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An 𝑛×𝑛matrix is called an𝑁
0
-matrix if all its specified principal minors are nonpositive. In the context of partial matrices, a partial

matrix is called a partial𝑁
0
-matrix if all its specified principal minors are nonpositive. In this paper we characterize the existence

of an𝑁
0
-matrix completion of a partial𝑁

0
-matrix whose associated graph is a directed cycle.

1. Introduction

A partial matrix is a rectangular array, some of whose entries
are specified while the remaining unspecified entries are free
to be chosen (from a certain set). In this paper we are going
to work on the set of the real numbers and to assume that
all diagonal entries are prescribed. A completion of a partial
matrix is the matrix resulting from a particular choice of
values for the unspecified entries. A completion problem asks
if we can obtain a completion of a partial matrix with some
prescribed properties.

The technics to obtain this completion depend on the
pattern of the partial matrix which can be combinatorially
symmetric (i.e., 𝑎

𝑖𝑗
is specified if and only if 𝑎

𝑗𝑖
is) or

noncombinatorially symmetric. Here we are going to work
with this second class of partial matrices.

A natural way to describe an 𝑛 × 𝑛 partial matrix
𝐴 = (𝑎

𝑖𝑗
) is via a graph 𝐺

𝐴
= (𝑉, 𝐸), where the set of

vertices 𝑉 is {1, 2, . . . , 𝑛} and there is an arc from 𝑖 to 𝑗

if and only if position (𝑖, 𝑗) of 𝐴 is specified. In general,
a directed graph (resp., nondirected graph) is associated
with a noncombinatorially symmetric (resp., combinatorially
symmetric) partial matrix. Since all main diagonal entries are
specified we omit loops.

A cycle in a directed graph 𝐺 is a sequence of arcs
(𝑖
1
, 𝑖
2
), (𝑖
2
, 𝑖
3
), . . . , (𝑖

𝑘−1
, 𝑖
1
), where 𝑖

𝑘
̸= 𝑖
𝑙
for all 𝑘 ̸= 𝑙.

In the last years many completions problems have been
analysed. The completion problem for partial 𝑀-matrices,
𝑃-matrices, 𝑁-matrices, . . ., has been studied by Johnson,
Hogben,Urbano,Mendes, . . ., among others. See, for instance
[1–9] and the references therein.

As a class of square real matrices that contains the 𝑁-
matrices we define the 𝑁

0
-matrices, 𝑛 × 𝑛 real matrices 𝐴 =

(𝑎
𝑖𝑗
), where all its principal minors are nonpositive. Since𝑁

0
-

matrices are preserved by principal submatrices we define
a partial 𝑁

0
-matrix as a partial matrix whose completely

specified principal submatrices are𝑁
0
-matrices.

In general it is not always true that a partial𝑁
0
-matrix has

an 𝑁
0
-matrix completion as the following matrix shows (see

[7]):

𝐴 =

[
[
[

[

−1 1 −10 𝑥

2 −1 1 −100

−0.1 10 −1 1

1 −10 1 −1

]
]
]

]

. (1)

𝐴 is a partial 𝑁
0
-matrix that has an 𝑁

0
-matrix completion

that leads us to analyze the 𝑁
0
-matrix completion problem

depending on the pattern of the partial matrix. We have
studied in [7] when a combinatorially symmetric partial𝑁

0
-

matrix with no null main diagonal entries such that the graph
of its specified entries is a 1-chordal graph or a cycle has an
𝑁
0
-matrix completion.
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In this paper we study the mentioned problem for partial
𝑁
0
-matrices that can have zeros at the main diagonal and

whose associated graph is a directed cycle of length equal to
the order of the matrix. In this case we may suppose without
loss of generality that these matrices have the form:

[
[
[
[
[
[

[

𝑎
11

𝑎
12

𝑥
13

⋅ ⋅ ⋅ 𝑥
1𝑛

𝑥
21

𝑎
22

𝑎
23

⋅ ⋅ ⋅ 𝑥
2𝑛

...
...

...
...

𝑥
𝑛−1,1

𝑥
𝑛−1,2

𝑥
𝑛−1,3

⋅ ⋅ ⋅ 𝑎
𝑛−1,𝑛

𝑎
𝑛1

𝑥
𝑛2

𝑥
𝑛3

⋅ ⋅ ⋅ 𝑎
𝑛𝑛

]
]
]
]
]
]

]

, (2)

where 𝑎
𝑖𝑗
denotes a specified entry and 𝑥

𝑖𝑗
an unspecified one.

Observe that when we say “𝑎
𝑖,𝑖+1

, 𝑖 = 1, 2, . . . , 𝑛, where
the subscripts are expressed module 𝑛”, we are using the
congruence module 𝑛; that is, we are considering the entries
𝑎
12
, 𝑎
23
, . . . , 𝑎

𝑛−1𝑛
, 𝑎
𝑛1
.

Given a matrix𝐴 of size 𝑛×𝑛 the submatrix lying in rows
𝛼 and columns 𝛽, 𝛼, 𝛽 ⊆ 𝑁 = {1, 2, . . . , 𝑛} is denoted by
𝐴[𝛼 | 𝛽] and the principal submatrix 𝐴[𝛼 | 𝛼] is abbreviated
to 𝐴[𝛼].

We denote 𝑎 = 1 if 𝑎 = 0 and 𝑎 = 𝑎 if 𝑎 ̸= 0.
In the next section we introduce necessary and sufficient

conditions in order to guarantee the existence of an 𝑁
0
-

matrix completion of a partial 𝑁
0
-matrix whose associated

graph is a directed cycle.

2. Completion of Partial 𝑁
0
-Matrices

It is easy to prove that 𝑁
0
-matrices as well as partial 𝑁

0
-

matrices satisfy the following properties.

Proposition 1. Let 𝐴 = (𝑎
𝑖𝑗
) be an 𝑛 × 𝑛 𝑁

0
-matrix.

(1) If 𝑃 is a permutation matrix, then 𝑃𝐴𝑃
𝑇 is an 𝑁

0
-

matrix.
(2) If𝐷 is a positive diagonal matrix, then𝐷𝐴 and𝐴𝐷 are

𝑁
0
-matrices.

(3) If 𝐷 is a nonsingular diagonal matrix, then 𝐷𝐴𝐷
−1 is

an𝑁
0
-matrix.

(4) If 𝑎
𝑖𝑖

̸= 0, 𝑖 = 1, 2, . . . , 𝑛, then 𝑎
𝑖𝑗

̸= 0, for all 𝑖, 𝑗 ∈

{1, 2, . . . , 𝑛}.
(5) Every principal submatrix of 𝐴 is an𝑁

0
-matrix.

In [7] the authors proved that any 𝑛 × 𝑛 𝑁
0
-matrix with

no null diagonal entries is diagonally similar to an𝑁
0
-matrix

in the set:

𝑆
𝑛
= {𝐴 = (𝑎

𝑖𝑗
) : sign (𝑎

𝑖𝑗
) = (−1)

𝑖+𝑗+1
, ∀𝑖, 𝑗} . (3)

But since there are 𝑁
0
-matrices with some entries equal to

zero we need to introduce the following set:

𝑤𝑆
𝑛
= {𝐴 = (𝑎

𝑖𝑗
) : 𝑎
𝑖𝑗
= 0 or sign (𝑎

𝑖𝑗
) = (−1)

𝑖+𝑗+1
, ∀𝑖, 𝑗} .

(4)

We also extend the definition of 𝑤𝑆
𝑛
matrices to partial

matrices; that is, 𝑃𝑤𝑆
𝑛
consists of the 𝑛 × 𝑛 partial matrices

𝐴 = (𝑎
𝑖𝑗
) such that if 𝑎

𝑖𝑗
̸= 0 then sign(𝑎

𝑖𝑗
) = (−1)

𝑖+𝑗+1, for all
specified entry (𝑖, 𝑗), 𝑖, 𝑗 ∈ {1, 2, . . . , 𝑛}. The following matrix
𝐵 is an example of a matrix of 𝑃𝑤𝑆

4
,

𝐵 =

[
[
[

[

−1 1 −10 𝑥

2 𝑦 0 −100

𝑧 10 −1 1

1 −10 1 −1

]
]
]

]

. (5)

The following results, consequence of Proposition 1, allow
us to transform a partial 𝑁

0
-matrix 𝐴 = (𝑎

𝑖𝑗
), whose

associated graph is a directed cycle, into a matrix whose
diagonal nonzero values are −1; the nonzero elements of the
first upperdiagonal are 1 and the element in position (𝑛, 1) is
𝑎
12
𝑎
23

⋅ ⋅ ⋅ 𝑎
𝑛1
.

Proposition 2. Let 𝐴 = (𝑎
𝑖𝑗
) be an 𝑛 × 𝑛 partial 𝑁

0
-matrix.

There exists a positive diagonal matrix𝐷 such that matrix 𝐵 =

𝐷𝐴 = (𝑏
𝑖𝑗
) is also an 𝑁

0
-partial matrix with 𝑏

𝑖𝑖
equal to −1 or

to zero, for all 𝑖 = 1, 2, . . . , 𝑛.

Proof. It suffices to consider𝐷 = {𝑑
1
, 𝑑
2
, . . . , 𝑑

𝑛
} defined 𝑑

𝑖
=

−1/𝑎
𝑖𝑖
if 𝑎
𝑖𝑖

̸= 0 and 𝑑
𝑖
= 0 if 𝑎

𝑖𝑖
= 0.

Proposition 3. Let 𝐴 = (𝑎
𝑖𝑗
) be an 𝑛 × 𝑛 partial 𝑁

0
-matrix,

whose associated graph is a directed cycle, such that 𝑎
𝑖𝑖
is −1 or

0, for all 𝑖 = 1, 2, . . . , 𝑛. Then there exists a diagonal matrix 𝐷

such that 𝐷𝐴𝐷
−1

= (𝑐
𝑖𝑗
) is a partial 𝑁

0
-matrix with 𝑐

𝑖𝑖
= 𝑎
𝑖𝑖

for all 𝑖 = 1, 2, . . . , 𝑛, 𝑐
𝑖𝑖+1

= 1 or zero for all 𝑖 = 1, 2, . . . , 𝑛 − 1

and 𝑐
𝑛1

= 𝑎
12
𝑎
23

⋅ ⋅ ⋅ 𝑎
𝑛1
.

Proof. It suffices to consider 𝐷 = diag(1, 𝑎
12
, 𝑎
12
𝑎
23
, . . . ,

𝑎
12
𝑎
23

⋅ ⋅ ⋅ 𝑎
𝑛−1𝑛

).

Therefore, if𝐴 = (𝑎
𝑖𝑗
) is an 𝑛×𝑛 partial𝑁

0
-matrix whose

associated graph is a directed cycle, we will assume, without
loss of generality, that 𝐴 has the following structure: −1 or
zeros on the main diagonal, 1’s or zeros in the first upper
diagonal and 𝑎

12
𝑎
23

⋅ ⋅ ⋅ 𝑎
𝑛1
in position (𝑛, 1).

The following theoremcharacterizes the𝑃𝑤𝑆
𝑛
matrices as

an intermediate step to obtain the desired completion. It can
be easily obtained from the transformations of Propositions
2 and 3.

Theorem 4. Let 𝐴 be an 𝑛 × 𝑛 partial matrix, 𝑛 even (resp.,
odd), whose associated graph is a directed cycle. If all entries
𝑎
𝑖𝑖+1

, 𝑖 = 1, 2, . . . , 𝑛, where the indices are expressed module 𝑛,
are nonzero the matrix𝐴 is diagonally similar to an element of
𝑃𝑤𝑆
𝑛
if and only if 𝑎

12
𝑎
23

⋅ ⋅ ⋅ 𝑎
𝑛1

> 0 (resp., 𝑎
12
𝑎
23

⋅ ⋅ ⋅ 𝑎
𝑛1

< 0).

Nowwe analyze the existence of an𝑁
0
-matrix completion

of a partial 𝑁
0
-matrix with an associated directed cycle, by

distinguishing between matrices with no null main diagonal
entries and matrices with some null values in the main
diagonal.

Theorem 5. Let𝐴 be an 𝑛×𝑛 partial𝑁
0
-matrix, with nonzero

main diagonal entriessuch that its associated graph is a directed
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cycle. The following statements are equivalent:

(1) 𝑎
12
𝑎
23

⋅ ⋅ ⋅ 𝑎
𝑛1

> 0 if 𝑛 is even (𝑎
12
𝑎
23

⋅ ⋅ ⋅ 𝑎
𝑛1

< 0 if 𝑛 is
odd),

(2) 𝐴 is diagonally similar to an element of 𝑃𝑤𝑆
𝑛
,

(3) there exists an𝑁
0
-matrix completion of 𝐴.

Proof. Observe that from (4) of Proposition 1, we have that
all the specified entries are nonzero.Then, from commentary
after Proposition 3, we assume that all the elements in the
main diagonal are −1 and the first upper diagonal is formed
by 1’s.

Let us suppose that 𝑛 is even; the case 𝑛 odd is analo-
gous. Since the upper diagonal and the element in position
(𝑛, 1) are nonzero, by applying Theorem 4, the condition
𝑎
12
𝑎
23

⋅ ⋅ ⋅ 𝑎
𝑛1

> 0 is equivalent to item 2.
Now, we assume that the second statement is true. We

consider 𝐴


= (𝑎


𝑖𝑗
), where 𝑎



𝑖𝑗
= 𝑎
𝑖𝑗
if 𝑎
𝑖𝑗
is a specified

value of 𝐴, 𝑎
𝑖+1𝑖

= 1 for 𝑖 = 1, 2, . . . , 𝑛, where subscripts are
expressedmodule 𝑛 and 𝑎



𝑛1
= 1/(𝑎

12
𝑎
23

⋅ ⋅ ⋅ 𝑎
𝑛1
).Then𝐴

 is an
𝑛 × 𝑛 partial 𝑁

0
-matrix, with nonzero main diagonal entries

such that its associated graph is a nondirected cycle.Theorem
4.3 of [7] assures that 𝐴, and therefore 𝐴 has an 𝑁

0
-matrix

completion.
Finally, from the note after Proposition 1, the third state-

ment implies the second one.

Now, it arises the question about establishing an analo-
gous result to Theorem 5, when zero entries appear in the
main diagonal. The answer is negative since if we admit a
zero diagonal element and a zero entry in the upper diagonal,
there exist matrices in𝑃𝑤𝑆

𝑛
, 𝑛 is even, such that 𝑎

12
𝑎
23

⋅ ⋅ ⋅ 𝑎
𝑛1

is negative, but that admits an 𝑁
0
-matrix completion. For

example, matrix 𝐴 = (𝑎
𝑖𝑗
) defined

𝐴 =

[
[
[

[

0 0 𝑥
13

𝑥
14

𝑥
21

−1 1 𝑥
24

𝑥
31

𝑥
32

−1 1

−1 𝑥
42

𝑥
43

−1

]
]
]

]

(6)

is diagonally similar to an element of 𝑃𝑤𝑆
4
by using 𝐷 =

diag(−1, 1, 1, 1) and it has an 𝑁
0
-matrix completion, 𝐴

𝑐
,

although 𝑎
12
𝑎
23
𝑎
34
𝑎
41
is negative,

𝐴
𝑐
=

[
[
[

[

0 0 0 0

0 −1 1 −1

0 1 −1 1

−1 −1 1 −1

]
]
]

]

. (7)

The following results characterize this type of matrices.
Note that, if there are some null main diagonal entries,
the existence of an 𝑁

0
-matrix completion implies that if

𝑎
𝑖𝑖
𝑎
𝑖+1𝑖+1

̸= 0, then 𝑎
𝑖𝑖+1

̸= 0. So, we add this condition as a
hypothesis. In addition, recall thatwe are going to assume that
𝑎
𝑖𝑖
= −1 or zero for all 𝑖 ∈ {1, 2, . . . , 𝑛}; the entries in the first

upper diagonal are 1 or zero and the value of the element in
position (𝑛, 1) is 𝑎

12
𝑎
23

⋅ ⋅ ⋅ 𝑎
𝑛1
.

Theorem 6. Let 𝐴 be an 𝑛 × 𝑛, 𝑛 even (resp., odd), 𝑛 ≥

3, partial 𝑁
0
-matrix with some null main diagonal entries,

whose associated graph is a directed cycle. Let one suppose that
if 𝑎
𝑖𝑖
𝑎
𝑖+1𝑖+1

̸= 0 for all 𝑖 = 1, 2, . . . , 𝑛, where the indices are
expressed module 𝑛, then 𝑎

𝑖𝑖+1
̸= 0. If there exists 𝑎

𝑖𝑖+1
= 0,

𝑖 ∈ {1, 2, . . . , 𝑛}, where the indices are expressed module 𝑛, then
there exists an𝑁

0
-matrix completion.

Proof. Let 𝑁
𝑝

= {𝑖
1
, 𝑖
2
, . . . , 𝑖

𝑝
} be, with 𝑖

𝑘
< 𝑖
𝑘
 for all 1 ≤

𝑘 < 𝑘


≤ 𝑝, the corresponding indices to the negative
diagonal values of matrix 𝐴 and 𝑁

𝑙
= {𝑖
𝑝+1

, . . . , 𝑖
𝑝+𝑙

}, where
𝑝 + 𝑙 = 𝑛 and 𝑖

ℎ
< 𝑖
ℎ
 for all 𝑝 + 1 ≤ ℎ < ℎ


≤ 𝑝 + 𝑙, the

corresponding ones to the zero diagonal entries. Since there
is 𝑖, 𝑖 ∈ {1, 2, 3, . . . , 𝑛 − 1}, such that 𝑎

𝑖𝑖+1
= 0, the diagonal

similarity allows us to assume, without loss of generality, that
𝑎
𝑛1

= 1 if 𝑝 is even and that 𝑎
𝑛1

= −1 if 𝑝 is odd. Let
𝐵 be the matrix 𝑃𝐴𝑃

𝑇 where 𝑃 is the permutation matrix
𝑃 = [𝑒

𝑖
𝑝+1

, 𝑒
𝑖
𝑝+2

, . . . , 𝑒
𝑖
𝑝+𝑙

, 𝑒
𝑖
1

, 𝑒
𝑖
2

, . . . , 𝑒
𝑖
𝑝

], being 𝑒
𝑘
the canonical

vector for all 𝑘 ∈ {1, 2, . . . , 𝑛}. Consider𝐵 partitioned in a 2×2
block matrix, where 𝐵

11
is of size 𝑙 × 𝑙 and 𝐵

22
is 𝑝 × 𝑝.

Note that elements of the first upper diagonal 𝑎
𝑖𝑖+1

, 𝑖 ∈

{1, 2, . . . , 𝑛 − 1}, are moved to blocks 𝐵
𝑘𝑙
, 𝑘, 𝑙 ∈ {1, 2},

depending on the value of 𝑎
𝑖𝑖
and 𝑎

𝑖+1𝑖+1
: if both entries are

zero, after the permutation 𝑃 𝑎
𝑖𝑖+1

will be in 𝐵
11
; if 𝑎
𝑖𝑖

= 0

and 𝑎
𝑖𝑖+1

= 1 the element 𝑎
𝑖𝑖+1

will be in 𝐵
12
; if 𝑎
𝑖𝑖
= −1 and

𝑎
𝑖𝑖+1

= 0 then 𝑎
𝑖𝑖+1

will be in 𝐵
21
and in other cases 𝑎

𝑖𝑖+1
will

be in 𝐵
22
. This is shown in Table 1(a). In Table 1(b) we can see

the position that the element 𝑎
𝑛1

of 𝐴 will occupy after the
permutation.

Then we can be sure that each of the 𝑙 first lines of the
permutated matrix 𝐵 will have as maximum a nonzero value
and the last 𝑝 ones will have exactly one −1 and only another
nonzero value as maximum.

We complete with zeros the unspecified entries of blocks
𝐵
11
, 𝐵
12
, and 𝐵

21
. In order to complete 𝐵

22
we distinguish two

cases.

(a) The element 𝑎
𝑛1

of 𝐴 is at position (𝑛, 𝑙 + 1). If
𝑎
𝑖𝑖

̸= 0 and 𝑎
𝑖+1𝑖+1

̸= 0, then 𝑎
𝑖𝑖+1

̸= 0 and, after the
permutation, it will be in submatrix 𝐵

22
. If 𝑖
𝑗
+1 ̸= 𝑖

𝑗+1

then position (𝑖
𝑗
, 𝑖
𝑗+1

) of the permutated matrix 𝐵

will be unspecified. Now we partially complete 𝐵
22

as follows: 𝑎
1𝑛

= 1/𝑎
𝑛1

and 𝑎
𝑖
𝑗
𝑖
𝑗
+1

= 1 for all 𝑗 ∈

{1, 2, . . . , 𝑝}, and byTheorem 5we get that there exists
an𝑁
0
-completion of 𝐵

22
named 𝐵

22
𝑐

.
(b) The element 𝑎

𝑛1
of 𝐴 is not at position (𝑛, 𝑙 + 1). We

complete 𝐵
22

with 1’s and −1’s in order to obtain a
matrix with all their diagonals formed alternatively by
1’s and−1’s. All the principalminors of this newmatrix
will be zero.

The completion of 𝐵, 𝐵
𝑐
, is an𝑁

0
-matrix since

(a) the principal minors lying rows and columns with
indices in 𝑁

𝑙
are zero, as we can prove by developing

by the nonzero elements (there is as maximum one
nonzero entry by line);

(b) the principal minors lying rows and columns with
indices in 𝑁

𝑝
are less than or equal to zero, since

𝐵
22
𝑐

is an 𝑁
0
-matrix completion either 𝑎

𝑛1
of 𝐴 is at

position (𝑛, 𝑙 + 1) or not;



4 The Scientific World Journal

Table 1

(a)

aii+1 𝑎
𝑖+1𝑖+1

= 0 𝑎
𝑖+1𝑖+1

̸= 0

𝑎
𝑖𝑖
= 0 𝐵

11
𝐵
12

𝑎
𝑖𝑖

̸= 0 𝐵
21

𝐵
22

(b)

an1 𝑎
11

= 0 𝑎
11

̸= 0

𝑎
𝑛𝑛

= 0 (𝑙, 1) (in 𝐵
11
) (𝑙, 𝑙 + 1) (in 𝐵

12
)

𝑎
𝑛𝑛

̸= 0 (𝑛, 1) (in 𝐵
21
) (𝑛, 𝑙 + 1) (in 𝐵

22
)

(c) the principal minors with rows and columns with
indices in 𝑁

𝑙
and 𝑁

𝑝
are zero, because of they have

a row of zeros or, as before, by developing by the only
nonzero element of each row, the minor is reduced to
one of submatrix 𝐵

21
.

So, matrix 𝐴 has an𝑁
0
-matrix completion.

Theorem 7. Let 𝐴 be an 𝑛 × 𝑛, 𝑛 even (resp., odd), 𝑛 ≥

3, partial 𝑁
0
-matrix with some null main diagonal entries,

whose associated graph is a directed cycle. Let one suppose
that if 𝑎

𝑖𝑖
𝑎
𝑖+1𝑖+1

̸= 0 for all 𝑖 = 1, 2, . . . , 𝑛 where the indices
are expressed module 𝑛, then 𝑎

𝑖𝑖+1
̸= 0. If 𝑎

𝑖𝑖+1
̸= 0 for all 𝑖 ∈

{1, 2, . . . , 𝑛}, where the indices are expressed module 𝑛, then the
condition 𝑎

12
𝑎
23

⋅ ⋅ ⋅ 𝑎
𝑛1

> 0 for 𝑛 even (resp., 𝑎
12
𝑎
23

. . . 𝑎
𝑛1

< 0

for 𝑛 odd) is necessary and sufficient for the existence of an𝑁
0
-

matrix completion.

Proof. Let 𝑛 be even. If 𝑎
12
𝑎
23

. . . 𝑎
𝑛1

> 0 some changes in
the proof of the above theorem gives the desired completion.
Specifically, choose the zero diagonal entry 𝑎

𝑘𝑘
with less

index. If 1 ≤ 𝑘 ≤ 𝑛 − 1 since 𝑎
12
𝑎
23

⋅ ⋅ ⋅ 𝑎
𝑛1

> 0 matrix 𝐴 can
be transformed by diagonal similarity in a matrix such that if
𝑝 is even, 𝑎

𝑛1
= 1 and 𝑎

𝑘𝑘+1
are equal to a positive value and

if 𝑝 is odd, 𝑎
𝑛1

= −1 and 𝑎
𝑘𝑘+1

are equal to a negative value.
By permutation similarity we get a block-matrix analogous to
the previous result and by a similar reasoningwe get that there
exists an𝑁

0
-matrix completion of𝐴. If 𝑘 = 𝑛we transform𝐴

by the permutation 𝑃 = [𝑒
𝑛
, 𝑒
1
, . . . , 𝑒

𝑛−2
, 𝑒
𝑛−1

], where 𝑒
𝑘
is the

canonical vector for all 𝑘 ∈ {1, 2, . . . , 𝑛} and we proceed in a
similar way to the previous result.

Now, we are going to prove the necessity of the condition
by induction on 𝑛; that is, if there exists an 𝑁

0
-completion

of 𝐴, 𝐴
𝑐

= (𝑐
𝑖𝑗
), then 𝑐

12
𝑐
23

⋅ ⋅ ⋅ 𝑐
𝑛1

> 0 if 𝑛 is even and
𝑐
12
𝑐
23

⋅ ⋅ ⋅ 𝑐
𝑛1

< 0 if 𝑛 is odd. We denote 𝛼 = 𝑐
12
𝑐
23

⋅ ⋅ ⋅ 𝑐
𝑛1
.

For 𝑛 = 3, if we suppose that 𝛼 > 0 by analyzing the seven
different cases that arise depending on the number of zeros,
one, two, or three in themain diagonal, we get that det𝐴

𝑐
> 0,

that is a contradiction. Then 𝛼 < 0.
Let 𝑛 > 3 be. Suppose 𝑛 is even (if 𝑛 is odd the process is

analogous).We are showing that in thementioned conditions
if there exists an 𝑁

0
-completion of 𝐴, then 𝛼 > 0. Let 𝐴

𝑐
be

an𝑁
0
-completion of 𝐴.

Let us suppose by hypothesis of induction (HI) that the
statement is true for all 3 ≤ 𝑘 ≤ 𝑛 − 1. Since 𝐴

𝑐
is an 𝑁

0
-

matrix, we obtain, from the 2×2 principal minors, that all the

entries of the first under diagonal are greater than or equal to
zero; that is, 𝑐

𝑖−1𝑖
≥ 0 for all 𝑖 ∈ {1, 2, . . . , 𝑛}.

In addition, if we consider det𝐴[{𝑖, 𝑖 + 1, . . . , 𝑖 + 𝑝}] with
𝑖 ∈ {1, 2, . . . , 𝑛 − 𝑝}, 𝑝 ∈ {2, . . . , 𝑛 − 2}, we get that 𝑐

𝑖𝑗
> 0 if

𝑖 − 𝑗 is odd and 𝑐
𝑖𝑗
< 0 if 𝑖 − 𝑗 is even for 𝑖 ∈ {1, 2, . . . , 𝑛 − 1},

𝑗 ∈ {1, 2, . . . , 𝑛 − 2}, 𝑖 > 𝑗.
From the nonpositivity of det𝐴[{𝑖, 𝑗}] for all 𝑖 ∈

{1, 2, . . . , 𝑛 − 2}, 𝑗 ∈ {3, . . . , 𝑛}, we obtain that the upper
diagonals follow the same rule of signs of the under diagonals,
alternatively positive and negative, but with the option of
zero; that is, 𝑐

𝑖𝑗
≥ 0 if 𝑗 − 𝑖 is odd and 𝑐

𝑖𝑗
≤ 0 if 𝑗 − 𝑖 is even for

𝑖 ∈ {1, 2, . . . , 𝑛 − 2}, 𝑗 ∈ {3, . . . , 𝑛}, 𝑖 < 𝑗.
Now we study the case in which there exists 𝑖 ∈ {3, . . . , 𝑛}

such that 𝑎
1𝑖

̸= 0.

(a) If 𝑖 ∈ {3, . . . , 𝑛 − 1} we consider det𝐴[{1, 𝑖, 𝑖 +

1, . . . , 𝑛}]. The (𝑛 − 𝑖 + 2) × (𝑛 − 𝑖 + 2) submatrix of
𝐴
𝑐
, 𝐴


= 𝐴
𝑐
[{1, 𝑖, 𝑖 + 1, . . . , 𝑛}] can be considered

as a completion of a partial 𝑁
0
matrix of size strictly

smaller than 𝑛with all the first upper diagonal formed
by 1’s. If 𝐴 has at least a zero diagonal entry, taking
into account that 𝑐

1𝑖
≤ 0 if 𝑖 is odd and 𝑐

1𝑖
≥ 0 if 𝑖 is

even, the hypothesis of induction allows us to assure
that the entry in position (𝑛 − 𝑖 + 2, 1) of 𝐴; that
is, 𝛼 is positive. In the other case, if all the diagonal
entries are nonzero we get the same conclusion by
Theorem 5. This ends the proof in this case.

(b) If 𝑖 = 𝑛 and 𝑐
1𝑖

= 0 with 𝑖 ∈ {1, . . . , 𝑛 − 1}, we
analyze two cases: (b.1) 𝑐

11
= 0 or 𝑐

𝑛𝑛
= 0 and (b.2)

𝑐
11

̸= 0 and 𝑐
𝑛𝑛

̸= 0. In the first one, we get 𝛼 > 0 from
det𝐴
𝑐
[{1, 3, 𝑛}]. If 𝑐

11
̸= 0, 𝑐
𝑛𝑛

̸= 0 and 𝑐
22

= 0 and
𝑐
𝑖𝑖

̸= 0 for all 𝑖 ∈ {3, . . . , 𝑛 − 1} we get 𝛼 > 0 from
det𝐴
𝑐
[{1, 𝑛 − 1, 𝑛}] ≤ 0. If 𝑐

11
̸= 0, 𝑐
𝑛𝑛

̸= 0 and there
exists 𝑖 ∈ {3, . . . , 𝑛−1} such that 𝑐

𝑖𝑖
= 0we get also the

same result from det𝐴
𝑐
[{1, 𝑖, 𝑛}] ≤ 0.

In this case 𝑐
1𝑖
= 0 for all 𝑖 ∈ {3, . . . , 𝑛} if some entry 𝑐

𝑖𝑗
of the

upper triangular part of 𝐴
𝑐
is nonzero, we also obtain that

𝛼 > 0 by using det𝐴
𝑐
[{1, 2, . . . , 𝑖−1, 𝑖, 𝑗, 𝑗+1, . . . , 𝑛}] ≤ 0 and

HI.
Therefore, it remains to analyze the case in which all the

upper triangular part except the first upper diagonal is zero.
As we will see now, most of the cases can not be given.

Let 𝑐
𝑖𝑖
be the nonzero diagonal entry with less index. If 𝑖 ≥

5 from det𝐴
𝑐
[{1, 2, 3, 𝑖}] ≤ 0 or if 𝑖 ∈ {1, 2, 3, 4} and 𝑛 ≥ 𝑖 + 4

from det𝐴
𝑐
[{1, 𝑛 − 2, 𝑛 − 1, 𝑛}] ≤ 0 we get a contradiction.

Now we study the remaining cases depending on the values
of 𝑛 and 𝑖.

If 𝑛 = 4 from det𝐴
𝑐
≤ 0 we get 𝛼 > 0 (if 𝑖 = 4 to show it

we also use det𝐴
𝑐
[{1, 2, 4}] ≤ 0).

If 𝑛 = 5 and 𝑐
𝑖+1𝑖+1

= 0 from det𝐴
𝑐
≤ 0 we obtain 𝛼 < 0

(if 𝑖 = 3 to show it we also use det𝐴
𝑐
[{1, 2, 4, 5}] ≤ 0 and

det𝐴
𝑐
[{1, 2, 4}] ≤ 0 if 𝑖 = 4). If 𝑛 = 5, 𝑐

𝑖+1𝑖+1
̸= 0 and 𝑖 ∈ {2, 3}

from det𝐴
𝑐
≤ 0 we get 𝛼 < 0 (if 𝑖 = 2 to show it we also

use det𝐴
𝑐
[{2, 4, 5}] ≤ 0 and det𝐴

𝑐
[{1, 2, 4}] ≤ 0 if 𝑖 = 3); if

𝑖 = 4 det𝐴
𝑐
[{1, 2, 4}] ≤ 0 and det𝐴

𝑐
[{1, 2, 3, 5}] ≤ 0 leads a

contradiction.
If 𝑛 = 6 and 𝑖 = 3 from det𝐴

𝑐
≤ 0 we get 𝛼 > 0 (if

𝑐
𝑖+1𝑖+1

= 0 to show it we also use det𝐴
𝑐
[{1, 2, 5, 6}] ≤ 0 and
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Table 2: ∗Under the assumption that 𝑎
𝑖𝑖
𝑎
𝑖+1𝑖+1

̸= 0 implies 𝑎
𝑖𝑖+1

̸= 0.

∀𝑖 𝑎
𝑖𝑖+1

̸= 0 ∃𝑖 𝑎
𝑖𝑖+1

= 0
∗

∀𝑖 𝑎
𝑖𝑖

̸= 0

𝑎
12
𝑎
23
. . . 𝑎
𝑛1

> 0 iff
∃𝑁
0
-matrix completion
(Theorem 5)

𝑁
0
-matrix completion has

no sense
(Proposition 1)

∃𝑖 𝑎
𝑖𝑖
= 0

𝑎
12
𝑎
23
. . . 𝑎
𝑛1

> 0 iff
∃𝑁
0
-matrix completion
(Theorem 7)

∃𝑁
0
-matrix completion
(Theorem 6)

𝐴 is an 𝑛×𝑛, n even, partial𝑁0-matrix, whose associated graph is a directed
cycle.

det𝐴
𝑐
[{1, 2, 4, 5, 6}] ≤ 0 and if 𝑐

𝑖+1𝑖+1
̸= 0, the nonpositivity of

det𝐴
𝑐
[{1, 2, 4}]. If 𝑛 = 6, 𝑖 = 4 and 𝑐

𝑖+1𝑖+1
= 0 from det𝐴

𝑐
≤ 0

and det𝐴
𝑐
[{1, 2, 4}] ≤ 0we get 𝛼 > 0. In this case if 𝑐

𝑖+1𝑖+1
̸= 0

the nonpositivity of det𝐴
𝑐
[{1, 2, 4}] and det𝐴

𝑐
[{1, 2, 3, 5}]

leads to a contradiction.
Finally, if 𝑛 = 7 and 𝑖 = 4 we get a contradiction by

using det𝐴
𝑐
[{1, 2, 4}] ≤ 0 and also det𝐴

𝑐
[{1, 2, 3, 5}] ≤

0 if 𝑐
𝑖+1𝑖+1

̸= 0, or if 𝑐
𝑖+1𝑖+1

= 0 the nonpositivity of
det𝐴
𝑐
[{1, 2, 3, 5, 6}] and det𝐴

𝑐
[{1, 2, 3, 5, 6, 7}].

We sum up the results of Theorems 6 and 7 in Table 2.
One can consider a similar one for 𝑛 odd.
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