion. In general the order of execution of yard-bays is directly related with the efficiency
of our planning tool. The ordering of yard-bays by tightness improves the efficiency of
our planning tool.

3.2 An Analytic Formula to Estimate the number of Reshuffles
As we have pointed out, solving the CStackP is a NP-complete combinatorial optimization
problem. Once the BAP returns a possible schedule of vessels to berth in the port, the plan
of yard reshuffles must be carried out for each vessel. This is a very hard task so that a
general formula that estimates the number of reshuffles for each vessel remains necessary.
Once the global solution is achieved, the planning tool is executed to obtain the optimal
plan for the yard reshuffles. To this end, we have identified the main parameters that affect
the number of reshuffles in a yard-bay for a vessel:

1. Number of total slots in a yard-bay (P1). For instance, a yard-bay with tier 5 and 6
rows, the number of slots is 30.

2. Number of current containers in the yard-bay (P2), P2 ≤ P1.

3. Number of goal (outgoing) containers (P3), P3 ≤ P2

4. Number of containers on top of goal containers (P4). A lower bound for the mini-
mal number of reshuffles is P4.

These parameters influence in the number of reshuffles needed for each yard-bay. The
estimator R is mainly depended on P4 and it is bounded by:

R = P4 + α : α ∈ [0,∞) (2)

where α = 0 means that the problem is underconstrained meanwhile α → ∞ means
that the problem is unsolvable.

Figure 7 shows an example of yard-bay with the value of each identified parameter.
The rest of parameters also play an important role but the relationship among them is
secondary. The simulation of one hundred yard-bays with different tiers and number of
containers and objectives return a strong relationship among the parameters P1, P2 and
P3. If (P1 − P2)/P3 is lower than 1.25, one more reshuffle is needed (P4 + 1). In the
same way if (P1 − P2)/P3 is lower than 1, one more reshuffle is also needed (P4 + 2);
and so on. Finally if (P1 − P2) → 0 the problem is unsolvable. Thus, we estimate the
number of reshuffles by the following formula:
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P1= 24       

P2= 19

P3= 8

P4= 8

N. of Reshuffles=9

Figure 7: Example and values of parameters. Grey containers are goal containers.

R = P4 +

⌊
2

P1−P2

P3

⌋
= P4 +

⌊
2 · P3

P1 − P2

⌋
(3)

This estimator R is accurate enough for us to do not need to execute our planner
for each berthing plan. In the integrated system presented above we can select to run
our planner or to use the estimator. In any case, once the best solution is found for the
integrated problem, our planner must solve the best solution in order to determine the
specific plan which will be carried out by the cranes to allocate the containers in the
appropriate places.

4 The Berth Allocation and Quay Crane Assignment Prob-
lem

We will focus our attention on the Berth Allocation Problem (BAP), a well-known NP-
Hard combinatorial optimization problem, which consists of assigning incoming vessels
to berthing positions. Once a vessel arrives at the port, it enters in the harbor waiting
time to moor at the quay. The quay is a platform protruding into the water to facilitate
the loading and unloading of cargo. The locations where mooring can take place are
called berths. These are equipped with giant cranes, called pier or quay cranes (QC), used
to load and unload containers which are transferred to and from the yard by a fleet of
vehicles. In a transshipment terminal the yard allows temporary storage before containers
are transferred to another ship or to another mode (e.g., rail or road).

The BAP is one of the most relevant problems arising in the management of container
ports. Several models are usually considered [31].

Managers at container terminals face two interrelated decisions: where and when the
vessels should moor. First, they must take into account physics restrictions as length or
draft, but also they have to take into account the priorities and other aspects to minimize
both port and user costs, which are usually opposites. Figure 9 shows an example of
graphical space-time representation of a berth planning with 6 vessels. Each rectangle
represents a vessel with its service time and length.
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Figure 9: A berth planning.

In [31], the authors show a complete comparative study about different solutions for
the BAP according to their efficiency in addressing key operational and tactical questions
relating to vessel service. They also study the relevance and applicability of the solutions
to the different strategies and contractual service arrangements between terminal operator
and shipping lines.

To show similarities and differences in the existing models for berth allocation, Bier-
wirth and Meisel [3] developed a classification scheme (see Figure 10). They classify
the BAP according to four attributes. The spatial attribute concerns the berth layout and
water depth restrictions. The temporal attribute describes the temporal constraints for the
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service process of vessels. The handling time attribute determines the way vessel han-
dling times are considered in the problem. The fourth attribute defines the performance
measure to reflect different service quality criteria. The most important ones are minimiz-
ing the waiting time and the handling time of a vessel. Both measures aim at providing
a competitive service to vessel operators. If both objectives are pursued (i.e. wait and
hand are set), the port stay time of vessels is minimized. Other measures are focused
on minimizing the completion times of vessels among others. Thus, by using the above
classification scheme, a certain type of BAP is described by a selection of values for each
of the attributes. For instance, a problem where the quay is assumed to be a continuous
line (cont). The arrival times restrict the earliest berthing of vessels (dyn) and handling
times depends on the berthing position of the vessel (pos). The objective is to minimize
the sum of the waiting times (wait) and handling time (hand). According to the scheme
proposed by [3], this problem is classified by cont—dyn—pos—Σ(wait+hand).

Value Description

1. Spatial attribute

disc The quay is partitioned in discrete berths

cont The quay is assumed to be a continuous line

hybr The hybrid quay mixes up properties of discrete and continuous berths

draft Vessels with a draft exceeding a minimum water depth cannot be berthed arbitrarily

2. Temporal attribute

stat In static problems there are no restrictions on the berthing times

dyn In dynamic problems arrival times restrict the earliest berthing times

due Due dates restrict the latest allowed departure times of vessels

3. Handling time attribute

fix The handling time of a vessel is considered fixed

pos The handling time of a vessel depends on its berthing position

QCAP The handling time of a vessel depends on the assignment of QCs

QCSP The handling time of a vessel depends on a QC operation schedule

4. Performance measure

wait Waiting time of a vessel

hand Handling time of a vessel

compl Completion time of a vessel

speed Speedup of a vessel to reach the terminal before the expected arrival time

tard Tardiness of a vessel against the given due date

order Deviation between the arrival order of vessels and the service order

rej Rejection of a vessel

res Resource utilization effected by the service of a vessel

pos Berthing of a vessel apart from its desired berthing position

misc Miscellaneous

Figure 10: A classification scheme for BAP formulation [3].

One of the early works that appeared in the literature was [21], in which they devel-
oped a heuristic algorithm by considering a First-Come-First-Served (FCFS) rule. How-
ever, the idea that for high port throughput, optimal vessel-to-berth assignments should be
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found without considering the FCFS bases was introduced by [19]. Therefore, we will use
the FCFS rule in order to get an upper bound of the function cost in BAP. Nevertheless,
this approach may result in some vessels’ dissatisfaction regarding the order of service.

In [13], multiple vessel mooring per berth are allowed assuming that vessel arrivals
can be grouped into batches. They have developed a tree search procedure which provides
an exact solution and this is improved by a composite heuristic.

Metaheuristics have been developed to solve the BAP but have also been used in other
fields such as flowshop or flexible job-shop scheduling problems [25, 14]. On the one
hand, [8] introduce two Tabu Search heuristics to solve the discrete and continuous case,
respectively to minimize is the weighted sum for every ship of the service time in the
port. Both heuristics are inspired by a Multi-Depot Vehicle Routing Problem with Time
Windows algorithm and can handle various features of real-life problems as time windows
or favorite and acceptable berthing areas. Mauri et al. [23] design a column generation
approach for the problem of Cordeau et al. [8] which delivers better solutions in shorter
runtime than Tabu Search. In the models of Han et al. [15] and Zhou et al. [34], a Genetic
Algorithm (GA) is proposed to solve the problem. In both models the draft of vessels
restricts the berth assignment decisions.

An approach based on multi-objective optimization problem using evolutionary algo-
rithms ([6]) is followed to minimize the makespan of the port, total waiting time of the
ships, and degree of deviation from a predetermined service priority schedule.

In [12], they present the integration of BAP with the Quay Crane Assignment Problem
(QCAP) through two mixed integer programming formulations including a tabu search
method which is an adaption of the one of [8], however they minimize the yard-related
housekeeping costs generated by the flows of containers exchanged between vessels. In
[3], the authors give a comprehensive survey of berth allocation and quay crane assign-
ment formulations from the literature. Some authors outline approaches more or less
informally while others provide precise optimization models. More than 40 formulations
are presented distributed among discrete problems, continuous problems and hybrid prob-
lems. Hansen et al. [16] considered a discrete problem with a tardiness objective which
accounts for departure time related costs including penalties for tardiness as well as ben-
efits for early departures. This problem was solved by a variable neighborhood search
which turns out to be superior to the GA of Nishimura et al. [26].

Nowadays, this process is generally solved manually and it is usually solved by means
of a policy to serve the first vessel arrives.

Considering the requirements of container operators of MSC (Mediterranean Shipping
Company S.A), our approach also studies the integration of these two problems (BAP and
QCAP) through a metaheuristic called Greedy Randomized Adaptive Search Procedures
(GRASP) [9]. This metaheuristic is able to find feasible solutions within an acceptable
computational time. In this way and following the above classification scheme (see Fig-
ure 10), our approach is classified by cont|dyn|QCAP|Σwait. Thus, we focused on the
following attributes and performance measure:

• Spatial attribute: cont: we assume the quay is a continuous line, so that there is
no partitioning of the quay and vessel can berth at arbitrary positions within the
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boundaries of the quay. It must be taken into account that for a continuous layout,
berth planning is more complicated than for a discrete layout at the advantage of
better utilizing quay space [3].

• Temporal attribute: dyn: we assume dynamic problems where arrival times restrict
the earliest berthing times. Thus, fixed arrival times are given for the vessels, hence,
vessels cannot berth before their expected arrival time.

• Handling time attribute: QCAP: we assume the handling time of a vessel depends
on the assignment of QCs.

• Performance measure: wait: Our objective is to minimize the sum of the waiting
time of all vessels.

The objective in BAP is to obtain an optimal distribution of the docks and cranes
to vessels waiting to berth. Thus, this problem could be considered as a special kind
of machine scheduling problem, with specific constrains (length and depth of vessels,
ensure a correct order for vessels that exchange containers, assuring departing times, etc.)
and optimization criteria (priorities, minimization of waiting and staying times of vessels,
satisfaction on order of berthing, minimizing cranes moves, degree of deviation from a
pre-determined service priority, etc.).

4.1 Notation for BAP and QCAP
Our approach follows an integration of the Quay Crane Assignment Problem (QCAP)
and the BAP through the metaheuristic Greedy Randomized Adaptive Search Procedure
(GRASP) [9] which is able to obtain optimized solutions in a very efficient way. Follow-
ing, we introduce the used notation:

QC Available QCs in the Container Terminal. These QCs are identical in terms of
productivity in loading/discharging containers.

L Total length of the berth in the Container Terminal.

a(Vi) Arrival time of the vessel Vi at port.

m(Vi) Moored time of Vi. All constraints must hold.

pos(Vi) Berthing position where Vi will moor.

c(Vi) Number of required movements to load and unload containers of Vi.

q(Vi) Number of assigned QCs to Vi. The maximum number of assigned QC by vessel
depends on its length since a security distance is required between two contiguous
QC (secQC) and the maximum number of cranes that the Container Terminal allows
per vessel (maxQC). Let’s assume that the number of QC does not vary along all the
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moored time. Thus, the handling time of Vi is given by (where movsQC is the QC’s
moves per unit time):

c(Vi)

q(Vi)× movsQC
(4)

d(Vi) Departure time of Vi, which depends on m(Vi), c(Vi) and q(Vi).

w(Vi) Waiting time of Vi from it arrives at port until it moors: w(Vi) = m(Vi)− a(Vi).

l(Vi) Length of Vi. There is a distance security (secLength) between two moored ships:
let’s assume 5% of their lengths.

pr(Vi) Vessel’s priority.

In order to simplify the problem, let’s assume that mooring and unmooring does not
consume time and every vessel has a draft lower or equal than the quay. In each case,
simultaneous berthing is allowed.

The goal of the BAP is to allocate each vessel according existing constraints and to
minimize the total weighted waiting time of vessels:

Tw =
∑

i

w(Vi)
γ × pr(Vi) (5)

The parameter γ (γ ≥ 1) prevents lower priority vessels are systematically delayed.
Note that this objective function is different to the classical tardiness concept in schedul-
ing.

4.2 A meta-heuristic method for BAP and QCAP
We have developed three different methods for solving BAPs. Firstly, we applied the
simplest solution, following the FCFS criteria: ∀i,m(Vi) ≤ m(Vi+1). A vessel can be
allocated at time t when there is no vessel moored in the berth or there are available
contiguous quay length and QCs at time t (Algorithm 1).

Secondly, we also implemented a complete search algorithm to obtain the best (opti-
mal) mooring order of vessels: the lowest Tw (lower bound of the function cost).

Finally, we developed a meta-heuristic GRASP algorithm for berth allocation (Algo-
rithm 6). This is a randomly-biased multistart method to obtain optimized solutions of
hard combinatorial problems in a very efficient way.

Figure 11 shows the application order of the different algorithms presented in this
paper.

Algorithm 1 (FCFS) uses the function insertVessel described in Algorithm 2 to allo-
cate one vessel in a given time t (the required data are: Vi: Vessel for allocating; t: time
for mooring the vessel; Vin: set of vessels already moored). If Vi can not moor at time t,
it is repeated again each time one vessel (already moored) departs.

Algorithm 2 assigns the number of QCs (q(Vi)) to the vessel Vi through the function
assignQC (Algorithm 3). This function takes into account the length of Vi, the security
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FCFS 

(Algorithm 1)
Complete Search

Grasp Metaheuristic

(Algorithm 6)

insertVessel (Algorithm 2)

Allocating one vessel at time t

positionBerth (Algorithm 4)

Determine the position of Vi at the 

berth

moorVessel (Algorithm 5)

Allocating one vessel in the berth

assignQC (Algorithm 3)

Determine how many QCs can be 

assigned to Vi

Figure 11: Application order of the algorithms presented.

Algorithm 1: Allocating vessels following FCFS policy
Data: V : set of ordered incoming vessels;
Result: Sequence for V
Vlast ← ∅;1
Vm ← ∅;2
foreach Vi ∈ V do3

t← max(m(Vlast), a(Vi));4
inst← insertV essel(Vi, t);5
if !inst then6

T ← d(Vj) | Vj ∈ Vm ∧ d(Vj) > t;7
while tk ∈ T ∧ !inst do8

inst← insertV essel(Vi, tk);9
end10

end11
Vlast ← Vi;12
Vm ← Vm ∪ Vi;13

end14

distance between two QCs (secQC) as well as the QCs used by the others moored ves-
sels. Furthermore, Algorithm 2 obtains the berthing position (pos(Vi)) by the function
PositionBerth (Algorithm 4). In order to get this position, we look for the first position
where the vessel Vi fits according to its length (l(Vi)) and the security length between two
contiguous vessels (secLength).

In addition to the FCFS algorithm, the Complete Search was developed. The Com-
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Algorithm 2: Function insertVessel. Allocating one vessel in the berth at time t
Data: Vi: Vessel for allocating; t: actual time; Vin: moored vessels;
Result: Vi could moor
if Vin = ∅ then1

m(Vi)← a(Vi);2
q(Vi)← min(maxQC,

l(Vi)

secQC
);3

d(Vi)← m(Vi) +
c(Vi)

q(Vi)×movsQC
;4

return true;5
else6

q(Vi)← assignQC(Vi, t, Vin);7
if q(Vi) = 0 then8

return false;9
end10
m(Vi)← t;11
d(Vi)← t +

c(Vi)

q(Vi)×movsQC
;12

pos(Vi)← positionBerth(Vi, Vin);13
if pos(Vi) < 0 then14

return false;15
else16

return true;17
end18

end19

plete Search uses the functions moorVessel (Algorithm 5) which in turn also uses the
function insertVessel (Algorithm 2) to allocate one vessel from its arrival time. The re-
quired data for the Algorithm 5 is: v: Vessel for allocating; Vin: set of vessels already
moored. However, with this search only a limited number of vessels can be taken into
account since search space grows exponentially.

Therefore, we developed the meta-heuristic GRASP algorithm for berth allocation
(Algorithm 6). Algorithm 6 is guided by the parameter δ (0 ≤ δ ≤ 1) which allows
tuning of search randomization.

Algorithm 6 receives as parameters both the δ factor and the set of vessels Vout waiting
for mooring at the berth. Firstly, all the waiting vessels Vout are considered as candidates
C. Each one of the candidate vessels is moored within the same state of the berth (Al-
gorithm 5) assigning the mooring and departure times (m(Vi),d(Vi)), the number of QCs
(q(Vi)) and the berthing position (pos(Vi)). These possibilities are evaluated according
to the cost function fc. This cost function is the sum of Tw that each vessel causes to the
rest of unmoored vessels.

According to the cost function fc, a restricted candidate list (RCL) is created. Then,
one vessel v is chosen to be moored definitely following the random degree indicated by
δ factor. Once v is determined, this is added to the set of vessels Vin and eliminated from
the candidate list C. This loop is repeated until C is empty, it means, all the vessels are
moored.

As metaheuristic GRASP indicates, this search is repeated according to the number
of iterations specified by the user. Thus, the best solution according to Tw is returned as
the solution for the BAP.
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Algorithm 3: Function assignQC. Determine how many QCs can be assigned to Vi.
Data: Vi: Vessel for allocating; t: actual time; Vin: moored already vessels;
Result: Number of QCs
cranes← −1; cranesm ← −1;1
repeat2

nc← max(1, cranes);3
tf ← t +

c(Vi)

nc×movsQC
;4

cranesm ← nc;5

cranes← max
(
1,min

(
maxQC, floor

(
l(Vi)

secQC

)))
;6

// Vessels which coincide with Vi

W ← v ∈ Vin | d(v) > t ∧m(v) < tf ;7
foreach v ∈ W do8

// QCm is the number of used cranes when v moors

QCm ←
∑

v′∈W q(v′) |m(v) ≥ t ∧m(v′) ≤ m(v) ∧ d(v′) > m(v);9

// QCd is the number of used cranes when v departs

QCd ←
∑

v′∈W q(v′) | d(v) ≤ tf ∧m(v′) < d(v) ∧ d(v′) ≥ d(v);10

cranes← min(cranes,QC −QCm);11
cranes← min(cranes,QC −QCd);12

end13
if cranes ≤ 0 then14

return 0;15
end16

until cranesm = cranes ;17
return cranes;18

Algorithm 4: Function positionBerth. Determine the exact position of Vi at the
berth.

Data: Vi: Vessel for allocating; Vin: moored already vessels;
Result: Berthing position for Vi

// Set of vessels which coincide during the stay of Vi

W ′ ← v ∈ Vin | d(v) ≤ m(Vi) ∧m(v) ≥ d(Vi);1
W ← Vin −W ′;2
sortByPositionBerth (W );3
lastPos← 0; lastLength← 0;4
foreach v ∈ W do5

// Security lengths
dLeft← max(lastLength, l(Vi))× secLength;6
dRight← max(l(v), l(Vi))× secLength;7
freeDist← (lastPos + dLeft)− (pos(v)− dRight);8
if freeDist ≥ l(Vi) then9

// Assigning first free position
return lastPos + dLeft;10

end11
lastPos← pos(v); lastLength← l(v);12

end13
// From the last vessel to the end of the berth
dLeft← max(lastLength, l(Vi))× secLength;14
freeDist← (lastPos + dLeft)− L;15
if freeDist ≥ l(Vi) then16

return lastPos + dLeft;17
end18
return−1;19
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Algorithm 5: Function moorVessel. Allocating exactly one vessel in the berth.
Data: v: vessel to moor; Vin: moored vessels;
inst← insertV essel(v, a(v));1
if !inst then2

T ← d(vj) | vj ∈ Vin ∧ d(vj) > t;3
while tk ∈ T ∧ !inst do4

inst← insertV essel(v, tk);5
end6

end7

Algorithm 6: Allocating Vessels using GRASP metaheuristic
Data: δ factor; Vout elements; b: state of the berth;
Result: Vin: set of scheduled vessels;
Vin ← {};1
C ← Vout;2
while C 6= ∅ do3

foreach ve ∈ Vout do4
fc(ve)← 0;5
moorV essel(ve, Vin);6
V ′
in ← Vin ∪ {ve};7

foreach vo ∈ Vout | vo 6= ve do8
moorV essel(vo, V

′
in);9

fc(ve)← fc(ve) + (w(vo)× pr(vo));10
end11

end12
cinf ← min{fc(e) | e ∈ C};13
csup ← max{fc(e) | e ∈ C};14
RCL← {e ∈ C | fc(e) ≤ cinf + δ(csup − cinf )};15
v ← random(RCL);16
moorV essel(v, Vin);17
Vin ← Vin ∪ {v}; C ← C − {v};18

end19

This metaheuristic process does not include a local search technique since it would
involve testing the possible exchanges between the already ordered vessels, so that the
computational cost would be increased considerably.

5 Evaluation

In this section, we evaluate the behavior of the algorithms developed in the paper. The
experiments were performed on random instances. For the CStackP, containers are ran-
domly distributed in blocks of 20 yard-bays, each one with six stacks of 4 tiers. A random
instance of a yard-bay is characterized by the tuple < n, s >, where ’n’ is the number of
containers and ’s’ (s ≤ n) is the number of selected containers in the yard-bay. A random
instance for the BAP has ’k’ vessels with an arrival exponential distribution with vessel’s
data randomly fixed (lengths, drafts, moves and priorities).

In Table 1, we show the performance of our planner H1 Sequential and H1 Ordered.
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These experiments were performed on blocks of containers composed by 10 yard-bays in
the form < 17, s >. Thereby, each yard-bay has a different number of goal containers.
Additionally, we have established a timeout of 35 seconds to solve each yard-bay.

Table 1: Comparison of H1 Sequential and H1 Ordered.

Inst. Order (Yard-Bay/N. Goal containers) Number
1 2 3 4 5 6 7 8 9 10 Reshuffles

1-O 6 1 2 8 3 4 10 9 5 7 919 7 6 6 5 5 5 4 2 2

1-S 1 2 3 4 5 6 7 8 9 10
Time Out7 6 5 5 2 9 2 6 4 5

2-O 2 5 6 1 4 3 8 9 10 7 647 7 7 6 6 5 4 4 3 2

2-S 1 2 3 4 5 6 7 8 9 10
Time Out6 7 5 6 7 7 2 4 4 3

3-O 3 2 7 8 10 4 6 1 9 5 558 6 6 6 6 5 5 4 4 1

3-S 1 2 3 4 5 6 7 8 9 10 994 6 8 5 1 5 6 6 4 6

4-O 7 9 2 10 3 4 6 1 8 5 6310 7 6 6 5 5 4 3 3 2

4-S 1 2 3 4 5 6 7 8 9 10 633 6 5 5 2 4 10 3 7 6

5-O 7 1 10 2 8 9 4 5 6 3 789 7 7 6 6 6 5 5 4 2

5-S 1 2 3 4 5 6 7 8 9 10
Time Out7 6 2 5 5 4 9 6 6 7

The first column in Table 1 corresponds to each instance solved by each planner.
Thereby, row 1 corresponds to instance 1 of planner H1 Ordered (1-O), row 2 corresponds
to instance 1 of planner H1 Sequential (1-S), and so on. The following 10 columns have
two rows for each instance. They show for each instance the order in which the yard-bays
are executed (upper row) and the number of goal containers that each one of them has
(lower row). As example, for the instance 1-O, the sixth yard-bay is the first one in being
executed and it has 9 goal containers. Finally, the last column presents the number of
reshuffles needed to solve the instance or Time Out if a solution is not found.

As it can be observed, there are instances which only can be solved through the H1
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Ordered, e.g. instances 1, 2 and 5. Moreover, other instances (instance 3), through the H1
Ordered planner, give a more efficient plan than the sequential one. However, there are
also other examples in which both planners return the same plan (instance 4).

Thus, we can conclude that H1 Ordered can be considered a better planner than H1
Sequential to solve the complete block of yard-bays.

The actual average number of reshuffles and the average value of our estimator R are
presented in Table 2. In each row, we present the average number of reshuffles form a set
of 100 random instances. In all cases, we considered yard-bays with 4 tiers, so that the
number of possible containers to be allocated to each yard-bay is set to 24 (P1 = 24).
The rest of parameters were increased: P2 from 15 to 19 and P3 from 4 to 8. It can
be observed the similitude of the average number of reshuffles and R in all cases. It
can be observed that the estimator R achieved values close to the actual values in all
cases. The average value of R in all instances was very similar to the average value of the
actual number of reshuffles. The standard deviation of R was even lower than the actual
number of reshuffles due to the fact that it does not depend on the original allocation of
out containers.

Table 2: Values obtained through estimator R.

P2 = 15 P2 = 17 P2 = 19
Reshuffles R Reshuffles R Reshuffles R

P3 = 4 2.8 2.6 3.7 4.6 4.6 4.8
P3 = 6 4.2 4.8 6.2 5.9 5.6 6
P3 = 8 6.2 6 8.6 8 7.2 8

Average values 4.4 4.5 6.2 6.2 5.8 6.3
St. deviation 2.1 1.9 3.1 2.1 2.6 1.9

Table 3 shows the computational times (in seconds) required for solving BAP by using
a complete search against the GRASP method with 1000 iterations. As observed, com-
plete search is impracticable from 12 vessels (more than 3 hours). However, the GRASP
method takes around 30 seconds to solve a schedule of 20 vessels.

Table 3: Computing time elapsed (seconds) for BAP.

No. vessels 5 10 11 12 13 15 20
Complete search <1 112 1105 11830 57462 - -

Grasp 1 8 9 10 12 15 30

Table 4 shows the average waiting times using FCFS and Complete Search (CS) meth-
ods described for the BAP, with two different inter-arrival distributions (temporal separa-
tion among arriving vessels). Through these data, it is demonstrated that FCFS criteria
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results a schedule which is far away from the best one (CS). Besides, it can be observed
that the denser the arrivals of the vessels are, the longer the waiting times are for such
vessels. For example, given 10 vessels, the value of Tw is 136.26 with separate arrival
times and it becomes 351.25 with close arrival times.

Table 4: Total waiting time elapsed.

Vessels FCFS CS

5 (separate arrival times) 73.72 46.10
10 (separate arrival times) 256.53 136.26
5 (close arrival times) 117.52 80.25
10 (close arrival times) 586.65 351.25

Using as minimization function the total weighted waiting time (Tw), Figure 12 shows
the results given by the FCFS criteria, and the GRASP procedure (with 1000 iterations)
respect to the value of δ. The optimum value is δ = 0.3, which indicates the suitability of
the cost function used in the GRASP procedure (Algorithm 6). A total of 20 vessels are
allocated, with two different inter-arrival distributions (separate and closest arrival times)
among them.
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Figure 12: Weighted waiting time (Tw) with FCFS and GRASP procedures.

As it was expected, the GRASP procedure obtains a lower Tw than the FCFS cri-
teria. It is also remarkable that using GRASP is more profitable when the inter-arrival
distribution of the vessels is closer. It is not possible to know the optimal Tw due to the
exponential computational time required by a complete search with 20 vessels.

Finally, Figure 13 shows the combined function cost Cost(Soli), introduced in Equa-
tion 1 which relates for ten different scenarios:

• The normalized total weighted waiting time of vessels, Cost(SBAPi), and
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Figure 13: Relating the costs of BAP+QCAP and CStackP.

• The number of its required container relocations, Cost(SCStackPi).

In each one of this ten cases, the arrival times and data of vessels, as well as the
initial state of the container yard, have been randomly generated. Figure 13 represents the
combined function cost, Cost(Soli) with three different weights of the parameters α and
β. We can see that better (or worst) berthing orders can require larger (or smaller) number
of container relocations. For instance, with α = 0.5, β = 0.5 the best choice is the sixth
schedule. It does not get the best solution for BAP+QCAP, however it corresponds to the
schedule with the smallest number of container relocations (CStackP).

6 Conclusions

The Container Stacking Problem, the Berth Allocation Problem and the Quay Crane As-
signment Problem are three important and related problems in maritime container termi-
nals. In this paper, we have presented a decision support system to manage these problems
in a coordinated way. To this end, we have developed a domain-oriented heuristic planner
for calculating the number of reshuffles needed to allocate the containers in the appro-
priate place. Furthermore, we have estimated this number in order to avoid the planning
phase in unnecessary instances. Then, we have developed a GRASP metaheuristic for
the Berth Allocation Problem and the Quay Crane Assignment Problem which generates
an optimized order of vessels to be served according to existing berth constraints. By
combining these optimized solutions in our integrated system, terminal operators can be
assisted to decide the most appropriated solution in each particular case.

As future work, we are working on improving the function to estimate the number of
reshuffles by adding some more specific parameters. Furthermore we plan to improve the
GRASP method and to adequate the parameters (α, β and γ) to practical decisions and
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expert knowledge. Then, the developed system, as a computer-based aid system, could
assist container terminal’s operator to simulate, evaluate and compare different feasible
alternatives.
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2.4 Robust Scheduling: Robust Berth Allocation and Quay
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Abstract

Decision makers must face the dynamism and uncertainty of real-world environ-
ments when they need to solve the scheduling problems. Different incidences or
breakdowns, e.g. initial data could change or some resources could become unavail-
able, may eventually cause the infeasibility of the obtained schedule. To overcame this
issue, a robust model and a proactive approach is presented for scheduling problems
without any previous knowledge about incidences. This paper is based on proportion-
ally distributing operational buffers among the tasks. In this paper, we consider the
Berth Allocation Problem and the Quay Crane Assignment Problem as a representa-
tive example of scheduling problems.

The dynamism and uncertainty is managed by assessing the robustness of the
schedules. The robustness is introduced by means of operational buffer times to ab-
sorb those unknown incidences or breakdowns. Therefore, this problem becomes a
multi-objective combinatorial optimization problem that aims to minimize the total
service time, to maximize the buffer times and to minimize the standard deviation of
the buffer times. To this end, a mathematical model and a new hybrid multi-objective
metaheuristic is presented and compared with two well-known multi-objective ge-
netic algorithms: NSGAII and SPEA2+.

Keywords Scheduling, Robustness, Metaheuristics, Multi-Objective Genetic Algo-
rithms, Local Search, Simulated Annealing

1 Introduction
Within a container terminal, operations related to move containers can be divided into
four different subsystems (ship-to-shore, transfer, storage and delivery/receipt) [15]. In
each subsystem, terminal operators must deal with with different complex optimization
problems that can be overcome by using Artificial Intelligence techniques. For instance,
berthing allocation or stowage planning problems are related to the ship-to-shore area
[17, 16, 28, 27]; remarshalling problem and transport optimization [24] to the storage
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and transfer subsystems, respectively; and, planning and scheduling hinterland operations
related to trains and trucks to the delivery/receipt subsystem [29].

In this paper, we focus on two problems related to the ship-to-shore area, the Berth Al-
location Problem (BAP) and the Quay Crane Assignment Problem (QCAP). The former
is a well-known combinatorial optimization problem [22], which consists in assigning
berthing positions and mooring times to incoming vessels. The QCAP deals with assign-
ing a certain number of Quay Cranes (QCs) to each moored vessel such that all required
movements of containers can be fulfilled [2].

A comprehensive survey of BAP and QCAP is given in [2]. These problems have been
mostly considered separately, with an interest mainly focused on BAP. An interesting
approach for BAP is presented by [18] where a Simulated Annealing metaheuristic is
compared with a mathematical model. However, there are some studies on the combined
BAP+QCAP considering different characteristics of berths and cranes [11, 21, 7, 25, 33].

Most of the research in scheduling has been focused on deterministic and complete
information, but they are usually not satisfied in real-world environments. Due to the
fact that the real world is uncertain, imprecise and non-deterministic, there might be un-
known information, breakdowns, incidences or changes, which make the initial plans or
the obtained schedules become invalid. Thus, there are new trends to cope these aspects
in the optimization techniques: proactive and reactive approaches [20]. In this paper, a
proactive approach is studied within the Berth Allocation and the Quay Crane Assignment
problems. The uncertainty within these problems is due to lower movements per time unit
than expected or engine failures in Quay Cranes, among others. Due to the introduction of
this new objective in the scheduling optimization problem, a multi-objective optimization
approach needs to be taken into consideration.

All the above studies do not take into consideration the uncertainty of the real world to
obtain a robust scheduling. Robustness is a measure of the performance characterization
of an algorithm in the presence of uncertainties [3]. However, there are some studies that
address the robust scheduling. In [14], a robust optimization model for cyclic berthing
for a continuous and dynamic BAP is studied by minimizing the maximal crane capacity
over different arrival scenarios of a bounded uncertainty given by their arrival agreements.
In [12], a proactive approach for a discrete and dynamic model of the BAP is presented
taking into account uncertainties in the arrival and handling times given their probabil-
ity density functions. They propose a mixed integer programming model and a Genetic
Algorithm (GA) for both problems: discrete berth allocation and QC assignment. The
objective is to minimize the sum of expected value, the standard deviation of the service
time and the tardiness of the incoming vessels.

Robust scheduling based on operational buffers has already been introduced as a
proactive approach in the BAP. An approach to robust BAP is presented in [8]. They
presented a feedback procedure for the BAP that iteratively improves the robustness of
the initial schedule. This feedback procedure determines the time buffers for each vessel
by means of adjustment rules.

In [32], another approach to the robust BAP is solved by a scheduling algorithm that
integrates simulated annealing and branch-and-bound algorithms. This study introduces
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the robustness as an objective to be maximized and an evaluation is carried out by varying
the weights of these functions. The robustness is achieved by a constant buffer time
assigned to all vessels.

In [34], the robust BAP problem is studied as a proactive strategy as a multi-objective
optimization problem. They solved this problem with the Squeaky Wheel Optimization
(SWO) metaheuristic. The first objective is to minimize the late departures and the devi-
ation from the desired position; and, the second objective is to maximize the robustness
of the schedule. They tackle the robustness measure as a diminishing return, specifically
the exponential function, to capture the decreasing marginal productivity of slacks in a
berthing schedule.

However, most of the above approaches consider discrete berths or previous knowl-
edge about the uncertainty in arrival or handling times to produce robust schedules, but
usually this knowledge is not available. Furthermore, other approaches propose how to
obtain robust schedules by means of operational buffer times, but these buffers are set
independently of the handling (or processing) time of the vessels.

Overcoming the above approaches, hybrid metaheuristics for both single and multi-
objective combinatorial optimization problems have received a significant interest from
the research community [4, 9], and also they have been used in a wide range of real-world
applications [13].

In this paper, we introduce a robust model to deal with limited incidences with no
previous knowledge about them (Section 3) as well as a multi-objective approach to face
this problem (Section 4). A formal mixed integer programming (MIP) is presented for the
dynamic and continuous Robust BAP+QCAP that extends the model presented in [18]
(Section 5). Section 6 presents our proposed hybrid multi-objective genetic algorithm
based on the scheme NSGAII [6] in order to obtain near-optimal solutions in an efficient
way. This hybrid algorithm is used to solve the BAP+QCAP with a continuous quay
and dynamic arrivals as well as to provide robust solutions by using operational buffers.
As there is no previous knowledge about the incidences, these operational buffers are
proportionally distributed among the tasks to be able to absorb as many incidences as
possible. Thereby, a new objective function (standard deviation of robustness measures)
was introduced to pursue this goal. This algorithm is compared with the mathematical
model presented and two well-known Multi-Objective Genetic Algorithms: NSGAII and
SPEA2+ [19] (Section 7). The development of the technique presented in this paper
will provide the terminal operators with different robust berthing plans which are able to
absorb limited incidences.

The overall collaboration goal of our group at the Universitat Politècnica de València
(UPV) with the Valencia Port Foundation and the maritime container terminal MSC (Me-
diterranean Shipping Company S.A.) is to offer assistance and help in the planning and
scheduling of tasks such as the allocation of spaces to outbound containers, to identify
bottlenecks, to determine the consequences of changes, to provide support in the resolu-
tion of incidents, to provide alternative berthing plans, etc. Thus, the development of the
technique presented in this paper will provide the terminal operators with different robust
berthing plans which are able to absorb limited incidences.
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2 Berthing Allocation and Quay Crane Assignment:
BAP+QCAP

Let V be a set of incoming vessels, BAP+QCAP consists in obtaining an optimal (or near-
optimal) schedule of the vessels V by assigning mooring times, berthing positions and
QCs to each vessel. Our BAP+QCAP model is classified, according to the classification
given by [2], as:

• Spatial attribute: Continuous layout. We assume that the quay is a continuous
line, so there is no partitioning of the quay and the vessel can berth at arbitrary
positions within the boundaries of the quay. It must be taken into account that for
a continuous layout, berth planning is more complicated than for a discrete layout,
but it better utilizes the quay space [2].

• Temporal attribute: Dynamic arrival. Fixed arrival times are given for the vessels,
so that vessels cannot berth before their expected arrival times.

• Handling time attribute: Unknown in advance. The handling time of a vessel de-
pends on the number of assigned QCs (QCAP) and the moves required.

• Performance measure: wait and handling times The objective is to minimize the
sum of the waiting and handling times of all vessels V .

Figure 1: Data related to one vessel.

Following, we introduce the notation used for each vessel i ∈ V (Fig. 1). The integer
data variables are:

• K : Total number of QCs in the container terminal. We assume all QCs carry out
the same number of movements per time unit (movsQC), given by the container
terminal.

• L : Total length of the berth in the container terminal.
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• ai : Arrival time of the vessel i at port.

• ci : Number of required movements to load and unload containers of vessel i.

• ℓi : Vessel length.

The decision variables are:

• mi : Mooring time of i. Thus, waiting time (wi) of vessel i is calculated as
(wi = mi − ai).

• pi : Berthing position where vessel i moors.

• qi : Number of assigned QCs to vessel i.

• uik : Indicates whether the QC k (1 ≤ k ≤ K) works (1) or not (0) on the vessel i.

• nik : Denotes that the number of QCs assigned to vessel i is k QCs (nik = 1). For
instance, if vessel 3 has been assigned 4 QCs, then n34 = 1 and the others QCs
n3k = 0, ∀k = 1 . . . K, k 6= 4.

The variables derived from the previous ones are:

• Hik : Loading and unloading time at quay (handling time) of vessel i using k QCs
(1 ≤ k ≤ K). This handling time depends on ci and it is defined by Eq. 1:

Hik =

⌈
ci

k ∗ movsQC

⌉
∀i ∈ V, ∀k = 1 . . . K (1)

• hi : Required handling time of vessel i when qi QCs are assigned to it. This value
is set by means of Hiqi .

• tik : Working time of the kth QC (1 ≤ k ≤ K) that is assigned to vessel i.

• di : Departure time of vessel i (di = mi + hi).

• si, ei : Indexes of the first and last QC assigned to vessel i, respectively.

In this study, the following assumptions are considered:

• All the information related to the waiting vessels is known in advance (arrival,
priority, moves and length).

• Every vessel has a draft that is lower than or equal to the draft of the quay.

• Movements of QCs along the quay as well as berthing and departure times of ves-
sels are not considered since it supposes a constant penalty time for all vessels.

• Simultaneous berthing is allowed, subject to the length of the berth.
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Usually in container terminals, the number of QCs could vary during execution at
the quay. This issue has been studied in [27]. However, in this paper and without loss
of generality, we study the robustness of the schedules assuming that the number of
QCs assigned to one vessel do not vary along the moored time. Once a QC starts a
task in a vessel, it must complete it without any pause or shift (non-preemptive tasks).
Thus, all QCs assigned to the same vessel i have the same working time on the vessel
(tik = hi, ∀k = 1, . . . ,K, uik = 1).

The following constraints must be accomplished:

• Moored time of vessel i must be at least the same that its arrival time (mi ≥ ai).

• There is a safe distance between two moored ships. We assume that each vessel
i has a 2.5% of this length at each side as a safe distance (ηi) (Fig. 1). This safe
distance is added to the length of each vessel i: li := ℓi + 2ηi.

• It must be enough contiguous space at berth to moor a vessel i of length (li).

• There must be at least one QC assigned to each vessel. Furthermore, there is a
maximum number of QCs that can be assigned to vessel i (QC+

i ). This value,(
QC+

i

)
, depends on the length of each vessel (ℓi), since a safe distance is required

between two contiguous QCs (safeQC), and the maximum number of QCs that the
container terminal allows per vessel (maxQC) (Eq. 2). Both safeQC and maxQC

parameters are given by the container terminal.

QC+
i = min

(
maxQC,max

(
1,

⌊
ℓi

safeQC

⌋))
∀i ∈ V (2)

Our objective is to allocate all vessels according to several constraints minimizing the
total waiting (Tw) and handling or processing time (Th), known as the service time (Ts),
for all vessels:

Tw =
∑

i∈V
wi (3)

Th =
∑

i∈V
hi (4)

Ts = Tw + Ts (5)

3 Robust BAP+QCAP Model
Uncertainty and non-determinism of real-world environments may cause difficulties in
the initial plans made by the decision makers. In container terminals, the initial obtained
schedules for the BAP+QCAP problem might become invalid due to different reasons:
breakdowns in QCs, late arrivals of the vessels, extreme weather events, a lower ratio of
movements per QC than expected, etc.
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The robustness concept means that, given a schedule, this initial schedule remains
feasible when minor incidences occur in its actual scenario.

The usual disruptions to be considered in BAP+QCAP are the followings:

• Early or late arrival of a vessel i from its expected arrival time (ai).

• The handling time of a vessel i is larger than its expected handling time (hi).

In this paper, we focus just on the disruptions affecting the handling time which even-
tually delay the departure time. In case of incidences related to late arrivals, they could
also be modeled as delays in the handling time of the vessels which eventually also delay
their departure time.

Definition. Given the possible disruptions, we consider that a schedule is robust if a
disruption in one vessel does not affect or alter the mooring times of the other vessels.

The robustness of a schedule of BAP+QCAP might be guaranteed through two periods
of time related to each vessel: waiting time of a vessel (wi) and buffer time after the
departure of each vessel (bi) [26]. Without loss of generality, early arrivals are not taken
into account since they only increase waiting times but they do not alter mooring times.

The schedule could absorb delays or breakdowns that do not exceed the sum of those
two periods (wi + bi). Therefore, both times should be maximized in order to achieve
the maximum robustness and ensure that there is no need to re-schedule the involved
vessels. However, it should be kept in mind that the first objective of the BAP+QCAP is
to minimize the total service time of the incoming vessels (wi+hi). Therefore, following
the proposal given by [5], we focus on maximizing only the second period of time, buffer
times (

∑
bi), to obtain robust schedules.

Let ϕi be the vessels that succeed vessel i and occupy some berth space of vessel
i (ϕp

i ), or use any of QCs assigned to vessel i (ϕq
i ). The buffer time of vessel i (bi) is

the minimum difference (τij) between de departure time of vessel i (di) and the mooring
time of vessel j (mj , j ∈ ϕi). In case there is no vessel in ϕi, the maximum buffer time
is assigned to bi (an infinite value). Fig. 2 shows an example of the buffer times (bi)
assigned for each scheduled vessel as an empty rectangle.

ϕp
i = {∀j ∈ V, mj ≥ di ∧ [pi, pi + li) ∩ [pj , pj + lj) 6= ∅} ∀i ∈ V (6)

ϕq
i = {∀j ∈ V, mj ≥ di ∧ ∃k, 1 ≤ k ≤ K ∧ uik = 1 ∧ ujk = 1} ∀i ∈ V (7)

ϕi = ϕp
i ∪ ϕq

i ∀i ∈ V (8)
τij = mj − di ∀i ∈ V, ∀j ∈ ϕi

(9)

bi =

{
+∞ , |ϕi| = 0

minj∈ϕi
(τij) , otherwise

∀i ∈ V (10)

In this paper, we assume that the more handling time, the more likely to suffer inci-
dences. Therefore, in general, the larger buffers, the more robust schedules. Nevertheless,
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Figure 2: Buffer times bi given an example schedule.

regarding the concept of decreasing productivity (or diminishing returns) presented in
[34], there is a certain buffer size beyond which no more robustness is added to the sched-
ule. Thereby, there is no need to assign large buffer times to each vessel. For instance, in
Fig. 2, Vessel 1 would not need 8 time units of buffer time (b1) since its handling time is
only 3 time units. It is not likely that this vessel would suffer a delay of that magnitude.
However, Vessel 2, with a handling time of 8 time units, has only 2 time units of buffer
time (b2). In this case, it is high likely that this vessel suffer some breakdown or delay
and so it becomes invalid this schedule.

Furthermore, we consider that the magnitude of the incidence is related to the handling
time of the vessel. Thus, the robustness measure of each vessel i (ri ∈ [0, 1]) is related
to the buffer time bi and the average handling time h∗i (Eq. 11). It should be mentioned
that other functions, e.g. exponential function, could be adopted to define the robustness
of each vessel.

h∗i =
ci(

1+QC+
i

2

)
movsQC

(11)

Given the robustness of each vessel, the robustness of a schedule R ∈ [0, |V |] is
defined by Eq. 13, where ωi is a weighting factor (ωi ≥ 1) which depends on historical
data, if available. A ωi = 1 value represents that vessel i used to finish its tasks as
expected, and ωi > 1 value denotes that vessel i used to be delayed.

ri = min

(
1,

bi
ωih∗i

)
, ∀i ∈ V (12)

R =
∑

i∈V
ri (13)

In this paper, we address the BAP+QCAP problem without knowledge of the inci-
dences, thus the weighting factor is the same for all the vessels (ωi = 1, ∀i ∈ V ).

Example. Fig. 3 shows two different schedules given the same set of 9 incoming ves-
sels. Each vessel is labeled with its vessel’s ID and the assigned QC number in brackets.
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Furthermore, the buffer time between vessels is also showed. On the one hand, Fig. 3(a)
represents a robust schedule since limited incidences over any vessel could be absorbed.
On the other hand, Fig. 3(b) shows a schedule with the optimal solution according to the
objective function Ts. The latter schedule will be high likely unfeasible if any incidence
occurs.
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(b) Optimal schedule according to Ts.

Figure 3: Two possible schedules given the same incoming vessels.

Fig. 3(a) and Fig. 3(b) are an example of the well-known trade-off between optimality
and robustness. However, a robust schedule is not only achieved by extending an optimal
schedule over the time. A robust schedule must also consider an optimized allocation of
vessels to achieve the maximum sum of buffer sizes with a proper distribution among all
vessels. Note that the optimality is not directly the makespan of the schedule, but the total
service time (waiting and handling times).

An important issue in this paper is that there is no available information about how
likely the incidences or breakdowns occur. Therefore, it is interesting that these buffers are
proportionally distributed among all the vessels. Thereby, a third objective is introduced
into the model in order to improve the robustness of a schedule: minimizing the standard
deviation (σ) of the robustness measures of all vessels (ri ∀i ∈ V ).

σ =

√
1

|V |
∑

i∈V
(ri − r̄) (14)

where r̄ is the average of the buffers of the schedule and |V | is the number of incoming
vessels.
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Both measures presented above, robustness of a schedule (R) and standard deviation
of these values (σ), represent the actual robustness of a schedule R to be maximized (see
Eq. 15). This measure guarantees the absorption of incidences that imply at most a delay
of a R% of the weighted average handling time (ωih

∗
i ).

R = R− σ (15)

Example. Figure 4 shows two different schedules with a similar robustness value (R =
0.7), but different standard deviations, σ1 = 0.17, σ2 = 0.45. With these values, the first
schedule has an actual robustness value of R1 = 0.7 − 0.17 = 0.53. Thus, in average
this schedule guarantees that could absorb incidences that imply at most a delay of the
53% of the average handling time of the vessels. In contrast, the second schedule which
has an actual robustness value of R2 = 0.7− 0.45 = 0.25; and thus, it is able to absorb
only incidences that imply at most a 25% of the average handling time of the vessels.

[30] presented a close function to measure the robustness of a schedule (avg(wi) −
ασ(wi), ∀i ∈ V ). avg(wi) and σ(wi) denote the average and the standard deviation
of the waiting times, respectively; and, α is a constant weighting factor that must be
set. However, this measure does not reflect the relationship between the handling or
processing time of the task and the buffer times. Thus, to our best knowledge, there is
no other study which considering the BAP+QCAP with a continuous quay and dynamic
arrivals tackles the robustness without any previous knowledge about the incidences.

Fig. 4 shows two different schedules of 10 vessels with the same high value of the
robustness measure. However, schedule of Fig. 4(a) has a greater value for the standard
deviation (σ) than schedule of Fig. 4(b). Thereby, it is important to note that buffer times
from schedule in Fig. 4(a) are not equally distributed and this schedule will fail if an
incidence which delays the departure time just 1 time unit over vessels 4 or 6 occurs or
more than 3 time units over vessel 1. However, schedule in Fig. 4(b), it is high unlikely
to be invalid since all vessels have enough buffer time after its schedule departure time.

4 Multiobjective Approach for the Robust BAP+QCAP
Three different objectives must be optimized to solve the robust BAP+QCAP: the service
time (Ts) (Eq. 5), the robustness (R) (Eq. 13) and the standard deviation of the robustness
measures σ(R) (Eq. 14). These objective functions must be normalized in order to apply
the search process correctly.

Eq. 18 shows how to normalize the service time objective into the interval [0, 1] (T̂s)
and it implies to normalize both the waiting time T̂w (Eq. 16) and the handling time T̂s

(Eq. 17). On the one hand, the handling time is just a linear normalization since the
maximum (h+

i ) and minimum (h−i ) times are known by assigning the minimum (1) and
the maximum number of QCs to vessel i (QC+

i ). On the other hand, normalizing the
waiting time requires to determine a maximum total waiting time (WF ). In this case,
WF value is the total waiting time of the incoming vessels when a first-come, first-served
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Figure 4: Two different schedules with similar robustness and different standard devia-
tion.

(FCFS) policy is applied, assigning 2 QCs to each vessel, and just one vessel is allowed in
the berth at the same time (see example Fig. 5). The maximum total waiting time (WF )
could also be obtained by assigning just one QC to each incoming vessel, but in that case,
WF value would be too large and all the normalized waiting times would be close to zero.

T̂w =
1

WF

∑

i∈V
(mi − ai) T̂w ∈ [0, 1] (16)

T̂h =
1

|V |
∑

i∈V

(
hi − h−i
h+
i − h−i

)
T̂h ∈ [0, 1] (17)

T̂s =
T̂w + T̂h

2
T̂s ∈ [0, 1] (18)

(19)

Robustness objective function must also be normalized into the interval [0, 1] (R̂) as
defined by Eq. 20. The third objective, standard deviation of robustness measures, is
already normalized due to the fact that ri values are already in the interval [0, 1] (Eq. 14).

R̂ =
R

|V | R̂ ∈ [0, 1] (20)

Thereby, the objective function for the robust BAP+QCAP is to minimize the function
F (Eq. 21). Each coefficient λi (0 ≤ λi ≤ 1) assigns different weights to each component
or objective function in order to establish an aggregate function.

F = λ1T̂s − λ2R̂+ λ3σ (21)

Robust scheduling for Berth Allocation and Quay Crane Assignment Problem

181



1
(2)

2
(2)

3
(2)

4
(2)

5
(2)

50 100 150 200 250 300 350 400 450 500 550

100

200

300

400

500

600

700

Figure 5: Schedule generated to obtain the maximum value of waiting time WF .

These coefficients λi are subject to
∑

i λi = 1.
In a multi-objective optimization problem, usually there is no single solution wherein

all its objectives are simultaneously optimized. However, there may exist a set of Pareto
optimal solutions with different trade-offs between their objective functions. Pareto effi-
ciency, or Pareto optimality, is a solution in which is impossible to make any one criteria
better off without making at least one criteria worse off [35]. Pareto optimal solutions are
defined by means of the dominance concept. Considering the robust BAP+QCAP, let x
and y be two different solutions, x dominates y if at least one of the following conditions
is satisfied:

T̂s(x) < T̂s(y) ∧ R̂(x) ≥ R̂(y) ∧ σ(x) ≤ σ(y)

T̂s(x) ≤ T̂s(y) ∧ R̂(x) > R̂(y) ∧ σ(x) ≤ σ(y)

T̂s(x) ≤ T̂s(y) ∧ R̂(x) ≥ R̂(y) ∧ σ(x) < σ(y)

Given a set of feasible solutions D, a solution x ∈ D is Pareto optimal solution if it is
non-dominated by any other solution x′ ∈ D. The Pareto optimal set is the set of all the
solutions that are Pareto optimal solution [35].

In general, generating the Pareto optimal set is expensive computationally and it is
often impracticable. Therefore, algorithms try to find a good approximation of the Pareto
optimal set. In this work, we refer to each approximation as Pareto front, which contains
solutions that, although are non-dominated among them, could be dominated by other
solutions not found by our algorithms.

5 Mathematical Formulation
A mixed integer programming (MIP) model is presented to solve the robust BAP+QCAP.
The objective function of this model is to minimize Eq. 21. This mathematical model is
based on the model presented in [18] and [26].
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In the proposed model, M denotes a sufficiently large number (as it is used in MIP).
Furthermore, there are four auxiliary binary variables. zxij is a decision variable that
indicates if vessel i is located to the left of vessel j on the berth (zxij = 1); and, zyij =
1 indicates that vessel i is moored before vessel j in time. The auxiliary variable uik

indicates whether the QC k works (1) or not (0) on vessel i; and nik = 1 denotes that the
number of QCs assigned to vessel i is k.

∀i,j∈V
i6=j

∀k=1...K zxij , z
y
ij , uik, nik 0/1 integer (22)

In the proposed model, there are four auxiliary binary variables. zxij is a decision
variable that indicates if vessel i is located to the left of vessel j on the berth (zxij = 1);
and, zyij = 1 indicates that vessel i is moored before vessel j in time. The auxiliary
variable uik indicates whether the QC k works (1) or not (0) on vessel i; and nik = 1
denotes that the number of QCs assigned to vessel i is k.

The constraints of this mathematical model are detailed below. Constraint 23 ensures
that vessels must moor afer they arrive at the terminal.

∀i∈V mi ≥ ai (23)

Constraints 24 and 25 establish the waiting and departure times according to mi and hi.

∀i∈V wi = mi − ai (24)
∀i∈V di = mi + hi (25)

Constraint 26 guarantees that a moored vessel does not exceed the length quay.

∀i∈V pi + li ≤ L (26)

The number of QCs to the vessel i are assigned by means of constraints 27-32.

∀i∈V qi =
K∑

k=1

uik (27)

∀i∈V
K∑

k=1

nik = 1 (28)

∀i∈V
K∑

k=1

nikk = qi (29)

∀i∈V 1 ≤ qi ≤ QC+
i (30)

∀i∈V 1 ≤ si ≤ ei ≤ K (31)
∀i∈V qi = ei − si + 1 (32)
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Constraints 33-35 establish the minimum handling time needed to load and unload their
containers according to the number of assigned QCs.

∀i∈V
K∑

k=1

tik movsQC ≥ ci (33)

∀i∈V
K∑

k=1

nikHik = hi (34)

∀i∈V hi = max
∀k=1...K

tik (35)

Constraint 36 ensures that QCs that are not assigned to vessel i have tik = 0.

∀i∈V ∀k=1...K tik −Muik ≤ 0 (36)

Constraint 37 forces all assigned QCs to vessel i working the same number of hours.

∀i∈V ∀k=1...K hi −M(1− uik)− tik ≤ 0 (37)

Constraint 38 avoids that one QC is assigned to two different vessels at the same time.

∀i,j∈V ∀k=1...K uik + ujk + zxij ≤ 2 (38)

Constraints 39 and 40 force the QCs to be contiguously assigned (from si up to ei).

∀i∈V ∀k=1...K M(1− uik) + (ei − k) ≥ 0 (39)
∀i∈V ∀k=1...K M(1− uik) + (k − si) ≥ 0 (40)

The safety distance between vessels is taken into account by constraint 41.

∀i,j∈V
i6=j

pi + li ≤ pj +M(1− zxij) (41)

Constraint 42 avoids that one vessel uses a QC which should cross through the others
QCs.

∀i,j∈V
i6=j

ei + 1 ≤ sj +M(1− zxij) (42)

Constraint 43 avoids that vessel j moors while the previous vessel i is still at the quay.

∀i,j∈V
i6=j

di ≤ mj +M(1− zyij) (43)

Constraint 44 establishes the relationship between each pair of vessels avoiding overlaps.

∀i,j∈V
i6=j

zxij + zxji + zyij + zyji ≥ 1 (44)
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Constraint 45 ensures that the total waiting time of the schedule does not exceed the
maximum total waiting time (WF ).

∑

i∈V
wi ≤ WF (45)

Constraints 46-48 assign the time between the departure time of vessel i and the moor-
ing time of vessel j. For those vessels j that ztij 6= 1, they are assigned M as a value
representing an unbounded time for the robustness.

∀i,j∈V
i6=j

ztij = zxij + zxji + zyij (46)

∀ i,j∈V
i6=j ∧ (zt

ij=0 ∨ zt
ij=2)

τij = M (47)

∀ i,j∈V
i6=j ∧ zt

ij=1

di + τij = mj +M(1− zyij) (48)

Constraints 49 and 50 set the value of the available buffer time after vessel i and its
robustness value, respectively.

∀i∈V bi = min


min

j∈V
i6=j

(τij), h
∗
i


 (49)

∀i∈V rih
∗
i = bi (50)

The decision variable ztij (see constraint 51) indicates if a vessel j moors later than i and,
at the same time, the vessel j intersects with the berth length occupied by vessel i (ztij).

∀i,j∈V
i6=j

0 ≤ ztij ≤ 2 (51)

6 Multi-Objective Genetic Algorithms: MOGA+SA
Commonly approximations of the Pareto optimal sets of a multi-objective optimization
problem are obtained by means of Multi-Objective Evolutionary Algorithms [35]. Fur-
thermore, nowadays, metaheuristics are usually hybridized with other techniques or al-
gorithms in order to enhance their effectiveness and performance [9, 4]. One of the
most common forms of hybrid genetic algorithm involves incorporating local search to
a canonical genetic algorithm. Genetic algorithm is used to perform global exploration
among the population, and local search is used to perform local exploitation around the
chromosomes. Because of the complementary properties of genetic algorithms and lo-
cal search methods, the hybrid approach often outperforms either method operating alone
[10].

Thereby, a hybrid multi-objective genetic algorithm (MOGA) has been implemented
in this paper. The NSGAII schema has been extended with a multi-objective local search
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based on the multi-objective simulated annealing proposed by [1] (AMOSA), hereinafter
named as MOGA+SA (see Algorithm 10). Moreover, two different schemes from the
literature have been assessed NSGAII [6] and SPEA2+ [19].

The same chromosome structure is used in these three MOGAs. This chromosome
has as many genes as incoming vessels (|V |). Each gene consists of three values (see Fig.
6): (1) the id of the next vessel to dispatch (i); (2) the number of QCs assigned (qi); and
(3) the buffer size after this vessel (bi).

Figure 6: Structure of one gene of a chromosome.

It should be noted that each gene must be composed by feasible values with respect
to vessel i. That is, according to the problem constraints, each vessel i can be assigned at
most QC+

i cranes. Therefore, 1 ≤ qi ≤ QC+
i . Likewise, if the berth length is L, then

ηi ≤ pi ≤ L− li − ηi.
In the following subsections, genetic operators that are used by the implementations

of NSGAII and SPEA2+ are described.

6.1 Decoding and evaluation of one chromosome/solution
The structure of the chromosome, specifically the order of the vessels, is used as a dis-
patching rule. Hence, we use the following decoding algorithm: the genes are visited from
left to right in the chromosome sequence. For each gene (i, qi, bi), the vessel i is sched-
uled at the earliest mooring time with qi consecutive QCs available, so that none of the
constraints is violated. In case there are several positions available at the earliest mooring
time, the one closest to the berth extremes is selected. After the departure of the vessel i
(di), it is ensured that there are bi time units where no other vessel j (∀j ∈ V, j 6= i) uses
the QCs assigned to vessel i nor moors where vessel i does [pi, pi + li).

Once a valid mooring time (mi) and initial position (pi) have been assigned to each
vessel i, the fitness of the chromosome (Eq. 21) is obtained by computing each one of the
objective functions: total service time (T̂s), robustness (R̂) and standard deviation of the
robustness (σ).

6.2 Generation of initial population
Construction of initial population (generateInitialPopulation procedure) is performed
so that the service time of a percentage of the initial population (GA parameter) is at
least as good as the solution provided by the FCFS policy. The other chromosomes (or
solutions) are constructed by instantiating each gene in the following way:

• Vessel identifier (i): an integer, between 1 and N is randomly chosen. Two genes
of the same chromosome cannot have the same vessel identifier.
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Algorithm 10: Implementation of MOGA+SA

Input: I: instance of robust BAP+QCAP;
popsize: number of chromosomes;
k: number generations for local search

Output: X : set of non-dominated schedules

// Generate the parent population P0

P0 ← generateInitialPopulation(popsize, I)
// Generate the offspring population Q0

Q0 ← evolvePopulation(P , popsize)
t← 0
while No termination criterion is satisfied do

unionSet← makeUnionSet(Pt , Qt)
F ← fastNondominatedSort(unionSet)
X ← updateParetoFront(F0)
// Create the next parent population Pt+1

i← 0
Pt+1 ← ∅
while i < |F | ∧ |Pt+1|+ |Fi| < popsize do

// Add the ith nondominated front (Fi) into the parent population Pt+1

Pt+1 ← Pt+1 ∪ Fi

i← i + 1
end while
if |Pt+1| < popsize then

// Sort Fi according to the crowding distance measure
crowdingDistance(Fi)
sort(Fi)
// Add the first popsize− |Pt+1| elements of Fi

j ← 0
while j < |Fi| ∧ |Pt+1| < popsize do

Pt+1 ← Pt+1 ∪ {Fi[j]}
j ← j + 1

end while
end if
// Use selection, crossover and mutation to create a new population Qt+1

Qt+1 ←evolvePopulation(Pt+1 , popsize)
// Perform the local search each k generations.
if t%k = 0 then
X ′, Sn ←mosa(X )
// Assign the new Pareto front to X
X ← X ′

Qt+1 ← clustering(Qt+1 , popsize− |Sn|)
// The new solutions found by the local search are kept in the population
Qt+1 ← Qt+1 ∪ Sn

end if
// Increase the number of iterations
t← t + 1

end while

return Schedule of each element of the Pareto front X
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• Number of QCs (qi): an integer, between 1 and QC+
i , is randomly chosen.

• Buffer size (bi): the initial buffer size is 0 for all genes of the initial population.

Once all chromosomes in the initial population have been instantiated, their fitness
values are obtained as described in Section 6.1. Furthermore, the Pareto front X is updated
considering all these chromosomes. Let x be a chromosome (or solution), x is added to
the Pareto front X if there is no other solution y ∈ X such that y dominates x. If x is
added to X , then all solutions dominated by x are removed from X .

6.3 Evolution of one population
In each iteration of the MOGA, a new population is built from the previous one (or the
initial) by applying the genetic operators of selection, reproduction and replacement. The
proposed approach follows the scheme:

• selection: all chromosomes in the actual population are randomly grouped into
pairs;

• reproduction: 1) each one of these pairs is mated or not according to the cross-
over probability Pc generating two offspring; and, 2) Each offspring, or parent if
the parent were not mated, undergoes mutation in accordance with the mutation
probability Pm.

• replacement: after evaluating the chromosomes previously generated, a tournament
selection (4:2) is carried out among each pair of parents and their offspring as a
replacement.

6.4 Crossover
The crossover operator receives one pair of chromosomes (P1 and P2), which are in the
current population pop and have been randomly selected. The objective of this operator is
to construct two offspring chromosomes (O1 and O2). For that, each time the crossover
operation is performed, the following steps are made:

1. Two cross points are randomly chosen, k1 and k2 (1 ≤ k1 < k2 ≤ N).

2. Each gene in chromosome P1 and P2 which is in position p, k1 ≤ p < k2 is copied
to the same position in chromosomes O1 and O2, respectively.

3. Each gene in chromosome P1 and P2 which is in position p, 1 ≤ p < k1 is copied
to the same position in chromosome O1 and O2, respectively.

4. Each gene in chromosome P1 and P2 which is in position p, k2 ≤ p ≤ N is copied
to the same position in chromosome O1 and O2, respectively.
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Figure 7: Crossover operation.

Fig. 7 is a graphical representation of the procedure that is used to perform the cross-
over operation, which is based on the technique Generalized Position Crossover [23] that
is commonly used in permutation based encodings.

In one chromosome cannot be two genes with the same vessel identifier. Therefore, if
the vessel identifier in the gene that will be copied already exists in the offspring (O1/O2)
during steps 2 or 3, a new gene must be selected from the chromosome parent (P1/P2).

Once the vessel identifier of the selected gene does not exist in the offspring, then the
gene is copied to the offspring in the corresponding position.

6.5 Mutation
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Figure 8: An example of mutation operation.

Mutation operation is performed on one chromosome, following these steps:

1. Two positions (k1 and k2) of the chromosome are randomly chosen (1 ≤ k1 <
k2 ≤ N).

2. Genes that are in positions between k1 and k2 (both included) are shuffled.

3. The number of QCs in each gene located between k1 and k2 (both included) is
modified by a feasible random value with respect to the vessel in the same gene.
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4. The buffer size in each gene located between k1 and k2, both included, is modified
by a random value that is between 0 and the average handling time h∗i , of the vessel
i in the same gene.

Fig. 8 shows how the offspring oi, which has been obtained after the crossover oper-
ation, is mutated. First, two values k1 = 2 and k2 = 4 are selected randomly. Then, all
genes between both positions are shuffled. The gene 2 is moved to position 4, the gene 3
to position 1 and gene 4 to position 3. Finally, the number of QCs and the buffer size of
each gene in position p, 2 ≤ p ≤ 4 are modified by selecting feasible random values for
each one.

6.6 Local search

Algorithm 11: createNeighbor

Input: cur: Actual solution/chromosome;
Output: new: Neighbor solution/chromosome;

Copy chromosome cur into new
// Interchange the order of two vessels
Vessels v1 and v2 randomly chosen from new
Interchange position of v1 and v2 in new
// Change the buffer assigned after its departure
Randomly choose other vessel v from new
r ← randInteger(0, 2)
if r = 0 then

bv = 0
else if r = 1 then

bv = h∗
i

else
if rand(0, 1) ≤ 0.5 then

// Decrease a 10% the buffer size

bv ← max

(
0, bv −

h∗
i

10

)

else
// Increase a 10% the buffer size

bv ← min

(
h∗
i , bv +

h∗
i

10

)

end if
end if
if rand(0, 1) ≤ 0.5 then

// Change number of assigned QCs
qv ← rand(2, QC+

v )
end if

return Neighbour chromosome/solution new

The multi-objective simulated annealing presented by [1] has been modified and in-
cluded into the MOGA as a local search to solve the Robust BAP+QCAP. The neigh-
borhood structure of a solution takes advantage of the chromosome structure and their
neighbors are obtained by changing the values of the variables presented in its genes (i,
qi and bi). Algorithm 11 describes how to modify a given solution cur in order to create
a neighbor new. In this process, two operations are applied to solution cur:
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• interchanging the position of two vessels (v1 and v2) in the chromosome, randomly
chosen.

• changing the values of number of QCs assigned (qi) and buffer size (bi) of a vessel
i randomly chosen.

This multi-objective simulated annealing algorithm (mosa function) is computed ev-
ery k iterations. It receives, as parameter, the Pareto front X of the actual iteration of the
MOGA+SA. As a result, it returns two different sets of solutions or schedules:

• a Pareto front X ′ where the solutions from X have been improved to obtain a local
optimal following the AMOSA scheme.

• a new set Sn consisting on the new non-dominated solutions found in the search
which are part of X ′.

Unlike AMOSA [1], the simulated annealing algorithm implemented in this paper
makes use of a different clustering method (see Algorithm 12) based on the crowding
distance used in the NSGAII algorithm. This clustering method selects the representative
solutions of the population according to the density of solutions surrounding a particular
solution. After this local search process is performed, the solutions in Sn set replace
the solutions in population tmpPop whose crowding distance are the lowest ones. The
solution to be replaced are chosen by means of the same clustering method used in the
simulated annealing. The purpose is to improve the quality of the population by keeping
the solutions that are most spread around the search space.

Algorithm 12: clustering

Input: P : population;
Nm; maximum number of chromosomes;

Output: P ′: population with exactly Nm chromosomes;

// calculate the crowding distance for each element/chromosome in P
crowdingDistance(P )
// sort the elements in ascending order
sort(P )
// choose the biggest Nm elements according to the crowding distance
P ′ ←Nm elements of P with the biggest crowding distances

return P ′

7 Evaluation
As no benchmark is available in the literature, the experiments were performed in a cor-
pus of 100 instances randomly generated, where parameters (maxQC, safeQC, etc.) follow
the suggestions of container terminal operators. All these benchmarks are freely available
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at http://gps.webs.upv.es/bap-qcap/. Each one is composed of a queue from 100 vessels.
These instances follow an exponential distribution for the inter-arrival times of the ves-
sels (scale parameter β = 20). The number of required movements and length of vessels
are uniformly generated in [100, 1000] and [70, 400], respectively. In all cases, the berth
length (L) was fixed to 700 meters; the number of QCs was 7 (corresponding to a deter-
mined MSC berth line) and the maximum number of QCs per vessel was 5 (maxQC); the
safe distance between QCs (safeQC) was 35 meters and the number of movements that
QCs carry out was 2.5 (movsQC) per time unit.

The approaches developed in this paper, NSGAII, SPEA2+ and MOGA+SA, were
coded using C++; and their settings are showed in Table 1(a) and Table 1(b). Due to the
stochastic nature of the GA process, each instance was solved 30 times and the results
show the average obtained values. The mathematical model was coded and solved by
using IBM ILOG CPLEX Optimization Studio 12.5. Due to the fact that the square root
function defines concave region, standard deviation function could not be introduced into
the objective function in the mathematical solver. They were solved on an Intel i7-2600
3.4Ghz with 8Gb RAM.

Table 1: Setting of the Algorithms

(a) NSGAII and SPEA2+ settings

Parameter MOGA scheme

Number of Generations 500
Number of Chromosomes 100
Mutation probability (Pm) 0.1
Crossover probability (Pc) 0.9

(b) Multi-objective local search settings from
MOGA+SA

Parameter MOGA+SA

Initial temperature (Tmax) 20
Minimum temperature (Tmin) 0.001
Annealing factor (α) 0.9
Termination criterion T < Tmin

Cycle Length 2

CPLEX is able to obtain a schedule of an instance for a given λ value. Algorithm 13
describes how to obtain a Pareto front using CPLEX solver for a given instance in order
to be compared with the MOGA.

Algorithm 13: Pareto front from the mathematical model

Input: I: Instance;
To: timeout;

Output: X : Set of non-dominated solutions;

Initialize set of solutions S = {}
for λ ∈ {0, 1} (steps of 0.1) do

Solve the mathematical model for the instance I and λ value given the timeout To

Add the schedule with the tuple of the objective functions (R̂, T̂s) to the set S
end for
X ← non-dominated solutions from S.

Fig. 9 shows the Pareto fronts obtained of a representative instance by both the
MOGA+SA and CPLEX. In this experiment, the timeout for the CPLEX solver was set
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(a) |V | = 10 vessels (b) |V | = 20 vessels

(c) |V | = 30 vessels (d) |V | = 40 vessels

Figure 9: Pareto fronts of GA and CPLEX varying the number of incoming vessels (|V |).

to 1000 seconds for each λ value. It is important to note that the greater the incoming
vessels, the fewer solutions obtained by CPLEX solver. Given this timeout, CPLEX was
only able to get optimal solutions when λ = 0.0 and the incoming vessels was set to 10
and 20. Considering the Pareto fronts obtained by MOGA+SA and CPLEX, they were
very similar with a queue of 10 vessels (see Fig. 9(a)). However, for instance with a
queue 20 vessels, the solutions obtained by CPLEX were not able to reach the quality
of the Pareto front of MOGA+SA (see Fig. 9(b)). Furthermore, it turned out that for 40
incoming vessels just one non-optimal solution was obtained (see Fig. 9(d)); and even
more there was no solution with 50 vessels.

Multi-objective optimization algorithms are not comparable directly since there is no a
unique optimal solution. [36] propose different measures to compare Pareto front approx-
imations. Among these measures, the size of the dominated space or the hypervolume
is one of the most used measures to differentiate two algorithms [31]. This measure is
related to a reference point p and it is set according to the suggestion of [31]. To this end,
for each objective, it is chosen the worst value from any of the sets being compared and
increasing by an ǫ value.

Comparison among these different schemes has been performed by using the Kruskal-
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Table 2: Kruskal-Wallis test over the hypervolumes obtained in 5 different instances

Instance p-value Avg. Hypervolume
NSGAII SPEA2+ MOGA+SA

1 < 2.2e− 16 0.175315 0.207921 0.236660
2 < 2.2e− 16 0.174893 0.204749 0.252922
3 < 2.2e− 16 0.178945 0.216683 0.261251
4 < 2.2e− 16 0.180473 0.221138 0.258453
5 3.699e− 15 0.160139 0.173000 0.223231

Table 3: Wilcoxon test over the hypervolumes obtained for a given instance

NSGAII SPEA2+

SPEA2+ 0.00011 -
MOGA+SA < 2e− 16 < 2e− 16

Wallis’ non-parametric statistical test, according to [36]. This test assesses whether there
are significant differences among different sets of values: in this case, sets of hypervolume
measures. Table 2 shows the values obtained for this test given the results after solving five
instances of 50 vessels with the three different algorithms. Kruskal-Wallis test revealed a
significance effect of the algorithms on the hypervolumes (p-value< 0.01).

As there was a significance difference among them, a post-hoc test using a pairwise
comparison test (Wilcoxon) with Bonferroni correction was carried out and showed the
significant differences between the different algorithms. As example, Table 3 shows the
results of the Wilcoxon test for the fifth instance. Note, MOGA+SA algorithm produces
Pareto fronts which are statistically different with respect to the other algorithms. Exam-
ining the average values in Table 2, it can be determined that MOGA+SA obtained better
Pareto front approximations.

Fig. 10 shows the Pareto fronts obtained by NSGAII and MOGA+SA algorithms.
The schedules with the minimum and maximum values for each objective are highlighted
by circles. It is important to note that MOGA+SA algorithm was able to produce a Pareto
front with higher quality. Fig. 10(a) and Fig. 10(b) show the relationship between R̂
and T̂s. MOGA+SA algorithm turned out to achieve schedules with greater robustness
and lower T̂s values (R̂ = 1; T̂s = 0.3831) than NSGAII algorithm (R̂ = 0.9227; T̂s =
0.4196). Furthermore, taking into account the relationship between T̂s and R̂ (see Figs.
10(e) and 10(f)), MOGA+SA algorithm achieved schedules with lower standard deviation
of robustness (σ(R̂) = 0.0) than the ones obtained by the NSGAII algorithm (σ(R̂) =
0.1557).

The performance of the schedules obtained by our approach (MOGA+SA) was eval-
uated by generating actual scenarios with some incidences in the actual handling time of
the vessels. An incidence over a vessel i is modeled as a delay d in the handling time of
vessel i. This incidence is absorbed if there is enough buffer time behind vessel i as to
not alter the mooring time of the subsequent vessels. For each instance, the vessels that
vary their handling times were uniformly chosen among all the scheduled vessels.
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(a) NSGAII (b) MOGA+SA

(c) NSGAII (d) MOGA+SA

(e) NSGAII (f) MOGA+SA

Figure 10: Pareto fronts obtained by using or not local search.

In this experiment, 100 instances of 100 vessels were evaluated. For each instance,
three different schedules were chosen from the Pareto front according to their robustness
(see Table 4(a)): the one with the minimum robustness (Rmin), the one with the maxi-
mum robustness (RMax) and one intermediate robust schedule (Ri where Rmin < Ri <
RMax). Likewise, three schedules were chosen according to their service time (see Table
4(b)) and other three schedules according to their standard deviation of the robustness
(see Table 4(c)).
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Table 4: Percentages of incidences absorbed in schedules of 100 vessels

(a) Delays applied to schedules with different levels of R̂

Range Rmin Ri RMax

d ∈ [1, 0.2hi] 21.78 95.51 99.95
d ∈ [1, 0.5hi] 18.73 93.58 99.85
d ∈ [1, 0.8hi] 16.64 90.49 98.96
d ∈ [1, 1.0hi] 13.92 87.10 98.01
d ∈ [1, 1.2hi] 12.93 85.31 97.15

(b) Delays applied to schedules with different levels of T̂s

Range Tsmin Tsi TsMax

d ∈ [1, 0.2hi] 20.17 79.91 99.94
d ∈ [1, 0.5hi] 16.16 73.88 99.75
d ∈ [1, 0.8hi] 13.89 65.17 98.94
d ∈ [1, 1.0hi] 11.85 60.25 98.08
d ∈ [1, 1.2hi] 10.32 56.76 96.74

(c) Delays applied to schedules with different levels of σ(R̂)

Range σ(R)min σ(R)i σ(R)Max

d ∈ [1, 0.2hi] 99.96 75.48 61.85
d ∈ [1, 0.5hi] 99.95 72.23 54.42
d ∈ [1, 0.8hi] 99.34 67.88 48.72
d ∈ [1, 1.0hi] 98.87 65.34 47.77
d ∈ [1, 1.2hi] 97.39 62.38 45.75

The incidences (or delays, d) introduced were randomly chosen from different ranges.
These ranges vary from a minimum value (1) to a maximum value, which is related to the
handling time (hi) of the vessel affected by the incidence (see first column in Table 4).
For each range, 100 incidences were uniformly created and applied to the four schedules
of each instance.

Table 4(a) shows the percentage of incidences absorbed by each type of schedule.
It can be observed that the more robust schedule, the more incidences absorbed. For in-
stance, with delays d ∈ [1, 0.5hi], the Rmin schedule only absorbed 18.73% of incidences
in average, but the RMax schedule absorbed up to 99.85.%. Note that as the delay became
larger, fewer schedules can absorb the incidences. With delays in the range of [1, 0.2hi],
the RMax schedule can absorb 99.95% of incidences in average. However, with larger
ranges, the incidences absorbed decreased down to 97.15% in average. This pattern was
also repeated in Table 4(b). The lower Ts, the lower incidences absorbed due to the fact
that either there would not be buffers among vessels or there would be small buffers.

Table 4(c) shows the percentage of incidences absorbed choosing three schedules by
their standard deviation values. As expected, the highest percentages of incidences ab-
sorbed were obtained with the lowest values of standard deviation, e.g. 99.34% with
delays in the range [1, 0.8hi]. In general, schedules with the lowest standard deviation are
related to those schedules with the greatest buffers proportionally distributed among all
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vessels (the most robust schedules).
The percentage of incidences absorbed by the most robust schedules using or not

the local search algorithm are showed in Table 5. In this experiment, a timeout of 30
seconds was set for both algorithms. It is important to note that adding the local search
to the Multi-Objective Genetic Algorithm allowed to increase the incidences absorbed in
all the ranges. For instance, in range [1, 1.0hi], NSGAII was able to absorb 95.33% of
incidences, whereas the MOGA+SA was able to absorb 97.34% of incidences.

Table 5: Percentages of incidences absorbed in schedules of 100 vessels obtained using
or not LS (timeout 30 secs).

Range RMax no LS RMax with LS

d ∈ [1, 0.2hi] 99.53 99.88
d ∈ [1, 0.5hi] 99.40 99.70
d ∈ [1, 0.8hi] 97.62 98.51
d ∈ [1, 1.0hi] 95.33 97.34
d ∈ [1, 1.2hi] 94.04 96.00

8 Conclusions
The competitiveness among container terminals causes the need to improve the efficiency
of each one of the subprocesses or scheduling problems that are performed within them.
However, this efficiency is affected by the uncertainty of the environment. This uncer-
tainty might provoke delays in the arrivals of the vessels or handling times greater than
expected due to extreme weather events, breakdowns in engines, delays, etc. Furthermore,
these scheduling problems are even harder since they are interrelated and sometimes there
is no previous knowledge about these incidences. To this end, we introduce the robust-
ness into these scheduling problems. In this paper, we introduce the robustness into one of
the main scheduling problems in Container Terminals: Berth Allocation and Quay Crane
Assignment Problems. Its objective function is to minimize the total service time of the
incoming vessels. The robustness, as second objective function, has been modeled as a
measure related to the likelihood of a schedule to absorb incidences. This robustness has
been related to the operational buffers found after each assigned vessel. The greater the
operational buffers, the higher the robustness of the schedule. However, due to the lack
of the knowledge about incidences, operational buffers should be distributed among ves-
sels proportionally, and thus the third objective managed in this way is to minimize the
standard deviation of the robustness measurements.

In this paper, a mixed integer programming (MIP) model and a new hybrid multi-
objective genetic algorithm (MOGA+SA) were developed for the dynamic and continuous
robust BAP+QCAP. They were compared with two well-known multi-objective Genetic
Algorithms (MOGAs): NSGAII and SPEA2+. In multi-objective optimization problems
there is no a unique optimal solution, and it is necessary to assess the trade-off between
all the objectives by using the Pareto front. Visualizing Pareto fronts provides container
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terminals operators with a helpful system to decide which schedule is better depending
on the actual state of the container terminal.

The results showed that the MIP model was able to obtain robust and efficient sched-
ules up to 10 incoming vessels. However, MOGA+SA achieved better Pareto fronts
than the MIP model for queues of incoming vessels greater than or equal to 20 vessels.
Thereby, the schedules obtained by MOGA+SA were more efficient and robust than the
schedules obtained by the MIP model. Furthermore, the MIP model was unable to found
any solution with a given timeout for a queue of 50 incoming vessels. Additionally, dif-
ferences between the MOGAs have been assessed by means of non-parametric statistical
tests. It turned out to be that MOGA+SA obtained better Pareto fronts according to the
hypervolume measures. Furthermore, different sets of incidences were simulated into
the schedules obtained by the NSGAII and the MOGA+SA. The results returned that the
schedules obtained by MOGA+SA were more robust due to the fact that they could absorb
more incidences.
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Chapter 3

General discussion of the results

In this chapter, the main results achieved in this thesis are discussed. They will be divided
according to their scopes: planning; scheduling; planning and scheduling; and robust
scheduling.

3.1 Planning

In planning, generally planners such as Metric FF (Hoffmann 2003), LPG-TD (Gerevini,
Saetti, and Serina 2003), or LAMA (Richter and Westphal 2010) are used to build the
needed plans to reach a goal state. They are general purpose planners, or also known as
domain-independent planners. They could solve any problem, but they do not take advan-
tage from the knowledge of the problem itself. Planners that make use of this knowledge
are known as domain-dependent planners.

In the first part of this thesis, a general purpose planner (Metric FF) is compared with
domain-dependent planners. Specifically, the domain-independent anytime planner called
Simplanner (Sapena and Onaindía 2002) was extended in order to introduce heuristics to
cope a real-world problem. In this thesis, the Remarshalling problem, related to the Con-
tainer Stacking Problem, was chosen as a case study. As this problem is a slight modifi-
cation of the Blocks World domain (Slaney and Thiébaux 2001), its domain and instances
were modeled by using PDDL (Planning Domain Definition Language, (Ghallab, Howe,
et al. 1998)).

Through this study, it could be observed how the performance of the domain-dependent
planners outperforms the domain-independent planners. They are able to build plans
quicker as well as they also achieve plans with a higher degree of optimality (Salido,
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Sapena, et al. 2009; Rodriguez-Molins, Salido, and Barber 2012). Table 3.1 shows the
differences between these two different planners facing the remarshalling problem. For
instance, with a scenario (yard-bay) of 20 containers and 4 export containers (< 20, 4 >),
Metric FF obtained a solution in 22 secs with 7.01 reshuffles or moves in average. How-
ever, the domain-dependent planner (represented as h1) was able to obtain in 10 secs a
plan with 5.22 reshuffles in average.

Table 3.1: Average number of reshuffles and running time of Metric FF and h1 in instances <
n, 4 >.

Instance
Metric FF Heuristic (h1)

Running Solution Time first Best Solution
time solution in 10 secs

< 13, 4 > 22 3.07 2 3.07
< 15, 4 > 3102 4.04 5 3.65
< 17, 4 > 4669 5.35 11 4.35
< 19, 4 > 6504 6.06 22 4.72
< 20, 4 > 22622 7.01 33 5.22
< 21, 4 > 13981 6.82 62 5.08

Another important advantage of domain-dependent planners is the possibility of intro-
ducing different optimization criteria to deal with real-world requirements. In the remar-
shalling problem within container terminals, three different optimization criteria were in-
troduced into the planner to manage blocks of yard-bays (each yard-bay as a subproblem)
(Rodriguez-Molins, Salido, and Barber 2012):

• Reduce the distance to the point of charge/discharge of containers.

• Avoid large differences in height between consecutive stacks of containers, known
as sinks (OCnB).

• Keep a certain distance between each pair of dangerous containers (OCnD).

It is important to note that when optimization criteria are introduced into the search pro-
cess to cope with requirements, the quality of the plans will be affected since the original
problems are now more constrained. Figure 3.2 shows the average number of reshuffles
obtained by the Metric FF and our domain-dependent planner (h1) with each optimization
criteria. The optimization criteria OCN stands for the union of both optimization criteria
OCnB and OCnD. For instance, note that if the optimization criteria of balance (OCnB)
or dangerous containers (OCnD) are taken into consideration, the number of sinks (un-
balanced stacks) or the number of dangerous containers in risk were reduced down to 0,
but the number of reshuffles was increased.

Blocks of yard-bays of containers are modeled as a composition of subproblems in these
experiments, and an important decision is what sequence of yard-bays is followed to solve
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Table 3.2: Average results with blocks of 20 yard-bays each one being a < 15, 4 > instance.

Metric FF h1 OCnB OCnD OCN

Reshuffles 3.65 3.38 4.85 4.00 5.65
Sinks 18.00 29.50 0 40.33 0
Non-Safe Dangerous 16.00 7.50 8.00 0 0

the whole block (Salido, Rodriguez-Molins, and Barber 2012). It is preferable to solve the
tightest yard-bays or subproblems firstly. The tightest yard-bays are the ones which have
more export containers (constraints). In (Salido, Rodriguez-Molins, and Barber 2012),
a sequential planner (H1 Sequential) was compared with a planner (H1 Ordered) which
solves first the tightest subproblems.

In Table 3.3, we show the performance of our planner H1 Sequential and H1 Ordered.
These experiments were performed on blocks of containers composed by 10 yard-bays in
the form < 17, s >. Thereby, each yard-bay has a different number of goal containers.

The first column in Table 3.3 corresponds to each instance solved by each planner. Thereby,
row 1 corresponds to instance 1 of planner H1 Ordered (1-O), row 2 corresponds to in-
stance 1 of planner H1 Sequential (1-S), and so on. The following 10 columns have two
rows for each instance. They show for each instance the order in which the yard-bays
are executed (upper row) and the number of goal containers that each one of them has
(lower row). As example, for the instance 1-O, the sixth yard-bay is the first one in being
executed and it has 9 goal containers. Finally, the last column presents the number of
reshuffles needed to solve the instance or Time Out if a solution is not found.

As it can be observed in Table 3.3, there were instances which only can be solved through
the H1 Ordered (instance 1). In other instances (instance 2), H1 Ordered planner gave
a more efficient plan than the sequential one. However, there were also other examples
in which both planners returned the same plan (instance 3). Thus, we can conclude that
H1 Ordered can be considered a better planner than H1 Sequential to solve the complete
block of yard-bays.

3.2 Scheduling

Combinatorial optimization problems have usually been solved by means of rules of
thumb learnt through years of experience of the decision makers. They could be named
as greedy solutions for these problems, since they cannot value all the variables to make
proper decisions. Example of these rules are First-Come, First Served (FCFS) or Last-In,
First-Out (LIFO).
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Table 3.3: Comparison of H1 Sequential and H1 Ordered.

Inst. Order (Yard-Bay/N. Goal containers) Number
1 2 3 4 5 6 7 8 9 10 Reshuffles

1-O 6 1 2 8 3 4 10 9 5 7 919 7 6 6 5 5 5 4 2 2

1-S 1 2 3 4 5 6 7 8 9 10 Time Out7 6 5 5 2 9 2 6 4 5

2-O 3 2 7 8 10 4 6 1 9 5 558 6 6 6 6 5 5 4 4 1

2-S 1 2 3 4 5 6 7 8 9 10 994 6 8 5 1 5 6 6 4 6

3-O 7 9 2 10 3 4 6 1 8 5 6310 7 6 6 5 5 4 3 3 2

3-S 1 2 3 4 5 6 7 8 9 10 633 6 5 5 2 4 10 3 7 6

Other approach often used by decision makers is to employ mathematical solvers. These
solvers always return the optimal plan or schedule for a given instance if they are given
enough time (probably weeks or months). A well-known example of mathematical solver
is the IBM ILOG CPLEX Optimization Studio. In this thesis, this solver has been used to
assess the performance and quality of our approaches.

As a case study in this section, we focus on the ship-to-shore subsystem in container
terminals. This subsystem involves operations related to the movement of containers
from ship to berth. Two problems were studied, the Berth Allocation Problem (BAP) and
the Quay Crane Assignment Problem (QCAP), hereinafter named as BAP+QCAP. The
former is a well-known combinatorial optimization problem (Lim 1998), which consists
in assigning berthing positions and mooring times to incoming vessels. The QCAP deals
with assigning a certain number of QCs to each moored vessel such that all required
movements of containers can be fulfilled (Bierwirth and Meisel 2010).

Mainly, two metaheuristics were developed to solve the BAP+QCAP problem:

• A constructive metaheuristic: Greedy Randomized Adaptive Randomized Proce-
dure (also known as GRASP). This metaheuristic also needs to include a local
search which was designed based on the hill-climbing technique (Rodriguez-Molins,
Salido, and Barber 2014a); and,

• A population-based metaheuristic: Genetic Algorithm (GA) (Rodriguez-Molins,
Barber, et al. 2012).
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Both metaheuristics, GRASP and GA were evaluated with different corpora1. Besides
these metaheuristics, a mixed integer lineal programming (MILP) model was developed
to solve the BAP+QCAP. This MILP model extends the mathematical model presented in
(Kim and Moon 2003).

Firstly, GRASP metaheuristic consists in two phases. First, a schedule is built by adding
one element at a time according to a certain heuristic. In our problem, each element of
the solution is one incoming vessel or container ship. Once the schedule is completed
with all the incoming vessels, a local search is applied in order to improve locally this
solution. This local search seeks promising solutions (schedules) among a certain number
of neighbours K from the actual solution. Figure 3.1(a) shows why this second phase
(local search) is necessary. Using just the constructive phase of the GRASP metaheuristic
(K = 0), the best value achieved was 1322.7 with δ = 0.2 (see Figure 3.1(a)). This
metaheuristic without using any local search is also known as a semi-greedy heuristic
(Hart and Shogan 1987).

In general, the greater the K value, the better waiting times values (Tw) since a deeper
search in the neighborhood is carried out. For instance, the Tw obtained by δ = 0.2
decreased to 1127 when K = 14 neighbors are generated in each step of the local search.
However, we can see that for K > 12, we did not achieve a significance improvement in
the objective function. Furthermore, it is important to note that the greater theK value for
the local search, the greater the computation time (see Figure 3.1(b)). Given the δ = 0.2,
the computation time increased from 8.23 ms up to 15.97 ms per iteration. Therefore, a
value K = 12 was set for the local search phase of the GRASP metaheuristic for all the
following experiments.

Metaheuristics became important due to the fact that mathematical solvers were unable
to obtain solutions to realistic-size instances of real-world problems. Metaheuristics are
designed in a way to achieve near-optimal solutions within a reasonable computation time.

As an example, Table 3.4 shows the average results for CPLEX and the other metaheuris-
tic developed, the GA, from 5 to 20 vessels. In this case, the objective to be minimized is
the total service time (Ts). The timeout was set to 10 seconds. For CPLEX, the reported
values are the average value of Ts for the solutions reached (AvgTs), the number of in-
stances solved to optimality (#Opt) and the number of instances solved without certifying
optimality (#NOpt). The last two columns show the best and the average values of the
solutions obtained by the GA in 5 runs, respectively.

From these results, it can be observed that CPLEX was not able to reach any optimal
solution by the given timeout in at least 25% of the instances with 8 vessels or more. In
addition, it cannot get any optimal solution from 18 up to 20 vessels given with timeout.
Regarding GA, all instances were solved and it can be observed that the average values
were better than CPLEX results, the differences being in direct ratio with the number of

1These benchmarks are freely available at http://www.dsic.upv.es/~mrodriguez.
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Figure 3.1: Local search results depending on the K value (Dens corpus with exponential inter-
arrival distribution)

vessels. Here, it is important to remark that GA reached 2053 generations in 10 seconds.
However, the GA was able to converge in lower times.

Furthermore, Figure 3.2 shows the average total service time obtained by CPLEX and GA
for 10 vessels with different timeouts. Note that the average Ts for 10 vessels decreases
as more computation time is allowed. In this experiment, the timeout was set to 5, 10, 20,
and 60 seconds. As it can be observed, the GA approach does not require a large timeout
(the improvement is lower than 1% beyond 5 seconds).

Summarizing, both metaheuristics were developed to solve a combinatorial optimization
problem, the BAP+QCAP. Firstly, a constructive metaheuristic, GRASP, which builds
schedules by choosing one element at a time (task, container ship, product, etc.). To
this end, it is necessary to define a local heuristic to evaluate each possible next element.
Once the schedule is built, a local search is performed to improve the schedule in the
neighborhood space.
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Table 3.4: Comparision CPLEX with GA (timeout 10 secs)

|V| CPLEX GA

Avg Ts #Opt #NOpt Best Ts Avg Ts

5 267.08 100 0 267.08 267.08
6 339.25 97 3 339.21 339.21
7 417.52 88 12 416.70 416.80
8 501.41 74 26 497.70 498.05
9 585.94 58 42 575.57 576.42

10 690.91 38 62 667.50 669.57
11 797.15 24 76 759.07 763.13
12 927.85 18 82 854.45 861.35
13 1065.32 12 88 949.55 959.35
14 1212.86 6 94 1055.05 1066.19
15 1406.21 3 97 1158.88 1173.59
16 1610.21 2 98 1276.12 1296.09
17 1796.58 1 99 1379.01 1407.02
18 2101.27 0 100 1497.33 1526.94
19 2333.46 0 100 1621.19 1658.57
20 2603.36 0 100 1798.63 2090.61
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Figure 3.2: Average Ts for 10 vessels setting different timeouts.

The other metaheuristic evaluated was the genetic algorithm, a population-based meta-
heuristic. In this case, there are four operators to be defined: selection, mutation, crossover
and replacement. Due to the fact that this metaheuristic consists of different solutions
(chromosomes) evolving in each generation, it could do a better exploration in the search
space.
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3.3 Planning and Scheduling

In real-word environments, different optimization problems or processes must be taken
into consideration at the same time to achieve an optimal solution. A small difference
in the schedule or plan for one problem may cause that the global solution became
not as optimal as expected. In this section, a decision support system was developed
which integrates BAP+QCAP (scheduling) and CStackP (planning), hereinafter named as
BAP+CStackP (Salido, Rodriguez-Molins, and Barber 2011; Salido, Rodriguez-Molins,
and Barber 2012).

This decision support system seeks near-optimal solutions for BAP+CStackP. A near-
optimal solution just for CStackP does not mean it fits the scheduling for the incoming
vessels. As an example, Figure 3.3 shows, for ten different scenarios, the combined func-
tion cost Cost(Soli), introduced in (Salido, Rodriguez-Molins, and Barber 2012), which
relates:

• The normalized total weighted waiting time of vessels, Cost(SBAPi);

• The number of its required container relocations, Cost(SCStackPi).
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Figure 3.3: Relating the costs of BAP+QCAP and CStackP.

In each of this ten cases, the arrival times and data of vessels, as well as the initial state
of the container yard, have been randomly generated. Figure 3.3 represents the combined
function cost, Cost(Soli) with three different weights of the parameters α and β. We
can see that better (or worst) berthing orders can require larger (or smaller) number of
container relocations. For instance, with α = 0.5, β = 0.5 the best choice is the sixth
schedule. It does not get the best solution for BAP+QCAP, however it corresponds to the
schedule with the smallest number of container relocations (CStackP).
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In this decision support system, there are hard tasks such as obtaining the movements
of relocations (remarshalling problem or CStackP) which they must be repeated for each
berthing plan. Thus, in order to avoid this computation time to the decision makers (ter-
minal operators), an estimation of the number of relocations or reshuffles needed for a
certain layout of the storage yard is necessary. To this end, an estimator R for the Con-
tainer Stacking Problem was defined in (Salido, Rodriguez-Molins, and Barber 2012).
This estimator depends on the following four parameters:

• Total slots in a yard-bay (maximum number of allowed containers).

• Current containers stacked in the yard-bay.

• Goal (or export) containers to be loaded into the next container ship.

• Containers on top of other goal containers.

Once the system returns a solution, the planner must be executed on the actual layout of
the container yard (CStackP) to determine the sequence of movements or reshuffles to be
carried out.

3.4 Robust scheduling

Real-world problems are essentially non-deterministic, uncertain and imprecise: there
might be unknown or incorrect information, breakdowns or failures of the resources, in-
cidences or changes of the constraints, etc (Verfaillie and Jussien 2005). This dynamism
of the real-world environments are addressed with new optimization techniques and clas-
sified according to reactive and proactive approaches (Lambrechts, Demeulemeester, and
Herroelen 2008).

On the one hand, proactive approaches are those approaches that try to accommodate
uncertainties or incidences in advance. On the other hand, reactive approaches react after
the incidence. Thereby, proactive approaches aim to build schedules protected against
disruptions during the actual scheduling execution. Reactive approaches are focused on
restoring the feasibility after the occurrence of a disruption.

In this thesis, we focused on the proactive approach. Furthermore, it is assumed that
there is no previous knowledge about the type or magnitude of the possible incidences
(breakdowns, disruptions, extreme weather events, etc.). Thus, our aim was to offer robust
schedules to the decision makers.

Our approach is based on hybrid multi-objective metaheuristics. The assessment of this
algorithm was carried out in three phases:
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• comparing it with a mathematical model (mixed integer programming model) which
extends the mathematical model presented in Section 3.2.

• assessing the differences with two well-known multi-objective genetic algorithms
(NSGAII and SPEA2+) by means of non-parametric statistical tests.

• simulating different incidences over the schedules obtained by our approach.

The dynamic and continuous BAP+QCAP problem from the container terminal was adopted
as a case study in order to introduce the developed robustness model (hereinafter named as
robust BAP+QCAP). Robust BAP+QCAP is characterized by three conflicting objective
functions:

• from the BAP+QCAP: minimize the total service time (Ts) which includes handling
and waiting times;

• from the robustness model:

– maximize the robustness measure which is related to the size of the buffer
among vessels (R).

– minimize the standard deviation of the robustness measures (σ).

Due to the lack of the available information about how likely the incidences or break-
downs occur, it is interesting that these buffers are proportionally distributed among all
the vessels. Thereby, a third objective is introduced into the model in order to improve
the robustness of a schedule.

Note that all objective functions must be in similar ranges in order to obtain proper re-
sults. Thereby, all objective functions were normalized into the interval [0, 1] (Rodriguez-
Molins, Salido, and Barber 2014b).

Two different approaches were developed to solve this problem (Rodriguez-Molins, Salido,
and Barber 2014b);

• a hybrid multi-objective metaheuristic, in particular a multi-objective genetic al-
gorithm extended with a multi-objective local search2 (MOGA+SA), was imple-
mented in C++;

• a Mixed-Integer Programming (MIP) model was implemented in IBM ILOG CPLEX
Optimization Studio.

2This multi-objective local search is based on the multi-objective simulated annealing proposed by (Bandy-
opadhyay et al. 2008) (AMOSA).
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3.4 Robust scheduling

The evaluation of the robust BAP+QCAP model presented in (Rodriguez-Molins, Salido,
and Barber 2014b), as a multi-objective optimization problem, requires the study of the
dominance of solutions as well as the Pareto fronts. Thus, Figure 3.4 shows the Pareto
fronts obtained of a representative instance by both the MOGA+SA and CPLEX. This
Pareto front is an important tool for decision makers, to assess the trade-off between T̂s
(normalized total service time) and R̂ (normalized robustness) of the different schedules
obtained according to their preferences. The Pareto front of the CPLEX consists of the
non-dominated solutions obtained by solving the mathematical model with different λ
values ranging from 0 to 1.

In this experiment, the timeout for the CPLEX solver was set to 1000 seconds for each
λ value. It is important to note that the greater the incoming vessels, the fewer solutions
obtained by CPLEX solver. Given this timeout, CPLEX was only able to get optimal
solutions when λ = 0.0 and the incoming vessels was set to 10 and 20. Considering the
Pareto fronts obtained by MOGA+SA and CPLEX, they were very similar with a queue
of 10 vessels (see Figure 3.4(a)). However, for instance with a queue 20 vessels, the
solutions obtained by CPLEX were not able to reach the quality of the Pareto front of
MOGA+SA (see Figure 3.4(b)). Furthermore, it turned out that for 40 incoming vessels
just one non-optimal solution was obtained (see Figure 3.4(d)); and even more there was
no solution with 50 vessels.

These Pareto fronts show how the MOGA+SA approach achieved more schedules spread
through the front and schedules with a better trade-off between the two conflicting objec-
tive functions T̂s and R̂ than the mathematical model (MIP).

Multi-objective optimization algorithms are not comparable directly since there is no a
unique optimal solution. (Zitzler, Knowles, and Thiele 2008) propose different measures
to compare Pareto front approximations. Among these measures, the size of the dom-
inated space or the hypervolume is one of the most used measures to differentiate two
algorithms (While, Bradstreet, and Barone 2012). This measure is related to a reference
point p and it is set according to the suggestion of (While, Bradstreet, and Barone 2012).
To this end, for each objective, it is chosen the worst value from any of the sets being
compared and increasing by an ε value.

Comparison among these different schemes has been performed by using the Kruskal-
Wallis’ non-parametric statistical test, according to (Zitzler, Knowles, and Thiele 2008).
This test assesses whether there are significant differences among different sets of values:
in this case, sets of hypervolume measures. Table 3.5 shows the values obtained for this
test given the results after solving five instances of 50 vessels with the three different
algorithms. Kruskal-Wallis test revealed a significance effect of the algorithms on the
hypervolumes (p-value< 0.01).

As there was a significance difference among them, a post-hoc test using a pairwise com-
parison test (Wilcoxon) with Bonferroni correction was carried out and showed the sig-
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(a) |V | = 10 vessels (b) |V | = 20 vessels

(c) |V | = 30 vessels (d) |V | = 40 vessels

Figure 3.4: Pareto fronts of GA and CPLEX varying the number of incoming vessels (|V |).

nificant differences between the different algorithms. As example, Table 3.6 shows the
results of the Wilcoxon test for the fifth instance. Note, MOGA+SA algorithm produces
Pareto fronts which are statistically different with respect to the other algorithms. Ex-
amining the average values in Table 3.5, it can be determined that MOGA+SA obtained
better Pareto front approximations.

These differences can be observed in the actual Pareto fronts obtained for a representa-
tive instance. Figure 3.5 shows the Pareto fronts obtained by NSGAII and MOGA+SA
algorithms. The schedules with the minimum and maximum values for each objective
are highlighted by circles. It is important to note that MOGA+SA algorithm was able to
produce a Pareto front with higher quality. Figure 3.5(a) and Figure 3.5(b) show the rela-
tionship between R̂ and T̂s. MOGA+SA algorithm turned out to achieve schedules with
greater robustness and lower T̂s values (R̂ = 1; T̂s = 0.3831) than NSGAII algorithm
(R̂ = 0.9227; T̂s = 0.4196).

The next step is assess how these robust schedules, built by the MOGA+SA, face the
incidences or disruptions that could happen during the execution of the schedule. In
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Table 3.5: Kruskal-Wallis test over the hypervolumes obtained in 5 different instances

Instance p-value Avg. Hypervolume
NSGAII SPEA2+ MOGA+SA

1 < 2.2e− 16 0.175315 0.207921 0.236660
2 < 2.2e− 16 0.174893 0.204749 0.252922
3 < 2.2e− 16 0.178945 0.216683 0.261251
4 < 2.2e− 16 0.180473 0.221138 0.258453
5 3.699e− 15 0.160139 0.173000 0.223231

Table 3.6: Wilcoxon test over the hypervolumes obtained for a given instance

NSGAII SPEA2+

SPEA2+ 0.00011 -
MOGA+SA < 2e− 16 < 2e− 16

(a) NSGAII (b) MOGA+SA

Figure 3.5: Pareto fronts obtained by using or not local search.

this experiment, 100 instances of 100 vessels were evaluated. For each instance, three
different schedules were chosen from the set of efficient solutions of the MOGA+SA
according to their robustness: the one with the minimum robustness (Rmin), the one
with the maximum robustness (RMax) and one intermediate robust schedule (Ri where
Rmin < Ri < RMax).

The performance (robustness) of the schedules obtained by our approach (MOGA+SA)
was evaluated by generating actual scenarios with some incidences in the actual handling
time of the vessels. The incidences (delays, d) introduced were randomly chosen from a
range. This range varies from a minimum value (1) to a maximum value, which is related
to the handling time (hi) of the vessel affected by the incidence (first column of Table
3.7). For each range, 100 incidences were uniformly created and applied to the three
schedules (Rm, Ri and RM ) of each instance.
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Table 3.7: Percentages of incidences absorbed in schedules of 100 vessels.

Range Rmin Ri RMax

d ∈ [1, 0.2hi] 21.78 95.51 99.95
d ∈ [1, 0.5hi] 18.73 93.58 99.85
d ∈ [1, 0.8hi] 16.64 90.49 98.96
d ∈ [1, 1.0hi] 13.92 87.10 98.01
d ∈ [1, 1.2hi] 12.93 85.31 97.15

Table 3.7 shows the percentage of incidences absorbed by each type of schedule. It can
be observed that the more robust schedule, the more incidences absorbed. For instance,
with delays d ∈ [1, 0.5hi], the Rmin schedule only absorbed 18.73% of incidences in
average, but the RMax schedule absorbed up to 99.85.%. Note that as the delay became
larger, fewer schedules can absorb the incidences. With delays in the range of [1, 0.2hi],
the RMax schedule can absorb 99.95% of incidences in average. However, with larger
ranges, the incidences absorbed decreased down to 97.15% in average.
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Conclusions

In this thesis, our main challenge has been the development of different techniques op-
timization for solving planning and scheduling problems as well as the search of robust
solutions to deal with real-world instances of optimization problems.

As No-Free-Lunch theorem states (Wolpert and Macready 1997), a general purpose uni-
versal optimization is theoretically impossible, and the only way one strategy can outper-
form another is by building special purpose methods or algorithms to solve application-
specific problems (Whitley and Watson 2005). In Artificial Intelligence community an
expression is frequently used to reflect this fact: Knowledge is Power.

In this thesis, a domain-dependent planner is presented to obtain optimized and efficient
solutions by means of local heuristics. This automatic planner can help to take decisions
in real-world problems, such as port operations in container terminals (e.g. Container
Stacking Problem or CSP). Moreover, it can help to handle different requirements and
criteria, to simulate operations, to obtain conclusions about the operation of the terminal,
to evaluate alternative configurations, to obtain performance measures, etc. For instance,
in (Salido, Sapena, et al. 2009) the proposed planner was applied to evaluate different
alternatives for the container stacking by minimizing the distance to the loading/unloading
point of containers.

Well-known metaheuristics from the literature were studied and new metaheuristics were
developed to achieve near-optimal solutions for hard combinatorial optimization prob-
lems. In particular, two metaheuristics from different fields were chosen: a constructive
metaheuristic (GRASP) and a population-based metaheuristic (GA).

Actually, these optimization problems are harder than the ones that scientific community
has been studying up to now. Usually, it is assumed that the environments were schedules
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or plans are going to be executed are deterministic, but this is not a real scenario. A
real scenario or environment is non-deterministic, dynamic and imprecise. Therefore,
techniques to deal with these situations must be designed. In this thesis, a robustness
model based on buffers between tasks has been adopted and a proactive approach has
been developed.

The robustness model presented in this thesis does not take into account any previous
knowledge of the incidences. It assesses the buffers between two tasks which share any
resource according to the duration time of the previous task. This model relies on the
assumption that it is high likely that one task will not need a buffer of 10 hours if its
expected duration is just one hour. Thereby, these buffers should be distributed among
vessels proportionally.

Introducing this model into a combinatorial optimization problem makes necessary to
adopt multi-objective optimization techniques. New objective functions must be handled
along with the former objective function from the actual problem. In this thesis, a hybrid
multi-objective genetic algorithm has been developed in order to offer to the decision
makers a set of efficient solutions from the Pareto front. Solutions that vary between the
one that could not absorb any incidence or disruption and solutions which could keep its
execution after any limited incidence. This model was applied to the Berth Allocation and
Quay Crane Assignment Problems (BAP+QCAP).

Proactive approaches offer the possibility to the decision makers to set a determined
schedule able to deal with unexpected events. However, these approaches present some
limitations, the incidences which are able to resist those schedules are usually limited.
That’s why these approaches should be applied together with reactive approaches. Once
an unexpected event has made fail the execution of the schedule, the original schedule
might be modified in order to face with this new scenario with minimum variations.

Real-world environments consist of several optimization problems. For instance, decision
makers in container terminals must face with several problems at once: berthing alloca-
tion problem, quay crane assignment problem, quay crane scheduling problem, vehicle
routing problem, etc. Usually, scientific community solves each problem independently.
However, optimizing one of them (minimizing or maximizing) does not need to lead to
the optimal solution. In this thesis, a decision support system has been developed to han-
dle two different optimization problems from the container terminals by using the above
approaches: BAP+QCAP and Container Stacking Problem. This decision support system
is a cyclic process and obtains a solution to the BAP+QCAP and then it carries out the
CSP to minimize the number of reshuffles needed for the obtained berth plan previously.
By combining these optimized solutions in our integrated system, terminal operators can
be assisted to decide the most appropriated solution in each particular scenario.
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