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ABSTRACT 

The use of high strength concrete (HSC) in columns has become more frequent since a 

substantial reduction of the cross-section is obtained, meaning that slenderness increases 

for the same axial load and length, producing higher second order effects. However, the 

experimental tests in the literature of reinforced concrete columns subjected to axial 

load and lateral force focus on shear span ratios, according to Eurocode 2(2004), clause 

5.6.3., (M/(V·h)) lower than 6.5.  This gap in the literature limits technological 

development for the construction of these structural elements. This paper presents 44 

experimental tests on reinforced concrete columns subjected to constant axial load and 

monotonic lateral force. The aim of this is to gain greater knowledge of the types of 

elements which will also be of use in calibrating the numerical models and validating 

the simplified methods. The test parameters are strength of concrete (normal- and high-

strength concrete), shear span ratio, axial load level and longitudinal and transversal 

reinforcement ratio. The strength and deformation of the columns were studied, and an 

analysis of the simplified methods from Eurocode 2 (2004) and ACI-318 (2008) 

concluded that both are very conservative. 
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NOTATION 
 
µΔ = ductility ratio in displacements  

ε’s = strain of the upper reinforcements in the section, compression. 

εc1  = strain at peak stress of concrete   

δi  = displacement 

ρl = longitudinal reinforcement ratio. 

δns = the amplification factor 

ρs = confinement volumetric geometric reinforcement ratio. 

εs =  strain of the lower reinforcements in the section, tension. 

δu   = displacement of the column in the descending branch corresponding to 0.85 of the 

maximum load. 

λV = shear span ratio (λV = Ls/h =M/(V·h)) 

δye  = effective elastic displacement. 

As = area of the longitudinal reinforcement   

h = height of the cross section. 

b = width of the cross section 

ω = mechanical reinforcement ratio = (As.fs/Ac.fc) 

M = bending moment 

M1st,max = maximum first order bending moment. 

Mmax = maximum total bending moment. 

N = axial load 

Nuc = axial load for pure compression 

V = lateral force. 

Vmax = maximum vertical load  
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1 INTRODUCTION 

In the ultimate state, the inelastic behavior of a structure is conditioned to the 

progressive appearance of plastic hinges, so much so that the design of the structure 

must aim to make yielding appear first in the beams and later in the columns in order to 

guarantee the overall stability (weak beam-strong column). However, in the column-

foundation connection (both for building and bridge piers) the appearance of the plastic 

hinge is possible in the ultimate state of the structure. Moreover, the use of high strength 

concrete (HSC) in columns is becoming increasingly frequent given that a substantial 

reduction of the cross-section is obtained, producing an increase in slenderness for the 

same axial load and length  and resulting in higher second order effects. There are 

several tests in the literature (Li et al [1], Foster and Attard [2], Ho and Pam [3], Galano 

and Vignoli [4] among others) that demonstrate that the columns made with HSC are 

more brittle than NSC columns. Those authors suggest more experimental research in 

relation with the resistance capacity and deformation of HSC columns in order to 

analyze the reliability of the numerical models and simplified design methods. 

From the point of view of structural safety both strength and ductility have the same 

significance. Traditionally, the design of structures focuses on providing the elements 

with enough resistance for the design forces corresponding to U.L.S (ultimate limit 

states) and provides enough stiffness to verify S.L.S (service limit states). In addition, 

the required ductility is guaranteed by specific design criteria and reinforcement 

arrangements defined in the different design codes: ACI-318 [1], EC-2 [6] and EC-8 

[7].  

These design methods are developed from the large amount of tests within the 

bibliography quantifying the deformation capacity of elements under flexure, both for 

monotonic and cyclic loads. In general, studies focusing on monotonic loads aim to 
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investigate the capacity of the force redistribution for dead or live combinations of 

loads, whereas tests for cyclic loads study the behavior for a seismic event.  As can be 

observed in the distribution of the 1125 tests summarized in chapter 6 of bulletin 

number 25 from the F.I.B. (Fédération Internationale du Béton) [8] for elements under 

monotonic and cyclic loads (Fig. 1.a), and from the database for PEER (Pacific 

Earthquake Engineering Research Center) [9] with 306 cyclic tests (Fig. 1.b),  most of 

the experiments focus on a shear span ratio λV lower than 6.5 (λV = Ls/h =M/(V·h)), 

Panagiotakos and Fardis [10], where Ls is the distance between point of zero and 

maximum moment M, V is the shear force and h is the overall depth of the cross section.  

There are several reasons that justify the need to study slender reinforced concrete 

columns subjected to constant axial load and monotonic (or cyclic) lateral force. The 

first of these is that the use of concrete with a higher capacity implies the construction 

of slender columns, while the second is that second order effects (P-Δ effect) have a 

major influence on the deformation capacity of the columns, Bae and Bayrak [11]. A 

third reason would be the scarcity of experimental tests with a shear span ratio higher 

than 6.5.  

This paper presents an experimental program which attempts to cover this lack of 

monotonic tests. The results of the tests aim to expand on the behavior of this column 

typology which will be of use when validating the calibration of numerical models, and 

later verifying the implementation of the simplified methods proposed in different 

design codes. 

 

2 EXPERIMENTAL PROGRAM 

In this experimental program forty-four rectangular columns with different sections 

200 x 150 mm, 140 x 150 mm and 100 x 150 mm were executed (Table 1). The lengths 

of the columns (L) are 3 m for all the specimens and these were subjected first to a 
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constant axial load and later to a monotonic lateral force up to failure (Fig. 2).  These 

specimens symbolize two semi-columns of two stories connected by a central element 

which represents the stiffener effect of an intermediate floor or the connection between 

a column and the foundation represented by the stub element.  Each semi-column has a 

length (Ls)  of 1.5 meters between the support and the central element (stub) of which 

1.32 m are reinforced concrete and 0.18 m correspond to the system representing the 

hinge support at each end of the specimen where the width of the stub element is 30 cm. 

This type of specimen has also been used by other authors, Yamashiro and Sies [12], 

Ang et al [13], Priestley and Park [14] and Wang et al [15].  

The test parameters were: strength of concrete (fc), shear span ratio (λV = Ls/h 

=M/(V·h)), axial load level (N/Nuc, where N is the axial load applied and Nuc is the axial 

load for pure compression), confinement volumetric geometric reinforcement ratio (ρs = 

Wsc/Wc, where Wsc is the volume of the confinement stirrups and Wc is the volume of the 

confined concrete), and the longitudinal reinforcement ratio (ρl = As/(b·h), where As is 

the area of the longitudinal reinforcement  and “h” is the dimension of the section 

perpendicular to the bending axis) 

The range of variables studied is the following:  

• Strength of concrete (fc): 30, 60 and 90 MPa (nominal strength) 

• Shear span ratio (λV): 7.5, 10.5 and 15.  

• Axial load level: A variation between the null axial load and 45% of the ultimate 

axial load  (Nuc) is studied, where: 

 yscssscuc fEAfhbN ≤=⋅+⋅⋅= ·1εσσ  (1) 

where  εc1  is the strain at peak stress of concrete following clause 3.1.5 of EC-2 

(2004) [6]. 
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cc <⋅=ε  (2)  

 Es  is the Young modulus of the longitudinal reinforcement (200 GPa) 

 fy  is the yielding stress of the longitudinal reinforcement 

• Confinement volumetric geometric reinforcement ratio: between 0.8% and 3.1%. In 

all cases the anchorage of the stirrups was arranged during compression. This 

anchorage was defined with an angle of 90º and a length of 10·φt >70 mm, φt being 

the diameter of the transversal reinforcement (Clause 8.5 from EC-2[6]). 

• Longitudinal reinforcement ratio: between 1.4% and 3.2% 

 

Table 2 lists the details of the 44 tests of the experimental program.  The nomenclature 

followed in the tests was:  

 uclvc NNCxfHN −−−− ρλ/  (3) 

where  N/H fc   stands for the type of concrete (N) normal-, (H) high-strength and fc 

is the nominal strength of concrete in MPa. 

 λV  shear span ratio. 

 Cx   ‘x’ is the nominal confinement volumetric geometric reinforcement 

ratio in percentage. 

 ρl  longitudinal reinforcement ratio in percentage. 

 N/Nuc  axial load level. 

The nominal cover of the longitudinal reinforcement (c) is 0.02 m in tests 1 to 34 and 

0.023 m in tests 35 to 44 (see Table 1 and Table 2). 

Material properties 

All columns were cast using concrete batched in the laboratory using Portland cement 

type CEM I 52,5R, following code UNE-EN 197-1:2000 [16]. Different additives were 
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used depending on the strength of the concrete: BASF Glenium 300C with silica fume 

for the 90 MPa and super-plasticizer Sika Cem for 60 MPa. The gravel used was 

calcareous, ranging between 4 and 7 mm in size, and the water-cement ratio was 0.63 

for normal-strength concrete (30 MPa), 0.42 for 60 MPa and 0.32 for 90 MPa 

respectively. 

All the columns were tested at 28 days, and the concrete compressive strength ‘fc’ was 

determined from 150 × 300 mm cylinders using standard tests. 

Table 3 presents the exact mix proportions used to manufacture each type of concrete in 

the experimental program, and Table 4 lists the mean values of strength of concrete 

obtained from the standard tests.   

Four pieces of reinforcing steel B 500 SD were also tested for each diameter, where B 

means ‘steel bars’and SD is a reference used to indicate special ductility characteristics.   

Fig. 3 shows the results obtained with the quality control following European Standard 

UNE EN-10002-1 [17] with an elastic modulus of 200 GPa.  

 

Column manufacture 

The elements were cast in a horizontal position and vibrated with a needle vibrator. 

After 24 hours the columns were separated from the formwork and conserved in a wet 

atmosphere in order to minimize the effects of shrinkage.  

Test setup 

A special test frame was designed in order to perform all the tests (Fig. 4.a). The 

horizontal system for applying the axial load is made up of two external plates and four 

GEWI steel bars with a diameter of 36 mm. One of the plates is attached to a 2000 kN 

load cell and the second one is fixed with the horizontal 2500 kN hydraulic jack which 

leans on a sliding support to enable horizontal displacement (Fig. 4.b). 

Two hinges were placed at the ends of the specimens. These steel elements are designed 
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to allow the free rotation of the specimen and guarantee that the load is applied to its 

central axis. These hinges are supported by a special plate with rollers which enable free 

horizontal displacement (Fig. 4.b). The longitudinal reinforcement of each reinforced 

concrete column tested was welded to a piece of channel steel section. This steel section 

was screwed to the hinges using four embedded screws.   

 The set-up for applying the vertical load is attached to an auxiliary framework which 

transmits the vertical loads to a strong floor. This load is applied to the specimen with a 

different 500 kN hydraulic jack, controlled by a 200 kN load cell and transmitted via a 

special assembly (Fig. 4.c).   

Instrumentation. 

The strains were measured in the reinforcing bars in 9 sections of one of the semi-

columns (Fig. 5- plan view). In order to ensure that the instrumented half of the column 

was the first to reach failure, the other semi-column was strengthened with an additional 

rebar both in the compressed part of the section (top) and the lower part of the cross-

section (bottom) with a length higher than the potential plastic hinge length (Fig. 5, 

section A-A’). The strain gauges were located in the central reinforcement bar of the 

section both in the upper and lower arrangement (Fig. 5, section B-B’). The first 

instrumented section (C1) was located 2 cm from the stub element and the following 

sections (C2, C3, etc) were located each 5 cm or 10 cm (Fig. 5- plan view).  

Twelve LVDTs were used to measure the lateral displacement (Fig. 6). LVDT 5 

measures the displacement perpendicular to the bending plane in order to quantify 

geometric imperfections or the lateral instability of the column. During the tests, this 

effect was observed as negligible. LVDTs 3 and 4 aim to measure a possible rotation of 

the stub element. Again, no significant rotation was observed during the tests despite the 

asymmetry of the column due to the additional rebars. 
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As was commented, two load cells were used to measure the axial and lateral loads 

applied. 

Test procedure 

Initially, the axial load was applied and maintained constant during the tests. Later a 

vertical load was applied up to failure of the column. The column was tested in a 

displacement control in order to measure post-peak behavior, with a view to measuring 

the displacement corresponding to 0.85 of the maximum vertical load (Vmax) in the 

descending branch. 

 
3. TEST RESULTS 

 
Table 5 lists a summary of the observations registered in the 44 tests. It also presents the 

strain of the upper (ε’s) and lower (εs) reinforcements in section C2 (5cm from the stub), 

the displacement of the critical section (δ), the type of failure (explained later), and the 

vertical load (V) corresponding to the maximum lateral force and the maximum bending 

moment respectively.  Furthermore, this table presents the ductility measured in 

displacements (µΔ), which will also be defined later, and the ratio between the length of 

critical section and the height of the section (Lcr / h). 

3.1. Test observations  

The following observations can be inferred in analyzing the behavior from the tests: 

• For the columns with a shear span ratio λV = 15, no yielding strains were observed 

for either concrete or steel. Therefore, the potential plastic hinge zone is null. 

However, yielding strains were measured for the other specimens with a shear span 

ratio between 7.5 and 10.5. 

• In general, for the non-confined columns (!s ≤ 1%) with normal-strength concrete, 

the spalling of the concrete cover was noted during failure for axial load levels N/Nuc 
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of 45%. However, for the columns with 60 MPa, this spalling was observed between 

30 and 45% (Fig. 7.a) and for 90 MPa beginning with 15 %. Nevertheless, in all the 

tests with a higher confinement (!s ≥ 1.9%), for both 30 and 90 MPa, the spalling of 

the concrete cover appeared for N/Nuc ≥ 30% (Fig. 7.b). This behavior shows that the 

higher the strength and the axial load, and the lower the spacing between the 

transversal reinforcement, the more frequent the spalling of the concrete cover. As 

was affirmed by Collins et al [18], in specimens with HSC the spalling of the 

concrete cover is related to the appearance of ‘splitting cracks’ in the longitudinal 

reinforcement plane, which produce a reduction of the strength capacity of the 

column. Moreover, the lower spacing between the transversal reinforcement also 

contributes to the weakness of this area. Generally, in the confined specimens the 

spalling of concrete cover have not produced an important loss of the strength 

capacity. 

• The buckling of the compressed reinforcement was observed in almost all the tests 

with high axial load levels (N/Nuc = 45%.), particularly in those with a stirrup 

spacing of 10 cm, and once the longitudinal reinforcing bar had yielded (Fig. 7.a). 

As was expected, in the columns with lower stirrup spacing this effect practically 

disappears (Fig. 7.b). 

• For all the tests, no damage was observed in the area close to the connection 

between the stub and the semi-column, despite this being the section where the 

maximum bending moment is localized (Fig. 8.c). Other authors maintained that this 

effect was due to the confinement produced by the higher stiffness of the stub in 

nearby zones (Li et al. [19], Bayrak and Sheikh[20],  Légeron and Paultre[21], 

Sheikh and Khory[22], Paultre et al[23], Ho and Pam [3]). This phenomenon 
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increases the maximum bending moment in the areas surrounding the stub. As a 

result, the critical section is translated to an inside section of the semi-column. 

Another way to observe this phenomenon in experiments is by means of curvature 

distribution (Fig. 8.a and Fig. 8.b). The curvature was obtained from the top and 

bottom strains of the cross-section divided by the distance between them. We 

observed that the maximum curvature did not appear in the section closest to stub 

(C1), but in the following sections (between C2 and C3). Consequently, C2 was 

selected as the critical section for the analysis of the results (Fig. 8.c). 

• For the tests with pure bending (without axial load), independently of the strength of 

concrete, the behavior with respect to the strains of the materials and the deformed 

shape is similar (Fig. 9). When the vertical load is higher than the yielding load  

(Fig. 9.a) between sections C1 and C2, the strains in the rebars increase notably with 

distances (potential plastic hinges) equal to the height of the cross-section.   Fig. 9.b 

and Fig. 9.c show the strains of the top (ε’s) and bottom (εs) reinforcement 

respectively. Furthermore, the yielding strain (εy = ± 2.65 ‰) is indicated as 

reference. It can be observed that maximum tensile strain is not reached in the same 

section in terms of the applied load (V). Accordingly, although the vertical load is 

increased monotonically, Fig. 9.a, the deformation in the tensile reinforcement is 

subjected to load-unload procedures, Fig. 9.c, once the load Vy is reached and 

moving the section where the tensile deformation is maximum. However, the strain 

of the compression reinforcement, Fig. 9.b, increases when the load increases in all 

sections. 

In addition, for the remaining tests with a non-null axial load, it was observed that 

both strains are increased at the same time as lateral force V. 
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• Two typical deformed shapes were observed in the experimental program. Fig. 10.a 

presents the deformed shape with different states of load and failure, with yielding 

concentrated in a reduced length (point-hinge). This behavior is typical in the tests 

without axial load. In contrast, if the deformation is distributed along a potential 

plastic hinge length, the deformed shape corresponds to Fig. 10.b.  

3.2. Failure mode 

In order to analyze the failure mode of the overall structure the maximum vertical load 

state (Vmax) is studied. The possible failure modes are: instability or section failure 

(tension or compression). However, if the failure mode in the section level wants to be 

studied, the failure for maximum total bending moment (Mmax) will be analyzed. In this 

case the failure modes are due to tension or compression. Afterwards, it will be 

demonstrated that the type of failure is related with the behavior of the structural 

element. 

3.2.-1 Type of Failure for maximum vertical load (Vmax)  

 It is worth noting that the maximum first order bending moment (M1st,max) is in 

agreement with the maximum vertical load (Vmax). The first order bending moment and 

the total bending moment (including second order effects) in the critical section are 

plotted in terms of displacement in the same graph (Fig. 11) in order to identify the 

failure mode for the maximum load (instability or ultimate strength of the section). In 

order to differentiate the failure of the specimen due the section failure (A) or instability 

(I), the following criterion is applied: if the first order bending moment and the total 

bending moment are reached simultaneously for the same displacement, the failure 

mode will be due to the ultimate strength of the section (Fig. 11.a), otherwise the failure 

will be due to instability (Fig. 11.b).   
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Fig. 11 displays the strain distribution in the sections close to the stub for maximum 

load state (M1ºmax) and total bending moment state (Mmax) both in the top and bottom 

reinforcement for two different cases of failure mode. Also the maximum strain in the 

concrete is presented using an extrapolation of the reinforcement following a planar 

deformation hypothesis. 

With the aim of obtaining a more accurate failure mode for Vmax, the deformation state 

was analyzed for the critical section and in sections surrounding potential plastic hinges 

(Table 5), inferring the following failure modes: 

  

a) The failure mode due to ‘ultimate strength of the section’ can be classified into 

two types: 

− Failure due to tension: (A/T) if the most tensile reinforcement yields. 

Otherwise it can be classified as failure due to compression (A/C) of the 

concrete. 

 

b) Instability can be classified into three types: 

− If a substantial reduction of the stiffness of the column is produced: 

‘instability due to tension (I/T)’ caused by the yielding of the tension 

reinforcement ; ‘instability due to compression (I/C)’ caused by the yielding 

of the compression reinforcement; ‘elastic instability (I/E)’, produced without 

the yielding of the materials. 

Table 5 lists the failure mode corresponding to the maximum load state for each test. In 

order to understand this behavior better Table 6 to 8 show the failure mode in terms of 

the different parameters studied.  

It can be concluded that for all the tests with λV = 7.5 the failure mode was due to the 

ultimate strength of the section.  In most of these, it was due to compression except for 
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one case with 30 MPa, axial load level (30%), and low confinement level (ρs ≤ 1%). As 

was expected, in specimens with pure bending (null axial load) the failure mode was 

due to ‘tension’. In addition, instability is more frequent when the slenderness of 

column, axial load level or strength of concrete are increased and the longitudinal 

reinforcement ratio is reduced. For lower axial load levels (N/Nuc = 15%) instability is 

produced due to the yielding of the tension reinforcement, while for higher axial load 

levels the rebars do not yield. 

 

3.2.2.- Type of Failure for maximum total bending moment (Mmax) 

 

Likewise, the deformation state for the critical section was analyzed for the maximum 

total bending moment (Table 5). A further analysis of the results is presented in Table 6 

to Table 8. As was expected, in specimens with null (i.e. bending) or lower axial load 

levels (N/Nuc = 15%), failure is due to tension. Compression failure is more common in 

proportion to the strength of the concrete, the axial load level, and an increase in the 

ratio of longitudinal and transversal reinforcement.  

3.3. Length of critical region 

The length of critical region of each column (Table 5) was evaluated by the physical 

observation method proposed by Pam and Ho [24], Fig. 8. The lcr/h ratio is close to the 

half of the height of the cross-section in those specimens subjected to pure bending 

(without axial load). In these tests the cracking is vertical with a slight inclination in the 

compressed part of the concrete. 

 In the tests with axial load and where the failure mode in maximum bending moment is 

due to tension (A/T), we can observe a zone with vertical cracks with a separation equal 

to the stirrup spacing. In general, the spalling of the concrete cover was not observed in 

these tests.  
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In the non-confined columns (!s ≤ 1%) under axial load and lateral force and where the 

failure mode for maximum bending moment is due to compression (A/C) a spalling of 

the concrete cover was observed, with a cracked area as high as the cross-section. 

In all the non-confined specimens (!s ≤ 1%) with higher axial load (N/Nuc = 45%), the 

damaged area reaches between 1 and 2 times the height of the cross-section.  In these 

cases the degradation of the concrete is higher than for the previous cases and buckling 

of the compressed reinforcement is frequent (Fig. 7.a). 

Finally, in the confined columns (!s ≥ 1.9%), buckling of the compressed reinforcement 

is not observed, although considerable spalling was observed (including on the sides, 

Fig. 7.b). Also a fan-shaped inclined distribution of cracks was observed in a wide zone 

which can reach between 1 and 2.5 times the height of the cross-section.  It can be 

concluded that the ‘length of critical region’ depends on the type of failure of the 

column, which is dependent on the axial load level, the strength of concrete, and the 

longitudinal and transversal reinforcement ratios. One possible justification of the 

increment of the length of critical region with the axial load level is the lower 

inclination of the compressed struts of concrete with respect to axis of the element 

(θ≤45º), regarding the pure bending case where the angle is 45º , and for confined 

elements (!s ≥ 1.9%), it can be due to the increment of the ultimate deformation of the 

concrete with the confinement ratio, what enables to reach a higher deformation both in 

the steel and concrete with a higher length of the specimen without achieving the 

ultimate state. Some authors, such as Pam and Ho [24], Paultre et al [23] and Bae and 

Bayrak [25], have verified that this length depends on the applied axial load level.  

However, different authors like Mendis [26] and Priestley and Park [14] point out that 

this length is not dependent on the axial load level. 

3.4. Strength. 
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Table 5 presents the lateral force (V) corresponding to the maximum load and the 

maximum bending moment for each test. 

Regarding the maximum load, and as expected, the lateral force Vmax increases with the 

strength of concrete and the longitudinal reinforcement ratio and with lower values of 

the slenderness of the column. 

It can be observed that with λV = 7.5 the maximum lateral force is reached for an axial 

load level (N/Nuc) of 30%, whereas for λV = 10.5 it is reached for a (N/Nuc) of 15%. 

 3.5. Deformation Capacity 

With the aim of  comparing the different ductility levels reached in the tests, a ductility 

factor in displacements (µΔ) is introduced as:  

 
ye

u

δ
δ

µ =Δ  (4) 

where:  δu is the displacement of the column in the descending branch 

corresponding to 0.85 of the maximum load (Wang et al[15], 

Panagiotakos and Fardis [10], fib Bulletin 25 [8], Hwang and Yun [27], 

Verderame et al [28][29]). A higher reduction of the load, for instance 

20%, was not generally reached in the columns, (Eurocode 8 (EN 1998-

2:2005)[7], Fardis and Biskinis [30]) 

 δye is the effective elastic displacement. 

 

In tests where it was not possible to obtain a 15% reduction of the maximum load, the 

maximum displacement was used (δu).  

In order to obtain the effective elastic displacement it is necessary to resolve the 

yielding point in an experimental force-displacement diagram. This situation can be due 
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to two factors: because of the yielding of the steel due to tension or due to the beginning 

of nonlinear behavior of the concrete. For these tests tension reinforcement yields if the 

strain εs is lower than - 2.65 ‰. However there are many criteria affecting the definition 

of strain arising from the nonlinear behavior of concrete.  

Paulay and Priestley [31] accept a strain of 1.5 ‰ as reference, Panagiatakos and Fardis 

[10] and Fardis and Biskinis [30] admit the strain 0.90·fc/Ec, as reference where Ec is the 

elastic modulus of concrete, and the fib Bulletin 24 [32] points out  that nonlinearity 

starts when strain is 0.75·εc1, where εc1 is the ultimate deformation of the concrete 

following EC-2 [6] (see equation 2). This last criterion is accepted for this paper. 

If the experimental force-displacement relationship is represented in an elastic-plastic 

diagram according to Eurocode 8 (EN 1998-2:2005 Annex E.3.2) [7], the effective 

elastic displacement can be deduced, δye (Fig. 12). The energy balance is performed 

starting from the yielding point, well due to the yielding of the steel or well to the 

beginning of the nonlinear behavior of concrete. Table 5 presents the ductility obtained 

in displacements. Table 9 to Table 11 show the influence of different parameters on 

ductility. In the columns with λV = 7.5, ductility decreases when the axial load level 

increases, while in tests with λV =10.5 maximum ductility is reached for an N/Nuc = 

30%. With respect to the influence of the longitudinal reinforcement, increased 

reinforcement improves ductility if the failure is due to tension, otherwise, if the failure 

is due to compression the ductility decreases.  

In the analyzed columns it was inferred that the ductility (µΔ) does not always decrease 

with the axial load level. Fig. 13 shows the results for the specimens with λV = 10.5 and 

fc=90 MPa without confinement. It can be observed that both the displacement δu and 

δye decreases with the axial load level. Thus, for null axial load the yielding corresponds 

to the steel yielding (εs=- 2.65 ‰.), while for higher axial load levels it corresponds to 
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the yielding of concrete (0.75·εc1), therefore, it will be produced for a lower 

displacement. Consequently, as the effective elastic displacement also decreases with 

the axial load, the ductility does not always decrease with the axial load level. 

However, previous research (Légeron and Paultre [21]; Wang et al[15]; Bayrak and 

Sheikh [20], Bae and Bayrak[11]) demonstrated that ductility effectively decreases with 

the axial load level. In these tests the specimens had a slenderness λV lower than 6, and 

the second order effects were not significant. 

Finally, in the cases where the slenderness is increased from 7.5 to 10.5, and for the 

axial load levels (N/Nuc) of 30 and 45%, the ductility (µΔ) increases (Fig. 14). Although 

second order effects decreased notably, the ductility increased due to the effective 

elastic displacement (δye), which is similar for both cases. The ultimate displacement 

(δu) is higher in the slender specimens due to their higher flexibility. Evidently, as it was 

affirmed by Menegotto [33], the decrease of the second order effects reduce the strength 

capacity of the column and the dissipated energy ( ∫= δVdW , where V is the lateral 

load and δ the displacement).  The effect of the slenderness  and the axial load level on 

ductility requires more extensive study as few tests have been carried out on specimens 

with a shear span ratio higher than 6. 

 4. VERIFICATION OF THE SIMPLIFIED METHODS 

A comparison between the experimental results and the proposed methods from ACI-

318(08) [1] and EC-2 (2004) [6] was performed.  

The standard ACI-318 [1] suggests a method for establishing the amplification factor 

for first order bending moment for non-sway columns. To take into account the second 

order effects, this method proposes the following factor: 
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where Cm is an equivalent factor that depends on the bending moment distribution; φ is 

a reduction factor for the strength, which is assumed to be one for this study; N is the 

applied axial load in the column; Ncr is the Euler critical axial load  and is equal to  

π2·EI/lp
2 where EI is the flexure stiffness of the column and lp is the buckling length. 

The stiffness EI of the column is obtained using equation 10.14 from code ACI-318 (08) 

[1].  To obtain the Young modulus of the concrete the following expression is adopted: 

cc fE ⋅= 4700 (fc in MPa).  

To apply the method, the semi-column is converted into a cantilever element with a 

length of 1.5 m. (Fig. 2), the buckling length lp is equal to 3 m, and the Cm coefficient is 

equal to one.  

The method proposed by Eurocode 2, EC-2 (2004) [6] suggests taking second order 

effects into account  together with the amplification factor of the first order bending 

moments (clause 5.8.7.3 EC-2 (2004) [6]): 

 
1

1
−

+=
NNcr

ns
β

δ  (6) 

where: β = π2/12 for the case of lateral load  (triangular bending moment distribution). 

The stiffness EI of the column is obtained from the equation 5.21, clause 5.8.7.3. 

Eurocode 2[6]. 

The elastic modulus of the concrete is obtained using the following equation:  

 ( ){ }effcEcmeffcd EE ϕγ +⋅= 1/,  (7) 

where: γcE safety coefficient equal to 1.2. But in this experimental analysis a value 

of ‘1’ is adopted.  

 Ecm the secant modulus of deformation of the concrete: 
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 ( ) 3.01022000 cmc fE ⋅=  (fcm in MPa) (8) 

 fcm mean strength of concrete, which in the experiments is equal to the one 

obtained through the standard tests (fc) for each specimen.  

 ϕeff equivalent creep coefficient. A null value is adopted in this study. 

To obtain the ultimate bending moment in the cross-section using code ACI-318(08) [1] 

the equivalent rectangular block stress-strain is adopted (clause 10.3 ACI-318 [1]). If 

EC-2  [6] is used, the equivalent parabola-rectangle stress-strain is adopted (clause 3.1.7 

EC-2 [6]). The values of safety factor γc and the sustained loads coefficient are assumed 

to be ‘1’ for experiments. 

Table 12 lists the results obtained using the two simplified methods for the experimental 

tests, both for maximum load Vmax and for maximum bending moment Mmax. The weight 

of the specimen was subtracted from the value of the maximum bending moment and 

the maximum vertical load. For some tests it was not possible to obtain the maximum 

load Vmax with the simplified method because the axial load applied in experiment N 

was higher than the critical axial load of the simplified method. The error of the 

methods is evaluated as the ratio between the values measured in the experiment and 

that obtained with the simplified method, in such a way that a value higher than one is 

on the safe side. Table 13 studies the error in terms of the different parameters of the 

study.  

It can be inferred that the results obtained with both design codes are on the safe side 

both for Vmax and Mmax. The method proposed ACI-318 [1] is more conservative than 

that proposed in EC-2 [6]. The variation coefficient (V.C.) for maximum load is much 

higher than the maximum bending moment.  

Regarding the maximum load state, using EC-2 [6], an average error of 1.4 and a 

variation coefficient of 30.86% are obtained. Using ACI-318 [1] the average error is 
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2.02 and the variation coefficient is 69.62%. Both methods are very safe and the 

variation coefficient is very high. EC-2 [6] increases safety by means of concrete 

strength and axial load level (Table 13). It also improves slightly with confinement and 

has no variation for shear span ratios of 7.5 or 10.5. No trend was observed in terms of 

the longitudinal reinforcement ratio.  Regarding ACI-318 [1], the conclusions are 

similar to those obtained for EC-2 [6].  

As regards the maximum bending moment case, using EC-2 [6] an average error of 1.16 

and a variation coefficient of 8.01% were obtained. With ACI-318 [1] the average ratio 

is 1.22 and 10.66% the variation coefficient. With both methods there are no 

representative differences for the different parameters analyzed. 

As a degree of accuracy is achieved for the maximum bending moment using EC-2 

[6] and ACI-318 [1], it is inferred that any loss of accuracy when calculating Vmax in 

these methods is due to the amplification factor (δns) or the equivalent coefficient (Cm). 

The accuracy of the amplification factor is seriously affected by the determination of the 

effective stiffness of the column ‘E.I’. Such parameter depends on the cracking, the 

creep, the nonlinear behavior of materials, etc.   Moreover, due to the applied simplified 

method did not propose a new equation to obtain the equivalent coefficient (Cm) for 

triangular bending moment distributions, if a value equal to one is adopted it produces 

very conservative designs. 

 5. CONCLUSIONS 

The paper presents 44 experimental tests of reinforced concrete columns subjected to 

constant axial load and a monotonic lateral force. The test parameters are the strength of 

concrete (NSC and HSC), shear span ratio, axial load level, the confinement volumetric 

geometric reinforcement ratio and the longitudinal reinforcement ratio. Conclusions 
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were drawn regarding the strength and deformation capacity of the columns and the 

behavior for maximum vertical load and maximum bending moment were described. 

The following conclusions can be summarized: 

1. Spalling of the concrete cover was observed in the state of maximum bending 

moment. This phenomenon is more evident for lower axial load levels (N/Nuc) as the 

strength of concrete increases. Thus for 30 MPa it appears for N/Nuc = 45% while 

for 90 MPa it starts from N/Nuc = 15%. Furthermore, while the spacing of the 

transversal reinforcement is lower, this effect is more common. This behavior 

implies a reduction of the strength capacity and it is important to take this into 

account in the numerical models. 

2. It was verified that the area of connection between the semi-column and the central 

element (stub) was undamaged. This phenomenon is called ‘stub effect’. 

3. A criterion to identify the failure mode was defined, based on the analysis of the 

first order and total bending moments in terms of displacements, combining the 

study of the state of deformation of materials in the critical sections. Five types of 

failure modes were defined: instability (elastic, or due to tension or compression), 

and ultimate strength of the section (due to tension or due to compression). It was 

demonstrated that in the maximum load state, the lower slender columns (λV=7.5) 

failed due to ‘ultimate strength of the section’, while failure due to compression is 

more common if the strength of concrete increases. For the medium slenderness 

specimens (λV=10.5), instability is more common if the axial load level and the 

strength of concrete increase and the longitudinal reinforcement ratio decreases. The 

failure mode is independent of the transversal reinforcement ratio. Regarding the 

maximum bending moment state, as was expected, failure due to compression is 
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more common if the strength of concrete, the axial load level, and the longitudinal 

and transversal reinforcement ratio increase. 

4. The development of yielding strains in the materials (steel or concrete) depends on 

the failure mode of the column. Thus, for the slender specimens (λV = 15) the failure 

mode is due to elastic instability without major deformation in the materials, and the 

potential plastic hinge length has a null value. However, the rest of the specimens 

(λV = 7.5 and 10.5) have presented yielding strains.  

5. The potential plastic hinge length depends on the failure mode in the maximum 

bending moment state. Thus, if the failure mode is due to tension, the length is 

approximately equal to the height of the cross-section. However, if it is due to 

compression, this length depends on the axial load level and the transversal 

reinforcement ratio. In the non-confined specimens (!s ≤ 1%), if the axial load is null 

it is equal to h/2 and if the axial load level N/Nuc under compression is lower or 

equal to 30%, this length is equal to the height of the cross-section, but if it is higher 

it varies between one and two times the height. Finally, for the confined columns (!s 

≥ 1.9%) this length varies from 1 to 2.5 times the height of the cross-section. 

6. The deformation capacity of the section was studied using ductility defined in 

displacements. Different criteria were adopted to fix the definition of the yielding 

load, the ultimate displacement and a representation of a force-displacement 

relationship was adopted from Eurocode 8 (EN 1998-2:2005 Annex E.3.2) [7]. It 

was inferred that the ductility decreases as the confinement factor and the 

slenderness diminish, in opposition to the strength of concrete. Ductility improves 

with the increase in longitudinal reinforcement if the failure is due to tension.  

7. In the tests analyzed, it was verified that the ductility in displacements (µΔ) does not 

always decrease with the axial load level. The analysis of the influence of 
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slenderness and axial load level require further studies as few tests have been carried 

out for a shear span ratio higher than 6. 

Finally, it was demonstrated that EC-2 [6]and ACI-318 (08)[1] are safe both for the 

maximum bending moment and the maximum load states, and that the latter is more 

conservative. In the maximum bending moment state both methods are more accurate 

while they are very conservative for the maximum load state. Such loss of accuracy may 

be due to amplification factor δns or equivalence Cm.  
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Fig. 1. Distribution of tests in the literature a) Bulletin nº25 from FIB [8] b) PEER [9]. 
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Fig. 2. Geometry of the specimen. 
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Fig. 3. Stress – strain behavior of reinforcing steel 
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Fig. 4. Test Framework. 
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PLAN VIEW 

 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. Arrangement of strain gauges. 
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Fig. 6. Arrangement of the LVDTs  
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Fig. 7. Spalling of concrete cover: (a) Non-confined column (!s ≤ 1%) (H60-10.5-C0-

2-45) (b) confined column (H90-10.5-C3-2-45)  
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Fig. 8. Results of column H60-10.5-C0-2-30 (a) Load– displacement (b) Curvature 
distribution(c) ‘Stub‘stiffener effect 
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Fig. 9. Results of the column N30-10.5-C0-2-00 (a) Load-displacement (b) Strain of 
the top reinforcement (c) Strain of the bottom reinforcement  
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Fig. 10. Deformed shapes (a) N30-10.5-C0-2-00 (b) H60-10.5-C0-2-30 
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Fig. 11. Failure mode: (a) Maximum load bending moment: failure due to tension (b) 

Maximum load: Instability due to compression; Maximum bending moment: Failure 
due to compression 
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Fig. 12. Definition of the ductility factor in displacements (Test H90-10.5-C3-2-45) 
 



41 

0

5

10

15

20

25

0 20 40 60 80

Displacement (mm)

La
te

ra
l L

oa
d,

 V
 (k

N
)

N/Nuc=0

N/Nuc=15N/Nuc=30

N/Nuc δy e (mm) δu (mm) µΔ

0 37.26 67.06 1.80
0.15 19.03 43.28 2.27
0.3 15.80 35.74 2.26
0.45 12.94 27.44 2.12

N/Nuc=45

Experimental

Idealized

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 13. Influence of the axial load level in the ductility factor in displacements 
((λV=10.5; fc=90 MPa; ρl=2.3%; ρs≤1%)) 
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Fig. 14. Effect of the shear span ratio on the ductility (a) Axial load level N/Nuc = 30% 

(b) Axial load level N/Nuc= 45% 
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Table 1. Types of cross-sections. 

 
 

Cross-sections 
(mm) 

Section 
type 

Longitudinal 
reinforcement 

Transversal 
reinforcement (stirrups) 

As !l (%) Ast !s (%) 
 

A 6 ≻ 12 2.3 ≻6 @100 mm 0.8 

B 6 ≻ 12 2.3 ≻8 @50 mm 3.0 

C 6 ≻ 12 2.3 ≻8 @60 mm 1.9 

     D 6 ≻ 12 3.2 ≻6 @100 mm 1.0 

    E 6 ≻ 10 2.2 ≻6 @100 mm 1.0 

    F 6 ≻ 8 1.4 ≻6 @100 mm 1.0 

   G 6 ≻ 10 2.2 ≻8 @60 mm 3.1 

 
   H 6 ≻ 8 2.3 ≻6 @100 mm 1.3 

      where ‘≻’	
  means	
  ’diameter‘	
  and	
  ‘@’	
  means	
  ’each’. 
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Table 2. Experimental tests. 
 

Ner Test fc (MPa) Section type λV N 
(kN) 

Nuc 
(kN) N/Nuc 

1 N30-10.5-C0-2-00 32.2 E 10.5 0 870 0.00 
2 N30-10.5-C0-2-15 31.8 E 10.5 123 861 0.14 
3 N30-10.5-C0-2-30 31.6 E 10.5 255 856 0.30 
4 N30-10.5-C0-2-45 34.5 E 10.5 381 922 0.41 
5 N30-7.5-C0-2-30 30.1 A 7.5 350 1176 0.30 
6 N30-7.5-C0-2-45 33.0 A 7.5 533 1271 0.42 
7 N30-15-C0-2-30 32.7 H 15 180 615 0.29 
8 N30-15-C0-2-45 32.9 H 15 265 618 0.43 
9 N30-10.5-C0-1-30 42.2 F 10.5 228 1021 0.22 

10 N30-10.5-C0-1-45 35.2 F 10.5 440 867 0.51 
11 N30-10.5-C0-3-15 33.5 D 10.5 142 986 0.14 
12 N30-10.5-C0-3-30 29.5 D 10.5 280 891 0.31 
13 H60-10.5-C0-2-00 55.8 E 10.5 0 1401 0.00 
14 H60-10.5-C0-2-15 54.1 E 10.5 208 1363 0.15 
15 H60-10.5-C0-2-30 60.5 E 10.5 432 1506 0.29 
16 H60-10.5-C0-2-45 63.9 E 10.5 676 1581 0.43 
17 H60-7.5-C0-2-30 63.0 A 7.5 637 2233 0.29 
18 H60-7.5-C0-2-45 67.7 A 7.5 947 2382 0.40 
19 H60-15-C0-2-30 58.2 H 15 300 1022 0.29 
20 H60-15-C0-2-45 58.7 H 15 465 1030 0.45 
21 H60-10.5-C0-1-15 57.8 F 10.5 220 1362 0.16 
22 H60-10.5-C0-1-30 58.5 F 10.5 412 1378 0.30 
23 H60-10.5-C0-3-15 58.3 D 10.5 238 1559 0.15 
24 H60-10.5-C0-3-30 61.6 D 10.5 470 1634 0.29 
25 H90-10.5-C0-2-00 85.7 E 10.5 0 2053 0.00 
26 H90-10.5-C0-2-15 90.5 E 10.5 329 2154 0.15 
27 H90-10.5-C0-2-30 90.1 E 10.5 636 2145 0.30 
28 H90-10.5-C0-2-45 93.2 E 10.5 972 2210 0.44 
29 H90-7.5-C0-2-30 100.4 A 7.5 914 3377 0.27 
30 H90-7.5-C0-2-45 94.0 A 7.5 1316 3185 0.41 
31 H90-10.5-C0-1-15 90.3 F 10.5 314 2056 0.15 
32 H90-10.5-C0-1-30 96.2 F 10.5 624 2180 0.29 
33 H90-10.5-C0-3-15 89.6 D 10.5 340 2247 0.15 
34 H90-10.5-C0-3-30 94.4 D 10.5 680 2347 0.29 
35 N30-10.5-C3-2-30 41.0 G 10.5 258 1070 0.24 
36 N30-10.5-C3-2-45 34.2 G 10.5 387 915 0.42 
37 N30-7.5-C3-2-30 35.8 B 7.5 364 1362 0.27 
38 N30-7.5-C3-2-45 35.0 B 7.5 546 1336 0.41 
39 H90-10.5-C3-2-30 93.5 G 10.5 636 2217 0.29 
40 H90-10.5-C3-2-45 92.0 G 10.5 961 2185 0.44 
41 H90-7.5-C3-2-30 86.4 B 7.5 910 2957 0.31 
42 H90-7.5-C3-2-45 78.2 B 7.5 1360 2711 0.50 
43 H90-7.5-C2-2-30 95.7 C 7.5 910 3236 0.28 
44 H90-7.5-C2-2-45 89.2 C 7.5 1354 3041 0.45 
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Table 3. Mix proportions (kg/m3). 

 
 

 
 
 
 
 
 
 

Concrete Cement Sand Gravel Water Super-
plasticizer Silica Fume 

90 MPa 570 705 890 180 12 50 
60 MPa 425 918 918 180 5 - 
30 MPa 348 1065 666 220 - - 
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Table 4. Mean value and standard deviation of strength of concrete. 

 
 

 

Concrete Mean value 
fc (MPa) 

Standard 
deviation 

Variation 
coefficient 

30 MPa 34.31 3.45 10% 
60 MPa 59.83 3.72 6.2% 
90 MPa 91.55 4.87 5.3% 
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Table 5. Test results. 

 
 

Ner Test 

Observations Maximum Load Maximum bending moment 

µΔ 

 
 
 

lcr/h 
Reinforcing  

bar  
buckling 

Spalling  
of the  

concrete  
cover 

Vmax  
(kN) 

δmax 
(mm) 

εs,max 
(‰) 

ε's,max  
(‰)	
  

Types  
of  

failure 
(*) 

VMmax 
(kN) 

δMmax 
(mm) 

εs,Mmax 
(‰) 

ε's,Mmax  
(‰)	
  

Types 
of 

failure 
(*) 

1 N30-10.5-C0-2-00 No No 17.07 -74.53 -11.58 1.00 A/T 17.07 -74.53 -11.58 1.00 A/T 2.36 0.50 
2 N30-10.5-C0-2-15 No No 18.63 -34.16 -7.72 1.23 A/T 18.61 -34.70 -9.61 1.24 A/T 2.02 0.86 
3 N30-10.5-C0-2-30 No Yes 16.14 -34.18 -2.18 2.46 I/E 15.23 -42.49 -4.26 3.08 A/T 3.21 0.57 
4 N30-10.5-C0-2-45 No Yes 16.25 -25.34 -0.89 2.19 I/E 14.48 -29.05 -1.34 2.86 A/C 2.65 2.00 
5 N30-7.5-C0-2-30 No No 55.19 -31.13 -4.43 3.75 A/T 54.87 -32.37 -7.72 4.24 A/T 2.75 0.50 
6 N30-7.5-C0-2-45 No Yes 47.40 -21.71 -1.35 5.42 A/C 45.93 -22.84 -1.60 9.47 A/C 2.36 1.00 
7 N30-15-C0-2-30 - - 4.60 -10.93 0.00 0.80 I/E 3.68 -13.79 -0.16 0.91 - - - 
8 N30-15-C0-2-45 - - 4.17 -5.61 0.68 1.13 I/E 3.45 -6.49 0.67 1.17 - - - 
9 N30-10.5-C0-1-30 No No 15.55 -27.23 -2.72 2.14 A/T 15.22 -31.99 -11.21 2.42 A/T 3.19 1.00 

10 N30-10.5-C0-1-45 No No 14.74 -16.59 0.29 2.35 A/C 13.69 -16.96 0.28 2.42 A/C 2.75 1.07 
11 N30-10.5-C0-3-15 No No 21.57 -48.74 -4.86 1.64 A/T 19.55 -54.40 -9.56 1.93 A/T 2.56 0.93 
12 N30-10.5-C0-3-30 No Yes 16.57 -42.52 -1.81 3.12 A/C 15.32 -45.21 -1.97 5.06 A/C 3.07 1.00 
13 H60-10.5-C0-2-00 No No 18.06 -53.87 -11.17 0.19 A/T 18.06 -53.87 -11.17 0.19 A/T 2.18 0.57 
14 H60-10.5-C0-2-15 No No 21.39 -38.70 -3.94 1.47 I/T 20.63 -46.63 -8.25 1.51 A/T 2.30 0.86 
15 H60-10.5-C0-2-30 No Yes 18.43 -26.67 -1.20 2.22 I/E 16.56 -34.95 -1.85 2.69 A/C 2.49 1.61 
16 H60-10.5-C0-2-45 Yes Yes 20.62 -20.89 0.06 2.23 I/E 17.94 -33.60 -0.98 3.21 A/C 2.48 1.93 
17 H60-7.5-C0-2-30 No Yes 65.61 -27.09 -2.56 4.49 A/C 64.00 -27.92 -2.75 6.72 A/C 2.09 1.00 
18 H60-7.5-C0-2-45 Yes Yes 73.82 -21.72 -1.55 4.37 A/C 73.12 -22.59 -1.79 5.82 A/C 1.91 1.55 
19 H60-15-C0-2-30 - - 4.39 -9.73 0.56 1.20 I/E 3.76 -15.85 0.05 1.35 - - - 
20 H60-15-C0-2-45 - - 2.92 -4.80 1.19 1.56 I/E 2.48 -7.98 1.11 1.68 - - - 
21 H60-10.5-C0-1-15 No No 16.86 -30.30 -4.01 1.40 I/T 15.07 -40.49 -7.21 1.44 A/T 2.34 0.86 
22 H60-10.5-C0-1-30 Yes Yes 17.23 -24.16 -0.62 2.00 I/E 13.96 -40.07 -2.12 5.69 A/C 2.81 1.14 
23 H60-10.5-C0-3-15 No No 24.20 -47.17 -3.76 1.66 A/T 24.09 -48.01 -3.93 1.67 A/T 2.28 0.93 
24 H60-10.5-C0-3-30 Yes Yes 18.25 -28.79 -0.61 2.10 I/E 14.99 -51.64 -2.87 5.23 A/C 3.13 1.50 
25 H90-10.5-C0-2-00 No No 20.09 -58.84 -11.95 -0.97 A/T 20.09 -58.84 -11.95 -0.97 A/T 1.80 0.54 
26 H90-10.5-C0-2-15 No Yes 22.14 -38.26 -3.72 1.95 I/T 20.88 141.27 -6.39 2.02 A/T 2.27 0.93 
27 H90-10.5-C0-2-30 No Yes 21.90 -25.10 -0.94 1.85 I/E 19.61 54.99 -2.05 2.79 A/C 2.26 1.07 
28 H90-10.5-C0-2-45 Yes Yes 20.24 -17.08 0.47 2.19 I/E 39.31 39.31 -0.26 3.20 A/C 2.12 1.43 
29 H90-7.5-C0-2-30 No Yes 79.10 -25.42 -2.23 4.50 A/C 78.39 54.07 -2.40 5.49 A/C 1.88 0.35 
30 H90-7.5-C0-2-45 No Yes 74.65 -19.41 -0.60 5.40 A/C 73.92 55.55 -0.76 7.35 A/C 1.72 0.65 
31 H90-10.5-C0-1-15 Yes Yes 16.47 -26.97 -1.52 1.77 I/E 13.62 76.54 -8.29 2.28 A/T 2.64 1.00 
32 H90-10.5-C0-1-30 Yes Yes 24.40 -22.17 -0.62 2.16 I/E 21.01 74.08 -1.59 5.07 A/C 2.46 1.07 
33 H90-10.5-C0-3-15 No No 27.61 -48.03 -3.30 1.34 A/T 27.36 80.97 -5.65 1.31 A/T 1.92 1.00 
34 H90-10.5-C0-3-30 Yes Yes 25.26 -26.78 -1.00 2.06 I/E 23.40 53.72 -1.78 2.84 A/C 2.25 2.14 
35 N30-10.5-C3-2-30 No Yes 13.91 -31.13 -1.63 1.98 I/E 13.02 -46.51 -3.06 5.49 A/C 3.02 1.14 
36 N30-10.5-C3-2-45 No Yes 13.34 -26.53 -0.79 2.22 I/E 11.98 -34.51 -1.77 4.28 A/C 3.11 1.43 
37 N30-7.5-C3-2-30 No Yes 47.93 -31.88 -3.35 10.65 A/C 47.78 -32.51 -3.57 11.99 A/C 3.30 1.25 
38 N30-7.5-C3-2-45 No Yes 44.59 -24.03 -1.51 5.58 A/C 44.35 -24.73 -1.62 6.69 A/C 2.58 1.05 
39 H90-10.5-C3-2-30 No Yes 23.90 -26.09 -0.92 1.70 I/E 21.70 -38.04 -1.93 2.00 A/C 2.21 1.93 
40 H90-10.5-C3-2-45 Yes Yes 16.62 -16.53 0.55 2.25 I/E 12.98 -27.83 -0.14 3.65 A/C 3.19 2.43 
41 H90-7.5-C3-2-30 No Yes 75.47 -26.21 -1.93 3.50 A/C 75.47 -26.21 -1.93 3.50 A/C 1.90 1.45 
42 H90-7.5-C3-2-45 No Yes 61.30 -20.29 -0.19 5.48 A/C 60.92 -20.72 -0.24 5.83 A/C 2.38 1.40 
43 H90-7.5-C2-2-30 No Yes 72.72 -27.83 -2.04 3.51 A/C 72.72 -27.83 -2.04 3.51 A/C 2.03 1.20 
44 H90-7.5-C2-2-45 No Yes 61.12 -19.11 -0.30 5.50 A/C 60.93 -19.33 -0.34 5.85 A/C 2.14 1.60 

 (*)   I/T and IC: Instability due to yielding of the tensile reinforcement or compression reinforcement respectively;  
   I/E: Elastic instability; A/T: Tension failure; A/C: Compression failure. 
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Table 6.  Failure mode. Influence of the axial load level, strength of concrete and 
shear span ratio (ρl=2.3%; ρs≤ 1%). 

 
  Maximum Load Maximum bending moment 
  λV=7.5 λV=10.5 λV=15 λV=7.5 λV=10.5 
 fc (MPa) 30 60 90 30 60 90 30 60 90 30 60 90 30 60 90 

N/Nuc 

0 - - - A/T A/T A/T - - - - - - A/T A/T A/T 
0.15 - - - A/T I/T I/T     - - - - A/T A/T A/T 
0.3 A/T A/C A/C I/E I/E I/E I/E I/E - A/T A/C A/C A/T A/C A/C 

0.45 A/C A/C A/C I/E I/E I/E I/E I/E - A/C A/C A/C A/C A/C A/C 
 
 

Table 7. Failure mode. Influence of the longitudinal reinforcement ratio and 
strength of concrete (λV=10.5; ρs≤ 1%) 

 
 

  Maximum Load Maximum bending moment 
 fc (MPa) 30 60 90 30 60 90 
 N/Nuc 0.15 0.3 0.15 0.3 0.15 0.3 0.15 0.3 0.15 0.3 0.15 0.3 

ρl (%) 
1.4 - A/T I/T I/E I/E I/E - A/T A/T A/C A/T A/C 
2.3 A/T I/E I/T I/E I/T I/E A/T A/T A/T A/C A/T A/C 
3.2 A/T A/C A/T I/E A/T I/E A/T A/C A/T A/C A/T A/C 

 

Table 8. Failure mode. Influence of the transversal reinforcement ratio, strength of 
concrete and shear span ratio (ρl=2.3%) 

 
  Maximum Load Maximum bending moment 
  λV=7.5 λV=10.5 λV=7.5 λV=10.5 
fc 

(MPa) 30 90 30 90 30 90 30 90 

N/Nuc 0.3 0.45 0.3 0.45 0.3 0.45 0.3 0.45 0.3 0.45 0.3 0.45 0.3 0.45 0.3 0.45 

ρs 
(%) 

1 A/T A/C A/C A/C I/E I/E I/E I/E A/T A/C A/C A/C A/T A/C A/C A/C 
2 - - A/C A/C - - - - - - A/C A/C - - - - 
3 A/C A/C A/C A/C I/E I/E I/E I/E A/C A/C A/C A/C A/C A/C A/C A/C 
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Table 9. Ductility in displacements. Influence of the axial load level, strength of 
concrete and shear span ratio (ρl=2.3%; ρs≤1%). 

 

   λV=7,5  λV=10,5 
 

fc (MPa) 30 60 90 30 60 90 

N/Nuc 

0 - - - 2.36 2.18 1.80 
0.15 - - - 2.02 2.30 2.27 
0.3 2.75 2.09 1.88 3.21 2.49 2.26 

0.45 2.36 1.91 1.72 2.65 2.48 2.12 
 

Table 10. Ductility in displacements. Influence of the longitudinal reinforcement 
ratio and the strength of concrete (λV=10.5; ρs≤1%) 

 
 

  fc (MPa) 
  

30 60 90 
 

N/Nuc 0.15 0.3 0.15 0.3 0.15 0.3 

ρl (%) 
1.4 - 3.19 2.34 2.81 2.64 2.46 
2.3 2.02 3.21 2.30 2.49 2.27 2.26 
3.2 2.56 3.07 2.28 2.25 1.92 2.25 

 

Table 11. Ductility in displacements. Influence of the transversal reinforcement 
ratio, strength of concrete and shear span ratio (ρl=2.3%) 

 
 

  λV=7,5 λV=10,5 
fc (MPa) 30 90 30 90 

N/Nuc 0.3 0.45 0.3 0.45 0.3 0.45 0.3 0.45 

ρs (%) 
1 2.75 2.36 1.88 1.72 3.21 2.65 2.26 2.12 
2 - - 2.03 2.03 - - - - 
3 3.30 2.58 1.90 2.38 3.02 3.11 2.21 3.19 
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Table 12. Verification of the simplified methods. 

 
 

Ner Test Vmax 

(kN) 
VEC-2 
(kN) 

VACI-318 

(kN) ξV,EC-2 ξV,ACI 
Mmax 

(mkN) 
MEC-2 
(mkN) 

MACI-318 

(mkN) ξM,EC-2 ξM,ACI-318 

1 N30-10.5-C0-2-00 17.07 17.11 16.91 1.00 1.01 12.36 11.05 10.88 1.12 1.14 
2 N30-10.5-C0-2-15 18.63 15.96 15.09 1.17 1.23 17.56 16.19 15.67 1.08 1.12 
3 N30-10.5-C0-2-30 16.14 10.94 7.59 1.47 2.13 22.12 18.85 15.77 1.17 1.40 
4 N30-10.5-C0-2-45 16.25 - - - - 21.61 18.79 15.35 1.15 1.41 
5 N30-7.5-C0-2-30 55.19 45.99 38.71 1.20 1.43 49.34 45.27 38.11 1.09 1.29 
6 N30-7.5-C0-2-45 47.4 37.82 30.22 1.25 1.57 45.89 43.81 36.03 1.05 1.27 
7 N30-15-C0-2-30 4.6 - - - - - - -     
8 N30-15-C0-2-45 4.17 - - - - - - -     
9 N30-10.5-C0-1-30 15.55 11.28 7.94 1.38 1.96 18.35 16.89 16.08 1.09 1.14 

10 N30-10.5-C0-1-45 14.74 - - - - 17.99 15.55 12.34 1.16 1.46 
11 N30-10.5-C0-3-15 21.57 21.21 20.25 1.02 1.06 22.75 21.49 20.80 1.06 1.09 
12 N30-10.5-C0-3-30 16.57 12.68 9.62 1.31 1.72 24.5 21.16 17.67 1.16 1.39 
13 H60-10.5-C0-2-00 18.06 18.07 17.86 1.00 1.01 12.45 11.86 11.58 1.05 1.07 
14 H60-10.5-C0-2-15 21.39 18.19 15.42 1.18 1.39 24.54 20.97 20.58 1.17 1.19 
15 H60-10.5-C0-2-30 18.43 10.90 2.36 1.69 7.81 28.05 25.13 22.97 1.12 1.22 
16 H60-10.5-C0-2-45 20.62 - - - - 35.72 24.80 23.41 1.44 1.53 
17 H60-7.5-C0-2-30 65.61 53.24 44.83 1.23 1.46 64.93 58.15 54.70 1.12 1.19 
18 H60-7.5-C0-2-45 73.82 42.43 31.88 1.74 2.32 74.35 57.36 55.92 1.30 1.33 
19 H60-15-C0-2-30 4.39 - - - - - - -     
20 H60-15-C0-2-45 2.92 - - - - - - -     
21 H60-10.5-C0-1-15 16.86 14.26 10.64 1.18 1.59 20.3 17.72 17.41 1.15 1.17 
22 H60-10.5-C0-1-30 17.23 8.16   2.11   27.34 22.31 20.04 1.23 1.36 
23 H60-10.5-C0-3-15 24.2 23.27 19.98 1.04 1.21 29.02 26.72 25.89 1.09 1.12 
24 H60-10.5-C0-3-30 18.25 12.91 5.06 1.41 3.61 35.19 28.00 25.97 1.26 1.35 
25 H90-10.5-C0-2-00 20.09 18.59 18.77 1.08 1.07 14.49 12.35 12.27 1.17 1.18 
26 H90-10.5-C0-2-15 22.14 21.33 14.35 1.04 1.54 28.73 27.30 27.58 1.05 1.04 
27 H90-10.5-C0-2-30 21.9 9.33 - 2.35 - 36.93 30.64 31.63 1.21 1.17 
28 H90-10.5-C0-2-45 20.24 - - - - 39 30.58 32.33 1.28 1.21 
29 H90-7.5-C0-2-30 79.1 63.38 51.55 1.25 1.53 80.76 73.03 76.49 1.11 1.06 
30 H90-7.5-C0-2-45 74.65 44.51 25.75 1.68 2.90 79.73 68.47 72.23 1.16 1.10 
31 H90-10.5-C0-1-15 16.47 17.43 10.07 0.94 1.63 24.81 22.87 23.06 1.08 1.08 
32 H90-10.5-C0-1-30 24.4 - - - - 36.77 29.70 30.70 1.24 1.20 
33 H90-10.5-C0-3-15 27.61 25.82 19.54 1.07 1.41 36.66 32.07 32.46 1.14 1.13 
34 H90-10.5-C0-3-30 25.26 11.79 - 2.14 - 41.17 34.07 35.56 1.21 1.16 
35 N30-10.5-C3-2-30 13.91 12.93 8.28 1.08 1.68 21.46 20.58 17.49 1.04 1.23 
36 N30-10.5-C3-2-45 13.34 - - - - 22.05 17.51 14.34 1.26 1.54 
37 N30-7.5-C3-2-30 47.93 46.92 39.98 1.02 1.20 46.45 46.27 40.12 1.00 1.16 
38 N30-7.5-C3-2-45 44.59 37.23 29.09 1.20 1.53 45.67 44.04 36.06 1.04 1.27 
39 H90-10.5-C3-2-30 23.9 9.08 - 2.63 - 39.92 30.51 31.56 1.31 1.26 
40 H90-10.5-C3-2-45 16.62 - - - - 36.14 29.69 31.27 1.22 1.16 
41 H90-7.5-C3-2-30 75.47 53.26 41.68 1.42 1.81 78.52 65.08 67.07 1.21 1.17 
42 H90-7.5-C3-2-45 61.3 29.81 12.84 2.06 4.77 72.35 55.26 57.15 1.31 1.27 
43 H90-7.5-C2-2-30 72.72 58.83 46.49 1.24 1.56 77.63 69.46 72.34 1.12 1.07 
44 H90-7.5-C2-2-45 61.12 37.97 18.25 1.61 3.35 70.42 63.70 66.95 1.11 1.05 

Average error - - - 1.40 2.02 - - - 1.16 1.22 
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Table 13. Verification of the design codes 
 

  Vmax Mmax 

  EC-2 (2004) ACI-318 (08) EC-2 (2004) ACI-318 (08) 

  Average VC 
(%) Average VC 

(%) Average VC 
(%) Average VC 

(%) 

fc 
(MPa) 

30 1.19 13.11 1.50 23.89 1.10 6.21 1.28 11.03 
60 1.40 26.77 2.55 89.58 1.19 9.84 1.25 10.93 
90 1.58 35.27 2.16 53.62 1.18 6.59 1.14 6.28 

N/Nuc 

0 1.03 4.63 1.03 3.36 1.11 5.56 1.13 4.70 
0.15 1.08 8.07 1.38 14.53 1.10 3.97 1.12 4.30 
0.3 1.56 31.18 2.33 78.89 1.16 7.01 1.22 8.57 

0.45 1.59 20.20 2.74 44.82 1.20 9.77 1.30 12.22 

λV 7.5 1.41 21.32 2.12 50.00 1.13 8.46 1.19 8.37 
10.5 1.39 35.77 1.95 83.95 1.17 7.81 1.23 11.38 

ρl 
(%) 

1.4 1.33 32.15 1.80 57.54 1.15 6.42 1.21 10.66 
2.3 1.42 31.07 2.11 75.08 1.16 8.88 1.22 10.79 
3.2 1.33 32.15 1.80 57.54 1.15 6.42 1.21 10.66 

ρs 
(%) 

1 1.36 28.58 1.94 75.15 1.16 7.49 1.22 10.67 
2 1.42 18.57 2.46 51.37 1.11 0.77 1.06 1.42 
3 1.57 41.10 2.20 66.26 1.17 10.76 1.26 9.86 

Total 1.40 30.86 2.02 69.62 1.16 8.01 1.22 10.66 

 
 


