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ABSTRACT 

The objective is to study the influence of pH on the corrosion and passive 

behavior of duplex stainless steels (DSS) using potentiodynamic measurements, 

potentiostatic tests and electrochemical impedance spectroscopy (EIS). 

DSS are spontaneously passive in heavy brine LiBr solutions. Under 

potentiostatic conditions at applied anodic potentials within the passive domain an 

equivalent circuit with two time constants is the most suitable model to describe the 

corrosion mechanism in the interface electrolyte // passive film // metal. pH modifies 

the electrochemical properties of the passivity of the alloy in a 992 g / L LiBr solution 

reducing its resistance with the applied potential. 
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1. INTRODUCTION 

Aqueous solutions containing high concentrations of lithium bromide (LiBr) are 

used as absorbent solutions in absorption heating and refrigeration systems that use 

natural gas or steam as energy sources [1, 2]. Although LiBr possesses favorable 

thermophysical properties, high heat of hydration, high solubility of solid phases, good 

thermal stability and appropriate viscosity, it can cause serious corrosion problems on 

metallic components in refrigeration systems and heat exchangers in absorption plants 

[3-5].  

In general, stainless steels possess the ability to form passive films. Passivity is a 

crucial factor in determining the capability of metals to resist corrosion. Investigation of 

the electrochemistry of a passivated metal can reveal not only the structure and 

composition, but also the corrosion behavior of the film [6]. The corrosion resistance of 

a passive metal is often determined by its susceptibility to local breakdown and pit 

initiation. It has been demonstrated [7,8] that the growth of corrosion pits occurs in two 

consecutive stages characterized by a metastable growth in the early period, followed by 

stable growth. 

Duplex stainless steels (DSS) are iron-based alloys that possess a two phase 

microstructure: austenite and delta ferrite in approximately similar percentages. DSS 

combine the attractive properties of austenitic and ferritic stainless steels: high tensile 

strength and fatigue strength, good toughness even at low temperatures, adequate 

formability and weldability and excellent resistance to stress corrosion cracking, pitting 

and general corrosion [9, 10]. They find increasing use as an alternative to austenitic 

stainless steels, particularly where aggressive anions such as chloride or bromide are 

present in high concentrations.  
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The advantage of using DSS in media that contain halides, such as chloride or 

bromide, resides in the content of delta ferrite, which promotes combined effects due to 

electrochemical and mechanical factors. Owing to two different elastic limits, lower in 

austenite than in ferrite, plastic deformation under external load concentrates on the 

austenite, while ferrite acts as an anode protecting the austenite, which acts as the 

cathode [10]. 

Selective dissolution in DSS is expected to occur due to the difference in 

chemical composition of the constituent phases. Yau and Streicher [11] indicated that 

selective corrosion of the ferritic (a) phase occurred in Fe-Cr-10%Ni DSS in reducing 

acid. Similar observations have been reported by Symniotis with a DSS (SAF 2205) and 

Laitinen et al. in different DSS [12, 13]. However, selective dissolution of the austenitic 

(g) phase has also been reported by Sridhar and Kolts [14]. Recently, the first step of 

DSS corrosion in LiBr has been observed in-situ by means of potentiodynamic and 

galvanodynamic techniques in a minicell with a Confocal Laser Scanning Microscope 

(CLSM) [15]. In DSS each phase can exhibit a different electrochemical potential, 

which may facilitate the occurrence of galvanic corrosion. 

There are numerous studies of the properties of passive films in aqueous 

solutions. Some authors have investigated the effect of pH in different materials, like 

Al, Fe and different stainless steels in sodium sulphate, sodium chloride or diverse 

buffer solutions; all authors have found that an increase in pH enhances passivity and 

repassivity, and a thickening of the passive film is observed in general [16-19]. 

However, studies on the influence of pH on duplex stainless steels in bromide solutions 

have not been found.  

The aim of this work is to study the effect of pH on the electrochemical behavior 

of DSS, and to explain the mechanism of corrosion and passivation processes taking 
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place at the electrode/electrolyte interface in lithium bromide solutions. The effect of 

pH has been studied in heavy brine LiBr solutions as a possible corrosion inhibitor 

needed to reduce the corrosion rates of metallic materials in these halide media, to 

reduce the aggressiveness of the environment towards metals by small additions, in this 

case, LiOH or HBr. In previous papers the effect of different inhibitors in LiBr solutions 

has been studied [20]. For these investigations, different electrochemical techniques, 

open circuit measurements (OCP), polarization techniques and electrochemical 

impedance spectroscopy (EIS) were used. 

 

2. Experimental details 

2.1. Electrodes and solution. 

The working electrodes were made from commercial duplex stainless steel rods, 

(EN 1.4462), 8 mm in diameter. The chemical composition (wt%) is 4.84 % Ni, 

22.336 % Cr, 2.686 % Mo, 1.598% Mn, 0.354 % Si, 0.134 % Cu, 0.030 % C, 67.794 % 

Fe, 0.008 % Ti and 0.1760 % N. In a previous study the content of ferrite and austenite 

of the DSS was determined (45% and 55% respectively), and the optical micrographs of 

the same DSS was presented there [21]. For the electrochemical tests, the specimens 

were mounted in Teflon leaving a working area of 0.5 cm
2
 in contact with the solution. 

Before each experiment, the working electrode was mechanically polished using 

successive grade grinding papers up to 4000 grit, rinsed with distilled water, dried with 

air and then transferred to the test solution. 

All measurements were performed in aqueous 992 g / L LiBr solutions, prepared 

from 98 wt.% LiBr, from PANREAC. The pH was adjusted by adding LiOH or HBr at 

2, 4, 6, 8, 10 and 12. Before the experiments nitrogen was bubbled through the solution 

for 15 minutes in order to remove the dissolved oxygen from the solution; during the 
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electrochemical measurements N2 atmosphere was kept by introducing the gas over the 

liquid surface during the whole test. All the experiments were repeated at least three 

times. The reference electrode was a Ag/AgCl electrode in 3M KCl, and a platinum 

wire was used as the counter electrode. All potentials were referred to the Ag/AgCl 3M 

KCl electrode (205 mV versus SHE). 

 

2.2. Electrochemical equipment and measurements 

The experiments were carried out using an electrochemical three-electrode 

vertical cell. The solution temperature was held at 25 ºC during all the experiments. All 

measurements were carried out using a potentiostat Solartron 1287 and a frequency 

response analyzer Solartron SI 1250 including a personal computer with a GPIB. 

Experiments were controlled with ZPlot and CorrWare software and fitting was 

performed with ZView and CorrView software respectively.  

Two different electrochemical tests have been conducted in LiBr aqueous 

solutions: cyclic potentiodynamic curves, performed to assess corrosion resistance by 

recording anodic and cathodic currents, and electrochemical impedance spectroscopy 

(EIS) testing, performed to describe the metallic interface. 

Open circuit potential was measured for one hour at the beginning of the tests. 

The OCP values were obtained, according to ASTM G5 [22], from the average value of 

the last 300 s of the open circuit potential measurement.  

Cyclic potentiodynamic curves were carried out according to a modification of 

the ASTM G 61 standard [23]; after one hour of immersion at open circuit potential 

using a scan rate of 0.5 mV/s started from -1 VAg/AgCl and moved in the anodic direction; 

the potential scan was reversed when the current density reached a value of 10 mA/cm
2
. 

Corrosion current density (icorr), corrosion potential (Ecorr), pitting potential (Ep) at a 
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current density of 100 μA/cm
2
, passivation current density (ip) repassivation potentials 

(Erp) and repassivation current density (irp) were obtained from the polarization curves. 

icorr were obtained by the extrapolation of the cathodic and anodic slopes between 50 

and 100 mV away from Ecorr. The most precise determination of the corrosion current 

density values is by the Tafel extrapolation when both the anodic and cathodic branches 

show linearity. However, it is also possible to make an accurate evaluation of the 

corrosion current densities if one of the branches of the polarization curves displays a 

sufficiently long linear tendency around the corrosion potential [24-27]. In fact, two 

rules of thumb should be applied when using Tafel extrapolation. First, at least one of 

the branches of the polarization curve should exhibit Tafel behavior (i.e., linear on 

semilogarithmic scale) over about one decade of current density. Second, the 

extrapolation should start at least 50–100 mV away from Ecorr. These two rules improve 

the accuracy of manual extrapolation [28]. 

The potentiostatic test was recorded at -0.2 VAg/AgCl during one hour. Passivation 

current density at the steady state (ipss) was determined from them. 

EIS were recorded at different potentials: OCP and -0.2 VAg/AgCl. The selected 

potentials corresponded to the passive domain of the alloy. Measurements have been 

performed starting from 10 mHz up to 10
4
 Hz, at 10 data cycles/decade, 10 mV ac 

amplitude. 

Impedance at the OCP was carried out after 1 hour immersion. The impedance 

measurements under potentiostatic conditions were carried out after 30 minutes 

immersion at OCP, 10 minutes of electrochemical cleaning at -1 VAg/AgCl and one hour 

at the selected potential, -0.2 VAg/AgCl. 

 

 



7 

 

3. Results and discussion 

3.1. Open circuit potential 

The open circuit potential (OCP) values are summarized in Table 1. All the 

values of each parameter in Table 1 are the mean values of three repetitions and they are 

presented with their corresponding standard deviation. All the values lay between -216 

and -140 mVAg/AgCl, which corresponds to the passive region of the electrode in the LiBr 

solutions of pH between 4 and 12. The OCP value obtained in pH 2 is close to the 

breakdown potential value as it can seen in Table 1, while between 4 and 10 differences 

in OCP values are negligible. The evolution of the open circuit potential versus time in 

LiBr solutions at pH 2, 4, 6, 8, 10 and 12 is shown in Figure 1; in all the experiments 

open circuit potential increases with time independently of the pH, indicating a 

spontaneous passivation of the surface due to the development of an oxide film. At pH 

12, the OCP value is similar to pH 2. Due to the fact that the passive film is composed 

of chromium and iron oxides, but mainly chromium oxides [29], it can be observed 

from the Pourbaix diagram of chromium in 992 g / L LiBr solution at 25 ºC [30] that at 

slightly acidic, neutral and basic pHs, chromium shows corrosion resistance by passivity 

due to the presence of protective oxide of the form Cr2O3. 

 

3.2. Cyclic potentiodynamic curves  

Figure 2 shows the polarization curves of DSS in 992 g / L LiBr solutions. The 

electrochemical parameters calculated from the curves are listed in Table 1. DSS do not 

passivate at pH 2; it presents the highest corrosion potential (-272 mVAg/AgCl) and the 

highest corrosion current density (1.8 µA/cm
2
). According to Dieter Landolt [31], it is 

established that one material is nobler when the corrosion potential increases, so that, in 

the LiBr solution with pH 2, DSS presents the worst corrosion behavior in 992 g/l LiBr 
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at 25ºC. DSS passes directly from the cathodic to the active state in the pH 2 solution. 

The highest cathodic current density in all the cathodic branch is obtained in the LiBr 

pH 2 solution.  

In the other LiBr solutions, four different zones can be distinguished in the 

polarization curves. The first region, the cathodic domain, comprises a potential range 

between -1 and -0.6 VAg/AgCl. For the acidic pHs, Figure 2 (a), the cathodic current 

density decreases with pH, the highest being at pH 2, favouring the cathodic reaction of 

hydrogen evolution.  

The second region, the active passive transition, is observed between -0.6 and -

0.4 VAg/AgCl. In LiBr solutions with pHs between 4 and 12, the corrosion potential is 

around -0.5 VAg/AgCl. The corrosion rate of DSS increases when pH decreases and pH 12 

presents the lowest corrosion current density (Table 1).  

The third region is the passive domain, and it is observed at all pHs above 2; this 

region is wider at the highest pH. Above pH 4, DSS is well passivated, it presents low 

passive current densities (between 5 and 8 mA/cm
2
). The passivation current densities, 

ip,  are very similar in all media, but it slightly decreases when pH increases. L. Freire et 

al [32] relate the decrease in passive current density from pH 13 to 9 in AISI 316 in 

NaOH + KOH due to an enrichment in Cr oxides that improves the stability of the films, 

resulting in a lower ip. Pitting potential represents the potential limit above which pitting 

begins. pH do not influence the Ep between 6 and 8, while at pH 12 DSS presents the 

highest Ep (24 mVAg/AgCl). Otherwise some authors have concluded that the influence of 

pH on the pitting potential of different stainless steels have no significant effects [33]; 

from our results it is shown that for basic pHs (Figure 2b), Ep increases with pH. Ep 

shifts to more positive values with an increase in pH of the solution and it obeys the 

equation: 
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pHbaE p +=                   (1) 

The intercept a and the slope b are found to be -305 mV and 27.37 mV/dec 

respectively. This indicates that the stability of the passive film towards pitting 

corrosion increases as the pH values increase. At the lowest pHs, the increase in the 

instability in the passive film could be due to the acceleration of the cathodic reaction 

owing to high concentration of hydrogen ions. Ramana et al [34] have found the same 

tendency of Ep with pH for 316L stainless steel in chlorine media in a pH range between 

1.23 and 5.  

Figure 3 presents the Pourbaix diagram of chromium in 992 g / L LiBr solution 

[30] with the insert of OCP ( ) and Ep (*) values. In LiBr solutions of pH 2 and 4, both 

OCP and Ep are in the region where CrBr
+2

 is stable, while at pHs over 4, the stable 

specie is in general Cr2O3, so it is confirmed that it states in the passive form. According 

to the Pourbaix diagram and as it is shown in Figure 2b, at pH 12 the repassivation of 

DSS is worse than the other pHs (bigger hysteresis loop and higher irp value); this 

phenomenon is may be due to the oxidation of chromium oxide to CrO4
-2

, at potentials 

above the Ep. 

The difference between Ep and Ecorr is a measure of the tendency to pit 

nucleation [35]. The value obtained from this difference decreases with the pH, except 

for pH 12 (Figure 4a); the resistance of the material to pitting corrosion increases when 

this difference increases, therefore the highest resistance was found at pH 12.   

Finally the fourth region is defined at potentials higher than the Ep, where 

localized corrosion develops. The existence of a hysteresis loop in a cyclic 

potentiodynamic curve indicates that repassivation of an existing pit is possible. The 

larger the hysteresis loop, the more difficult repassivation is. Repassivation potential, 

Erp, refers to the limit below which the metal remains passive, and it is defined as the 
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potential where the forward and reverse scan cross; it marks the division between stable 

and unstable passivity [36]. Intermediate values between pitting potential and 

repassivation potential do not permit the formation of new pits, but allow the 

development of those which already existed. The narrower the hysteresis loop, defined 

from the data Ep-Erp in the cyclic polarization curves, the easier it becomes to 

repassivate the pit. Hysteresis loops do not follow any trend with pH; at pH 12 the 

highest hysteresis loop is observed and the Ep-Erp difference lay around 250 mV (Figure 

4b). Figure 4b represents the repassivation ability of DSS depending on the pH. 

Therefore when the pH is below 4 and over 10 this ability decreases, although all of 

them present low capacity for repassivation due to the high values Ep - Erp. 

Repassivation current density is the maximum current density value reached in 

the cyclic curve; it is an inverse measurement of the material capacity to repassivate and 

of the corrosion propagation. The repassivation current density is very similar in all 

tests, around 10 mA/cm
2
; only at pH 12 the irp presents the highest value (15 mA/cm

2
). 

From the repassivation characteristics of DSS in LiBr media, when pH increases above 

10, this ability decreases.  

 

3.3. Potentiostatic experiments 

From the potentiostatic experiments at -0.2 VAg/AgCl, the passivation current 

density at the steady state (ipss) has been determined (Table 2).  

Figure 5 presents an example of the evolution of current density versus time 

during the potentiostatic tests in LiBr solutions at pH 4 and 8. The current densities in 

all the tests exponentially decrease with time after an abrupt increase and subsequently 

achieve a steady state (ipss). The experiments carry out at pH 4 and pH 2 present current 

oscillations and they are very similar; furthermore in the pH 2 solution, the current 



11 

 

density becomes negative, probably due to the fact that a mass-transport limit reduction 

reaction overlays the anodic passivation current density. The other potentiostatic tests 

present a smoother shape that indicates that a stable passive film is formed on the 

surface with no breakdown occurring during the entire measurement period. 

For acidic pHs, the passive current density (ipss) increases with pH; on the 

contrary, for basic pHs, from 8 to 12, the passive current density presents a slightly  

decrease. This indicates that the behavior of the passive film is slightly dependent on the 

pH of the LiBr solutions. The insert of Figure 5 presents the full logarithmic scale of the 

potentiostatic tests of Figure 5. It is observed that the logarithmic current density 

decreases linearly with the logarithmic time in all cases; the slope represents the 

growth-rate of the film [16] and it grows according to the expression (2) as: 

nAti -
=                    (2) 

where i is the current used in the formation of the oxide film and A is the 

constant, t is the time and n is the slope. It is observed that the pH do not modify the 

growth rate of the passive film and in all the solutions the slope n is around 0.72. 

 

3.4. Electrochemical impedance spectra 

To complete the characterization of the DSS / electrolyte interface, EIS 

measurements are made in a wide frequency range. Impedance spectra are normally 

displayed either in the form of a Nyquist diagram, where the opposite of the imaginary 

part of impedance is plotted against the real part, or of a Bode plot in which both the 

modulus of the impedance and the phase angle are plotted as a function of frequency. 

EIS measurements are made at two passive potentials, OCP and – 0.2 VAg/AgCl. Figure 6 

shows examples of the Nyquist and Bode plots for the DSS sample in LiBr solutions at 

– 0.2 VAg/AgCl. 
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According to Figure 6, two regions corresponding to two time constants can be 

distinguished, therefore experimental impedance data is fitted to the equivalent 

electrical circuit (EEC) of Figure 7. It consists of the following elements; Rs is the 

solution resistance, Rct, is the charge transfer resistance and CPEdl is the capacitance of 

the multilayer corrosion products including the defects resulting from the formation of 

ionically conducting paths across the corrosion product, CPEfilm is the capacitance of the 

passive layer within the pit [37] and Rfilm is the resistance of the passive film. The sum 

of Rct and Rfilm is defined as the polarization resistance, Rp, and it is related to the 

corrosion resistance of the metal. Because DSS alloy is spontaneously passive, this 

equivalent circuit is the most suitable to describe the corrosion mechanism produced in 

the interface electrolyte / passive film / metal. 

This model assumes that the passive film does not totally recover the metal and 

cannot be considered as a homogeneous layer but rather as a defective layer. In fact, 

neither real surfaces of solids in the active range nor passive films on metallic substrates 

can be considered to be ideally homogeneous.  

Therefore, the high frequency capacitive semicircle can be attributed to a charge 

transfer process, and the neighboring second semicircle to the passive film [38, 39]. The 

second time constant is connected with an additional relaxation process, whose 

proceeding is outlined in the presence of ion by adsorbed molecules. 

According to the model of Figure 7, the electrical parameters at OCP and at -0.2 

VAg/AgCl are summarized in Table 3.  

At both potentials, the highest oxide film resistance (Rfilm) is obtained in the 

LiBr pH 6 solution, and the lowest Rfilm is obtained in the pH 2 solution. The 

differences in Rfilm at OCP in the different LiBr solutions, are due to the fact that small 

surface modifications in the OCP values change the properties of the DSS interface in 
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992 g/l LiBr solutions. So that, authors decided to select an applied constant potential of 

-0.2 VAg/AgCl to observe the electrochemical behavior of the alloy in those LiBr 

solutions. CPE values are high compared to the double-layer capacitance expected for a 

metal-solution interface. This indicates that some kind of adsorption phenomena is 

involved and contributes to the overall impedance. The depression of the double layer 

capacitance semicircle grows as well. If ndl is accepted to be a measure of surface 

inhomogeneity [40], then ndl decrease should be related to certain increase in 

heterogeneity resulting from surface metal roughening.  

There are no differences in the ndl values, but nfilm is smaller than ndl, which is 

related to diffusion mechanisms through the passive film in DSS in a LiBr medium. At 

both potentials, OCP and -0.2 VAg/AgCl, nfilm is around 0.5, that is, the formation of the 

passive film occurs through a dissolution-precipitation mechanism [41]. 

It may be concluded that the behavior of the DSS interface, due to the formation 

of a porous passive oxide layer, has CPE with n<1 and with a maximum phase angle of 

-75º for pH 2.  

With respect to the influence of the applied potential on the electrochemical 

properties of the DSS/LiBr interface, Figure 8 presents, as an example, a comparison 

between the data obtained in pH 4 at the OCP and at -0.2 VAg/AgCl. There are no great 

differences in the properties of the interface as it can be observed from the results of 

Table 3 at OCP and at -0.2 VAg/AgCl. Only in those cases where the OCP measurements 

previous to EIS tests lie above -0.2 VAg/AgCl (i.e. pH 8), the Rfilm values are lower and 

the CPEfilm values are higher, which can be related to the thinning of the passive film.  
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4. Conclusions 

The electrochemical behavior of DSS in different LiBr solutions is presented in 

this study. Enhanced DSS passivity in LiBr is obtained for slightly basic and acid pH. 

Decreasing the pH may lead to localised corrosion. 

The evolution of the open circuit potential at the beginning of the tests is 

independent of pH, it increases with time in all cases. 

From the results of the polarization curves, it is clear that DSS in LiBr at pH 12 

presents better resistance to general and pitting corrosion; by contrast it presents worse 

repassivation ability than at the other pH values. 

The polarization curves and EIS tests allow us to conclude that in LiBr media, 

the most suitable corrosion mechanism includes the double layer and the formation of a 

passive film on the alloy surface. The resistance of the passive film is higher in LiBr 

solutions with pH between 6 and 8. 

The results present here give a better understanding of the corrosion resistance 

of DSS under very aggressive conditions. There are no great differences in the results of 

the characterization of the passive film of DSS at OCP, which is in the passive range, 

and at the applied passive potential. Indeed, under the studied conditions in this work, it 

is better to do EIS measurements under the applied potential than at OCP owing to the 

fact that the dispersion in the OCP measurement could also influence the results of the 

interface characterization.  
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Figure 1. Open circuit potential evolution of DSS in 992 g / L LiBr solutions. 

Figure 2. Cyclic potentiodynamic curves of duplex stainless steel in 992 g / L LiBr at 

acid (a) and basic pHs (b). 

Figure 3. Pourbaix diagram of chromium in 992 g / L LiBr solution with OCP ( ) and 

Ep (*) values of DSS in 992 g / L LiBr solutions. 

Figure 4.  Difference of Ep and Ecorr vs. pH (a) and difference of Ep and Erp vs. pH (b) 

for duplex stainless steel in 992 g / L LiBr solutions. 

Figure 5.  Evolution of current density versus time for duplex stainless steel in 992 g / 

L LiBr at pH 4 and 8. The insert corresponds to the full logarithmic scale. 

Figure 6. Nyquist (a) and Bode (b) plots of EIS data at -0.2 VAg/AgCl of duplex stainless 

steel in 992 g / L LiBr solutions. 

Figure 7. Equivalent circuit for the analysis of impedance spectra. Rs solution 

resistance, Rct charge transfer resistance, CPEdl double layer CPE, Rfilm oxide film 

resistance, CPEfilm CPE of oxide film. 

Figure 8. Comparison of the Nyquist plot at -0.2 VAg/AgCl and OCP for duplex stainless 

steel in 992 g / L LiBr solution (pH = 4). 
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Table 1. Electrochemical parameters of the duplex stainless steel in the 992 g / L LiBr 

solution. 

 

pH 

OCP 

(mVAg/AgCl) 

Ecorr  

(mVAg/AgCl) 

icorr 

(μA/cm
2
) 

ip 

(μA/cm
2
) 

Ep  

(mVAg/AgCl) 

irp 

(mA/cm
2
) 

Erp  

(mVAg/AgCl) 

2 -216 ± 35 -272 ± 5 1.8 ± 0.5 - -144 ± 1 (*) - - 

4 -142 ± 45 -557 ± 42 1.4 ± 0.3 8.5 ± 2.7 -20 ± 3 10.8 ± 0.5 -273 ± 8 

6 -178 ± 20 -580 ± 35 1.0 ± 0.6 7.5 ± 2.6 -81 ± 10 10.2 ± 0.3 -336 ± 13 

8 -182 ± 45 -553 ± 50 1.0 ± 0.5 7.0 ± 3.5 -85 ± 5 10.6 ± 0.6 -326 ± 2 

10 -182 ± 3 -498 ± 23 0.9 ± 0.4 5.9 ± 1.5 -32 ± 10 11.0 ± 0.2 -282 ± 20 

12 -205 ± 14 -537 ± 92 0.8 ± 0.2 5.4 ± 2.9 24 ± 72 15.2 ± 4.3 -328 ± 58 

(*)Potential at a current density of 100 μA/cm
2
. 

(±)Standard deviation values. 
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Table 2. ipss at -0.2 VAg/AgCl of the duplex stainless steel in the 992 g / L LiBr solutions. 

 

pH 2 4 6 8 10 12 

ipss (μA/cm
2
) 2.5 3.0 4.1 4.5 4.1 3.5 
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Table 3. Equivalent circuit parameters in 992 g / L LiBr solutions at OCP and -0.2 

VAg/AgCl. 

OCP 

pH 
Rs 

(W·cm
2
) 

Rct 

(kW·cm
2
) 

CPEdl 

(μF/cm
2
) 

ndl 
CPEfilm 

(μF/cm
2
) 

nfilm 

Rfilm 

(kW·cm
2
) 

2 2.1 0.7 75 0.88 220 0.68 5 

4 2.2 1.5 100 0.85 180 0.55 22 

6 1.9 1.4 167 0.77 260 0.57 150 

8 1.5 0.2 75 0.88 350 0.62 11 

10 2.1 1.5 81 0.87 143 0.60 13 

12 2.3 1.6 93 0.85 250 0.50 90 

-0.2 VAg/AgCl 

pH 
Rs 

(W·cm
2
) 

Rct 

(kW·cm
2
) 

CPEdl 

(μF/cm
2
) 

ndl 
CPEfilm 

(μF/cm
2
) 

nfilm 
Rfilm 

(kW·cm
2
) 

2 3.8 2.0 36 0.90 280 0.50 13 

4 4.5 1.6 100 0.79 260 0.63 22 

6 4.4 1.6 41 0.85 130 0.44 82 

8 5.0 2.8 28 0.86 155 0.46 70 

10 3.0 4.0 85 0.83 250 0.60 25 

12 4.5 1.7 38 0.87 130 0.50 21 
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