

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

http://dx.doi.org/10.1002/nla.1913

http://hdl.handle.net/10251/48638

Wiley

Daniel Kressner; Román Moltó, JE. (2014). Memory-efficient Arnoldi algorithms for
linearizations of matrix polynomials in Chebyshev basis. Numerical Linear Algebra with
Applications. 21(4):569-588. doi:10.1002/nla.1913.

Memory-efficient Arnoldi algorithms for linearizations of matrix

polynomials in Chebyshev basis

Daniel Kressner∗ Jose E. Roman†

November 4, 2013

Abstract

Novel memory-efficient Arnoldi algorithms for solving matrix polynomial eigenvalue
problems are presented. More specifically, we consider the case of matrix polynomials
expressed in the Chebyshev basis, which is often numerically more appropriate than the
standard monomial basis for a larger degree d. The standard way of solving polynomial
eigenvalue problems proceeds by linearization, which increases the problem size by a factor
d. Consequently, the memory requirements of Krylov subspace methods applied to the
linearization grow by this factor. In this paper, we develop two variants of the Arnoldi
method that build the Krylov subspace basis implicitly, in a way that only vectors of length
equal to the size of the original problem need to be stored. The proposed variants are
generalizations of the so called Q-Arnoldi and TOAR methods, which have been developed
for the monomial case. We also show how the typical ingredients of a full implementation
of the Arnoldi method, including shift-and-invert and restarting, can be incorporated.
Numerical experiments are presented for matrix polynomials up to degree 30 arising from
the interpolation of nonlinear eigenvalue problems which stem from boundary element
discretizations of PDE eigenvalue problems.

1 Introduction

This paper is concerned with the polynomial eigenvalue problem

P (λ)x = 0, x 6= 0, (1)

where P : C → C
n×n is a matrix polynomial of degree d. Often, P is expressed in the

monomial basis, that is,

P (λ) = A0 + λA1 + λ2A2 + · · ·+ λdAd (2)

with coefficient matrices A0, . . . , Ad ∈ C
n×n.

The numerical solution of the polynomial eigenvalue problem (1) with P as in (2) usually
proceeds by linearization. This yields an equivalent dn×dn linear eigenvalue problem L0−λL1,
to which standard linear eigenvalue solvers like the QZ algorithm or the Arnoldi method [11]
can be applied. Many different linearizations are possible, and much progress has been made

∗ANCHP, MATHICSE, EPF Lausanne, Switzerland, daniel.kressner@epfl.ch
†DSIC, Universitat Politècnica de València, Spain, jroman@dsic.upv.es

1

in the last few years in developing a unified framework [21], which allows, e.g., for structure
preservation [20] and a unified sensitivity analysis [14, 1].

The major disadvantage of linearization is that it increases the problem size by a factor
d. For example, this implies that the Arnoldi method applied to L0 − λL1 operates with a
Krylov subspace of Cdn. In large-scale applications, it is not unlikely that the need to store k
vectors of length dn to represent a k-dimensional Krylov subspace becomes a limiting factor,
especially for larger d. To reduce these memory requirements, variants of Arnoldi methods
tailored to polynomial eigenvalue problems have been developed which only require the storage
of k vectors of length n. Examples of such methods include SOAR [3] (second-order Arnoldi
method) and Q-Arnoldi [22] (quadratic Arnoldi method). Both methods have in common that
they implicitly run the standard Arnoldi method and exploit the structure of the linearization
to reduce memory requirements. They mainly differ in the way eigenvalues approximations
are obtained: SOAR uses a projection of the original polynomial eigenvalue problem while
Q-Arnoldi uses a projection of the linearization – just what the standard Arnoldi method
would do. This makes it much simpler to implement restarting and locking procedures for
Q-Arnoldi, at the price of losing the accelerated convergence sometimes observed for SOAR.
Note that both SOAR and Q-Arnoldi have originally been defined for the quadratic case
(d = 2), but they extend in a direct fashion to arbitrary degree, see, e.g., [18].

The standard Arnoldi method combined with appropriate reorthogonalization is numeri-
cally backward stable [25]. In contrast, both SOAR and Q-Arnoldi may suffer from numerical
instabilities due the fact that the relations of the Arnoldi method are only maintained im-
plicitly. Numerical evidence suggests that these instabilities become more pronounced as d
increases. Recently, a new variant called TOAR [19] (two-level orthogonal Arnoldi procedure)
has been proposed that provably avoids the instabilities of Q-Arnoldi. This is achieved by
a more explicit representation of the orthogonality relations in the Arnoldi method, with-
out increasing the storage requirements significantly. Although some details, such as robust
restarting and locking procedures, are still under development, TOAR appears to be a very
promising alternative to SOAR and Q-Arnoldi.

In this paper, we will specifically consider the case of matrix polynomials of high degree,
say d = 16 or d = 40. Such high degrees typically result from the approximation of a nonlinear
problem, for example, by means of Taylor expansion [15], polynomial interpolation [6, 7, 9]
or Hermite interpolation [29]. It is well known that the monomial representation (2) leads to
severe numerical difficulties for high degrees, unless the eigenvalues are (nearly) distributed
along a circle [23]. In the (more typical) case when the eigenvalues on or close to an interval
I ⊂ R are of interest, a non-monomial representation is numerically much more suitable.
More specifically, if we consider w.l.o.g. I = [−1, 1] (which can always be achieved by an
affine linear transformation) then a numerically reliable representation [28] is given by

P (λ) = τ0(λ)A0 + τ1(λ)A1 + · · ·+ τd(λ)Ad, (3)

where τ0, τ1, . . . , τd denote the Chebyshev polynomials of the first kind.
Again, linearization techniques can be used to solve eigenvalue problems for matrix poly-

nomials of the form (3) numerically. Linearizations for general polynomial bases satisfying
a three-term recurrence have recently been proposed in [2]. The aim of this paper is to
develop memory-efficient Arnoldi algorithms, similar to the ones discussed above, for such
linearizations. We believe that this extension is particularly important when dealing with ap-
proximations to nonlinear eigenvalue problems. The reduced memory requirements may allow

2

one to work with much higher polynomial degrees for large-scale problems and consequently
result in a significantly improved quality of the approximation.

The rest of this paper is organized as follows. In Section 2, we recall the linearization
of polynomials in the Chebyshev basis and some of its fundamental properties. Section 3
shows that the Q-Arnoldi algorithm can be extended to this situation in an elegant way.
For practical purposes, however, a variant of TOAR developed in Section 4 appears to be
more important. In Section 5, we demonstrate the efficiency of this new variant of TOAR
for addressing polynomial eigenvalue problems arising from the polynomial interpolation of
discretized PDE eigenvalue problems.

2 Preliminaries

In this section, we briefly recall the linearization from [2] for a polynomial eigenvalue problem

(
A0τ0(λ) + · · ·+Adτd(λ)

)
x = 0, (4)

where τ0, . . . τd are the Chebyshev polynomials of first kind, defined by the recurrence

τ0(λ) = 1, τ1(λ) = λ, τj+1(λ) = 2λτj(λ)− τj−1(λ). (5)

Then the dn× dn matrices

L0 =




0 I
I 0 I

. . .
. . .

. . .

I 0 I
−A0 · · · −Ad−3 Ad −Ad−2 −Ad−1



, L1 =




I
2I

. . .

2I
2Ad



, (6)

yield a linear eigenvalue problem
L0y = λL1y, (7)

which turns out to be a strong linearization of (4). More specifically, if (λ, x) is an eigenpair
of the polynomial eigenvalue problem (4) then (λ, v) is an eigenpair of (7), with

v =




τ0(λ)x
τ1(λ)x

...
τd−1(λ)x


 =




x
τ1(λ)x

...
τd−1(λ)x


 . (8)

This can be directly seen from the structure of the matrices in (6), using the recurrence (5).
Conversely, any eigenvector of L0−λL1 has the structure (8), see [21, Theorem 3.8], and thus
easily allows for the extraction of the eigenvector x from its first n entries.

The concept of invariant pairs [4, 5, 16] generalizes the relations above from eigenvectors
to subspaces. A pair (X,Λ) ∈ C

n×k×C
k×k is called an invariant pair for (4) if it satisfies the

matrix equation
A0Xτ0(Λ) +A1Xτ1(Λ) + · · ·+AdXτd(Λ) = 0, (9)

3

where τj(Λ) is defined in the sense of the usual matrix polynomial. Then (V,Λ) is an invariant
pair of (7), with

V =




Xτ0(Λ)
Xτ1(Λ)

...
Xτd−1(Λ)


 =




X
Xτ1(Λ)

...
Xτd−1(Λ)


 , (10)

see also [9]. Invariant pairs generalize the notion of eigenpairs in the following sense: If (X,Λ)
is minimal, i.e., V has full column rank, then the eigenvalues of Λ are eigenvalues of (4) and
span(X) contains the corresponding (generalized) eigenvectors [16]. The structure of (10)
suggests a simple way of extracting such a minimal invariant pair (X,Λ) from the solution
of the linearized eigenvalue problem; we refer to [4, 9] for more details. It is important
to remark that the process of linearization may increase the sensitivity of the eigenvalue
problem, in particular when the norm of the coefficients Aj varies strongly. In this case, it
is usually helpful to perform iterative refinement after the extraction procedure. This can be
performed by applying the Newton method to the equation (9) combined with a normalization
condition [4, 16].

3 A P-Arnoldi method

In this section, we develop a new variant of the P-Arnoldi method for polynomials in the
Chebyshev basis. Here, P-Arnoldi stands for the extension of Meerbergen’s Q-Arnoldi me-
thod [22] to polynomials of higher degree (in the monomial basis). Our new method essentially
consists of applying the standard Arnoldi method to

A = L−1
1 L0 =

1

2




0 2I
I 0 I

. . .
. . .

. . .

I 0 I

−A−1
d A0 · · · −A−1

d Ad−3 I −A−1
d Ad−2 −A−1

d Ad−1




(11)

implicitly, such that the generated basis can be represented in a memory-efficient way.

Algorithm 1 Arnoldi method

Input: Matrix A, starting vector u 6= 0, k ∈ N.
Output:Matrix U and vector u such that

[
U, u

]
is an orthonormal basis of the

Krylov subspace Kk+1(A, u) = span{u,Au, . . . ,Aku}.

1: Normalize u← u/‖u‖2 and set U ← []
2: for j = 1, 2, . . . , k do

3: Update U ←
[
U, u

]

4: Compute w ← Au
5: Compute hj ← U∗w
6: Compute ũ← w − Uhj
7: Set hj+1,j = ‖ũ‖2
8: Normalize u← ũ/hj+1,j

9: end for

4

Algorithm 1 shows the standard Arnoldi method, which produces the so called Arnoldi
relation

AU = UH + βue∗k, (12)

where H is a Hessenberg matrix collecting the vectors hj and scalars hj+1,j generated during
the algorithm. Moreover, β = hk+1,k, and ek is the kth unit vector of length k. It will
sometimes be convenient to express the Arnoldi decomposition (12) as

AU =
[
U, u

]
H, (13)

where H =

[
H
βe∗k

]
.

For simplicity, the description of Algorithm 1 omits some important implementation
details, such as reorthogonalization. We refer, e.g., to the ARPACK users’ guide [17] or
SLEPc [13] documentation for such details.

3.1 Structure of the Krylov subspace basis

As the polynomial degree d increases, the memory consumption of Algorithm 1 grows signifi-
cantly due to the need to store the dn×k basis U . In the following, we explain how this effect
can be avoided by exploiting the structure of U induced by the structure of the linearization.
For this purpose, we partition

U =




U0
...

Ud−1


 , u =




u0
...

ud−1


 (14)

conformally with A. The goal of our P-Arnoldi method will be to carry out all computations
without explicit reference to the U1, . . . , Ud−1 blocks, so that only the n× k matrix U0 needs
to be stored.

A compact representation of U can be derived from the block rows of the Arnoldi de-
composition (13). For example, by using the structure of A in (11) the first block row gives

U1 =
[
U0, u0

]
H. (15)

The second block row gives
1

2
U0 +

1

2
U2 =

[
U1, u1

]
H,

and hence U2 = 2
[
U1, u1

]
H − U0. More generally, the jth row block yields

Uj = 2
[
Uj−1, uj−1

]
H − Uj−2, j = 2, . . . , d− 1. (16)

This already shows that we can reconstruct all Uj blocks from U0, u, H, and β. The following
lemma yields a more explicit expression for (16).

Lemma 1. Given an Arnoldi decomposition (13), with U and u partitioned as in (14), the
relation

Uj = ŨjBj (17)

5

holds for all j = 1, . . . , d−1, where Ũj =
[
U0, u0, . . . , uj−1

]
, and Bj is defined by the recurrence

B0 = Ik, B1 = H, Bj = 2

[
Bj−1 0
0 1

]
H −




Bj−2

0
0


 . (18)

Proof. The proof proceeds by induction with respect to j. The case j = 0 trivially holds and
the case j = 1 follows directly from (15). For the induction step, we assume that relation (17)
holds for j − 1 and j. Then the (j + 1)th block row of (13) gives

Uj+1 = 2
[
Uj , uj

]
H − Uj−1 = 2

[
ŨjBj , uj

]
H − Uj−1

= 2
[[
Ũj−1, uj−1

]
Bj , uj

]
H − Uj−1

= 2
[
Ũj−1, uj−1, uj

] [Bj 0
0 1

]
H − Ũj−1Bj−1

=
[
Ũj−1, uj−1, uj

]

2

[
Bj 0
0 1

]
H −




Bj−1

0
0






= Ũj+1Bj+1.

This shows relation (17) for j + 1, which concludes the proof.

Considering Algorithm 1, the operations that need to be performed with Uj are matrix-
vector products with Uj itself or with U∗

j . Lemma 1 implies that these matrix-vector products
can be performed without storing or constructing U1, . . . , Ud, once we have precomputed the
(k + j) × k matrices Bj . However, this precomputation yields an additional cost of order
O(dk3), which can actually be avoided. This will be a consequence of the following result.

Lemma 2. Given an Arnoldi decomposition (12), with U and u partitioned as in (14), the
relation

Uj = U0τj(H) + βu0e
∗
k τ̃j(H) + 2β

j−1∑

i=1

uie
∗
kτ̃j−i(H) (19)

holds for all j = 1, . . . , d− 1, where τ̃0, . . . , τ̃d−1 denote the Chebyshev polynomials of second
kind, defined by the recursion

τ̃0(λ) = 0, τ̃1(λ) = 1, τ̃j+1(λ) = 2λτ̃j(λ)− τ̃j−1(λ). (20)

Proof. Again, the proof proceeds by induction with respect to j. The case j = 0 trivially
holds. For the case j = 1, consider the first block row of (12):

U1 = U0H + βu0e
∗
k = U0τ1(H) + βu0e

∗
kτ̃1(H).

This coincides with (19) for j = 1. For the induction step, we assume that relation (19) holds

6

for j − 1 and j. Then the (j + 1)th block row of (13) gives

Uj+1 = 2UjH − Uj−1 + 2βuje
∗
k

= U0 (2τj(H)H − τj−1(H)) + βu0e
∗
k (τ̃j(H)H − τ̃j−1(H))

+4β

j−1∑

i=1

uie
∗
kτ̃j−i(H)H − 2β

j−2∑

i=1

uie
∗
k τ̃j−i−1(H) + 2βuje

∗
k

= U0τj+1(H) + βu0e
∗
kτ̃j+1(H) + 2β

j−2∑

i=1

uie
∗
kτ̃j−i+1(H)

+4βuj−1e
∗
kH + 2βuje

∗
k

= U0τj+1(H) + βu0e
∗
kτ̃j+1(H) + 2β

j∑

i=1

uie
∗
kτ̃j−i+1(H),

which coincides with (19) for j + 1 and thus concludes the proof.

3.2 Algorithmic details

We now proceed with discussing the efficient implementation of the three main computational
tasks required by the Arnoldi algorithm, i.e., steps 4–6 in Algorithm 1. The first task, the
matrix-vector product with A, is straightforward and is shown in Algorithm 2.

Algorithm 2 P-Arnoldi: Matrix-vector product with A

Input: Matrix A, vector u partitioned as in (14)
Output:Vector w = Au partitioned as u

1: Set w0 = u1
2: for j = 1, . . . , d− 2 do

3: Set wj =
1
2(uj−1 + uj+1)

4: end for

5: Compute wd−1 =
1
2ud−2 −

1
2A

−1
d

d−1∑

i=0

Aiui

For steps 5 and 6, which perform the orthogonalization against the Arnoldi basis U , we
will make use of Lemma 2. In step 5 of Algorithm 1, the orthogonalization coefficient hj is
computed, which amounts to evaluating an expression of the form

hj =
d−1∑

j=0

U∗
j wj =

d−1∑

j=0

τj(H
∗)U∗

0wj + β
d−1∑

j=0

u∗0wj τ̃j(H
∗)ek + 2β

d−1∑

j=0

j−1∑

i=1

u∗iwj τ̃j−i(H
∗)ek (21)

for given vectors w0, . . . , wd−1. The first sum in (21) can be evaluated by Clenshaw’s algorithm
[8] for evaluating polynomials in Chebyshev basis. This requires the computation of d − 1
matrix-vector products U∗

0wj , which can be reorganized as a single matrix-matrix product:
U∗
0 [w0, . . . , wd−1]. The last two sums in (21) amount to a matrix-matrix multiplication with

the k × (d− 1) matrix

T = β [τ̃d−1(H
∗)ek, . . . , τ̃2(H

∗)ek, τ̃1(H
∗)ek] (22)

7

which can be formed recursively from right-to-left using the recurrence relation (20). These
ideas lead to Algorithm 3.

Algorithm 3 P-Arnoldi: Orthogonalization coefficients hj

Input: Matrices U0, H, vectors u, w partitioned as in (14), scalar β
Output:Vector hj = U∗w

1: Compute Y = U∗
0

[
w0, w1, . . . , wd−1

]

2: Set bd−1 = Y ed and bd−2 = Y ed−1 + 2H∗bd−1

3: for j = d− 3, d− 4, . . . , 1 do

4: Set bj = Y ej+1 + 2H∗bj+1 − bj+2

5: end for

6: Set s1 = Y e1 +H∗b1 − b2
7: Build matrix T in (22)
8: Compute Z =

[
u0, . . . , ud−2

]∗[
w1, . . . , wd−1

]
.

9: Set v = Z(1, :)T

10: for j = 2, . . . , d− 1 do

11: Compute v(1 : d− j) = v(1 : d− j) + Z(j, 1 : d− j)T

12: end for

13: Return hj = s1 + Tv

Finally, step 6 of Algorithm 1 requires the computation of

U0b, U1b, . . . , Ud−1b

for a given vector b. Using Lemma 2, this means that we have to evaluate

Ujb = U0τj(H)b+ βu0e
∗
k τ̃j(H)b+ 2β

j−1∑

i=1

uie
∗
kτ̃j−i(H)b

for j = 0, . . . , d− 1. After precomputing

T = β
[
τ0(H)b, . . . , τd−1(H)b

]
, T̃ = β

[
τ̃1(H)b, . . . , τ̃d−1(H)b

]
, (23)

using the recurrence relations, this formula can be easily evaluated, see Algorithm 4.
To summarize, the P-Arnoldi method for polynomials in Chebyshev basis is Algorithm 1

with steps 4–6 realized by Algorithms 2–4. This allows to work with U0 only and thus reduces
the memory requirements from O(dnk) to O(kn+ dn). Similarly to the monomial case [22],
the P-Arnoldi method easily allows for the use of implicit restarting and locking techniques,
e.g., by means of the Krylov-Schur algorithm [26].

4 A shift-and-invert TOAR method

The P-Arnoldi method applied to A can be expected to first converge to the eigenvalues in the
periphery of the spectrum [25]. However, often the eigenvalues of interest are those closest to
a given target value σ, which is typically in the interior of the spectrum. The shift-and-invert
technique addresses this problem by applying the Arnoldi method to (A−σI)−1, which maps

8

Algorithm 4 P-Arnoldi: Matrix-vector product Ub

Input: Matrices U0 = [u1, . . . , uk], H, vector u partitioned as in (14), vector b, scalar
β

Output:Ub

1: Build matrices T and T̃ in (23)
2: Compute [v1, . . . , vd−1] := eTk T̃
3: Set

C =




v1 v2 v3 · · · vd−1

2v1 2v2 · · · 2vd−2

2v1
. . .

...
. . . 2v2

2v1




4: Return vec(U0T + [u0, . . . , ud−2]C)

the eigenvalues closest to σ to largest magnitude eigenvalues. In this section, we focus on the
particular case σ = 0 and comment on the case σ 6= 0 in Section 4.3.

After k steps of the Arnoldi method applied to A−1 we obtain a relation of the form

A−1U = UH + βue∗k. (24)

Multiplying with A and H−1 from both sides to (24) yields

AU = UH−1 + βũẽ∗ (25)

with ũ = −Au and ẽ = H−∗ek. This has (nearly) the same form as (12) and an obvious
extension of Lemma 2 can be applied. Hence, the relation (25) makes it possible to extend
the P-Arnoldi to this situation. Note that the extraction of Ritz pairs is performed in the
standard way, i.e., based on (24). When performing experiments with the resulting P-Arnoldi
method for A−1, we encountered numerical difficulties for larger d. These difficulties are due
to the fact that the norms of τj(H

−1) grow quickly if H−1 has eigenvalues too far away from
the interval [−1, 1]. Although in applications involving larger d one is normally only interested
in eigenvalues on or close to that interval, this does not prevent some Ritz values from being
far away from [−1, 1]. To some extent, these problems can be addressed by using a restarting
strategy that purges all such Ritz values. However, it turns out that there is a more elegant
solution, which will be discussed in this section.

4.1 Two-level orthogonalization Arnoldi (TOAR)

The instability of the P-Arnoldi method is due to the presence of τj(H
−1) in the representation

of the orthonormal Arnoldi basis U . In the following, we will extend the TOAR method [19],
which avoids the use of such polynomials and thus preserves stability, to polynomials in
Chebyshev basis. More specifically, TOAR uses the representation

[U, u] =




QV0 Qv0
...

...
QVd−1 Qvd−1


 =




Q
. . .

Q



[
V v

]
, (26)

9

with Q ∈ C
n×(d+k), Q∗Q = I, and V ∈ C

d(d+k)×k, [V, v]∗[V, v] = I. Note that it may happen
that the number of columns of Q becomes less than d+ k in the course of the method , due
to the removal of linearly dependent vectors. For simplicity, we neglect this possibility in the
following description and refer to [19] for details.

Similar to the previous section, we will now discuss the efficient implementation of steps 4–
6 of the Arnoldi method (Algorithm 1) applied to A−1, and the expansion of the basis repre-
sentation (26).

Matrix-vector product. To compute w = A−1u with u represented as in (26), we have
to solve the linear system




w0

w1
...

wd−2

wd−1



=




0 I
I 0 I

. . .
. . .

. . .

I 0 I
−A0 · · · −Ad−3 Ad −Ad−2 −Ad−1




−1 


Qv0
2Qv1
...

2Qvd−2

2AdQvd−1



.

This can be solved with the recurrences described in [9, §2.3]. For odd indices, the recurrence
takes the form

w1 = Qv0, w2j+1 = 2Qv2j − w2j−1, j = 1, 2, . . . , (27a)

while for even indices
w2j = y2j−1 + (−1)jw0, j = 1, 2, . . . , (27b)

where
y1 = 2Qv1, y2j+1 = 2Qv2j+1 − y2j−1, j = 1, 2, . . . , (27c)

and w0 is obtained from solving the linear system

(−A0 +A2 −A4 +A6 − · · ·)w0 = (A1w1 +A3w3 +A5w5 + · · ·)

+(A2y1 +A4y3 +A6y5 + · · ·).

For this purpose the LU decomposition of M = (−A0 +A2 −A4 +A6 − · · ·) is precomputed
once and for all. As we will see below, only the first block w0 is needed in the subsequent steps
of the Arnoldi method. This results in a (minor) computational saving, see Algorithm 5. On
the other hand, there is some overhead involved with reconstructing the vector u from Q and
v. Fortunately, this computation can be arranged in a way such that a single matrix-matrix
multiplication is sufficient, see step 5 of Algorithm 5.

Computation of U∗w. The first step of the orthogonalization procedure consists of com-
puting U∗w = V ∗(I ⊗ Q)∗w, where ⊗ denotes the usual Kronecker product. Taking into
account the presence of Q in the recurrences (27), the following lemma derives analogous
recurrences for the components of ŵ = (I ⊗Q)∗w.

Lemma 3. For given v0, . . . , vd−1 and ŵ0 = Q∗w0 ∈ C
k, let the vectors ŵi, i = 1, . . . , d − 1

be defined by the recurrences

ŵ1 = v0, ŵ2j+1 = 2v2j − ŵ2j−1, j = 1, 2, . . . , (28a)

ŵ2j = ŷ2j−1 + (−1)jŵ0, j = 1, 2, . . . , (28b)

ŷ1 = 2v1, ŷ2j+1 = 2v2j+1 − ŷ2j−1, j = 1, 2, (28c)

10

Algorithm 5 TOAR: Matrix-vector product with A−1

Input: Matrices A and Q, input vector v.
Output:First component w0 of w = A−1u, where u = (I ⊗Q)v.

1: Set Y ←
[
v0, 2v1

]

2: for i = 2, 3, . . . , d− 2 do

3: Update Y ←
[
Y, 2vi − yi−2

]

4: end for

5: Compute Z ← QY

6: Compute w ← −Adzd−2 +
d−1∑

i=1

Aizi−1

7: if d is even then

8: Update w ← w +Ad(2AdQvd−1 − zd−3)
9: end if

10: Solve linear system w0 ←M−1w with M =

⌊(d−2)/2⌋∑

j=0

(−1)(j+1)A2i

Then the relations

1. wi = Qŵi and yi = Qŷi hold for all odd i;

2. wi = Qŵi + (−1)i/2(I −QQ∗)w0 holds for all even i;

where wi and yi are defined by the recurrences (27). In particular, ŵi = Q∗wi for i =
1, . . . , d− 1.

Proof. 1. We prove the first part by induction over i. The case i = 1 immediately follows
from the definition of the recurrences. Now suppose that wi = Qŵi and yi = Qŷi hold for
i = 2j − 1. Then (27a) implies

wi+2 = w2j+1 = 2Qv2j − w2j−1 = Q(2v2j − ŵ2j−1) = Qŵi+2,

where we have used (28a). Similarly, (27c) implies

yi+2 = y2j+1 = 2Qv2j+1 − y2j−1 = Q(2v2j+1 − ŷ2j−1) = Qŷi+2.

2. The case i = 0 follows from rearranging the relation Qŵ0 = QQ∗w0 = w0 − (I −QQ∗)w0.
For i = 2j with j ≥ 1, we obtain from (27b), (28b), and the relation y2j−1 = Qŷ2j−1 from the
first part that

Qŵ2j = Qŷ2j−1 + (−1)jQŵ0 = y2j−1 + (−1)j (w0 − (I −QQ∗)w0)

= w2j − (−1)j(I −QQ∗)w0,

which concludes the proof of the second part.

After w0 has been computed by Algorithm 5, the recurrences (28) of Lemma 3 allow us
to compute the orthogonalization coefficients hj =

[
U, u

]∗
w cheaply:

hj =
[
V v

]∗



Q
. . .

Q




∗ 


w0
...

wd−1


 =

[
V v

]∗



ŵ0
...

ŵd−1


 . (29)

11

Expansion of basis. From the discussion above, it is already clear that the vector w0

carries all the information needed for expanding the basis. The following theorem formalizes
this statement.

Theorem 4. Suppose that
[
U, u

]
satisfies the Arnoldi decomposition (24) and is partitioned

as in (14). Moreover, let Q be an orthonormal basis of span
{
U0, u0, U1, u1, . . . , Ud−1, ud−1

}
.

Consider the vector ũ that is obtained from orthogonalizing w = A−1u against span
{
U, u

}
.

Then
span

{
U0, u0, ũ0, U1, u1, ũ1, . . . , Ud−1, ud−1, ũd−1

}
= span{Q,w0},

where w0 is the first block of w.

Proof. Inspecting the recursions (27), the vectors w1, . . . , wd−1 are obtained as linear combi-
nations of w0 and vectors from span{Q}. We therefore have

span
{
U0, u0, w0, U1, u1, w1, . . . , Ud−1, ud−1, wd−1

}
= span{Q,w0},

which completes the proof because replacing w by ũ = w −
[
U, u

][
U, u

]∗
w does not change

the space on the left.

According to Theorem 4, we expand Q with a new vector q computed as αq = w0−Qŵ0,
where ŵ0 = Q∗w0 and α = ‖w0 − Qŵ0‖2. The next step in the Arnoldi process consists of
completing the orthogonalization of w:

ũ = w − [U, u]hj =




w0
...

wd−1


−




Q
. . .

Q



[
V v

]
hj . (30)

For this purpose, we first compute the vector s resulting from Gram-Schmidt orthogonaliza-
tion of ŵ = (I ⊗Q)∗w against [V, v]:




s0
...

sd−1


 =




ŵ0
...

ŵd−1


−

[
V v

]
hj . (31)

Using the relations of Lemma 3, the blocks of (30) with odd index satisfy

ũ2j+1 = w2j+1 −Q(ŵ2j+1 − s2j+1) = Qs2j+1,

while the blocks with even index satisfy

ũ2j = w2j −Q(ŵ2j − s2j) = Qs2j + (−1)j(I −QQ∗)w0 =
[
Q q

] [s2j
(−1)jα

]
.

Therefore, the orthogonal matrix [V, v] is expanded with the vector

ṽ =
[
s∗0, α, s

∗
1, 0, s

∗
2,−α, s

∗
3, 0, . . .

]∗

after normalization. Note that ‖ṽ‖2 = ‖ũ‖2 =: hj+1,j .

12

Algorithm 6 Two-level orthogonalization Arnoldi (TOAR) method for A−1

Input: Matrix A, starting vector u 6= 0, k ∈ N

Output:Matrices Q,
[
V, v

]
such that the matrix

[
U, u

]
defined in (26) is an or-

thonormal basis of Kk+1(A
−1, u)

1: Normalize u← u/‖u‖2
2: Compute QR factorization

[
u0, u1, . . . , ud−1

]
= QR with R = [r0, . . . , rd−1] ∈ R

d×d

3: Set V ← [] and v ←
[
r∗0, r

∗
1, . . . , r

∗
d−1

]∗
4: for j = 1, 2, . . . , k do

5: Compute w0 using Algorithm 5
6: Compute ŵ0 ← Q∗w0 and q̃ ← w0 −Qx̂0
7: Normalize α← ‖q̃‖2, q ← q̃/α
8: Update Q←

[
Q, q

]

9: Compute ŵi for i = 1, . . . , d−1 using the recurrences (28) and set ŵ ←
[
ŵ∗
0, . . . , ŵ

∗
d−1

]∗

10: Compute hj ←
[
V, v

]∗
ŵ and s← ŵ −

[
V, v

]
hj

11: Update components of V : V0 ←
[
V0 v0
0 0

]
, V1 ←

[
V1 v1
0 0

]
, . . ., Vd−1 ←

[
Vd−1 vd−1

0 0

]

12: Set ṽ =
[
s∗0, α, s

∗
1, 0, s

∗
2,−α, s

∗
3, 0, . . .

]∗
13: Normalize v ← ṽ/hj+1,j with hj+1,j = ‖ṽ‖2
14: end for

Summary. The considerations above lead to the TOAR method for A−1 summarized in
Algorithm 6. The first and second level orthogonalizations are carried out in line 6 and 10,
respectively. In both cases, reorthogonalization can (and should) be done if required. Apart
from the memory savings, Algorithm 6 also entails a significant increase of computational
efficiency compared to standard Arnoldi or P-Arnoldi for larger d. This is due to fact that
orthogonalization is much cheaper, with the main cost being concentrated in the first level,
which involves only the matrix Q. Although the second level orthogonalization causes some
overhead, its cost remains negligible for n≫ k.

4.2 Krylov-Schur Restart

In practical implementations of Arnoldi methods, it is fundamental to incorporate an effective
restarting strategy. In the following, we will propose such a strategy for TOAR based on the
Krylov-Schur method, by adapting and extending the discussion on implicit restarting TOAR
for the monomial representation in [27].

The Krylov-Schur method [26] is based on generalizing the Arnoldi decomposition (24) to
a Krylov decomposition

A−1U = UB + ub∗, (32)

where B is a general k × k matrix (not necessarily in Hessenberg form) and b is a general
vector of length k.

To restart the Krylov decomposition (32), we first compute the Schur form B = Y SY ∗

with an upper triangular matrix S and a unitary matrix Y . Applying this transformation
to (32) yields

A−1Ũ = ŨS + ub̃∗, (33)

13

where Ũ = UY and b̃ = Y ∗b. The ordering of the eigenvalues in the Schur form S is such
that the p < k Ritz values of interest are contained in its leading principal p × p submatrix
Š. We then truncate (33) to

A−1Ǔ = Ǔ Š + ub̌∗, (34)

with Ǔ = UY̌ , where Y̌ contains the first p columns of Y and b̌ contains the first p entries
of b̃. The Arnoldi process is continued from (34) by expanding the decomposition again to
order k, truncating it back to order p, and so on.

Let us now consider the case that the decomposition (32) has been generated with Al-
gorithm 6, yielding the representation (26) of

[
U, u

]
. Then the components of U satisfy

Uj = QVj with orthonormal Q ∈ C
n×(d+k) and Vj ∈ C

(d+k)×k. In principle, the restarting
procedure described above can be implemented in a straightforward fashion, by simply keep-
ing only the first p columns of VjY . However, this would not effect the desired reduction as
the (usually much larger) factor Q remains of the same size.

In order to also truncateQ, let us recall that Theorem 4 implies that
[
U0, u0, U1, u1, . . . , Ud−1, ud−1

]

and consequently also
[
V0, v0, V1, v1, . . . , Vd−1, vd−1

]
have rank d+k only. Similarly, the matrix

[
V0Y̌ , v0, V1Y̌ , v1, . . . , Vd−1Y̌ , vd−1

]
(35)

has rank d+ p. This is due to its relation to the truncated Krylov-Schur decomposition (34),
which can be retransformed into a standard Arnoldi decomposition [26] of order p (with
different starting vector) and hence Theorem 4 applies. By, e.g., a truncated SVD, we can
find an orthonormal matrix W ∈ C

(d+k)×(d+p) such that its columns span the row space of
the matrix in (35). If we now define

Q̌ = QW, V̌j = W ∗Vj Y̌ , v̌j = W ∗vj , j = 0, . . . , d− 1,

then we obtain the following representation of the truncated Arnoldi basis Ǔ :

[Ǔ , u] =




Q̌V̌0 Q̌v̌0
...

...

Q̌V̌d−1 Q̌v̌d−1


 .

This is exactly the form of the usual representation (26) in the TOAR method, allowing us
to expand the truncated Arnoldi decomposition (34) using the techniques of Algorithm 6.

4.3 Extension to σ 6= 0

In this section, we briefly discuss the extension of the TOAR method described above to σ 6= 0,
that is, the shift-and-invert Arnoldi method operating with (L0 − σL1)

−1L1 for a nonzero
shift σ. For this purpose, it is useful to note that the recurrences (27), which provided the
foundation of TOAR, can be derived from a block LU factorization of the matrix L0.

In the following, we derive a generalization of the recurrences (27) from a block LU
factorization of the matrix

L0 − σL1 =




−σI I
I −2σI I

I −2σI I
. . .

. . .
. . .

I −2σI I
−A0 −A1 · · · −Ad−3 Ad −Ad−2 −Ad−1 − 2σAd




. (36)

14

For this purpose, we proceed in a way analogous to the proof of [2, Theorem 3.1]. We first
permute the block columns as follows:

(L0 − σL1)Π =




I −σI
−2σI I I
I −2σI I

. . .
. . .

. . .

I −2σI I
−A1 · · · −Ad−3 Ad −Ad−2 −Ad−1 − 2σAd −A0




,

with the block cyclic shift Π =
[

0 In
I(d−1)n 0

]
. This matrix has the block LU factorization LσUσ

with

Lσ =




I
−2σI I
I −2σI I

. . .
. . .

. . .

I −2σI I
−A1 · · · −Ad−3 Ad −Ad−2 −Ad−1 − 2σAd P (σ)




and

Uσ =




I −τ1(σ)I
I −τ2(σ)I

I −τ3(σ)I
. . .

...
I −τd−1(σ)I

I




.

Hence,
(L0 − σL1)

−1 = ΠU−1
σ L−1

σ . (37)

Note that U−1
σ is identical with Uσ, except for a sign change in the first d − 1 blocks of the

last block column.
Using (37) and the block structure of Lσ, Uσ, we will now discuss the computation of w =

(L0−σL1)
−1L1u for a vector u =

[
u∗0, u

∗
1, · · · , u

∗
d−1

]∗
. First, the components y0, y1, . . . , yd−1 ∈

C
n of

y := L−1
σ L1u

are given by

y0 = u0

y1 = 2u1 + 2σy0

y2 = 2u2 + 2σy1 − y0
...

yd−2 = 2ud−2 + 2σyd−3 − yd−4

yd−1 = w0,

with

w0 := P (σ)−1 [2Adud−1 +A1y0 + · · ·+Ad−3yd−4 + (Ad−2 −Ad)yd−3 + (Ad−1 + 2σAd)yd−2] .

15

Using that
w = ΠU−1

σ y,

this yields the following expressions for its components w0, w1, . . . , wd−1 ∈ R
n:

w0 = w0

w1 = u0 + τ1(σ)w0

w2 = 2u1 + 2σy0 + τ2(σ)w0

w3 = 2u2 + 2σy1 − y0 + τ3(σ)w0

...

wd−1 = 2ud−2 + 2σyd−3 − yd−4 + τd−1(σ)w0.

These formulas can be used in place of the recurrences (27) to develop a TOAR method for
nonzero σ. In particular, when applying (L0−σL1)

−1L1 to a vector u represented as in (26),
it is possible to pull out the matrix Q and derive recurrences for the reduced vectors analogous
to (28), Apart from these changes, there is only one additional modification required to adapt
Algorithm 6: the vector ṽ generated in step 12 of Algorithm 6 to expand V now takes the
form

ṽ =




s0
τ0(σ)α
s1

τ1(σ)α
...

sd−1

τd−1(σ)α




. (38)

Remark 5. The linearizations discussed in [2] for general polynomial bases satisfying a three-
term recurrence relation all admit a highly structured block LU factorization similar to the
one discussed above. It is therefore likely that the TOAR method can be extended to this more
general setting. However, we feel that a detailed discussion would go beyond the scope of this
paper.

5 Numerical experiments

We have evaluated the performance of the shift-and-invert TOAR method from Section 4 on
three application problems. Our examples arise from certain discretizations of elliptic PDE
eigenvalue problems, leading to a nonlinear eigenvalue problem

T (λ)x = 0, x 6= 0, (39)

where T : C → C
n×n is an analytic matrix-valued function. The solution of this problem

can be approximated by replacing T (λ) with a polynomial P (λ) interpolating T at d + 1
interpolation points. In particular, when the eigenvalues on or very close to a real interval
are of interest, interpolation in the Chebyshev points can be used. As discussed in [9], the
resulting polynomial P of degree d can be easily represented in the Chebyshev basis. After
evaluating T (λ) for d+ 1 values of λ, the rest of the computation proceeds with P (λ). This

16

gives an advantage, compared to solvers directly addressing (39), when the evaluation of T (λ)
is very costly.

The TOAR method applied to the linearization of P results in an approximate invariant
pair (V,Λ), where V has the form (10). As discussed in Section 2, we can then extract an
approximate invariant pair (X,Λ) for P . Subsequently, we apply 1 or 2 iterations of Newton’s
method to refine (X,Λ). In all our experiments below, this is sufficient to attain an accuracy
on the level of machine precision.

All computations have been carried out under Matlab R2012a on a computer with an
Intel Core i7 processor at 2.6 GHz with 8 GB of memory.

5.1 Laplace eigenvalue problem on the Fichera corner

We first address the 3D Laplace eigenvalue problem with Dirichlet boundary conditions [24]

−∆u = λ2u in D ⊂ R
3,

u = 0 on B := ∂D,

which can be reformulated by means of the representation formula for the Helmholtz operator
as the boundary integral equation

1

4π

∫

B

eiλ‖ξ−η‖

‖ξ − η‖
un(η)dS(η) = 0 for all ξ ∈ B,

where un is the exterior normal derivative of u. A Galerkin-based discretization eventually
leads to a nonlinear eigenvalue problem (39). We report results for the Fichera corner D =
[0, 1]3\[12 , 1]

3 using a boundary element space of piecewise constant functions on a surface
mesh of 2400 triangles (h = 0.1).

We have run the method of section 4 for various degrees d of the interpolating Chebyshev
polynomial, from d = 3 up to d = 30, and compared it with applying the standard Krylov-
Schur algorithm. The solvers were configured to compute 6 eigenvalues with a maximum
subspace dimension of k = 24 and a convergence tolerance 10−12 for the norm of the residual.
The reported results are averaged over 20 runs with random initial vectors.

Figure 1 confirms the spectral convergence of the smallest computed eigenvalue as the
interpolation degree increases. As expected, both TOAR and Krylov-Schur behave similarly,
and full machine precision is achieved already for a polynomial of degree 17.

TOAR and Krylov-Schur behave very similarly in terms of the number of required restarts
and execution time, see Figure 2. The latter is due to the fact that the computational cost
is dominated by operations involving the coefficients Ai of the polynomial. Our current
implementation does not make use of fast techniques for boundary element discretizations,
like hierarchical matrices, and treats Ai as dense matrices. We expect that incorporating
such a fast technique significantly decreases the time spent on operations with Ai. This likely
results in a more pronounced difference between the execution times for TOAR and Krylov-
Schur. This can be seen from Table 1, where we have accounted for the times spent on the
initial LU factorization of P (0), on the matrix-vector products w = A−1u and on all other
operations separately. It turns out that Krylov-Schur takes 0.20 seconds per restart, whereas
TOAR takes only 0.07 seconds, when neglecting the times for the LU factorization and the
matrix-vector products. However, we would like to emphasize that the major computational
saving is in the additional memory required for storing the basis vectors; this is reduced by a
factor of approximately d when using TOAR.

17

5 10 15 20 25 30
10−18

10−14

10−10

10−6

10−2

Interpolation error for smallest eigenvalue

Krylov-Schur
TOAR

Figure 1: Absolute error between the smallest eigenvalues of the nonlinear and the interpo-
lating polynomial eigenvalue problem, computed by Krylov-Schur and TOAR, for polynomial
degrees d = 3, 4,

5 10 15 20 25 30

0

20

40

60

80

100

Number of restarts

Krylov-Schur
TOAR

5 10 15 20 25 30

101

102

Execution time in seconds

Krylov-Schur
TOAR

Figure 2: Comparison of Krylov-Schur and TOAR in terms of number of restarts (left) and
execution time (right) for polynomial degrees d = 3, 4

Table 1: Execution times (in seconds) and number of restarts for the BEM discretization
from Section 5.1 with polynomial degree 20.

LU factorization Products A−1u Other operations Restarts

Krylov-Schur 0.57 97.25 5.11 25
TOAR 0.68 88.80 1.41 21

18

Table 2: Execution times (in seconds) and number of restarts for the fluid-structure interaction
problem with polynomial degree 11, when computing 12 eigenvalues with a basis of 48 vectors.

LU factorization Products A−1u Other operations Restarts

Krylov-Schur 69.10 134.66 7.54 2
TOAR 63.27 130.64 0.7 2

5.2 Fluid-structure interaction

As a second example for a nonlinear eigenvalue problem (39), we consider the mixed finite el-
ement/boundary element discretization of a 3D fluid-structure interaction problem discussed
in [10]. This results in block structured coefficients, where the diagonal block correspond-
ing to the finite element discretization is sparse. Table 2 reports the execution times on a
discretization with n = 6223 and polynomial degree 11.

5.3 Loaded string

Finally, we apply our algorithm to the rational eigenvalue problem loaded string from the
NLEVP benchmark collection [?]. In this case,

T (λ) = A− λB +
λ

λ− 1
C

for n × n symmetric positive definite tridiagonal matrices A,B, and C = ene
T
n . We are in-

terested in the six smallest eigenvalues to the right of the pole 1 and perform Chebyshev
interpolation on the interval [4, 400]. Again, Krylov-Schur and TOAR are applied to the re-
sulting polynomial eigenvalue problem P (λ) in Chebyshev basis, with a maximum subspace
dimension of k = 32 and a convergence tolerance 10−12. Compared to the examples from
Sections 5.1 and 5.2, the cost for performing matrix-vector products A−1u is much less dom-
inant, due to the tridiagonal structure of P (λ). This effect can be clearly seen in the (total)
execution times reported in Figure 3 for n = 1000 and n = 10 000. TOAR now visibly out-
performs Krylov-Schur; for n = 10 000 it is up to an order of magnitude faster. The times
obtained for n = 1000 are somewhat erratic, especially for larger degree, due to the variance
in the number of required restarts. To mitigate this effect, Figure 4 additionally shows the
execution time per restart.

For this problem, TOAR also requires significantly less memory. For example, for n =
10 000 and d = 20, TOAR consumes 14 Mbyte while Krylov-Schur consumes 73 Mbyte in
total.

6 Conclusions

We have presented two Arnoldi methods, P-Arnoldi and TOAR, for the solution of polynomial
eigenvalue problems expressed in the Chebyshev basis. The methods represent a significant
reduction of storage requirements, compared to standard Arnoldi applied to the linearization,
since the generated basis consists of vectors of length n rather than vectors of full length dn,
where d is the degree of the polynomial. At the moment, the P-Arnoldi method remains a cu-
riosity, at least for numerical computations. Although it can be formulated in an elegant way,
its instability for Ritz values not close to [−1, 1] makes it unsuitable for handling polynomials

19

5 10 15 20 25
10−2

10−1

100

101

102

Execution time in seconds

Krylov-Schur
TOAR

5 10 15 20 25

10−1

100

101

102

103

Execution time in seconds

Krylov-Schur
TOAR

Figure 3: Comparison of execution time of Krylov-Schur and TOAR when solving the loaded
string problem for n = 1000 (left) and n = 10 000 (right) for polynomial degrees d = 3, 4

5 10 15 20 25

10−1.6

10−1.4

10−1.2

10−1

Execution time in seconds

Krylov-Schur
TOAR

5 10 15 20 25
10−1

100

Execution time in seconds

Krylov-Schur
TOAR

Figure 4: Comparison of execution time per restart of Krylov-Schur and TOAR when solving
the loaded string problem for N = 1000 (left) and N = 10 000 (right) for polynomial degrees
d = 3, 4

20

of larger degree. In contrast, the TOAR method appears to be numerically stable even for
comparably large degrees. Moreover, we have shown that it is possible to turn this into a fully
fledged Arnoldi algorithm, by incorporating shift-and-invert and restarting techniques. All
these ingredients are crucial for addressing polynomial eigenvalue problems that arise from
the interpolation of discretized nonlinear PDE eigenvalue problems. Our numerical experi-
ments demonstrate the advantages of our algorithm compared to the standard approach in
terms of memory requirements and computational time.

As indicated in Remark 5, there is nothing particular about the Chebyshev basis; all
algorithms can certainly be extended to more general polynomial bases satisfying a three-
term recurrence. Another possible extension would consist of using the Krylov subspace
methods developed in this paper for solving linear systems with P (λ) for many different
values of λ [12].

Acknowledgments

The authors thank Cedric Effenberger for many insightful discussions and for providing the
matrices used in the numerical experiments. They also thank Yangfeng Su for sending a
preprint of [19]. This work was carried out while the second author was visiting EPFL during
the Spring 2013.

References

[1] B. Adhikari, R. Alam, and D. Kressner. Structured eigenvalue condition numbers and
linearizations for matrix polynomials. Linear Algebra Appl., 435(9):2193–2221, 2011.

[2] A. Amiraslani, R. M. Corless, and P. Lancaster. Linearization of matrix polynomials
expressed in polynomial bases. IMA J. Numer. Anal., 29(1):141–157, 2009.

[3] Z. Bai and Y. Su. SOAR: a second-order Arnoldi method for the solution of the quadratic
eigenvalue problem. SIAM J. Matrix Anal. Appl., 26(3):640–659, 2005.

[4] T. Betcke and D. Kressner. Perturbation, extraction and refinement of invariant pairs
for matrix polynomials. Linear Algebra Appl., 435(3):574–536, 2011.

[5] W.-J. Beyn and V. Thümmler. Continuation of invariant subspaces for parameterized
quadratic eigenvalue problems. SIAM J. Matrix Anal. Appl., 31(3):1361–1381, 2009.

[6] D. Bindel and A. Hood. Localization theorems for nonlinear eigenvalues. arXiv:1303.4668,
2013.

[7] M. A. Botchev, G. L. G. Sleijpen, and A. Sopaheluwakan. An SVD-approach to Jacobi-
Davidson solution of nonlinear Helmholtz eigenvalue problems. Linear Algebra Appl.,
431(3-4):427–440, 2009.

[8] C. W. Clenshaw. A note on the summation of Chebyshev series. Mathematics of Com-
putation, 9(51):118–120, 1955.

[9] C. Effenberger and D. Kressner. Chebyshev interpolation for nonlinear eigenvalue prob-
lems. BIT, 52(4):933–951, 2012.

21

[10] C. Effenberger, D. Kressner, O. Steinbach, and G. Unger. Interpolation-based solution
of a nonlinear eigenvalue problem in fluid-structure interaction. PAMM, 12(1):633–634,
2012.

[11] G. H. Golub and C. F. Van Loan. Matrix Computations. Johns Hopkins University
Press, Baltimore, MD, third edition, 1996.

[12] L. Grammont, N. J. Higham, and F. Tisseur. A framework for analyzing nonlinear
eigenproblems and parametrized linear systems. Linear Algebra Appl., 435(3):623–640,
2011.

[13] V. Hernandez, J. E. Roman, and V. Vidal. SLEPc: a scalable and flexible toolkit for the
solution of eigenvalue problems. ACM Trans. Math. Software, 31(3):351–362, 2005.

[14] N. J. Higham, D. S. Mackey, and F. Tisseur. The conditioning of linearizations of matrix
polynomials. SIAM J. Matrix Anal. Appl., 28(4):1005–1028, 2006.

[15] N. Kamiya, E. Andoh, and K. Nogae. Eigenvalue analysis by the boundary element
method: new developments. Engng. Anal. Bound. Elms., 12:151–162, 1993.

[16] D. Kressner. A block Newton method for nonlinear eigenvalue problems. Numer. Math.,
114(2):355–372, 2009.

[17] R. B. Lehoucq, D. C. Sorensen, and C. Yang. ARPACK users’ guide. SIAM, Philadelphia,
PA, 1998. Solution of large-scale eigenvalue problems with implicitly restarted Arnoldi
methods.

[18] Y. Lin, L. Bao, and Y. Wei. Model-order reduction of large-scale kth-order linear dynam-
ical systems via a kth-order Arnoldi method. Int. J. Comput. Math., 87(1-3):435–453,
2010.

[19] Y. Lu and Y. Su. Two-level orthogonal Arnoldi process for the solution of quadratic
eigenvalue problems. Submitted.

[20] D. S. Mackey, N. Mackey, C. Mehl, and V. Mehrmann. Structured polynomial eigen-
value problems: good vibrations from good linearizations. SIAM J. Matrix Anal. Appl.,
28(4):1029–1051, 2006.

[21] D. S. Mackey, N. Mackey, C. Mehl, and V. Mehrmann. Vector spaces of linearizations
for matrix polynomials. SIAM J. Matrix Anal. Appl., 28(4):971–1004, 2006.

[22] K. Meerbergen. The quadratic Arnoldi method for the solution of the quadratic eigen-
value problem. SIAM J. Matrix Anal. Appl., 30(4):1463–1482, 2008/09.

[23] G. A. Sitton, C. S. Burrus, J. W. Fox, and S. Treitel. Factoring very-high-degree poly-
nomials. IEEE Signal Processing Magazine, 20(6):27–42, 2003.

[24] O. Steinbach and G. Unger. A boundary element method for the Dirichlet eigenvalue
problem of the Laplace operator. Numer. Math., 113(2):281–298, 2009.

[25] G. W. Stewart. Matrix Algorithms. Vol. II. SIAM, Philadelphia, PA, 2001. Eigensystems.

22

[26] G. W. Stewart. A Krylov-Schur algorithm for large eigenproblems. SIAM J. Matrix
Anal. Appl., 23(3):601–614, 2001/02.

[27] Y. Su. A compact Arnoldi algorithm for polynomial eigenvalue problems, 2008. Talk
presented at RANMEP2008.

[28] L. N. Trefethen. Approximation Theory and Approximation Practice. SIAM, 2012.

[29] R. Van Beeumen, K. Meerbergen, and W. Michiels. A Rational Krylov Method Based
on Hermite Interpolation for Nonlinear Eigenvalue Problems. SIAM J. Sci. Comput.,
35(1):A327–A350, 2013.

23

