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ABSTRACT 

This paper describes a methodology to optimize cost and CO2 emissions when designing precast-

prestressed concrete road bridges with a double U-shape cross-section. To this end, a hybrid glowworm 

swarm optimization algorithm (SAGSO) is used to combine the synergy effect of the local search with 

simulated annealing (SA) and the global search with glowworm swarm optimization (GSO). The solution 

is defined by 40 variables, including the geometry, materials and reinforcement of the beam and the slab. 

Regarding the material, high strength concrete is used as well as self-compacting concrete in beams. 

Results provide engineers with useful guidelines to design PC precast bridges. The analysis also revealed 

that reducing costs by 1 Euro can save up to 1.75 kg in CO2 emissions. The parametric study indicates 

that optimal solutions in terms of monetary costs have quite a satisfactory environmental outcome and 

differ only slightly from the best possible environmental solution obtained. 
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1. Introduction 

Nowadays, global warming and the gradual deterioration of our planet are both cause for concern. Within 

the global development context, the environmental impact of construction activities is significant. While 

the embodied greenhouse gas (GHG) emissions were limited by the Kyoto Protocol, the construction 

industry continues to generate 40-50% of all global GHG emissions [1]. According to the Environmental 

Protection Agency (EPA), buildings are responsible for 38% of entire carbon dioxide (CO2) emissions of 

the United States [2]. Furthermore, the cement industry produces 5% of world’s GHG emissions [3]. 

Consequently, it is not enough to build cheaply and efficiently; construction should save non-renewable 

natural resources and respect the environment. This has promoted research related to sustainability in the 

field of construction. 

For concrete structures, savings in CO2 emissions can be achieved not only by recycling [4, 5] 

and by the use of novel materials, such as low-carbon cements and clinker substitutes [6,7], but also by 

decreasing the unit CO2 emissions of each structural material in the design stage and construction 

processes [8]. Hasanbeigi et al. [9] collected information from publically available sources related to the 

production of one unit of concrete. Such inventory data are of course depending on the local conditions at 

the production site such as climate, energy resources, transportation distances and the general conditions 

of the equipment and plant facilities. Construction materials contribute about 75% of the total CO2 

emission of a construction process [10]. Turner and Collins [11] present a study including energy 

expending activities associated with mining and transport of raw materials, manufacturing and concrete 

construction for both geopolymer and Ordinary Portland Cement. García-Segura et al. [7] evaluated CO2 

emissions and CO2 capture for a reinforced concrete structure during its service life and after demolition 

and reuse as gravel filling material. However, when attempting to calculate the CO2 emission 

consideration about construction methods or processes are usually not incorporated in those calculations. 

The transport of batched concrete as well as on-site placement activities such as pumping, vibrating and 

finishing concrete consumes diesel fuel. Nevertheless, these construction activities were all found to 

contribute very small amounts of CO2 to total concrete emissions [10]. 

Hence, the importance of incorporating design criteria to minimize emissions in the construction 

of concrete structures. To this end, databases measuring the materials-environmental impact have been 
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elaborated [12-14]. These databases have been used by Paya-Zaforteza et al. [15] and Yepes et al. [16] to 

conduct studies comparing optimization designs based on the CO2-efficiency and the cost-design for 

reinforced concrete (RC) building frames and walls. Camp and Assadollahi [17] and Camp and Huq [18] 

have optimized the CO2 and the structural cost of RC footings and frames, respectively. Park et al. [19] 

suggested an optimization technique for steel reinforced concrete columns in high-rise buildings that 

simultaneously considers the structural cost and CO2 emissions at the structural design phase. Yeo and 

Potra [20] carried out a similar study for RC moment frames, while Medeiros and Kripka [21] proposed 

the minimization of monetary and environmental costs of rectangular RC column sections. The work of 

Fernandez-Ceniceros et al. [22] presents a decision criterion based on the embodied CO2 and the overall 

cost of one-way floor slabs. This paper addresses the sustainability challenge by incorporating the CO2 

emission objective in the search for the optimum design of precast-prestressed concrete U-beam road 

bridges. 

In this context, precast construction presents social and environmental benefits [23] and has 

proved worthwhile when high production volumes are possible leading to the corresponding savings in 

costs and construction time. Horvarth and Herndrickson [24] found that for the initial construction of 

equivalent bridge girders for a particular location, a steel-reinforced concrete bridge generally has lower 

environmental effects than a steel bridge despite the fact that the uncertainty in bridge design life and 

related data uncertainties make comparisons based on annualized environmental effects difficult. Most 

Spanish road bridges are constructed with precast prestressed concrete (PC) beams. Precast PC beam 

decks are more common in other European countries and the United States. This typology is generally 

used when longer distances are involved. This is the case of the world's longest bridge (The Danyang-

Kunshan Grand Bridge, 2011), which is a 164.8-kilometer long viaduct with 80 m spans. The longest 

bridge in the United States is the Lake Pontchartrain Causeway (1956) which is 38.4 km and has 45.7 m 

spans making it the seventh in the world ranking. For this reason, structural optimization of this type of 

large and repetitive structures is an area of much research interest given the large amount of materials 

required in the manufacturing process. 

PC beam optimization is a classical problem considered many years ago [25]; nevertheless, as 

Hernandez et al. [26] have advised, most approaches for PC bridges found in the literature are not suitable 

for application in real life engineering. While there is little research on optimization of PC structures [27-

31], the literature does include a number of studies on optimizing real-life reinforced concrete (RC) 
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structures [32-36]. Ohkubo et al. [27] studied prestressed concrete box girder bridges and proposed a 

multicriteria fuzzy optimization of the total construction cost and aesthetic feeling. Sirca and Adeli [28] 

and Ahsan et al. [29] focused on the cost optimum design of concrete I-girder bridges. Both used precast 

and prestressed concrete for the beams, the latter also used post-tensioned tendons. An earlier paper 

written by the authors [30] optimized the cost of prestressed concrete precast U-beam road bridges, but 

with certain differences which are mentioned in further detail below. Semelawy et al. [31] carried out an 

optimization of a pre-stressed concrete slab using the cost and the distance from the constraint boundary 

as objective functions. However, little attention has been paid to the CO2 emissions optimization of PC 

structures. In this context, the best results found for many real-life problems are obtained by hybrid 

algorithms [37]. The main motivation behind the hybridization of different algorithms is to exploit the 

complementary character of different optimization strategies. Blum et al. [38] provided a survey on the 

hybridization of metaheuristics with other techniques for combinatorial optimization problems. 

In this study, an optimal design method is presented which minimizes the CO2 emissions and 

cost for structural design of PC precast road bridges. The use of these U-beams in an overpass is 

considered more aesthetically pleasing than a comparable bridge of I-beams as fewer beam lines are 

needed, improving the appearance as viewed from below. Moreover, this type of bridge beam is cost-

competitive with other concrete beams due to the exceptional resistance capacity and load-bearing 

capacity element weight ratio. These bridges are typically formed by two isostatic beams (Fig. 1), with a 

double U-shape cross-section that integrates a 12 m width upper reinforced concrete slab for road traffic 

(Fig. 2). Beams use self-compacting concrete (SCC), as well as high strength concrete which can also be 

used in the slab as an innovative aspect. This type of bridge has the advantages of a prefabricated 

structure, such as industrial construction, reusable formwork, reduced labor times and low interference 

with traffic. The methodology followed in this study consisted in developing a computer evaluation 

module from the cross-section dimensions, materials and steel reinforcement. This module computed the 

CO2 emissions of a solution and checked all the relevant limit states. The proposed optimal design 

method employs a hybrid glowworm swarm optimization algorithm as an optimization tool. This 

algorithm combines the GSO algorithm with the SA local search. The objective function of CO2 emission 

is evaluated along with the economic cost during the bridge materials production and manufacture, 

transport and construction. 

2. Problem definition 
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2.1. Optimization problem definition 

The structural design problem established for this research aims to minimize the objective function F of 

Eq. (1), subject to the constraints represented by Eq. (2). 

),...,,( 21 nxxxF  (1) 

0),.....,( 21 nj xxxg  (2) 

 
iiqiii dddx ,...,, 21  (3) 

Note that x1, x2, . . ., xn are the variables to be optimized (design variables). Each design variable 

may assume the discrete values listed in Eq. (3). The objective function F defined in Eq. (1) is either the 

CO2 emission or the cost. The constraints gj in Eq. (2) are all the service limit states (SLSs) and ultimate 

limit states (ULSs) with which the structure must comply, as well as the geometric and constructability 

requirements of the problem. 

 This study analyzes sustainability based on a function of CO2 emissions during the construction 

process. To this end, the values for materials were taken from the database BEDEC [14]. Applying a CO2 

emission to each unit in which the construction is split leads to a comparative analysis of the alternatives 

from an environmental point of view. It is assumed that the steel is mainly made by the electric arc 

furnace, approximately 40% from recycled scrap steel. The CO2 emissions are defined in Eq. (4), where ei 

are the unit emissions (Tables 1 and 2) depending on the design variables, and mi are the measurements 

for the total number of construction units r. Note that concrete unit emissions were determined from each 

mix design. The emissions from the production of cement, aggregate, and water were obtained from the 

database BEDEC [14]. The plasticizer [39] and superplasticizer [40] were taken from the European 

Federation of Concrete Admixtures Associations. Regarding the silica fume, this study considers that a 

waste product does not produce emissions [41]. The beam concrete emissions include the use of 

admixtures in order to accelerate the curing process. The slab concrete emissions include the transport 

and placement emissions. However, the beam transport and placement were considered separately (see 

Table 2), since this depends on the beam length [14]. 

 

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The cost is defined in Eq. (5), where pi are unit prices and mi are measurements. The cost 

function includes the materials (concrete, active prestressing steel, passive reinforcement steel) and all the 

elements to evaluate the entire cost of the bridge construction. Unit prices were obtained from a survey of 

Spanish contractors and subcontractors of precast structures and adapted to current prices. The values are 

given in Tables 1, 3 and 4 [42]. 

 



ri

ii mpC
,1

   (5) 

2.2. Design variables and parameters 

The structural geometry and materials are defined by 40 variables. Eight variables define the geometry 

(see Fig. 3): the depth of the beam (h1), the width of the soffit of the beam (b1) and the thickness of the 

bottom flange (e1), the width and thickness of the top flanges of the beam (b3 and e3), the thickness of the 

webs (e2), the thickness of the slab (e4) and the spacing between beams (sv). Two variables define the 

concrete type for the slab and the beam. Prestressing, which is formed by 0.6 in. strands, is defined by 

four variables: the number of strands in the top flanges and the number of strands in the first, second and 

third layers of the bottom flange. Finally, 26 variables define the bar diameters, the spacing and the bar 

lengths of the reinforcement following a standard set-up for the beam and the top slab. The parameters are 

all fixed quantities that do not change during the optimization. Table 5 lists the 21 main parameters 

analyzed. The former paper written by the authors [30] does not include the separation between beams 

(Sv) as well as high-strength concrete for beams and slabs. 

2.3. Structural evaluation module  

The structural evaluation module calculates the stress envelopes and checks all the limit states and the 

geometric constraints represented by Eq. (2). Structural constraints as well as the combination of actions 

follow standard provisions for the Spanish design of this type of structure [43,44] and include checks of 

the serviceability and ULSs of flexure and shear for the stress envelopes due to the loads. IAP-98 [43] 

was considered to determine the variable actions applied to the deck. However, it should be noted that 

recently these actions have been changed to adapt to the Eurocode content. The design live load consists 

of three axis of 200 kN each (1.5 m distance between axes), superimposed with a uniform load of 4.0 

kN/m2. The dead load is a wearing surface of 0.09 m as well as a uniformly distributed load of 2x0.5 

kN/m for concrete bridge barrier rails installed along the edge of the deck. The combinations of actions 
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include all construction stages. Laminated neoprene bearing pads are used to support the precast concrete 

bridge beams. A single support point is used at each end of the beam. The pads are designed to carry 

vertical loads and to accommodate horizontal movements of the bridge girders. They are also designed to 

deflect horizontally under shearing-type forces. The slenderness of the beam (span length over beam 

depth) is limited to a minimum of L/17 due to aesthetic, ground and specific road transportation 

considerations, where L is the span length. A 20-bar element structural model was first used for a linear 

elastic analysis of the beam before being connected to the slab; then, stress resultants and reactions are 

calculated by a stiffness matrix program using a 2-D mesh with 20 bar elements and 21 sections for each 

beam, which are connected with three bar elements for each of the 21 sections. The entire bar model has 

103 bar elements and 84 nodes, for which a linear elastic analysis including gross section properties is 

used. The construction sequences and the long-term interaction between the precast beam and the cast-in-

place concrete were considered to design the elements and analyze the structural response of the bridge in 

each phase. The details of the structural model can be found in the work by Martí et al. [30]. 

The ULSs and SLSs are checked in accordance with the Spanish Concrete Code [44] when the 

deflections and the envelopes of stress resultants are known. The reinforcement verification procedure 

does not follow the usual design rule. The indicated rule is an iterative method obtaining reinforcement 

bars from flexural-shear ULSs and checking SLSs. Heuristic algorithms can find new economical 

reinforcement solutions, for instance, suppressing shear reinforcement by increasing flexural 

reinforcement. ULS verification implies that the ultimate values are greater than the factored acting. 

Besides, both flexural and shear minimum amounts of reinforcement, as well as the geometric minimum, 

are also tested. Regarding flexure in beams, the acting bending resultant, Md, is checked to assure that it is 

within the ultimate iteration diagram Nu–Mu. The SLS for cracking includes conformity with the crack 

width limitation for durability conditions. In addition, fatigue of concrete and steel was considered. 

Temporary deflections were limited to 1/250 of the free span length for the frequent combination. Further, 

time-dependent deflections were limited to 1/1000 of the free span length for the quasi-permanent 

combination. Finally, the durability limit state requires compliance of the service working life. 

3. Hybrid glowworm swarm optimization algorithm  

GSO was proposed by Krishnanand and Ghose [45] to find solutions for the optimization of multiple 

optima continuous functions. GSO is a swarm intelligence algorithm based on the collective behavior of 
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glowworms interacting locally. Each glowworm is attracted and moves toward another glowworm that is 

in its neighborhood and glows brighter. The quantity of luminescence is called luciferin. The luciferin 

level depends on the fitness of its location, which is evaluated using the objective function. The 

neighborhood is encoded by a dynamic radial rate, which requires calibration. Glowworms decide by a 

probabilistic function the glowworm toward which it will move. However, GSO-based algorithms present 

three main drawbacks: the glowworms may get stuck in local optima; they fall easily into an unfeasible 

solution, and they have slow convergence rates. To overcome these drawbacks, a hybridized method 

combining simulated annealing and glowworm swarm optimization (SAGSO) algorithms is used. 

SAGSO uses SA optimization after every glowworm movement to ensure feasibility of the solution and 

to accelerate convergence to the optimum. This algorithm was simultaneously used for the first time by 

our research group in this paper as well as on optimizing reinforced concrete I-beams [41], which 

outperformed conventional GSO and SA independently in terms of both the quality and the computing 

time. 

SA was originally proposed by Kirkpatrick et al. [46] to design electronic circuits. This 

algorithm is based on the analogy of crystal formation from masses melted at high temperatures and 

cooled slowly to allow atoms to align themselves reaching a minimum energy state. The probability of 

accepting new solutions is governed by the expression exp(-ΔE/T), where ΔE is the increment in energy 

of the new configuration and T is the temperature. The increment in energy is evaluated according to the 

objective function. The initial temperature decreases geometrically (T = kT) by means of a coefficient of 

cooling k once a Markov chain Mc ends. The initial temperature T0 is usually adjusted following methods 

like that proposed by Medina [47], which consists of choosing an initial value and checking the 

percentage of higher energy solutions accepted. If this percentage is greater than 40%, the initial 

temperature is halved; when it is less than 20%, the initial temperature is doubled. Fig. 4 shows a 

flowchart of the simulated process. The algorithm ends when the number of iterations t reaches the 

maximum tmax. The procedure can be summarized as follows: 

1. Initially, a swarm of n feasible glowworms is randomly generated. They are distributed in 

the search space. The initial luciferin value l0 and the initial radial sensor range rs is assigned 

to each glowworm. After calculating each objective function, the worst Fmax is chosen.  

2. The luciferin value update depends on the previous luciferin li	and the objective function 

value F(xi), as shown in Eq. (6). The luciferin value decay constant ρ (0 <ρ<1) simulates the 
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decrease in luciferin level over time, and the luciferin enhancement constant γ (0 < γ <1) is 

the proportion of the improvement in the objective that the glowworm adds to its luciferin.  

l୧ሺt ൅ 1ሻ ൌ ሺ1 െ ρሻl୧ሺtሻ ൅ γሺܨ௠௔௫ െ Fሺx୧ሺt ൅ 1ሻሻ )    (6) 

3. The glowworm decides, by a probabilistic function, which glowworm it will target for 

movement. This probability is given by Eq. (7). Ni(t) is the set of neighbors of glowworm i 

at the iteration t. The neighbors must have higher values of luciferin; they must be located 

within the radial sensor range ri
d(t), and they must be feasible solutions. Distance dij 

represents the Euclidean distance between glowworms i and j. 

p୧୨ሺtሻ ൌ
୪ౠሺ୲ሻ‐୪౟ሺ୲ሻ

∑ ୪ౡሺ୲ሻ‐୪౟ሺ୲ሻౡ∈		ొ౟ሺ౪ሻ
      (7) 

4. During the movement phase, the glowworm i moves toward the chosen glowworm j. The 

following Eq. (8) defines the discrete position of the new value of the variable, where s (>0) 

is the step size.  

x୧ሺt ൅ 1ሻ ൌ 	int ቆ	x୧ሺtሻ ൅ s ൬
୶ౠሺ୲ሻ‐୶౟ሺ୲ሻ

ୢ౟ౠ
൰ቇ     (8)  

where				j ∈ 		N୧ሺtሻ, N୧ሺtሻ ൌ ൛j: d୧୨ ൏ 	 rୢ
୧ ሺtሻ; l୧ሺtሻ ൏ l୨ሺtሻൟ 

5. Once the movement is finished, the radial sensor range is updated in Eq. (9) according to the 

constant parameter β and a parameter to control the number of neighbors nt. The new 

solution is checked and evaluated. Even if the new solution is unfeasible, it is accepted. In 

this case, the objective function is penalized. 

rୢ
୧ ሺt ൅ 1ሻ ൌ min ቄrୗ,max൛rୢ

୧ ሺtሻ ൅ βሺn୲‐|N୧ሺtሻ|ൟቅ    (9) 

6. A total of nM Markov chains are run. A percentage of the variables (np) are modified by a 

small random movement. 

7. The solution is evaluated. Only feasible solutions whose probabilities are greater than a 

random number between 0 and 1 are accepted. 

 	random ൏ e
ెሺ౮౟ሺ౪ሻ‐ెሺ౮౟ሺ౪శభሻ

౐ 		      (10) 

8. When the Markov chain ends, the temperature decreases following Eq. (11). Therefore, the 

probability of accepting worse solutions also decreases. 

 	T ൌ kT        (11) 
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The hybrid glowworm swarm optimization algorithm requires the definition of certain 

parameters (tmax, n, nt, lo ,rs, ρ, γ, β, s , nM, k, Mc, np). To find the proper heuristic which increases the 

solution quality and improves the global searching capability, the algorithm was run several times and the 

parameters are randomly generated. Further, computer runs were performed nine times for each 

combination according to the methodology proposed by Payá-Zarforteza et al. [48] based on the extreme 

value theory. A span length of 35 m was considered. Fig. 5 and Fig. 6 show, respectively, the best 

solutions for cost and CO2 emissions and the computing time for each combination. Table 6 gives the 

results of a six case-study series whose results are optimal when both CO2 emissions and computing time 

are considered. S1 is the heuristic that provides a lower minimum emission (170,002.39 kg CO2). 

Besides, the average emission and computing time are reasonable. The difference checked between the 

minimum CO2 emissions obtained with the nine SAGSO runs and the extreme value estimated using the 

three-parameter Weibull distribution that fits 50 SAGSO results is less than 0.7%. So, this set of 

parameter is chosen. Similarly, Table 7 gives the results for the parameters calibration using cost as 

objective function. Note that our previous test for a span length of 35 m showed that the best results for 

the GSO and SA algorithms were 218,264.59 kg CO2 and 182,652.04 kg CO2, respectively. 

4. Results from numerical experiments and parametrical study 

In this Section, we examine the results from numerical experiments involving SAGSO optimization 

applied to a PC precast road bridge. The algorithm was coded in Intel® Visual Fortran Compiler 

Integration for Microsoft Visual Studio 2010. A personal computer with an INTEL® CoreTM i7-3820 

CPU processor and 3.6 GHz needed about 500 min to run the proposed SAGSO algorithm. Computer 

runs were performed nine times so as to obtain minimum, average and standard deviation. 

A parametric study for varying span lengths is presented. It is assumed that the cost and CO2 

emissions are specified (Tables 1-4). The primary economic (cost and CO2 emissions) and geometric 

characteristics are examined. The results lead to practical rules for the preliminary design of optimized 

PC precast road bridges, with a double U-shaped cross-section and isostatic spans. The corresponding 

functions are valid approximations within the range of the studied parameters, and therefore, careful 

consideration is required when extrapolated.  

Fig. 7 and Fig. 8 show, respectively, the average value variation in the minimum cost and CO2 

emissions (for cost and CO2 objective) for five span lengths (s), ranging from 20 to 40 m in steps of 5 m. 
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The minimum emissions and costs rise with increasing bridge span lengths. The average difference 

between the mean value of the results and the minimum value found after nine runs is only 2.9% for 

emissions and 1.8% for costs. These differences are sufficiently low for practical applications. A 

parabolic relation may be used to describe the general cost trend for both cost-optimized solutions 

(C=48.088s2+613.99s+31139 with a regression coefficient R2=0.9999) and emission-optimized solutions 

(C=55.99s2+163.96s+39134 with R2=0.9998). Similarly, the general emission trend is represented by a 

parabolic function for both cost-optimized solutions (kgCO2=63.878s2+2429.3s+13052 with R2=1) and 

emission-optimized solutions (kgCO2=63.418s2+2392.3s+13328 with R2=0.9999). 

Fig. 9 depicts the relationship between the best values for the emissions and cost when the 

objective function is either the amount of CO2 or the monetary cost. It is possible to observe a linear fit 

between emissions and cost (kgCO2=1.7533C-25153 with R2=0.9988 for emission-optimized solutions) 

which indicates that, as a rule of thumb, reducing costs by 1 Euro results in savings of 1.75 kg in CO2 

emissions. This relationship assumes standard technology to assess the emissions of each construction 

unit. For example, if a different mixture composition is used, there will be an increase or decrease in 

concrete composition materials, and such changes should be taken into consideration when calculating the 

amount of CO2. Nevertheless, this relationship suggests that the optimization of monetary costs is closely 

related to a reduction in environmental costs. This has already been reported by Paya-Zaforteza et al. [15] 

for CO2-optimization of RC building frames as well as by Yepes et al. [16] for RC retaining walls. This is 

a significant finding since clearly reducing CO2 emissions is economically affordable with regard to 

reducing global warming. Moreover, prices are more sensitive to market cycles, while emissions depend 

on stricter manufacturing processes. Therefore, it appears that designs based on emissions are more stable 

and more rational. However, the physical dimensions and details of the design for cost and emissions 

optimization can vary significantly because unit prices and emissions are not in any proportional 

relationship to one another. 

Fig. 10 shows a good linear variation between the beam depth and the span length of the bridge. 

The average depth of the beam is 1/18.08 in relation with the span, when the objective is to reduce the 

emissions. This value is similar to 1/17.57 which corresponds to the cost optimization. The reason for this 

is that the ratio L/h1 is always lower than 17 (see Table 5). As shown in Fig. 11, values for slab thickness 

decrease with the span length when the objective is to reduce the CO2 emissions. However, this 

relationship only occurs when the value for the span length is less than 35 m in the case of reducing cost. 
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In addition, Fig. 11 shows no clear difference in values for slab thickness between the cost-optimized and 

the emission-optimized design. 

Regarding the average number of strands in relation to the span, Fig. 12 illustrates a linear 

correlation for the span length of the bridge. Results are quite similar for both objective functions. Fig. 13 

shows the relation between the concrete strength and the span length. There is a clear trend toward 

increasing concrete strength as the span lengthens, so as to lighten the load. If emission is optimized, 

concrete strength values decreased compared to cost objective. Despite the fact that high-strength 

concrete is usually used for precast-prestressed concrete, note that concrete strength for short spans tends 

to be the minimum proposed (25 MPa for slabs and 35 MPa for beams). However, for the maximum span 

length studied, even with the concrete strength increase, it is far from the highest (100 MPa). Regarding 

the ratio of the mean spacing between beams, there is no a clear tendency with the span length, but in 

every case the spacing is less than half of bridge width (Fig. 14); what is more, there is no clear difference 

in values for the spacing between the cost-optimized and the emission-optimized design. Table 8 

summarizes the amount of passive reinforcement and concrete in beams and slabs. Passive reinforcement 

increases with the span length, being greater in emission-optimized beams and cost-optimized slabs. The 

average amounts in beams and slabs are 5205 kg and 8846 kg, respectively, for the minimum emission 

and 4833 and 10898 for the minimum cost. This represents an average of 37.04 kg/m2 of deck for the 

emission case and 42.35 kg/m2 of deck for the cost. Regarding the concrete required in beam, an increase 

is observed according to the span, being greater for emission optimization. However, slab concrete, as 

noted in Fig. 11, decreases with the span length. In this case, lower values were obtained for the best cost 

option. 

Finally, SAGSO was applied to a PC precast bridge with a 35 m span with various scenarios of 

the material cost. Figure 15 indicates that the cost impact is greater when the unit price increase occurs in 

the steel. Thus, a maximum 20% rise in the steel unit price leads to 10.27% increase in the cost, while 

20% rise in the concrete unit price increases the cost up to 3.41%. Figure 16 shows a decrease in the steel 

quantity in accordance with a higher steel cost whereas an increase in the concrete cost results in a slight 

increase in the steel quantity. In addition, Figure 17 shows a rise in the volume of concrete when the steel 

price rises; surprisingly, in this case, the variation in the volume of concrete is almost insensitive to its 

rising price. 
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5. Conclusions 

In this paper, a hybrid method combining simulated annealing with glowworm swarm optimization 

(SAGSO) algorithms is presented and employed to optimize PC precast road bridges formed by two 

isostatic beams with a double U-shaped cross-section. Two objective functions are considered: the CO2 

emissions and cost of the PC bridge at the different stages of material production, transportation and 

construction. The extensive computational experiments with a set of five span lengths for the bridge 

indicate that SAGSO is an efficient algorithm for the advanced automatic design of real PC precast 

bridges used in road construction that reduced the CO2 emissions and the cost. The analysis reveals that 

CO2 emissions and cost are closely related and, as a rule of thumb, a euro reduction in cost results in 

savings of 1.75 kg in CO2 emissions. Thus, the solutions which are acceptable for emissions are also 

viable in terms of cost and vice versa. The parametric study shows a good correlation for both the depth 

of the beam, the thickness of the slab, the number of strands and the characteristic compressive strength 

of concrete, which can be useful for the day-to-day design of PC precast bridges. Greater and lesser 

amounts of passive reinforcement are observed in the beams and the slab, respectively, for CO2-

optimization. Regarding concrete, larger volumes are used when optimizing the emission. It must be 

noted that the repetition of the PC structures increases the economic savings. A cost sensitivity analysis 

applied to a PC precast bridge with a 35 m span indicates that a maximum 20% rise in steel costs leads to 

a 10.27% increase in the cost, while a 20% rise in concrete costs only increases the cost up to 3.41%; 

surprisingly, the variation in the volume of concrete is almost insensitive to its rising price. To conclude, 

this hybrid method, described herein, is quite flexible and can easily be modified and extended so that 

structural engineers may reduce CO2 emissions in their structural designs. 
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Table 1.  Unit prices and CO2 emissions of the PC precast bridge  

Unit Description Cost (€) CO2 emission (kg) 

kg beam steel (B-500-S) 2.88 3.03 

kg slab steel (B-500-S) 1.53 3.03 

kg active steel (Y1860-S7) 3.70 5.64 

m beam formwork 82.17 - 

m2 beam formwork - 2.24 

m2 slab formwork 32.82 41.90 

m3 slab concrete HA-25 64.99 247.13 

m3 slab concrete HA-30 69.95 278.09 

m3 slab concrete HA-35 74.03 307.11 

m3 slab concrete HA-40 79.12 334.19 

m3 slab concrete HA-45 83.64 359.33 

m3 slab concrete HA-50 88.29 382.53 

m3 slab concrete HA-55 92.93 403.79 

m3 slab concrete HA-60 97.58 423.11 

m3 slab concrete HA-70 106.88 455.94 

m3 slab concrete HA-80 116.17 481.00 

m3 slab concrete HA-90 125.46 498.30 

m3 slab concrete HA-100 134.76 507.84 

m3 beam concrete HP-35 133.74 263.96 

m3 beam concrete HP-40 145.94 298.57 

m3 beam concrete HP-45 155.51 330.25 

m3 beam concrete HP-50 167.26 358.97 

m3 beam concrete HP-55 178.14 384.76 

m3 beam concrete HP-60 189.16 407.59 

m3 beam concrete HP-70 211.18 444.43 

m3 beam concrete HP-80 233.21 469.49 

m3 beam concrete HP-90 255.23 482.77 

m3 beam concrete HP-100 277.26 484.27 
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Table 2. CO2 emissions from beam transportation and placement (distance up to 50 km, one way) 

Maximum beam 

length (m) 

Transport emissions 

(kg CO2/t) 

Placement emissions 

(kg CO2/m) 

20 76.38 39.43 

25 80.12 50.24 

30 98.25 61.05 

35 95.38 65.18 

40 93.00 69.31 

 

 
 

Table 3. Basic prices for beam placement 

Maximum beam 
length (m) 

Placement 

cost (€) 

20 3172.57 

25 3281.97 

30 5579.35 

35 5688.74 

40 6782.73 

 
 

Table 4. Basic prices for beam transport (until 50 km)  

Maximum beam 
weight (kN) 

Transport 

cost (€) 

550 1066.64 

660 1394.84 

800 1805.08 

1000 1996.53 

2000 3090.52 

4000 4184.51 

 

   



 

  26

 
Table 5. Input parameters for the analysis 

Geometric parameters  

PC precast bridge width W = 12.00 m 

Inclination, top flange tablet ns3 = 3 

Top flange division s3 = 3 

Inclination, bottom flange tablet ni3 = 3 

Bottom flange division i4 = 4 

Web inclination 80º 

Minimum beam slenderness L/17 

Bearing center to beam face distance 0.47 m 

Loading parameters  

Concrete bridge barrier width 2x0.50 m 

Thickness of the wearing surface tws = 0.09 m 

Concrete bridge barrier loads 2x5.0 kN/m 

Cost parameters  

Transport distance (one way) Td = 50 km 

Active prestressing steel crops 25% 

Reinforcement parameters  

Passive reinforcing steel (B-500-S) fyk = 500 N/mm2 

Active prestressing steel (Y1860-S7) fpk = 1700 N/mm2 

Strand diameter Φs = 0.6” 

Beam surface reinforcement Φr = 8 mm 

Strand sheaths Levels 2 and 3 

Vertical slenderness of stirrups 200 (length/diameter) 

Legislative parameters  

Code regulation EHE/IAP-98 

Exposure parameters  

External ambient conditions IIb (EHE) 
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Table 6. Results for the parameters calibration using CO2 emissions as objective function 

 S1 S2 S3 S4 S5 S6 

Standard deviation 
(kg CO2) 

2734.79 4272.47 1096.96 1885.74 2315.93 1607.82 

Minimum emission 
(kg CO2) 

170002.39 170903.20 171164.25 171736.11 172432.22 173214.53 

Average emission 
(kg CO2) 

173525.88 176247.39 172431.52 173679.07 174076.10 174664.75 

Coefficient of 
variation (%) 

1.58% 2.42% 0.64% 1.09% 1.33% 0.92% 

Average time (sec) 29323.88 7431.85 48857.71 15379.80 14710.80 10959.61 

Number of 
iterations, tmax 

15 15 15 5 10 5 

Number of 
glowworms, n 

10 10 30 20 10 10 

Number of 
neighbors, nt 

10 10 10 15 10 5 

Initial luciferin 
value, l0 

70000 50000 70000 70000 70000 70000 

Radial sensor 
range, rs 

70 70 50 50 30 50 

Luciferin value 
decay constant,  

0.50 0.70 0.70 0.70 0.50 0.50 

Luciferin 
enhancement 
constant,  

0.50 0.50 0.50 0.30 0.70 0.30 

Constant 
parameter, β 

0.05 0.05 0.08 0.05 0.08 0.08 

Step size, s 60 50 70 60 50 70 

Number of Markov 
chains, nM 

3 1 2 2 3 3 

Coefficient of 
cooling, k 

0.85 0.90 0.95 0.80 0.95 0.85 

Markov chains, Mc 1500 1000 1000 1500 1000 1500 

Percentage of the 
variables, np 

10 10 10 10 10 10 
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Table 7. Results for the parameters calibration using cost as objective function 

 S7 S8 S9 S10 S11 

Standard deviation 
(euros) 

2087.68 2287.53 1494.84 2419.80 1946.48 

Minimum cost 
(euros) 

109069.34 109341.96 111135.59 110247.95 111229.98 

Average cost 
(euros) 

111611.23 111871.68 112192.61 112594.42 112969.97 

Coefficient of 
variation (%) 

1.87% 2.04% 1.33% 2.15% 1.72% 

Average time (sec) 15049.84 11996.38 11036.38 6732.5 6446.75 

Number of 
iterations, tmax 

15 10 15 15 5 

Number of 
glowworms, n 

20 10 20 10 10 

Number of 
neighbors, nt 

15 10 5 5 5 

Initial luciferin 
value, l0 

50000 50000 50000 70000 50000 

Radial sensor 
range, rs 

70 50 70 50 50 

Luciferin value 

decay constant,  
0.50 0.5 0.3 0.7 0.7 

Luciferin 
enhancement 

constant,  

0.3 0.3 0.7 0.3 0.3 

Constant 
parameter, β 

0.05 0.08 0.08 0.05 0.08 

Step size, s 40 40 40 60 50 

Number of Markov 
chains, nM 

2 3 1 2 2 

Coefficient of 
cooling, k 

0.85 0.80 0.8 0.9 0.8 

Markov chains, Mc 1500 1500 1000 500 1500 

Percentage of the 
variables, np 

10 10 10 10 10 
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Table 8. Basic measurements of best emission (a) and best cost (b) optimized solutions for 20-25-30-35-
40 m spans 

 

 

 

 

 

Span 
(m) 

 Beam 
reinforcement (kg) 

Slab 
reinforcement (kg) 

Total  

reinforcement (kg/m2) 

Beam concrete 
(m3/m2) 

Slab concrete 
(m3/m2) 

20 (a) 2943 5731 34.420 0.103 0.309 

 (b) 2403 8317 42.541 0.096 0.229 

25 (a) 3928 6886 34.661 0.110 0.269 

 (b) 3189 9959 42.143 0.108 0.200 

30 (a) 4908 7536 33.452 0.119 0.280 

 (b) 4640 11205 42.594 0.113 0.220 

35 (a) 6892 10077 39.280 0.132 0.210 

 (b) 5743 13045 43.490 0.120 0.190 

40 (a) 7353 13999 43.398 0.142 0.180 

 (b) 8189 11963 40.959 0.135 0.230 


