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Abstract: Blast furnace slag (BFS)/sugar cane bagasse ash (SCBA) blends were assessed 

for the production of alkali-activated pastes and mortars. SCBA was collected from a 

lagoon in which wastes from a sugar cane industry were poured. After previous dry and 

grinding processes, SCBA was chemically characterized: it had a large percentage of 

organic matter (ca. 25%). Solutions of sodium hydroxide and sodium silicate were used as 

activating reagents. Different BFS/SCBA mixtures were studied, replacing part of the BFS 

by SCBA from 0 to 40% by weight. The mechanical strength of mortar was measured, 

obtaining values about 60 MPa of compressive strength for BFS/SCBA systems after  

270 days of curing at 20 °C. Also, microstructural properties were assessed by means of 

SEM, TGA, XRD, pH, electrical conductivity, FTIR spectroscopy and MIP. Results 

showed a good stability of matrices developed by means of alkali-activation. It was 

demonstrated that sugar cane bagasse ash is an interesting source for preparing  

alkali-activated binders.  

Keywords: alkali-activation; sugar cane bagasse ash; slag replacement; waste valorization; 

microstructure; strength development 
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1. Introduction 

Concrete is certainly the most important construction material in the world. Its use is over 10 billion 

tons per year and, when done well, concrete can present good mechanical strength, and also, 

acceptable durability performance [1–3]. The main component of concrete is the binder that normally 

is composed of Portland cement, and in some cases, the presence of mineral additions, such as fly 

ashes or silica fume, can also be observed in its composition. 

Portland cement is the conventional binding material that, actually, is responsible for about 5%–8% 

of global CO2 emissions. This environmental problem will most likely be increased due to exponential 

demand of Portland cement: By 2050, demand is expected to rise by 200% from 2010 levels, reaching 

6000 million tons/year [4]. Out of concern for the environment, and in support of sustainable 

development, cement industries are improving their production through a range of alternatives such as, 

the use of alternative fuels or increasing the production of blended cements. 

All these aspects have been contributing to reduce CO2 emissions, which can reach up to 30% of 

diminishing according to the Danish Centre for Green Concrete [5]. In this context, during the 

Copenhagen Summit held in 2009, different countries agreed on the necessity of reducing CO2 

emissions by 2020. The United States, for example, made a pact to reduce its overall emissions by 

about 17% from 2010 in respect to the levels of 2005. 

Hence, several research groups, and even the Portland cement industry, are investigating 

alternatives to produce green binding materials. Among these alternative materials, alkali-activated 

systems can be considered the most promising one due to its similar, or even better, mechanical 

properties and its high durability [6,7]. Moreover, these binding materials can reduce up to 80% of 

CO2 emissions when compared to that of Portland cement production [8,9]. 

Alkali-activated binders were for the first time investigated in 1957 [10], when Glukhovsky 

prepared a binder formed by mixing NaOH and slag. Actually, alkali activation is considered to be a 

polymerization reaction between an aluminosilicate source material and an alkaline solution to form a 

stable structure, and is always designated as an amorphous zeolite structure. 

Aluminosilicate source materials commonly used for this purpose are blast furnace slag [11,12], fly 

ash [13,14] and metakaolin [15]. Nevertheless, other alumino-silicate materials can also be 

successfully employed in alkali-activated systems: glass fiber waste [16], ceramic waste [17,18], 

tungsten mine waste [19], hydrated-carbonated cement [20], fluid catalytic cracking catalyst residue 

(spent FCC) [21], air pollution control (APC) residues [22].  

In some cases, the use of binary systems has been used in order to enhance the properties of  

alkali-activated systems formed [23,24]. Several studies related to alkali-activated systems based on 

slag/fly ash blends [23,25] and slag/metakaolin blends [26,27] are reported in the literature.  

Puertas et al. [28] reported a study of alkali-activated slag/fly ash cement, assessing different 

parameters that can influence the mechanical properties and the hydration products formed such as: 

alkaline concentration (2 and 10 M of NaOH), curing temperature (25 and 65 °C) and slag/fly ash ratio 

(100/0, 70/30, 50/50, 30/70, 0/100). Authors concluded that, depending on the parameters, 

compressive strength of about 50 MPa can be achieved, and related to the structure formed, the main 

reaction product is a CSH gel, with high amounts of thetracoordinated Al in its structure. 
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On the other hand, Bernal et al. [27] assessed the engineering properties of alkali-activated 

slag/metakaolin blends. Authors concluded that inclusion of metakaolin enhanced the compressive 

strength at early ages and this behaviour is favoured at high alkali concentrations.  

Nowadays, several studies have been performed in order to reuse industrial and/or agricultural 

wastes abundantly generated in society: this approach is in agreement with sustainable development 

principles. Among the waste materials generated in Brazil, sugar cane bagasse is the most important in 

volume. The sugar cane production in Brazil is higher than 500 MTon per year, and part of the bagasse 

produced in the extraction of sugar and/or ethanol is usually exploited in furnaces for obtaining heat 

and water vapor. Nevertheless, this activity produces a final waste of 3 megatons of sugar cane bagasse 

ashes (SCBA). 

There are many studies related to the reuse of SCBA as supplementary cementitious materials 

(SCM) in concrete and mortars [29–31]. The obtained results are very promising, but the amounts of 

SCBA used for this purpose constitutes 10%–20% of binder mass. The use of SCBA in alkali-activated 

systems was reported by Tippayasan et al. [32]. They found that 100% BA was inappropriate to 

produce geopolymers because of their low compressive strength. Some fly ash/SCBA mixtures were 

activated by means of 40% activating solution, and compressive strength values were in the 3–17 MPa 

range (cured at room temperature over 8 days). This behavior supported feasibility for the use of this 

type of mixture. Recently, Castaldelli et al. [33] reported a preliminary study using sugar cane bagasse 

ash in the production of alkali-activated binders, obtaining promising results. Hence, this paper 

assesses the mechanical and microstructural properties of alkali-activated binders based on slag/SCBA 

blends in different proportions: 100/0; 85/15; 75/25; 60/40. 

2. Experimental Section  

2.1. Materials 

Blast furnace slag (BFS) was supplied by Cementval SL (Sagunto-Valencia, Spain). This hydraulic 

material was ground in a laboratory ball mill (alumina balls) for 30 min before its use. The mean 

particle diameter obtained for BFS was 21.4 μm. Sugar cane bagasse ash (SCBA) was collected from a 

settling lagoon in Destilaria Generalco S/A., close to General Salgado city (São Paulo, Brazil). The 

SCBA used in this study was obtained as follows: 

i. uncontrolled burning of sugarcane bagasse to obtain heat; 

ii. collection of ash generated by a scrubber; 

iii. obtained ashes were mixed with water generated from sugar cane washing and then, deposited 

in the lagoon; 

iv. settled solids from lagoon were collected and then dried at 105 °C; 

v. collected ashes were ground in a laboratory ball mill (steel balls) for 20 min, obtaining a mean 

particle diameter of about 26.8 μm. 

Some chemical reagents were used as alkaline activators: sodium hydroxide (98% purity, supplied 

by Panreac SA); and sodium silicate solution (supplied by Merck) with density of 1.35 g/cm
3
 and  

pH 11–11.5: its chemical composition (by mass) was: 8% Na2O, 28% SiO2 and 64% H2O. 
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2.2. Physico-Chemical and Mechanical Tests 

Thermogravimetric Analysis (TGA) was performed in a TGA 850 Mettler-Toledo thermobalance. 

Pastes were analyzed under nitrogen atmosphere, using pin-holed aluminium sealed crucibles, with a 

heating rate of 10 °C min
−1

, from 35 °C until 600 °C. X-ray diffraction (XRD) studies were carried out 

in a Philips PW1710 diffractometer, using Cu-Kα wavelength, and 40 kV and 20 mA, in the 2θ range 

5°–70°. Fourier transform infrared spectroscopy (FTIR) studies were performed in spectrometer 

Mattson Genesis II FTIR, which was connected to a computer, where the results were generated by the 

software WinFIRST FTIR. For this analysis, pellets of alkali-activated binder and KBr  

(1:200 sample/KBr mass ratio) were prepared. Samples for TGA, XRD and FTIR studies were 

prepared by grinding the paste with acetone, filtered, washed with acetone and dried at 60 °C in a 

furnace for 30 min. 

A pHmeter Crison micropH2001 and a Crison microCM2201 conductimeter were used for 

measuring alkalinity of pastes [21]: 1 g of paste was ground and 10 mL of deionized water was added. 

After 10 min of continuous magnetic stirring, the pH and electrical conductivity were measured. 

Scanning electron microscopy (SEM) studies were carried out in a JEOL JSM-6300: samples were 

covered with gold. The mercury intrusion porosimetry (MIP) was performed on porosimeter AutoPore 

IV 9500 of Micrometrics Instrument Corporation with a range of pressures between 13,782 Pa and  

227.4 MPa. Mortar and paste samples were evaluated at a pressure up to 0.21 MPa in the low pressure 

port, and 227.4 MPa in the high pressure port. Preparation of pastes and mortars: pastes were prepared 

mixing the binder and the corresponding activating solution. Mortars were prepared by addition of 

natural sand using a binder/sand ratio of 1/3. Mechanical strength tests were performed by using a 

universal test machine following the procedures described on UNE-EN 196-1. The flexural strength Rf 

value was the average of 3 specimens. The compressive strength Rc value was the average of  

5 specimens (the sixth specimen was used for PIM analysis). 

2.3. Preliminary Study Using BFS 

The hydraulicity for BFS is well known, as well as the feasibility of its activation by addition of 

alkaline activators: sodium or potassium hydroxide [11,12] and waterglass [12,34]. A preliminary 

study was performed in order to show the importance of the nature of the alkali reagents. BFS was the 

mineral admixture used, and the following activations were carried out: pure water (solution 1),  

5 mol kg
−1

 of sodium hydroxide (solution 2) and a mix of sodium hydroxide and sodium silicate, with 

5 mol kg
−1

 of sodium cation and a SiO2/Na2O molar ratio of 1.46 (solution 3). In all cases, the 

water/BFS ratio was w/s = 0.45. Compressive strength on mortars (Rc), and TGA and pH/conductivity 

on pastes were analyzed at 3 and 7 days of curing at 65 °C.  

2.4. Study on Binders Containing SCBA 

Mixtures containing BFS and SCBA were prepared by mixing (by mass): 

 100% BFS + 0% SCBA (mixture 100/0); 

 85% BFS + 15% SCBA (mixture 85/15); 

 75% BFS + 25% SCBA (mixture 75/25); 
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 60% BFS + 40% SCBA (mixture 60/40).  

The activating solution was prepared using sodium hydroxide and sodium silicate solution, and it 

had 5 mol
.
kg

−1
 of sodium cation, and presented a SiO2/Na2O molar ratio of 1.46 (this activating 

solution was selected from preliminary studies described above). The binder (BFS + SCBA) was 

mixed with the activating solution. Final water/(BFS + SCBA) ratio was 0.45. Two curing 

temperatures were used: 65 °C and 20 °C. 

Pastes were stored in sealed plastic bottles at 65 °C for 3 and 7 days, and at 20 °C for 7, 28, 90 and 

270 days. Mortars were cast in 160 mm × 40 mm × 40 mm prismatic molds (according to UNE-EN-196-1 

standard). For highest curing temperature, molds were stored for 4 h at 65 °C in a water vapor 

saturated plastic box. Then, specimens were demolded and stored at 65 °C in the plastic box until 

mechanical testing. For the lowest curing temperature, molds were stored in a moist chamber (100% 

RH), and demolded after 24 h. The specimens were wrapped in plastic wrap and cured at 20 °C until 

mechanical testing. Prismatic specimens were tested after 3 and 7 days of curing at 65 °C, and after 7, 

28, 90 and 270 days of curing at 20 °C. 

3. Results and Discussion 

3.1. Chemical and Mineralogical Characterization of BFS and SCBA 

The chemical compositions of blast furnace slag (BFS) and sugar cane bagasse ash (SCBA) are 

shown in Table 1. 

Table 1. Chemical composition of Blast Furnace slag (BFS) and Sugar Cane Bagasse  

Ash (SCBA). 

Oxide BFS SCBA 

SiO2 30.19 31.41 

Al2O3 10.66 7.57 

Fe2O3 1.31 6.02 

CaO 39.53 16.06 

MgO 7.50 1.07 

Na2O 0.87 0.14 

K2O 0.58 1.58 

SO3 1.95 0.78 

TiO2 0.51 2.09 

MnO 0.40 0.10 

Chloride 0.44 0.14 

LOI 5.62 32.20 

SCBA presented a high percentage loss on ignition (32.2%). This fact is attributed to mixing the 

liquid from gas scrubber and the wastewater from washing sugarcane, which contains a high amount of 

organic matter. The Figure 1 shows the thermogravimetric curve for the ash (heated in air at 20 °C/min 

heating rate, using alumina crucible). It is important to notice that part of the mass loss (24.68%) was 

produced in the 250–650 °C range, which belongs to organic matter volatilization and oxidation. 

However, a part of the mass loss (6.86%) was observed at 700–800 °C range, which corresponds to the 
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decomposition of calcium carbonate. The percentage of CaCO3 calculated from this mass loss  

was 15.59%. 

Figure 1. Thermogravimetric (TG) and derivative thermogravimetric (DTG) curves for 

SCBA: heating rate 20 °C/min, 70 μL alumina crucible, dried air atmosphere. 

 

The particle morphology for BFS is depicted in Figure 2a. Particles present fairly dense, smooth 

texture, sharp particles and different sizes. Particle morphology of ground SCBA is shown in  

Figure 2b. It can be seen that particles are irregular in shape. Spherical shaped particles were not 

found, suggesting that the combustion temperature reached in the burning process did not produce the 

melting of inorganic matter. SCBA particles presented rough surfaces. 

Figure 2. SEM micrographs: (a) BFS and (b) SCBA. 

  

(a) (b) 

SCBA and BFS were characterized by means of XRD analysis. The corresponding diffractograms 

are shown in Figure 3. It is noticeable the high crystallinity degree of SCBA: the baseline of the 

diffractogram had not deviated in the 2θ range 20°–40°, suggesting that the proportion of crystallized 
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fractions is important. The insoluble residue was determined for SCBA by means of dissolution in 

refluxing 4 M potassium hydroxide [35]. The obtained value was 24.1% ± 0.6%: the residue was due 

to the presence (see Figure 3) of quartz (PDF card 331161) as the main crystallized compound; also 

calcite was identified (PDF card 050586). The background level for BFS is higher than those found for 

SCBA. Additionally, BFS had a very important vitreous fraction, accordingly to the baseline deviation 

in the 20°–35° 2θ range. A trace of calcite was identified in its XRD spectrum. 

Figure 3. XRD diffractograms for: (a) SCBA; (b) BFS. (Key: Q: Quartz; C: Calcite). 

 

FTIR spectra for BFS and SCBA are depicted in Figure 4. The spectrum for BFS showed a 

broadband characteristic of gehlenite. Two strong peaks are noticed: one of them centered at 981 cm
−1

, 

attributed to symmetric stretching vibration of Si(Al)–O–Si bonds, and another one at 527 cm
−1

, 

belonging to in-plane bending Si(Al)–O–Si vibrations of aluminosilicate network [36]. Small peaks 

attributed to carbonate anion vibrations (ca. 1430 and 710 cm
−1

) were also identified. The spectrum of 

SCBA showed more peaks: the highest intensity absorption peak was related to the Si(Al)–O–Si 

network: a intense a broad band centered at 1030–1050 cm
−1

 (asymmetric stretching vibration of 

Si(Al)–O–Si bonds). Also, peaks corresponding to quartz were noticed at 792 and 468 cm
−1

. 

Additionally, peaks belonging to carbonate anion (from calcite) were also identified: 1437 cm
−1

 

(asymmetric stretching vibration of CO3
2−

 anion) and 873 cm
−1

 (out-of-plane bending mode of  

CO3
2−

) [36]. Sharp peaks at 1035, 914, 663, and 538 cm
−1

 were attributed to organic matter presence in 

the ash, probably due to C–O stretching in alcohol groups or other oxygen-containing functional 

groups, out of plane C=C–H bending, out of plane C≡C–H bending, and out of plane aromatic ring 

bending vibrations [37]. These peaks are attributed to organic compounds disappearing in FTIR after 

calcination of SCBA at 650 °C. 
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Figure 4. FTIR spectra for SCBA and BFS (KBr pellets). 

 

3.2. Preliminary Results 

Three mortars (100% BFS as mineral admixture) were prepared by using different solutions: pure 

water (solution 1); 5 mol kg
−1

 of sodium cation (solution 2); and 5 mol kg
−1

 of sodium cation and a 

SiO2/Na2O molar ratio of 1.46 (solution 3). They were cured at 65 °C and tested in compression after  

3 and 7 days. In Figure 5, the compressive strength values of mortars activated with different 

activating solutions is shown. 

Figure 5. Compressive strength of mortars activated with different activating solutions. 

 

On one hand, the significant increase in compressive strength values at both ages justifies the 

alkaline activation of BFS by using a mixture of solid NaOH and sodium silicate solution.  

Derivative thermogravimetric curves (DTG) of pastes cured at 65 °C for 3 and 7 days are depicted 

in Figure 6a,b, respectively. In both figures (for all curves), a main peak centered at the 135–145 °C 

range is noticed. This peak belongs to the dehydration/dehydroxylation process [21] for the gels 
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formed in the alkali activation of BFS. The following mass losses after 3 days were calculated: 4.51% 

for paste with solution 1, 16.24% for paste with solution 2 and 18.15% for paste with solution 3. And 

after 7 days, the mass losses were respectively: 5.13%, 16.62% and 19.28%. Pastes prepared with 

solution 3 had the highest mass loss, suggesting that using this solution, a more important progression 

in the alkali activation of BFS is shown. Additionally, the increase in the mass loss with curing time, 

indicated that the reaction took place also in the 3–7 day period. 

Figure 6. Derivative thermogravimetric curves (DTG) for preliminary study on BFS 

pastes, after curing at 65 °C: (a) 3 days; (b) 7 days. 

  

(a) (b) 

Paste produced with solution 1 presented the lowest alkalinity, pH = 11.91 after 3 days of curing 

and pH = 11.92 after 7 days of curing. Paste prepared with solution 2 presented pH = 12.96 after  

3 days of curing and pH = 12.90 after 7 days of curing, and the paste with solution 3 had pH = 12.85 

and pH = 12.80 respectively. The pH of the paste with solution 1 is lower than others, because it was 

activated by plain water: the alkalinity was due to hydraulicity of BFS. The pH values for BFS pastes 

activated with solutions 2 and 3 were significantly lower than initial pH of the corresponding solutions, 

suggesting that an important amount of hydroxyl anions was chemically combined with mineral 

compounds in BFS, and this means dissolution and precipitation of the gel [21]. 

For the following section, solution 3 was selected for activating mineral admixtures containing BFS 

and SCBA. The main reasons for this selection were the higher amount of chemically combined 

H2O/OH
−
 groups in the formed gel and the development in the compressive strength of mortars. 

3.3. Results on Binders Containing SCBA 

All mixtures were prepared and activated with a solution of 5 mol kg
−1

 of sodium cation, a 

SiO2/Na2O molar ratio of 1.46 and a water/binder ratio of 0.45. Pastes cured for 3 days at 65 °C were 

characterized by means of SEM, TGA, XRD, pH and FTIR. TGA curves were also analyzed on the 

pastes cured for 7 days at 65 °C. Pastes for 28–270 days of curing at 20 °C were characterized by 

TGA, XRD, pH and FTIR. Mortars were mechanically characterized (compressive and flexural 

strengths) at 3 and 7 days of curing at 65 °C and at 7, 28, 90 and 270 days of curing at 20 °C. MIP tests 
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were carried out on mortars at 3 days of curing at 65 °C and 270 days of curing at 20 °C, and also on 

pastes cured for 270 days at 20 °C. 

SEM micrographs of BFS/SCBA pastes cured at 65 °C for 3 days are shown in Figure 7. The  

Figure 7a shows the mix 100/0: a dense structure with sharp shapes and with some small pores. The 

Figure 7b shows the mix 85/75: a similar gel structure was observed, as above. The dense matrix found 

in mixes 100/0 and 85/15 may be a consequence of the activation of the mineral admixture.  

Figure 7c shows the mix 75/25: it was noticed a less dense structure quite different from the above 

pastes. Some porous particles embedded in the gel matrix were observed, due to the presence of 

unreacted SCBA particles (unburned or partially unburned bagasse particles). And finally, the  

Figure 7d shows the mix 60/40, very similar to mix 75/25. Apparently, the highest contents of SCBA 

(25% and 40%) produced a more porous matrix. 

Figure 7. SEM micrographs of alkali-activated binders of BFS + SCBA cured at 65 °C for 

3 days: (a) mix 100/0; (b) mix 85/15; (c) mix 75/25; (d) mix 60/40. 

  
(a) (b) 

  
(c) (d) 

DTG curves for SCBA + BFS pastes cured at 65 °C for 3 days and 7 days are depicted in  

Figure 8a,b, respectively. Corresponding DTG curves for pastes cured at 20 °C for 28 and 270 days are 

depicted in Figure 8c,d, respectively. Table 2 summarizes the total mass loss for all these pastes in the 

35–600 °C range. 
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Figure 8. DTG curves for alkali activated BFS + SCBA pastes cured: (a) after 3 days at  

65 °C; (b) after 7 days at 65 °C; (c) after 28 days at 25 °C; (d) after 270 days at 25 °C. 

  

(a) (b) 

  

(c) (d) 

Table 2. Total mass losses in the 35–600 °C range for BFS + SCBA pastes and 

temperature at the highest mass loss rate. 

Mix BFS/SCBA 

Mass loss in pastes in different curing conditions (days–temperature) and 

temperature at the highest mass loss rate (°C, in parentheses) 

3 d–65 °C 7 d–65 °C 28 d–20 °C 270 d–20 °C 

100/0 18.15 (140) 19.28 (143) 15.69 (141) 15.58 (171) 

85/15 20.00 (139) 17.93 (139) 16.36 (143) 15.87 (164) 

75/25 21.42 (139) 18.34 (138) 16.77 (140) 17.25 (162) 

60/40 19.15 (135) 17.53 (139) 16.33 (136) 16.81 (161) 

In all DTG curves, a peak centered in the 135–171 °C range was observed. This behavior means 

that the alkaline activation took place and some binder gel was formed [16,33]. The water molecules 

and OH groups are bonded to the new aluminosilicate network. Mass losses for pastes cured at 65 °C 

were higher than those found for pastes cured at 20 °C. This fact means that the matrix formed at  

65 °C presented more H2O/OH groups. And the DTG peak did not shift after increasing the curing 

time from 3 to 7 days. Also, mass losses for pastes cured at 20 °C did not vary from 28 to 270 days; 
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however, in this case a significant shift of the DTG peak was observed, from the 136–143 °C to the 

161–171 °C range. This behavior would be related to the stronger binding of H2O/OH groups in the 

matured matrix for long curing times. These data suggest that it would be an interesting change in 

mechanical properties of these matrices. 

Additionally, a small peak was identified in the 420–470 °C range. This peak is more important for 

pates cured at 65 °C for 7 days, and especially for pastes cured at 20 °C for 270 days. Moreover, this 

peak is larger for pastes 100/0, suggesting that this peak could be related to the presence of slag in  

the studied pastes. Probably, the decomposition observed at this temperature range is related to the 

presence of brucite or hydrotalcite [34,38,39].  

XRD patterns for 100/0 paste cured for 3 days at 65 °C is shown in Figure 9a. The most important 

peak present in this paste is a broad peak centered at 2θ = 29.35, which is slightly lower than those 

found in BFS (centered at 2θ = 30.86°). This behavior demonstrates the formation of an amorphous  

gel C–N–S–A–H [13,40]. Also, peaks belonging to calcite, thermonatrite (Na2CO3·H2O, PDF card 

080448) and hydrotalcite (PDF card 140191) were identified. The presence of hydrotalcite, 

Mg6Al2CO3(OH)16·4H2O, agree with TGA identification. For pastes containing SCBA (Figure 9b–d) 

the presence of quartz and calcite became more important, because of the replacement of BFS by 

SCBA. The baseline deviation for BFS/SCBA mixtures was less important because the presence of 

quartz and calcite. Also, traces of hydrotalcite were found. 

Figure 9. XRD diffractograms for BFS/SCBA pastes cured for 3 days at 65 °C: (a) 100/0; 

(b) 85/15; (c) 75/15; (d) 60/40. (Key: Q: Quartz; C: Calcite; T: Thermonatrite;  

H: Hydrotalcite). 

 

Figure 10 shows the XRD diffractograms for pastes cured at 20 °C for 270 days. Similar results 

were obtained if compared to results on pastes cured at 65 °C. In this case, hydrotalcite peaks were 

easily observed. 
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Figure 10. XRD diffractograms for BFS/SCBA pastes cured for 270 days at 20 °C: (a) 100/0; 

(b) 85/15; (c) 75/15; (d) 60/40. (Key: Q: Quartz; C: Calcite; T: Thermonatrite; H: Hydrotalcite). 

 

Figure 11. Evolution of the properties of alkali-activated pastes: (a) pH values;  

(b) electrical conductivity values. 

  

(a) (b) 

The progress of alkali-activated reaction was monitored by means of pH and electrical conductivity 

measurements in an aqueous suspension [21]. Pastes cured after 3 days at 65 °C and pastes cured after 

28 days at 20 °C had small differences on pH when the replacing percentage of SCBA was increasing 

(Figure 11a). For pastes cured at 20 °C for 270 days, differences are more significant, finding that 

100/0 had pH = 12.56; pH values for 85/15, 75/25 and 60/40 were lowered to 12.40, 12.15 and 12.00, 

respectively. This behavior has been attributed to two factors: firstly, the hydraulicity of BFS, which 

favored the increase of pH; and secondly, the reactivity of SCBA by combination of silica network 

with OH
−
 anions, by the cleavage of Si–O–Si bonds to produce silanol groups (Si-O-H). The higher 

chemical reaction progress for pastes cured at 20 °C for 270 days will be assessed by means of 

mechanical experiments (see below). Associated to the pH reduction, there is a parallel decrease of 
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electrical conductivity (Figure 11b). Alkali-activator solution was the same for all pastes, and 

consequently, the lowest electrical conductivity for pastes containing the highest replacement of BFS 

by SCBA suggests that a larger quantity of ions (sodium cation, silicate and hydroxyl anions) were 

chemically reacted. 

Figure 12 shows the FTIR spectra of pastes after 3 days of curing at 65 °C (Figure 12a) and after 

270 days of curing at 20 °C (Figure 12b). The broadness of the main absorption band (Si–O stretching 

vibrations) around 960–973 cm
−1

 for pastes cured at 65 °C and 974–1004 cm
−1

 for pastes cured at  

20 °C is indicative of the disordered structure of these materials. According to Clayden et al. [41], a 

broadness of the main band results from the coexistence of various SiQ
n
 units in the amorphous 

network. The peak of this broad band shifted to lower wave-number values for 100/0 pastes, probably 

due to the presence of more aluminum in BFS than in SCBA [42]. The increasing curing time from 3 

to 270 days resulted in shifting the main band (e.g., for the 100/0 paste, the shift was from 960 to  

974 cm
−1

, and for the 60/40 paste, the shift was from 974 to 1004 cm
−1

. This could be a consequence 

of increasing Q
3
 units [36] and can be attributed to the role of SCBA.  

Figure 12. FTIR spectra for BFS/SCBA pastes: (a) cured at 65°C for 3 days; (b) cured at 

20 °C for 270 days. 

  

(a) (b) 

Table 3 shows mechanical strengths values (compressive, Rc; flexural, Rf) of mortars cured at 65 °C 

after 3 and 7 days of curing. Rc values at 3 days were in the 42–54 MPa range, finding higher Rc values 

for 85/15 and 75/25 mixtures. For 7 days curing time, 100/0 sample increased the Rc value to  

62.2 MPa, whereas mortars containing SCBA showed little change.  

This behavior could be attributed to the SCBA that contribute on the early stages of alkali activation 

reaction (in the first 3 days). However, the sample with only BFS as a mineral admixture, present a 

progress on the strength development from 3 to 7 days, as observed in TG analysis of pastes. In terms of Rf 

values, a decrease was observed from 3 to 7 days, suggesting changes in the microcrack pattern due to 
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prolonged high temperatures, specially for SCBA containing mortars. In these conditions (high curing 

temperature), the negative influence of organic matter and carbon present in SCBA on the hardening 

process of alkali-activated systems based on Slag/SCBA is negligible. 

Table 3. Mechanical strengths of mortars cured at 65 °C. 

Mixtures 
Rc (MPa) Rf (MPa) 

3 days 7 days 3 days 7 days 

100/0 45.5 ± 2.9 62.2 ± 2.6 5.80 ± 0.3 5.39 ± 1.1 

85/15 53.5 ± 2.0 51.2 ± 0.4 5.31 ± 0.4 2.94 ± 0.6 

75/25 49.0 ± 2.7 52.8 ± 1.9 5.31 ± 0.6 4.00 ± 0.4 

60/40 42.8 ± 0.9 43.2 ± 0.3 3.84 ± 0.5 3.19 ± 0.4 

Studies on mortars cured at 20 °C at 7, 28, 90 and 270 days were carried out. The Figure 13a shows 

the evolution for Rc of samples cured at 20 °C. Rc values at 28 days were very similar, and for longer 

curing times (90 and 270 days), 100/0 mortar showed a significant increase on Rc (from 59.6 to  

89.0 MPa), suggesting that, on one hand, the presence of SCBA enhances the reactivity at early ages, 

and, on the other hand, the matrix containing only BFS is developed for longer ages. Samples 

containing SCBA showed very similar Rc values after 270 days (ca. 70 MPa), values significantly 

higher than those found for mortars cured at 65 °C (43–53 MPa, see Table 2) indicating that the curing 

at lower temperatures let to form better developed matrices. Once again, it has been observed that the 

presence of organic matter and carbon in SCBA did not adversely influence strength development, 

even at lower curing temperatures. Also, interestingly, Rf values (see Figure 13b) were in the 6–8 MPa 

range for longest the curing times: in this case, no decay in Rf values was observed, suggesting that the 

matrix produced at 20 °C did not suffer critical microcracks. 

Figure 13. Mechanical strength developments for of BFS + SCBA mortars cured at 20 °C: 

(a) Compressive strength; (b) Flexural strength.  

  
(a) (b) 

Finally, cured samples were characterized by means of Mercury Intrusion Porosimetry (MIP). The 

test was conducted for mortars cured for 3 days at 65 °C. In Table 4, selected data for all mortars are 

summarized. Sample 100/0 showed the smallest total porosity, this indicates that the presence of the 
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SCBA in the alkali activated binders did not contribute to reduce the total volume of accessible pores 

in this type of test. In general terms, for all pore size range, mortars containing SCBA showed higher 

specific volume of Hg (mL of Hg/g of mortar). The Hg retained after the extrusion step was high in all 

samples, suggesting that the alkali-activated matrices presented a significant tortuosity degree. 

In Table 5, data for mortars cured at 20 °C over 270 days are summarized. In this case, the total 

porosity obtained was lower than that found for mortars cured at 65 °C. This fact suggests that, taking 

into account that dosage compositions were the same in both curing conditions, the reduction in curing 

temperature allowed an improved development of the matrix, closing many pores and capillaries, and 

then reducing the total volume of pores. This reduction was found for all selected pore size ranges 

summarized in Table 5. Also, for these mortars, the mercury retained in the extrusion process was 

high: in this curing condition, the percentage of Hg retained was higher for samples with a large 

amount of SCBA (75/25 and 60/40), suggesting the importance of the role of SCBA particles in the 

development of the matrix. This behavior was also found for pastes cured at 20 °C for 270 days  

(Table 6). In this case, the total porosity was higher for all tested samples if compared to those found 

for mortars. In general terms, the total volume of capillary pores (1 μm to 10 nm) was higher for 

samples containing SCBA particles, and also for the volume of gel pores. 

Table 4. MIP results for mortars cured 3 days at 65 °C. 

Mixtures 
Total 

porosity (%) 

Total pore 

area (m2/g) 

Median pore diameter Volume (mL of Hg/g of mortar) Hg retained 

(%) Volume (nm) Area (nm) >1 μm 1 μm–50 nm 50–10 nm <10 nm 

100/0 9.43 0.251 15,683.0 5.8 0.0381 0.0019 0.0001 0.0004 81.64 

85/15 12.58 1.918 17,706.1 7.2 0.0517 0.0033 0.0006 0.0032 86.53 

75/25 9.82 2.897 7154.3 6.9 0.0351 0.0047 0.0008 0.0047 74.35 

60/40 11.30 5.321 4823.1 6.6 0.0375 0.0070 0.0018 0.0083 70.59 

Table 5. MIP results for mortars cured after 270 days at 20 °C. 

Mixtures 
Total 

porosity (%) 

Total pore 

area (m2/g) 

Median pore diameter Volume (mL of Hg/g of mortar) Hg retained 

(%) Volume (nm) Area (nm) >1 μm 1 μm–50 nm 50–10 nm <10 nm 

100/0 6.80 2.070 10,813.8 8.2 0.0229 0.0024 0.0021 0.0021 71.29 

85/15 7.48 1.154 8835.9 8.2 0.0278 0.0037 0.0008 0.0017 77.57 

75/25 7.62 1.989 6903.3 7.3 0.0256 0.0051 0.0010 0.0032 75.64 

60/40 9.61 1.535 8554.4 7.6 0.0348 0.0064 0.0011 0.0021 84.35 

Table 6. MIP results for pastes cured after 270 days at 20 °C. 

Mixtures 
Total 

porosity (%) 

Total pore 

area (m2/g) 

Median pore diameter Volume (mL of Hg/g of mortar) Hg retained 

(%) Volume (nm) Area (nm) >1 μm 1 μm–50 nm 50–10 nm <10 nm 

100/0 8.78 1.287 7738.9 6.4 0.0405 0.0033 0.0001 0.0021 69.53 

85/15 9.69 5.713 1423.5 7.4 0.0319 0.0127 0.0032 0.0092 74.13 

75/25 8.60 3.173 1933.6 6.7 0.0339 0.0109 0.0043 0.0048 83.97 

60/40 12.53 3.881 1125.6 7.7 0.0427 0.0306 0.0030 0.0053 83.15 
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4. Conclusions  

The sugar cane bagasse ash (SCBA) studied presented a high percentage of crystallized material 

(mainly quartz, also calcite) and a high proportion of organic matter (ca. 25%). Despite this, the 

amount of soluble material in alkaline conditions suggested that it could be an interesting waste 

material for producing alkali-activated binders. Alkali-activated binders based on slag/SCBA blends 

were prepared and their microstructure, their physico-chemical properties and their mechanical 

strength development were assessed. Sodium hydroxide and a waterglass mixture were selected for 

activating BFS/SCBA samples: 5 mol kg
−1

 of sodium cation and a SiO2/Na2O molar ratio of 1.46. 

Mineral BFS/SCBA mixtures were dosed in the following proportions by weight: 100/0, 85/15, 75/25 

and 60/40. Studies on pastes and mortars cured for 3–7 days at 65 °C demonstrated that there was an 

important reaction degree of SCBA particles in the formation of gel matrices, and a good contribution 

on compressive strength was measured: SCBA containing mortars with 42–54 MPa after 3 days of 

curing at 65 °C were obtained. The development of BFS/SCBA blends alkali-activated matrices cured 

at 20 °C was better than at 65 °C: the H2O/OH groups in the gel formed were strongly bonded according 

to the thermogravimetric analysis. Moreover, mortars yielded high strengths after long curing times (90 

and 270 days): compressive strengths in the 55–65 MPa range were obtained. In the same way, the 

porous structure of mortars was enhanced for mixtures cured at 20 °C, yielding a reduction in total 

porosity to 7.5%–10%, clearly lower than those found for mortars cured at 65 °C (9.5%–12.5%). In 

general terms, this study demonstrates the feasibility of the use of slag/SCBA blends in alkali-activated 

systems, and these types of mixtures could form part of an alternative approach to reusing ashes 

obtained in the sugar cane industry. 
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