CHAPTER I. INTRODUCTION

1.1 Tissue engineering in the central nervous system
 1.1.1 Problems of regeneration in the central nervous system
 1.1.2 Damages and diseases in the central nervous system
 1.1.3 Cell therapy
 1.1.4 Biomaterials in central nervous system regeneration

1.2 Hyaluronan
 1.2.1 Sources and structure
 1.2.2 Rheology of hyaluronan solutions
 1.2.3 Degradation
 1.2.4 Biodegradation
 1.2.5 Biological properties
 1.2.6 Chemical modifications
 1.2.7 Medical applications of hyaluronan and its derivatives
 1.2.8 Engineering of hyaluronan-based scaffolds
 1.2.9 Hyaluronan-based materials for CNS regeneration

1.3 Poly(methacrylates) and poly(acrylates)
 1.3.1 Poly(methacrylates) and poly(acrylates) in tissue engineering
 1.3.2 Poly(methacrylates) and poly(acrylates) in central nervous system regeneration

1.4 Hypotheses and objectives
 1.4.1 Hypotheses
 1.4.2 Objectives

CHAPTER II. MATERIALS AND METHODS

2.1 Materials and cell lines
 2.1.1 Polymers and monomers
 2.1.2 Crosslinking agents
 2.1.3 Initiator
 2.1.4 Other reagents
 2.1.5 Cell lines and culture media

2.2 Methods
 2.2.1 Crosslinking of hyaluronan polymer networks
 2.2.2 Preparation of crosslinked hyaluronan scaffolds
 2.2.3 Synthesis of methacrylated hyaluronan
2.2.4 Synthesis of poly(methacrylated hyaluronan-co-ethyl acrylate) copolymer networks

2.3 Material characterization

2.4 Preparation of materials for cultures and viability assays

2.5 Colonization studies on scaffolds

CHAPTER III. RESULTS

3.1 Crosslinking of hyaluronan with divinyl sulfone
 3.1.1 Crosslinking of hyaluronan with divinyl sulfone
 3.1.2 Characterization of crosslinked hyaluronan

3.2 Crosslinked hyaluronan scaffolds
 3.2.1 Preparation of scaffolds
 3.2.2 Characterization of scaffolds

3.3 Poly(methacrylated-co-ethyl acrylate) copolymer networks
 3.3.1 Methacrylated hyaluronan macromer
 3.3.2 Synthesis of poly(methacrylated-co-ethyl acrylate) copolymer networks

3.4 Enzymatic degradation
 3.4.1 Determination of weight loss
 3.4.2 Determination of equilibrium water content
 3.4.3 Morphological characterization
 3.4.4 Determination of by-products

3.5 Cell cultures
 3.5.1 Viability assays
 3.5.2 Cultures of cell populations on scaffolds

CHAPTER IV. DISCUSSION

4.1 Crosslinking of hyaluronan with divinyl sulfone

4.2 Crosslinked hyaluronan scaffolds

4.3 Poly(MeHA-co-EA) copolymer networks

4.4 Enzymatic degradation

4.5 Biological performance

CHAPTER V. CONCLUSIONS

References

Abbreviations