Table of Contents

Motivation 11
Objectives 14
CHAPTER 1 27
An Introduction to Photovoltaics 27
1.1 Introduction 29
1.2 Solar cells – some historical facts 30
1.3 Solar cell – basic principles 33
 1.4.1 Silicon based Solar cells 33
 1.4.2 Thin-film chalcogenide Solar cells 34
 1.4.3 Cadmium Telluride (CdTe) solar cells 35
 1.4.4 Tandem (multi-junction) solar cells 35
1.5 Other Solar cell Technologies 37
References 37
CHAPTER 2 41
Background 41
2.1 Solar-cell Basics 43
 2.1.1 Important semiconductor concepts 43
 2.1.2 Carrier Concentration in Equilibrium 44
 2.1.3 Carrier Concentration under Bias 45
 2.1.3.1 Generation 45
 2.1.3.2 Recombination 45
 2.2 Equations for PN Junctions 47
 2.2.1 Solar Cell Equations 47
 2.2.2 Material Constants and Common Units 48
 2.2.3 Radiant Energy 48
 2.3 Basic parameters and electrical characterization methods 49
 2.3.1 Overall Current (I) 49
 2.3.2 Short circuit current (Isc) 50
 2.3.3 Open circuit voltage (V0C) 50
 2.3.4 Fill-Factor (FF) 50
 2.3.5 Maximum Power (Pmax) 51
 2.3.6 Quantum efficiency (QE) 52
CHAPTER 3
Basics of numerical simulations
3.1 Governing equation
 3.1.1 Transport equation
 3.1.2 Generation equation
 3.1.3 Recombination equation
3.2 Graphical demonstration
3.3 Software
 3.3.1 SCAPS–1D
 3.3.2 AMPS–1D
 3.3.3 AFORS-HET
 3.3.4 PCID
 3.3.4 ASA
3.4 Conclusion

References

CHAPTER 4
Baseline parameters and main simulation work
4.1 Basics for baseline parameters
 4.1.1 Front and back contacts
 4.1.2 Material parameters
 4.1.3 Defects
4.2 Thin-film solar cells—some examples
 4.2.1 CIGS based thin-film solar cells
 4.2.2 CdTe-based solar cell
 4.2.3 Results of the baseline cases
4.3 CIGS solar cells: effect of Gallium composition on the parameters
 4.3.1 Review
 4.3.2 Quantum efficiency Analysis
 4.3.3 J-V Characteristics Analysis of CIGS Solar Cells
 4.3.4 Optimization of different layers thickness
 4.3.5 Effect of Gallium (Ga) in the absorber-layer
 4.3.6 Effect of other layers
 4.3.7 Conclusion
4.4 Analysis of ZnTe-based solar cells
 4.4.1 Review
4.4.2 Results and discussion

4.4.2.1 Model of a thin film ZnTe-based solar cell
4.4.2.2 Energy band diagram for a ZnTe-based solar cell
4.4.2.3 J-V characteristics of a ZnTe-based PV device
4.4.2.4 Optimization of ZnTe absorber layer thickness

4.4.3 Summary

4.5 Numerical Analysis of SnS based Polycrystalline Solar Cells

4.5.1 Introduction
4.5.2 Experimental results
4.5.3 Results and discussions

4.5.3.1 Energy band diagram
4.5.3.2 J-V characteristics of a SnS-based PV device
4.5.3.3 Effect of CdS buffer layer
4.5.3.4 Optimization of SnS absorber layer thickness
4.5.3.5 Effect of Temperature
4.5.3.6 Effect of concentration of dopant concentration on the solar cell parameters
4.5.3.7 Effect of shallow acceptors density (N_A)
4.5.3.8 Effect of shallow donors density, N_D

4.5.5 Conclusion

References

CHAPTER 5

Multi-layer and intermediate band concept for Thin-film solar cells

5.1 CIGS BASED MULTI-LAYER SOLAR CELLS

5.1.1 Introduction
5.1.2 CuInGaSe_2 (CIGS) Solar cells

5.2 Multi-layer CIS/CGS Solar cells

5.2.1 Results and Discussion

5.3 conclusion

5.4 Multi Sun Analysis: A case study for CIGS-based solar cell

5.5.1 Intermediate band (IB) concept for ZnTe:O
5.5.2 Conclusion
5.5.3 Intermediate band (IB) concept for CuGaS_2:V

References

Conclusions

LIST OF PUBLICATIONS