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ABSTRACT 

 

The influence of temperature and chloride concentration on the electrochemical 

behaviour of Alloy 31, a highly-alloyed austenitic stainless steel (UNS N08031) was 

studied in 40 wt.% polluted phosphoric acid solution. Polarization curves showed a 

stable passivation range at all the conditions studied. The results revealed that the 

material passivated spontaneously. 

Passivation behaviour of Alloy 31 was investigated by using potentiostatic tests at 

different potentials. From the linear regions of the log i vs log t transients, the parameter 

n was obtained. The results showed that the applied potential hardly affects on the 

passivation rate n of Alloy 31.  
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1. INTRODUCTION 

 

Phosphoric acid in pure state is not very corrosive compared to nitric or sulphuric acids. 

Ninety-five per cent of phosphoric acid is obtained by the wet process [1]. The main 

stages in this process involve the attack of phosphate ore by concentrated sulphuric acid 

(H2SO4 98%), filtration and concentration of acid. This technique generates severe 

corrosion problems due to the presence of impurities such as chlorides, fluorides and 

sulphides [1-4]. However, depending on the nature of phosphates and the type of 

phosphoric acid manufacturing process used, the equipment (reactors, agitators, pumps, 

drain, etc.) are subjected to slower or faster deterioration [1]. 

 

The choice of materials used in this industrial process plays an important role since they 

must have both good chemical and mechanical resistance. These two characteristics are 

not always easy to obtain and a trade-off between these properties must be reached [5]. 

In this sense, austenitic stainless steels are a good choice for phosphoric media. In this 

study, a highly alloyed austenitic stainless steel (UNS N08031) was used.  

 

The major disadvantage of these alloys is their high cost compared with conventional 

stainless steels, due to the higher percentage of the alloying elements such as Cr, Ni and 

Mo, as well as the complexity of the manufacturing process [6]. 

 

The favourable effect of the alloying elements on the corrosion resistance is attributed 

to the formation of a protective passive surface film [7-9]. This film is stable, invisible, 

thin, durable and extremely adherent and self-repairing and its stability depends on the 

nature of the corroding metal and ion present in the solution [9]. In order to prevent 
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corrosion, it is of paramount importance that stainless steels have a stable passive film 

with rapid passivation even in severe corrosive environments [8]. It is believed that the 

stability of passive films and their passivation kinetics are subject to the influence of 

metallurgy, applied passivation potencials, pH and chloride ion concentration in 

aqueous solutions [8, 10-12]. Therefore, it is necessary to know the kinetics at which the 

passive film is formed on stainless steels.  

 

The behaviour of stainless steels in aqueous acid solutions has been widely studied. In 

this sense, there are several references regarding to their corrosion behaviour in 

phosphoric acid [4, 5, 13, 14] and studies of the electrical properties of their passive 

films in this medium [15]. Other studies have reported the passivity and corrosion of 

austenitic stainless steels in sulphuric acid solutions [16-19], partly because of the 

extensive use of these alloys in acidic environments. 

 

The aim of this study was to evaluate the corrosion behaviour of an austenitic stainless 

steel in phosphoric acid medium polluted with sulphate and chloride ions. The effects of 

chloride ion concentration and solution temperature on stainless steel corrosion 

behaviour and passivation kinetic behaviour were investigated. 

 

2. EXPERIMENTAL PROCEDURE 

 

2.1. MATERIALS AND SOLUTIONS 

 

The material tested was the high-alloyed austenitic stainless steel UNS N08031 (Alloy 

31) provided by Thyssen Krupp VDM. Material composition is shown in Table 1. 
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Alloy 31 electrodes were cylindrically shaped (8 mm in diameter and 55 mm long) and 

covered with a polytetrafluoroethylene (PTFE) coating. The area exposed to the solution 

was 0.5 cm
2
. All specimens were abraded up to 4000 grit emery paper. Subsequently the 

electrode was rinsed with distilled water and was air-dried. 

 

The potentiodynamic and potentiostatic experiments carried out in this work were 

performed in polluted 40 wt.% phosphoric acid (5.5 M) solution with 2 wt.% of H2SO4 

(0.26 M) and two different concentrations of chlorides (prepared from KCl): 0.03 wt.% 

(380 ppm) and 0.2 wt.% (2528 ppm), typical for the phosphoric acid industry. 

According to the equilibrium diagram of phosphoric acid-sulphuric acid system, the pH-

value of the solution is 0.42. 

 

2.2. ELECTROCHEMICAL TESTS 

 

Three different electrochemical tests were performed in this study. The tests were 

conducted in a horizontal three-electrode cell held at a constant temperature using a 

silver/silver chloride (Ag/AgCl) 3 M potassium chloride (KCl) electrode as a reference 

electrode (E vs. standard hydrogen electrode [SHE] = EAg/AgCl [3M] + 0.206 V) and a 

platinum (Pt) wire as counter electrode. The experimental device consists of two 

elements [20, 21]: the electrochemical horizontal cell and the image acquisition unit 

formed by a trinocular microscope-stereoscope (NIKON SMZ-U) zoom 1:10 and a 

colour video camera (SONY SSC-C370P). This method allows the observation of the 

electrode surface in real-time, simultaneously to the electrochemical data acquisition 

without disturbing the electrochemical system [21]. In order to remove the oxygen 
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present in the system, the solution was deaerated by bubbling N2 into the solution for 20 

min before the test, and then the nitrogen atmosphere was maintained over the liquid 

surface during the whole test. 

 

The experiments were conducted under thermostated conditions at 20, 40, 60 and 80 ºC 

in order to study the influence of temperature on the corrosion behaviour of Alloy 31.  

 

2.2.1. Open circuit potential measurements 

 

The Open Circuit Potential was measured for 1 h in the test solutions. The average 

value of the potentials recorded during the last 300 s was the value of the OCP 

according to ASTM G-5 [22]. 

 

2.2.2. Potentiodynamic curves 

 

Potentiodynamic polarisation curves of Alloy 31 were determined using a Solartron 

1287 potentiostat. Before each polarisation measurement, the working electrodes were 

initially polarised in four steps from the OCP values to -400 mVAg/AgCl. This potential 

was maintained for 3600 s in order to remove the passive film formed previously and to 

create reproducible initial conditions. Then the sample was polarised anodically at a 

scan rate of 0.1667 mV/s from –400 mVAg/AgCl to the anodic direction. 

 

From the E-log i plot, the corrosion potential (Ecorr) and corrosion current density (icorr) 

were obtained; in addition, the breakdown potential (Eb) was defined as the potential at 

which the current density reaches 100 A/cm
2
. The current density before Eb is almost 
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constant during a wide range of potentials and is defined as the passive current density 

(ip). The tests were repeated at least three times. 

 

2.2.3. Potentiostatic tests 

 

Potentiostatic passivation tests were performed using an Autolab PGSTAT302N 

potentiostat in order to obtain the current transient at a constant applied potential. The 

potentiodynamic curves were used to set the four values of the imposed potentials (300, 

500, 800 and 1000 mVAg/AgCl). Prior to each measurement, the working electrodes were 

polarised to -400 mVAg/AgCl for 3600 s to remove the passive film formed in air [23-25]. 

Then the chosen potential was applied for 1 h and the potentiostatic current density 

transients were recorded. It is noteworthy that the data acquisition was 250 points/s in 

order to record the highest number of points. 

 

3. RESULTS AND DISCUSSION 

 

3.1. OPEN CIRCUIT POTENTIALS 

 

Figure 1 presents an example of the Open Circuit Potential (OCP) register for Alloy 31 

in polluted 40 wt.% phosphoric acid with 2 wt.% H2SO4 and 0.03 wt.% of chloride ions 

at 20, 40, 60 y 80 ºC. At all temperatures the potential shifted towards more positive 

values immediately after the immersion. 
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Alloy 31 registered an increase in OCP with time in both solutions studied, at any 

temperature. Moreover, no change was observed on its surface during the hour of 

immersion. Both facts indicated that the material was passivated. 

 

The ennoblement of the potential observed in Figure 1 is attributable to healing of the 

pre-immersion air-formed oxide film and further thickening of the oxide film as a result 

of the interaction between the electrolyte and the metal surface [26]. The growth of the 

oxide film continues until the film acquires a thickness that is stable in the electrolyte. 

Alloy 31 contains 26.75% chromium, which is a passivable element. Thus, during the 

OCP test the passive film containing Cr2O3 grew on the electrode surface, shifting the 

OCP value to higher potentials [27]. 

 

Table 2 summarises the OCP values for Alloy 31 in 40 wt.% H3PO4 solutions and 2 

wt.% H2SO4 with chloride ion concentrations of 0.03 wt.% and 0.2 wt.% All the values 

are between 73 mVAg/AgCl and 239 mVAg/AgCl, which correspond to the passive region of 

the alloy in these solutions as it will be commented below (Section 3.2. 

Potentiodynamic curves). As chloride concentration increases the OCP values shift to 

more active potentials at any temperature.  

 

The displacement of the OCP values towards more positive values with increasing 

temperature in the tests conducted in the H3PO4 solutions (Table 2) is justified by the 

passive nature of Alloy 31. It is well known that temperature favours the kinetics of 

corrosion reactions [28-32], however it also promotes the fast growth of passive films 

on metallic surfaces [33-35], which causes the ennoblement of the metal. 
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The increase of chloride concentration in the solution causes a slight decrease in the 

OCP values (Table 2). According to Cardoso et al. [36] the presence of chloride leads 

to a decrease in this parameter, probably due to the partial dissolution of the passive 

film formed on the surface. Moreover, the harmful effect of temperature is greater in the 

solutions containing a higher concentration of chloride because this anion should make 

the oxide dissolve more easily.  

 

3.2. POTENTIODYNAMIC CURVES 

 

Potentiodynamic curves of Alloy 31 in polluted 40 wt.% H3PO4 with 2 wt.% H2SO4 and 

chloride ion concentrations of 0.03 wt.% (Figure 2a) and 0.2 wt.% (Figure 2b) were 

obtained at 20, 40, 60 and 80 ºC to evaluate the effect of temperature and chloride 

concentration on the general corrosion resistance of the metal. 

 

Polarisation curves of Alloy 31 in polluted 40 wt.% H3PO4 are characterised by a very 

wide potential domain of passivity at all the studied conditions (1200 mVAg/AgCl at 20 

ºC and 40 ºC and 900 mVAg/AgCl at 60 ºC and 80 ºC). The OCP values (Table 2) were 

in the passive zone of the potentiodynamic curves, which confirms the fact that Alloy 

31 was spontaneously passivated. 

 

In general, Alloy 31 registered a stable current density value during the passivation 

range in both solutions. Moreover, during the anodic scan the passive current density 

was very small, indicating the good corrosion resistance of Alloy 31 in the passive 

potential domain.  
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Temperature affects the cathodic reaction as it can be observed on the potentiodynamic 

curves (Figure 2a and Figure 2b), since the cathodic current densities increased with 

temperature in both polluted H3PO4 solutions. This shows that temperature favours the 

cathodic reaction [28, 37] and more specifically, it favours the Hydrogen Evolution 

Reaction (HER) which leads to an increase of H2 generation. Temperature also favours 

the kinetics of the corrosion reactions, and especially the anodic dissolution of the 

metal, since the anodic current densities were higher as temperature increased. The 

abrupt increase of current density occurs at lower potentials as temperature increases, 

indicating that the loss of passivity of Alloy 31 occurs earlier as temperature increases 

from 20 to 80 ºC in both polluted H3PO4 solutions.  

 

It is noteworthy that at 60 and 80 ºC the curves revealed the presence of three corrosion 

potentials, at which the anodic current density is equal to the cathodic current density, in 

the active, active-passive and passive region. Similar corrosion behaviour has been 

reported for chromium and chromium containing stainless steels in acid medium [38] 

and in acidic chloride solutions [24, 25, 39-41]. This behaviour is an indication of an 

unstable passive system. At low potentials the HER is dominant and gives a cathodic 

current density. At the first corrosion potential Ecorr1, the cathodic current density equals 

the anodic current density and gives a stable corrosion potential. At a potential range 

between Ecorr1 and Ecorr2 the anodic current density is larger than the cathodic current 

density and presents net current density as anodic current density. After the passage of 

the active-passive transition (above Ecorr2) the current density drops and again becomes 

cathodic. This behaviour has been attributed to the HER occurring on the passive 

surface at a rate greater than the rate of passive dissolution [40]. However, as it has been 

reported, the generation of metal cations that may affect cathodic depolarisation may 
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contribute to the observed effects on the corrosion potentials. This cathodic loop ends at 

a third corrosion potential after which the net current is again the anodic current. [24] 

 

Therefore, the polarisation curves show three corrosion potentials when temperature 

increases above 40 ºC. This phenomenon can be justified by the ideal polarisation 

curves in Figure 3. Curves A1 and A2 would represent the ideal anodic polarisation 

curves of Alloy 31 in the tested solutions and curves B1 and B2 represent the ideal 

cathodic reaction of H
+
 reduction. In the case that the corrosion process was composed 

of cathodic curve B1 and anodic curve A1, the system would only presents one corrosion 

potential. This situation corresponds to the experimental results obtained at 20 and 40 

ºC in both solutions. However, an increase in temperature shifts the anodic and cathodic 

curves to higher current density values. Thus, the anodic and cathodic curves are 

represented by A2 and B2 respectively, in which three points of intersection are revealed 

corresponding to Ecorr1, Ecorr2, Ecorr3 [24]. This explains the number of corrosion 

potentials at the temperatures of 60 and 80 ºC observed in Figure 2 for both solutions. 

 

The Alloy 31 surface was observed during the potentiodynamic curves in order to study 

the corrosion attack on its surface. An example is shown in Figure 4. This figure shows 

images of Alloy 31 in the 40 wt.% H3PO4 solution polluted with 2 wt.% H2SO4 and 0.2 

wt.% of chloride ions at 80 ºC at different potentials. Image a shows the electrode 

surface at the initial potential of the potentiodynamic sweep. Image b shows the surface 

electrode in the passive region, after the corrosion potential. Image c corresponds to the 

potential of 800 mVAg/AgCl, before the breakdown potential (1028 mVAg/AgCl). In all 

these images, practically no damage is observed on the surface electrode. However, at 

higher potentials than the breakdown potential (image d and its magnified image f) it is 
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observed that the surface presents a light, uniform corrosion by comparison with image 

e, which corresponds to the magnified area of image a. Therefore, this fact suggests that 

the passive film has been broken. 

 

In spite of the fact that the presence of chloride suggests pitting corrosion [32, 42, 43], 

the images of the surface electrode (Figure 4) revealed uniform corrosion on the 

electrode surface. Figure 4f shows in detail the aspect of the electrode surface after the 

potentiodynamic polarisation tests in the highest chloride concentration solution at the 

extreme temperature (80 ºC). This image reveals some defects which could be related to 

pitting corrosion. However, they may be related to the appearance of metaestable 

pittings during the polarisation process. The formation of these defects was more 

obvious as temperature and chloride concentration increase. Moreover, when 

temperature increases the austenitic grains of Alloy 31 become distinguishable, as it is 

shown in Figure 4f. 

 

In general, pitting corrosion is hardly observed on Alloy 31 under the conditions 

studied, even under the most severe conditions (the highest concentration of chloride 

ions and at 80 ºC). In this sense, it has been reported that chloride and high temperatures 

affect film stability, but the film does not break up [36]. The dissolution of passivant 

species, such as metallic chloride, is favoured by the increased temperature. 

 

It is also well known that pitting corrosion is initiated by the presence of chloride ions. 

Nevertheless, the high pitting corrosion resistance of Alloy 31 in this medium may be 

attributable to the chemical composition of this alloy, which has high Cr, Ni and Mo 

content. Nickel is able to reduce the corrosion rate [4] and high molybdenum content in 
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stainless steels is known to increase the resistance to localized and pitting corrosion 

[44]. The role of Ni and Mo in stainless steels at anodic potentials in acid solutions is to 

stabilise the passive film and to eliminate the active surface sites [4].  

 

On the other hand, the increase of chloride ion concentration has not been found to have 

any effect on the cathodic reaction, as the comparison of Figure 2a and Figure 2b 

shows. However, the anodic current density slightly increased in the presence of a 

higher chloride concentration. This displacement is justified by the fact that chloride 

ions accelerate the anodic process by altering passivity and activating the material 

dissolution rate [45-47]. 

 

3.2.1. Electrochemical parameters 

 

From the potentiodynamic curves, corrosion potential and corrosion current density 

values were obtained for the different conditions studied (Table 3). 

 

In general, corrosion potentials, Ecorr shifted towards more positive values with 

temperature in both solutions. This increase in corrosion potential seems to be related to 

the increase in cathodic current densities with temperature [28]. This displacement of 

the corrosion potentials is in agreement with the results reported by other authors [28, 

34, 36], who studied the effects of the solution temperature on different stainless steels. 

 

On the other hand, the higher concentration of chloride ions scarcely decreased the 

corrosion potentials, as observed from the Ecorr data of the solution with higher Cl
-
 

concentration, which are lower than those obtained in the solution with 0.03 %wt. of Cl
-
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. In this sense, Iken et al. [4] showed that the presence of impurities increased the anodic 

process. This effect was attributed to adsorption of aggressive ions on the material 

surface, which prevented passivity [46] and accelerated local anodic dissolution.  

 

Corrosion current densities, icorr did not present any clear trend with temperature. The 

highest value of the corrosion current density was obtained at 40 ºC in the polluted 

H3PO4 solution with 0.03 wt.% of chloride (Table 3), while in the solution with 0.2 

wt.% of chloride the highest value was obtained at 20 ºC. This seems to be related to the 

influence of the chlorides on the anodic reaction. Moreover, the results in Table 3 

reveal that, at temperatures of 60 and 80 ºC, the values of icorr are higher as the chloride 

concentration increased.  

 

The passivation current density, ip is observed to increase as temperature and chloride 

concentration increase (Figure 5). In general, the passive current densities are very low, 

indicating good passivation behaviour of the material. The increase of temperature 

favours the growth of the passive film, since temperature favours the kinetic reaction 

[28]. Alloy 31 contains 26.75% chromium, which is the main passive component of the 

passive film in the anodic polarisation of stainless steels [4]. Most authors agree that the 

film presents an inner layer of Cr2O3 and an outer layer of Cr(OH)3 [36, 48, 49]. Wang 

[50] observed that phosphate was incorporated into the outer part of the passive film 

during the passivation process. Moreover, other researchers showed that phosphoric 

acid media favour the formation of iron phosphates [51]. In contact with the metallic 

substrates, phosphate species can produce an insoluble phosphate layer, which has a 

strong passivation characteristic [52]. The building up model of the phosphate layer and 
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the passivation of the metal was also proposed by Bouchemel [53] for titanium-copper 

alloys in phosphate solutions. 

 

The breakdown potential, Eb of Alloy 31 decreases slightly as temperature increases 

(Figure 6) in both polluted H3PO4 solutions due to the fact that the anodic dissolution of 

the metal is favoured and this leads to a loss of passivity. This decrease is more 

pronounced in the solution with the highest chloride concentration. The effect of 

increasing the chloride concentration leads to a decrease in the breakdown potential, 

which suggested the ionic migration of the aggressive ions inside the passive film [45, 

47]. 

 

The results show that the properties of the passive film formed under potential 

imposition slightly degraded with temperature. This fact was reflected by the lower 

breakdown potential, the higher passivation current densities and the narrower 

passivation ranges registered as the solution temperatures increased. 

 

3.3. POTENTIOSTATIC MEASUREMENTS 

 

Four potentials were selected on the passivity range of the polarisation curves of Alloy 

31 in Figure 2. These potentials were 300, 500, 800 and 1000 mVAg/AgCl. 

 

The current density-time curves of Alloy 31 were obtained at the four applied potentials 

(300, 500, 800 and 1000 mVAg/AgCl) in 40 wt.% H3PO4 polluted solutions with 0.03 

wt.% and 0.2 wt.% of chloride. The values of current density corresponds to the total 
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current density resulting from the film formation and the dissolution of Alloy 31 in the 

solution [54]. 

 

The time trend of the potentiostatic current density can be expressed by the following 

empirical equation [25, 54, 55]: 

 

                                                       i = A · t
-n

                                                                (4) 

 

where i denotes the anodic current density consumed in the building of the passive film, 

A is a constant, t is the time, and n is the passivation index, which is a constant value for 

a given environment-metal system. This parameter can be obtained from the linear 

region slope of the log i vs. log t plot: 

 

                                                  log i = log A – n·log t                                                    (5) 

 

This parameter can be considered as an indirect measure of the rate of formation of the 

passive film upon the fresh metal surface, and depends on the applied anodic potential, 

among others [8, 25, 55, 56]. According to the literature [57, 58] n = 1 indicates the 

formation of a compact, highly protective passive film, while n = 0.5 indicates the 

presence of a porous film growing as a result of a dissolution and precipitation process. 

 

Figure 7 and figure 8 present the log i-log t plots for Alloy 31 in 40 wt.% H3PO4 

solutions polluted with 2 wt.% H2SO4, 0.03 wt.% and 0.2 wt.% of chloride respectively 

obtained at the selected passivation potentials. In these figures, the anodic current 

transients can be divided into three stages, as other authors did for austenitic stainless 
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steels [55, 59] and for aluminium and its alloys [56, 60]. The anodic current of the first 

stage was constant, indicating that the rate of oxide formation equalled the rate of oxide 

dissolution so that the oxide film hardly grew. The second stage belongs to a transition 

period in which the current density (i) starts to decrease. In the third stage, the anodic 

current density linearly decreased with time in the logarithmic scale. The current density 

drop was due to the fact that the formation rate of the passivating oxide film dominated 

over its dissolution rate on the bare surface [55, 56, 59, 60]. 

 

The current density-time transients presented in Figure 7 and Figure 8 show 

fluctuations at the end of the register. However, these fluctuations are more clearly 

observed as temperature increases and at the highest potentials, which may be due to the 

formation and further passivation of metaestable pitting [59, 61, 62]. 

 

In this study it has been found that the parameter n changes throughout the recorded 

time. In the second stage, and taking small intervals of time, the passivation rate was 

close to 0.5 indicating a porous film formation which grows by the dissolution and 

precipitation process. This value is related to the presence of phosphates in the solution 

[54]. However, in the linear region of the third stage, this parameter increases and 

generally comes close to 1, which means the formation of a high protective passive film 

on the stainless steel surface.  

 

The variation of n with the applied potentials under the working conditions is 

summarised in Table 4. For the solution polluted with 0.03 wt.% of chloride, it can be 

clearly observed that n varies with temperature, decreasing as the temperature of the 

solution increases. However, when the solution containing 0.2 wt.% of chloride was 
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used, this tendency was not clearly observed, since the passivation rate n remains almost 

constant with temperature, although only slightly lower values of n were observed at 80 

ºC.  

 

The parameter n was found to be higher in the solution with 0.2 wt.% of chloride than in 

the solution with 0.03 wt.% at a given applied potential. In general, n values of the 

highest concentrated solution were close to 1, which means that the growth rate of the 

passive film is higher than its destruction rate, and indicates the formation of a solid and 

compact film on the Alloy 31 surface [8, 56]. This phenomenon suggests the passivation 

effect of chloride ions in this acid solution. In fact, there is a competitive effect of 

chloride and phosphate ions in 40 wt.% H3PO4 solution [63] which hinders phosphates 

from being incorporated into the passive film, as a result the surface film become more 

compact [54]. 

 

On the other hand, these results show that the applied potential scarcely affects the 

passivation rate of Alloy 31 under the conditions studied. Thus, at a given temperature 

the value of n is almost constant, although it is noteworthy that in all cases n was 

slightly lower when the applied potential was 1000 mVAg/AgCl. This fact indicates that at 

the highest passivation potential, the passive film grew more slowly, probably due to the 

proximity of the breakdown potential, Eb. 

 

4. CONCLUSIONS 

 

OCP values obtained during the test indicate that Alloy 31 was spontaneously 

passivated under the studied conditions. 
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The potentiodynamic polarisation curves were characterised by a very wide range of 

passivity values indicating good protection efficiency. 

 

The passive current density increased and the breakdown potential decreased as 

temperature increased in both solutions studied, involving a decrease in corrosion 

resistance with temperature. 

 

The increase of the chloride concentration provokes a slight increase in the passive 

current densities and a decrease in the breakdown potential. 

 

The study of the passivation behaviour has demonstrated that in general the passivation 

index n decreased as the solution temperature increases. The applied potentials were not 

found to have any effect on the parameter n, however it has shown a different trend at 

1000 mVAg/AgCl due to the proximity of the breakdown potential.   

 

These results have revealed a formation of a passive film on Alloy 31 which protects it 

from corrosion attack. This passive film was found to be porous but later it became 

compact and highly protective. 

 

Alloy 31 presents high corrosion resistance in solutions with chloride and sulphate ions 

in concentrations which simulate typical industrial conditions. 
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Figure captions 

Figure 1. The variation of the open circuit potential with time for the Alloy 31 

registered during 1 hour at 20, 40, 60 and 80 ºC in 40 wt.% polluted phosphoric acid 

with 0.03 wt.% of chloride ions and 2 wt.% of H2SO4. 

Figure 2. Potentiodynamic curves of Alloy 31 in polluted 40 wt.% H3PO4 with 0.03 

wt.% (a) and 0.2 wt.% (b) of chloride iones. 

Figure 3. Supposed diagram of ideal polarization curves for Alloy 31 in polluted 40 

wt.% H3PO4 at different temperatures. 

Figure 4. Images (a-d) of Alloy 31 in 40 wt.% H3PO4 polluted with 2 wt.% H2SO4 and 

0.2 wt.% of chloride ions at different potentials of the potentiodynamic test at 80 ºC. 

Images e and f belong with the magnified section of images a and d, respectively. 

Figure 5. Passivation current densities of Alloy 31 at different temperatures in the 40 

wt.% H3PO4 solutions studied. 



 28 

Figure 6. Breakdown potentials of Alloy 31 at different temperatures in the 40 wt.% 

H3PO4 solutions studied. 

Figure 7. Log i vs. log t transients for Alloy 31 in 40 wt.% H3PO4 polluted with 2 wt.% 

H2SO4 and 0.03 wt.% of chloride ions at (a) 20 ºC, (b) 40 ºC, (c) 60 ºC and (d) 80 ºC 

(potential values in VAg/AgCl). 

Figure 8. Log i vs. log t transients for Alloy 31 in 40 wt.% H3PO4 polluted with 2 wt.% 

H2SO4 and 0.2 wt.% of chloride ions at (a) 20 ºC, (b) 40 ºC, (c) 60 ºC and (d) 80 ºC 

(potential values in VAg/AgCl). 

 

Table captions 

Table 1. Chemical composition of the UNS N08031 (Alloy 31) (wt.%). 

Table 2. OCP values of Alloy 31 in the 40 wt.% H3PO4 solutions polluted with 2 wt.% 

H2SO4 and different concentrations of chloride ions at different temperatures. 

Table 3. Chloride and temperature influence on the corrosion potentials and corrosion 

current densities in polluted 40 wt.% H3PO4 with 2 wt.% H2SO4 and different 

concentrations of chloride ions. 

Table 4. The slopes n of current decay transients in the log i-log t for passivation of 

Alloy 31 in 40 wt.% H3PO4 polluted with 2 wt.% H2SO4 and different concentrations of 

chloride ions. 

 

 

 

 



 %Cr %Fe %Ni %Mo %Mn %Cu %N %Si %C %S %P 

Alloy 31 26.75 31.43 31.85 6.6 1.5 1.21 0.193 0.1 0.005 0.002 0.017

 

Table 1



OCP (mVAg/AgCl) 
Temperature (ºC) 

0.03 wt.% Cl- 0.2 wt.% Cl- 

20 133 73 

40 168 116 

60 198 148 

80 239 186 
 

Table 2



0.03 wt.% Cl- 0.2 wt.% Cl- 
T (ºC) Ecorr 

(mVAg/AgCl)
icorr 

(A/cm2) 
Ecorr 

(mVAg/AgCl)
icorr 

(A/cm2) 
20 -154 0.50 -233 12.30 
40 -183 4.60 -194 1.92 
60 118 0.96 144 1.75 
80 231 1.01 205 1.69 

 

Table 3



20 ºC 40 ºC 60 ºC 80 ºC 
Eapl 

(VAg/AgCl) 
0.03 wt.% 

Cl- 
0.2 wt.% 

Cl- 
0.03 wt.%  

Cl- 
0.2 wt.% 

Cl- 
0.03 wt.% 

Cl- 
0.2 wt.% 

Cl- 
0.03 wt.% 

Cl- 
0.2 wt.% 

Cl- 
0.3 0.961 0.942 0.858 0.992 0.670 0.967 0.536 0.745 
0.5 0.974 0.961 0.878 0.993 0.731 0.926 0.606 0.710 
0.8 0.979 0.971 0.868 1.008 0.751 0.993 0.596 0.662 
1 0.920 0.859 0.734 0.786 0.671 0.521 0.526 0.491 

 

Table 4
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(a)            E = 50 mVAg/AgCl 

 
(b)          E = 300 mVAg/AgCl 
 

 
(c)           E = 800 mVAg/AgCl 
 

(d)       E = 1060 mVAg/AgCl 
 

 
    (e)      E = 50 mVAg/AgCl     (f)    E = 1060 mVAg/AgCl 
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