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Abstract

The Maude-NRL Protocol Analyzer (Maude-NPA) is a tool and inference sys-
tem for reasoning about the security of cryptographic protocols in which the
cryptosystems satisfy different equational properties. It both extends and pro-
vides a formal framework for the original NRL Protocol Analyzer, which sup-
ported equational reasoning in a more limited way. Maude-NPA supports a
wide variety of algebraic properties that includes many crypto-systems of inter-
est such as, for example, one-time pads and Diffie-Hellman. Maude-NPA, like
the original NPA, looks for attacks by searching backwards from an insecure
attack state, and assumes an unbounded number of sessions. Because of the
unbounded number of sessions and the support for different equational theo-
ries, it is necessary to develop ways of reducing the search space and avoiding
infinite search paths. In order for the techniques to prove useful, they need not
only to speed up the search, but should not violate completeness, so that failure
to find attacks still guarantees security. In this paper we describe some state
space reduction techniques that we have implemented in Maude-NPA. We also
provide completeness proofs, and experimental evaluations of their effect on the
performance of Maude-NPA.

1. Introduction

The Maude-NPA [11, 14] is a tool and inference system for reasoning about
the security of cryptographic protocols in which the cryptosystems satisfy differ-
ent equational properties. The tool handles searches in the unbounded session
model, and thus can be used to provide proofs of security as well as to search
for attacks. It is the next generation of the NRL Protocol Analyzer [24], a tool
that supported limited equational reasoning and was successfully applied to the
analysis of many different protocols. In Maude-NPA we improve on the original
NPA in three ways. First of all, unlike NPA, which required considerable inter-
action with the user, Maude-NPA is completely automated (see [14]). Secondly,
its inference system has a formal basis in terms of rewriting logic and narrowing,
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which allows us to provide proofs of soundness and completeness (see [11]). Fi-
nally, the tool’s inference system supports reasoning modulo the algebraic prop-
erties of cryptographic and other functions (see [12, 10, 29]). Such algebraic
properties are expressed as equational theories E = E′ ] Ax whose equations
E′ are confluent, coherent, and terminating rewrite rules modulo equational
axioms Ax such as commutativity (C), associativity-commutativity (AC), or
associativity-commutativity plus identity (ACU) of some function symbols. The
Maude-NPA has then both dedicated and generic methods for solving unifica-
tion problems in such theories E = E′]Ax [18, 19, 20], which under appropriate
checkable conditions [17] yield finitary unification algorithms.

Since Maude-NPA allows reasoning in the unbounded session model, and
because it allows reasoning about different equational theories (which typically
generate many more solutions to unification problems than syntactic unifica-
tion, leading to bigger state spaces), it is necessary to find ways of pruning the
search space in order to prevent infinite or overwhelmingly large search spaces.
One technique for preventing infinite searches is the generation of formal gram-
mars describing terms unreachable by the intruder (see [24, 11] and Section 5.1).
However, grammars do not prune out all infinite searches, since unbounded ses-
sion security is undecidable, and there is a need for other techniques. Moreover,
even when a search space is finite it may still be necessary to reduce it to a
manageable size, and state space reduction techniques for doing that will be
necessary. In this paper we describe some of the major state space reduction
techniques that we have implemented in Maude-NPA, and provide complete-
ness proofs and experimental evaluations demonstrating an average state-space
size reduction of 95% (i.e., the average size of the reduced state space is 5% of
that of the original one) in the examples we have evaluated. Furthermore, we
show our combined techniques effective in obtaining a finite state space for all
protocols in our experiments, whereas the state space will be infinite without
our optimizations. In this sense, the 95% state space reduction figure, obtained
by composing the sizes of the finite state spaces without and with the optimiza-
tions up to a depth bound of 5 is quite conservative, since the number of states
in the case without optimizations grows so large that is becomes unfeasible to
count it even for moderate depth sizes, while the optimized state space can still
be counted. Also, the reduction from an infinite to a finite state space is actu-
ally 100%. Of course, due to the undecidability of the unbounded session case,
termination cannot be guaranteed and we have encountered cases where it does
fail to terminate (see Table 2).

The optimizations we describe in this paper were designed specifically for
Maude-NPA, and work within the context of Maude-NPA search techniques.
However, although different tools use different models and search algorithms,
they all have a commonality in their syntax and semantics that means that,
with some adaptations, optimization techniques developed for one tool or type
of tools can be applied to different tools as well. Indeed, we have already seen
such common techniques arise, for example the technique of giving priority to
input or output messages respectively when backwards or forwards search is
used (used by us and by Shmatikov and Stern in [30]), the use of lazy evalua-
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tion techniques (used in constraint-evaluation based approaches, and by us in
a somewhat different form), and the identification of premature use of nonces
(used by us and Scyther[8]). One of our motivations for publishing our work
on optimizations is to encourage the further interaction and adaptation of the
techniques for use in different tools.

The rest of the paper is organized as follows. After some preliminaries
in Section 2, we describe in Section 3 the model of computation used by the
Maude-NPA. In Section 4, we give an overview of the various state space re-
duction techniques that have been introduced to control state explosion. In
Sections 5, 6, and 7 we describe the state space reduction techniques and give
proofs of their completeness as well as showing their relations to other opti-
mization techniques in the literature. In Section 5, we first briefly describe how
automatically generated grammars provide the main reduction that cuts down
the search space. In this section, we also describe the early detection of incon-
sistent states (that will never reach an initial state). In Section 6, we obtain
a second important state-space reduction by detecting redundant states using
several optimizations: (i) reducing the number of logical variables present in a
state, (ii) giving priority to input messages in strands, and (iii) a relation of tran-
sition subsumption (to discard transitions and states already being processed
in another part of the search space). In Section 7, we obtain a third impor-
tant state-space reduction by defining the super-lazy intruder, which delays the
generation of substitution instances as much as possible. In Section 8 we de-
scribe our experimental evaluation of these state-space reduction techniques. In
Section 9, we provide a detailed comparison of our state-space reduction tech-
niques with related work. In Section 10 we describe future work and conclude
the paper.

This is an extended and improved version of [13], including proofs of all the
results, a refinement of the interaction between the transition subsumption and
the super-lazy intruder (Section 7.4), more examples and explanations, as well
as more benchmarked protocols.

2. Background on Term Rewriting

We follow the classical notation and terminology from [31] for term rewriting
and from [25, 26] for rewriting logic and order-sorted notions. We assume an
order-sorted signature Σ with a finite poset of sorts (S,≤) and a finite number
of function symbols. We assume an S-sorted family X = {Xs}s∈S of mutually
disjoint variable sets with each Xs countably infinite. TΣ(X )s denotes the set
of terms of sort s, and TΣ,s the set of ground terms of sort s. We write TΣ(X )
and TΣ for the corresponding term algebras. We write Var(t) for the set of
variables present in a term t. The set of positions of a term t is written Pos(t),
and the set of non-variable positions PosΣ(t). The subterm of t at position p
is t|p, and t[u]p is the result of replacing t|p by u in t. A substitution σ is a
sort-preserving mapping from a finite subset of X , written Dom(σ), to TΣ(X ).
The set of variables introduced by σ is Ran(σ). The identity substitution is
id. Substitutions are homomorphically extended to TΣ(X ). The restriction
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of σ to a set of variables V is σ|V . The composition of two substitutions is
(σ ; θ)(X) = θ(σ(X)) for X ∈ X .

A Σ-equation is an unoriented pair t = t′, where t ∈ TΣ(X )s, t
′ ∈ TΣ(X )s′ ,

and s and s′ are sorts in the same connected component of the poset (S,≤).
Given a set E of Σ-equations, order-sorted equational logic induces a congruence
relation =E on terms t, t′ ∈ TΣ(X ) (see [26]). Throughout this paper we assume
that TΣ,s 6= ∅ for every sort s. We denote the E-equivalence class of a term t ∈
TΣ(X ) as [t]E , the quotient algebra modulo E whose elements are E-equivalence
classes of all terms by TΣ/E(X ) and, the set of equivalence classes of Σ-terms of

sort s by TΣ/E(X )s.

For a set E of Σ-equations, an E-unifier for a Σ-equation t = t′ is a substi-
tution σ s.t. σ(t) =E σ(t′). A complete set of E-unifiers of an equation t = t′

is written CSUE(t = t′)1. We say that CSUE(t = t′) is finitary if it contains
a finite number of E-unifiers. CSU(t = t′) denotes a complete set of syntac-
tic order-sorted unifiers between terms t and t′, i.e., without any equational
property.

A rewrite rule is an oriented pair l → r, where l 6∈ X and l, r ∈ TΣ(X )s

for some sort s ∈ S. An (unconditional) order-sorted rewrite theory is a triple
R = (Σ, E,R) with Σ an order-sorted signature, E a set of Σ-equations, and
R a set of rewrite rules. A topmost rewrite theory (Σ, E,R) is a rewrite theory
s.t. for each l → r ∈ R, l, r ∈ TΣ(X )State for a top sort State, r 6∈ X , and no
operator in Σ has State as an argument sort.

The rewriting relation →R on TΣ(X ) is t
p→R t′ (or →R) if p ∈ PosΣ(t),

l → r ∈ R, t|p = σ(l), and t′ = t[σ(r)]p for some σ. The relation →R/E

on TΣ(X ) is =E ;→R; =E , i.e., t →R/E s iff ∃u1, u2 ∈ TΣ(X ) s.t. t =E u1,
u1 →R u2, and u2 =E s. Note that →R/E on TΣ(X ) induces a relation →R/E

on TΣ/E(X ) by [t]E →R/E [t′]E iff t→R/E t′.

When R = (Σ, E,R) is a topmost rewrite theory, we can safely restrict
ourselves to the general rewriting relation →R,E on TΣ(X ), where the rewriting

relation →R,E on TΣ(X ) is t
p→R,E t′ (or →R,E) if p ∈ PosΣ(t), l → r ∈ R,

t|p =E σ(l), and t′ = t[σ(r)]p for some σ. Note that →R,E on TΣ(X ) induces
a relation →R,E on TΣ/E(X ) by [t]E →R,E [t′]E iff ∃w ∈ TΣ(X ) s.t. t →R,E w

and w =E t′. We say that a term t is R,E-irreducible if there is no term t′ such
that t→R,E t′; this is extended to substitutions in the obvious way.

The narrowing relation  R on TΣ(X ) is t
p
 σ,R t′ (or  σ,R,  R) if p ∈

PosΣ(t), l → r ∈ R, σ ∈ CSU(t|p = l), and t′ = σ(t[r]p). Assuming that E has
a finitary and complete unification algorithm, the narrowing relation modulo E,

 R,E , on TΣ(X ) holds between terms t and t′, denoted t
p
 σ,R,E t′ (or  σ,R,E ,

 R,E) if p ∈ PosΣ(t), l→ r ∈ R, σ ∈ CSUE(t|p = l), and t′ = σ(t[r]p).
The use of topmost rewrite theories is entirely natural for communication

protocols, since all state transitions can be viewed as changes of the global

1We abuse notation here and write CSUE(t = t′) in functional form although it is possible
for a Σ-equation to have more than one complete set of E-unifiers.
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distributed state. It also provides several advantages (see [32]): (i) as pointed
out above the relation→R,E achieves the same effect as the relation→R/E , and
(ii) we obtain a completeness result between narrowing ( R,E) and rewriting
(→R/E).

Theorem 1 (Topmost Completeness). [32] Let R = (Σ, E,R) be a topmost
rewrite theory, t, t′ ∈ TΣ(X ), and let σ be a substitution such that σ(t)→∗R,E t′.
Then, there are substitutions θ, τ and a term t′′ such that t;∗θ,R,E t′′, σ(t) =E

τ(θ(t)), and t′ =E τ(t′′).

In this paper we consider only equational theories E = E′ ] Ax such that
the oriented equations E′ are confluent, coherent, and terminating modulo
axioms Ax such as commutativity (C), associativity-commutativity (AC), or
associativity-commutativity plus identity (ACU) of some function symbols. We
also require axioms Ax to be regular, i.e., for each equation l = r ∈ Ax,
Var(l) = Var(r). Note that axioms such as commutativity (C), associativity-
commutativity (AC), or associativity-commutativity plus identity (ACU) are
regular. The Maude-NPA has then both dedicated and generic algorithms for
solving unification problems in such theories E′ ]Ax under appropriate condi-
tions [18, 19, 20].

3. Maude-NPA’s Execution Model

Given a protocol P, we first explain how its states are modeled algebraically.
The key idea is to model protocol states as elements of an initial algebra TΣP/EP ,
where ΣP is the signature defining the sorts and function symbols for the
cryptographic functions and for all the state constructor symbols, and EP is
a set of equations specifying the algebraic properties of the cryptographic func-
tions and the state constructors. Therefore, a state is an EP -equivalence class
[t] ∈ TΣP/EP with t a ground ΣP -term. However, since the number of states
TΣP/EP is in general infinite, rather than exploring concrete protocol states
[t] ∈ TΣP/EP we explore symbolic state patterns [t(x1, . . . , xn)] ∈ TΣP/EP (X ) on
the free (ΣP , EP)-algebra over a set of variables X . In this way, a state pattern
[t(x1, . . . , xn)] represents not a single concrete state but a possibly infinite set
of such states, namely all the instances of the pattern [t(x1, . . . , xn)] where the
variables x1, . . . , xn have been instantiated by concrete ground terms.

In the Maude-NPA [11, 14], a state in the protocol execution is a term t of
sort State, t ∈ TΣP/EP (X)State. A state is then a multiset built by an associative
and commutative union operator & with identity operator ∅. Each element in
the multiset is either a strand or the intruder’s knowledge at that state, both
explained below.2

2We note that, as we shall see, most elements of a state (e.g. terms in the intruder
knowledge, intruder strands, and most strands belonging to honest principals), cannot have
multiplicity greater than one. However, this is not because two identical elements are identified
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The intruder’s knowledge is represented as a multiset of facts unioned to-
gether with an associative and commutative union operator _,_ with identity
operator ∅. There are two kinds of intruder facts: positive knowledge facts
(the intruder knows message expression m, i.e., m∈I), and negative knowledge
facts (the intruder does not yet know m but will know it in a future state, i.e.,
m/∈I). States with more than one ocurrence of the same fact m∈I (or m/∈I)
are discarded due to the assumption that the intruder learns a term only once
[11].

A strand [21] represents the sequence of messages sent and received by a
principal executing the protocol or by the intruder. A principal sending (resp.
receiving) a message msg is represented by msg+ (resp. msg−). We write m±

to denote m+ or m−, indistinctively. We often write +(m) and −(m) instead
of m+ and m−, respectively. A strand is then a list [msg±1 , msg

±
2 , msg

±
3 ,

. . . , msg±k−1, msg
±
k ] describing the sequence of send and receive actions of a

principal role in a protocol, where each msgi is a term of a special sort Msg
described below, i.e., msgi ∈ TΣP/EP (X)Msg. In Maude-NPA, strands evolve
over time as the send and receive actions take place, and thus we use the
symbol | to divide past and future in a strand, i.e., [nil,msg±1 , . . . ,msg

±
j−1 |

msg±j ,msg
±
j+1, . . . ,msg

±
k , nil] where msg±1 , . . . ,msg

±
j−1 are the past messages,

and msg±j ,msg
±
j+1, . . . ,msg

±
k are the future messages (msg±j is the immediate

future message). The nils are present so that the bar may be placed at the
beginning or end of the strand if necessary. A strand [msg±1 , . . . ,msg

±
k ] is a

shorthand for [nil | msg±1 , . . . ,msg
±
k , nil]. We often remove the nils for clarity,

except when there is nothing else between the vertical bar and the beginning or
end of a strand. We write SP for the set of strands in the specification of the
protocol P, including the strands that describe the intruder’s behavior.

The definition of the sorts used in a protocol definition is to a large part up
to the user, but there are special sorts that must obey certain restrictions. We
list these below.

1. Maude-NPA defines all protocol states as terms of sort State. It is an
internal sort and the protocol specifier cannot add sorts as subsorts or
supersorts of State and cannot create new operators of sort State.

2. Maude-NPA uses a special maximal sort Msg of messages that allows
the protocol specifier to describe other messages sorts as subsorts of the
maximal sort Msg.

3. The sort Public is a subsort of Msg to define data that is publicly available
to all participants, e.g. principal names.

4. The specifier can make use of another special sort Fresh in the protocol-
specific signature Σ. Terms of sort Fresh are used as arguments of terms
that are intended to represent unguessable values, such as keys or nonces.

and only one remains (as it is done in the identity property X ∗X = X for a symbol ∗) but
because those states that have two identical elements (again terms in the intruder knowledge,
intruder strands, and most strands belonging to honest principals) are rejected as invalid
states.
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The meaning of a variable of sort Fresh is that it will never be instantiated
by an E-unifier generated during the protocol analysis. This ensures that
if two nonces are represented using different variables of sort Fresh, they
will never be identified and no approximation for nonces is necessary. We
make explicit the Fresh variables r1, . . . , rk(k ≥ 0) generated by a strand
by writing :: r1, . . . , rk :: [msg±1 , . . . ,msg

±
n ], where each ri appears first in

an output message msg+
ji

and can later be used in any input and output

message of msg±ji+1, . . . ,msg
±
n . Fresh variables generated by a strand are

unique to that strand. We will thus often use them to identify a particular
strand; we say that a strand is indexed by its fresh variables.
Likewise, the specification of function symbols are at the discretion of the
user. The only restrictions are that terms intended to be unpredictable
should have a term of sort Fresh as an argument, e.g. n(A, r) for a nonce
generated by A, where r is a variable of sort Fresh.

Let us introduce the well-known Diffie-Hellman protocol as a motivating exam-
ple.

Example 1. The Diffie-Hellman protocol uses exponentiation to share a secret
between two parties, Alice and Bob. There is a public constant, denoted by
g, which will be the base of the exponentiations. We represent the product of
exponents by using the symbol ∗. Nonces are represented by NX , denoting a
nonce created by principal X. Raising message M to the power of exponent X
is denoted by (M)X . Symmetric encryption of message M using the key K is
denoted by {M}K . The protocol description is as follows.

1. A ↪→ B : {A ; B ; gNA}
Alice sends her name, Bob’s name, and an exponentiation of a new nonce
NA created by her to Bob.

2. B ↪→ A : {B ; A ; gNB}
Bob sends his name, Alice’s name, and an exponentiation of a new nonce
NB created by him to Alice.

3. A ↪→ B : {secret}gNA
NB

Bob receives gNA and he raises it to NB to obtain the key gNA
NB . He

sends a secret to Alice encrypted using the key. Likewise, when Alice

receives gNB , she raises it to NA, to obtain the key gNB
NA . We assume

that exponentiation satisfies the equation gNA
NB = gNA∗NB and that the

product operation _*_ is associative and commutative, so that

gNB
NA

= gNA
NB

= gNB∗NA

and therefore both Alice and Bob share the same key.

In the Maude-NPA’s formalization of the protocol, we explicitly specify the
signature Σ describing the sorts and operations for messages, nonces, etc. A
nonce NA is denoted by n(A, r), where r is a unique variable of sort Fresh.

7



Concatenation of two messages, e.g., NA and NB, is denoted by the oper-
ator ; , e.g., n(A, r) ; n(B, r′). Encryption of a message M is denoted by
e(A,M), e.g., {NB}KB

is denoted by e(KB , n(B, r′)). Decryption is similarly
denoted by d(A,M). Raising a message M to the power of an exponent E
(i.e., ME) is denoted by exp(M,E), e.g., gNB is denoted by exp(g, n(B, r′)).
Associative-commutative multiplication of nonces is denoted by ∗ . A secret
generated by a principal is denoted by sec(A, r), where r is a unique variable
of sort Fresh. The protocol-specific signature Σ contains the following subsort
relations (Name,Nonce,Secret,Enc,Exp < Msg) and (Gen,Exp < GenvExp), and
the following operators:

a, b, i : → Name g :→ Gen
n : Name× Fresh→ Nonce sec : Name× Fresh→ Secret

; : Msg ×Msg→ Msg e, d : GenvExp×Msg→ Enc
exp : GenvExp× Nonce→ Exp _*_ : Nonce× Nonce→ Nonce

In the following we will use letters A,B for variables of sort Name, letters r, r′, r′′

for variables of sort Fresh, letters M,M1,M2 for variables of sort Msg, letters
E,E′ for variables of sort GenvExp, and letters N,N ′ for variables of sort Nonce.
The encryption/decryption cancellation properties are described using the equa-
tions

e(E, d(E,M)) = M and d(E, e(E,M)) = M

in EP . The key algebraic property of exponentiation, xy
z

= xy∗z, is described
using the equation

exp(exp(G,N), N ′) = exp(G,N ∗N ′)

in EP . Note that variable G is of sort Gen instead of the more general sort
GenvExp in order to provide a finitary narrowing-based unification procedure
modulo EP ; see [10] for details on this concrete equational theory. This is not a
restriction in practice, since we assume that all exponentiations are recursively
constructed on top of the base g. We also include the fact that ∗ is associative-
commutative. Although multiplication modulo a prime number has a unit and
inverses, we have only included the algebraic properties that are necessary for
Diffie-Hellman to work. The two strands P associated to the protocol roles, Alice
and Bob, shown above are:

:: r, r′ :: [ (A;B; exp(g, n(A, r)))+, (B;A;E)−, (e(exp(E,n(A, r)), sec(A, r′)))+]

:: r′′ :: [ (A;B;E′)−, (B;A; exp(g, n(B, r′′)))+, (e(exp(E′, n(B, r′′)),SR)−]

where strand definitions are renamed to avoid variable clashes, though actual
strands of a state may share variables or have common instances.

The following strands describe the intruder abilities according to the Dolev-
Yao attacker’s capabilities [9].

• [M−1 ,M
−
2 , (M1;M2)+] Concatenation
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• [(M1;M2)−,M+
1 ] Left-deconcatenation

• [(M1;M2)−,M+
2 ] Right-deconcatenation

• [ E−,M−, e(E,M)+ ] Encryption

• [ E−,M−, d(E,M)+ ] Decryption

• [ M−1 ,M
−
2 , (M1 ∗M2)+ ] Multiplication

• [ M−1 ,M
−
2 , exp(M1,M2)+ ] Exponentiation

• [ g+ ] Generator

• [ A+ ] All names are public

• :: r′′′ :: [ n(i, r′′′)+ ] Generation of intruder nonces

Note that the intruder cannot extract information from either an exponentiation
or a product of exponents, but can only compose them. Also, the intruder can-
not extract information directly from an encryption but it can do so indirectly by
using a decryption and the cancellation of encryption and decryption, which is an
algebraic property, i.e., [E−, e(E,M)−,M+] =EP [E−, e(E,M)−, d(E, e(E,M))+].

3.1. Backwards Reachability Analysis

Our protocol analysis methodology is then based on the idea of backwards
reachability analysis, where we begin with one or more state patterns corre-
sponding to attack states, and want to prove or disprove that they are un-
reachable from the set of initial protocol states. In order to perform such a
reachability analysis we must describe how states change as a consequence of
principals performing protocol steps and of intruder actions. This can be done
by describing such state changes by means of a set RP of rewrite rules, so that
the rewrite theory (ΣP , EP , RP) characterizes the behavior of protocol P mod-
ulo the equations EP . In the case where new strands are not introduced into
the state, the corresponding rewrite rules in RP are as follows3, where L,L1, L2

denote lists of input and output messages (+m,−m), IK, IK′ denote sets of
intruder facts (m∈I,m/∈I), and SS,SS′ denote sets of strands:

[L | M−, L′] & SS & (M∈I, IK)→ [L,M− | L′] & SS & (M∈I, IK) (1)

[L | M+, L′] & SS & IK → [L,M+ | L′] & SS & IK (2)

[L | M+, L′] & SS & (M/∈I, IK)→ [L,M+ | L′] & SS & (M∈I, IK) (3)

3To simplify the exposition, we omit the fresh variables at the beginning of each strand in
a rewrite rule.

9



In a forward execution of the protocol strands, Rule (1) describes a message
reception event in which an input message is received from the intruder; the
intruder’s knowledge acts in fact as the only channel through which all commu-
nication takes place. Rule (2) describes a message send in which the intruder’s
knowledge is not increased; it is irrelevant where the message goes. Rule (3) de-
scribes the alternative case of a send event such that the intruder’s knowledge
is positively increased. Note that Rule (3) makes explicit when the intruder
learned a message M , which was recorded in the previous state by the negative
fact M/∈I. A fact M/∈I can be paraphrased as: “the intruder does not yet know
M , but will learn it in the future”. This enables a very important restriction
of the tool, expressed by saying that the intruder learns a term only once [11]:
if the intruder needs to use a term twice, then he must learn it the first time
it is needed; if he learns a term in a state St1 and needs to learn it again in a
previous state St2, found later during the backwards search, then St2 will be
discarded as unreachable4. Note that Rules (1)–(3) are generic: they belong to
RP for any protocol P.

It is also the case that when we are performing a backwards search, only the
strands that we are searching for are listed explicitly: extra strands necessary to
reach an initial state are dynamically added to the state by explicit introduction
through protocol-specific rewrite rules (one for each output message u+ in an
honest or intruder strand in the set SP of strands associated to the protocol P)
as follows:

for each [ l1, u
+, l2 ] ∈ SP : [ l1 | u+, l2 ] &SS &(u/∈I, IK)→ SS&(u∈I, IK) (4)

where u denotes a message, l1, l2 denote lists of input and output messages
(+m,−m), IK denotes a set of intruder facts (m∈I,m/∈I), and SS denotes a
set of strands. For example, intruder concatenation of two learned messages,
as well as the learning of such a concatenation by the intruder, is described as
follows:

[M−1 ,M
−
2 | (M1;M2)

+] & SS & ((M1;M2)/∈I, IK)→ SS & ((M1;M2)∈I, IK)

This rewrite rule can be understood, in a backwards search, as “in the current
state the intruder is able to learn a message that matches the pattern M1;M2

if he is able to learn message M1 and message M2 in prior states”. In summary,
for a protocol P, the set RP of rewrite rules obtained from the protocol strands
SP that are used for backwards narrowing reachability analysis modulo the
equational properties EP is RP = {(1), (2), (3)}∪ (4); note that (4) represents a
set of rules. These rewrite rules give the basic execution model of Maude-NPA.
However, as we shall see, it will later be necessary to modify them in order to
optimize the search. In later sections of this paper we will show how these rules
can be modified to optimize the search while still maintaining completeness.

4Note that because Maude-NPA finds all possible paths, it will also find the path in which
the term is learned later in the backwards search, deleting St2 does not lead to incompleteness.
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On the other hand, the assumption that algebraic properties are expressed
as equational theories E = E′]Ax whose equations E′ are oriented as confluent,
coherent, and terminating rewrite rules modulo regular equational axioms Ax
such as commutativity (C), associativity-commutativity (AC), or associativity-
commutativity plus identity (ACU) of some function symbols, implies some
extra conditions on the rewrite theory RP (see [11]). Namely, for any term
m∈I (resp. term m−), we discard any substitution σ that makes σ(m)∈I (resp.
(σ(m))−) being E′,Ax-reducible. This is because many of our optimization
techniques rely on the assumption that terms have a unique normal form with
E′ modulo the axioms Ax, and achieve their results by reasoning about the
normal forms of terms.

Finally, states have, in practice, another component containing the actual
message exchange sequence between principal or intruder strands (i..e, all the
expressions m± exchanged between the honest and intruder strands). We do
not make use of the message exchange sequence until Section 7.4, so we delay
its introduction until there.

The way to analyze backwards reachability is then relatively easy, namely,
to run the protocol “in reverse.” This can be achieved by using the set of rules
R−1
P , where v −→ u is in R−1

P iff u −→ v is in RP . Reachability analysis can be
performed symbolically, not on concrete states but on symbolic state patterns
[t(x1, . . . , xn)]EP by means of narrowing modulo EP (see Section 2). We call
attack patterns those states patterns (i.e., terms with logical variables) used to
start the narrowing-based backwards reachability analysis. Attack patterns can
represent secrecy or authentication violations. An initial state is a state where
all strands have their vertical bar at the beginning and there is no positive fact
of the form u∈I for a message term u in the intruder’s knowledge. If no initial
state is found during the backwards reachability analysis from an attack pattern,
the protocol has been proved secure for that attack pattern with respect to the
assumed intruder capabilities and the algebraic properties. If an initial state
is found, then we conclude that the attack pattern is possible and a concrete
attack can be inferred from the exchange sequence stored in the initial state.
Note that an initial state may be generic, in the sense of having logical variables
for those elements that are not relevant for the attack.

Example 2. (Example 1 continued) The attack pattern that we are looking for
is one in which Bob completes the protocol and the intruder is able to learn the
secret. The attack state pattern to be given as input to Maude-NPA is:

:: r′ ::

[ (A;B;E′)−, (B;A; exp(g, n(B, r′)))+, (e(exp(E′, n(B, r′)), sec(a, r′′)))− |nil ]
& SS & (sec(a, r′′)∈I, IK)

(†)

We expressed the attack state in terms of a secrecy violation, but we could
also have specified it in terms of an authentication violation (see Section 5.3 of
[15]). A more thorough discussion of how attack states are specified in Maude-
NPA is given in [14].
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Using the above attack pattern Maude-NPA is able to find an initial state of
the protocol, showing that the attack state is possible. Note that this initial state
is generalized to two sessions in parallel: one session where Alice (i.e., principal
named a) is talking to another principal B′ —in this session the intruder gets a
nonce n(a, r) originated from a— and another session where Bob (i.e., principal
named b) is trying to talk to Alice. If we instantiate B′ to be b, then one
session is enough, although the tool returns the most general attack. The strands
associated to the initial state found by the backwards search are as follows:

[nil | exp(g, n(a, r)))−, N−1 , exp(g,N1 ∗ n(a, r))+] &
[nil | exp(g,N1 ∗ n(a, r))−, e(exp(g,N1 ∗ n(a, r)), sec(a, r′′))−, sec(a, r′′)+] &
[nil | exp(g, n(b, r′)))−, N−2 , exp(g,N2 ∗ n(b, r′))+] &
[nil | exp(g,N2 ∗ n(b, r′))−, sec(a, r′′)−, e(exp(g,N2 ∗ n(b, r′)), sec(a, r′′))+] &
[nil | (b; a; exp(g, n(b, r′)))−, (b; exp(g, n(b, r′)))+] &
[nil | (b; exp(g, n(b, r′)))−, exp(g, n(b, r′))+] &
[nil | (a;B′; exp(g, n(a, r)))−, (B′; exp(g, n(a, r)))+] &
[nil | (B′; exp(g, n(a, r)))−, exp(g, n(a, r))+] &
:: r′ ::
[nil | (a; b; exp(g,N2))

−, (b; a; exp(g, n(b, r′)))+, e(exp(g,N2 ∗ n(b, r′)), sec(a, r′′))−] &
:: r′′, r ::
[nil | (a;B′; exp(g, n(a, r)))+, (B′; a; exp(g,N1))

−, e(exp(g,N1 ∗ n(a, r)), sec(a, r′′))+]

Note that the last two strands, generating fresh variables r, r′, r′′, are protocol
strands and the others are intruder strands.

The concrete message exchange sequence obtained by the reachability analysis
is the following:

1.(a; b; exp(g,N2))
−

2.(b; a; exp(g, n(b, r′)))+

3.(b; a; exp(g, n(b, r′)))−

4.(a; exp(g, n(b, r′)))+

5.(a; exp(g, n(b, r′)))−

6.(exp(g, n(b, r′)))+

7.(exp(g, n(b, r′)))−

8.N−2
9.exp(g,N2 ∗ n(b, r′))+

10.(a;B′; exp(g, n(a, r)))+

11.(a;B′; exp(g, n(a, r)))−

12.(B′; exp(g, n(a, r)))+

13.(B′; exp(g, n(a, r)))−

14.(exp(g, n(a, r)))+

15.(exp(g, n(a, r)))−

16.N−1
17.exp(g,N1 ∗ n(a, r))+
18.(B′; a; exp(g,N1))

−

19.e(exp(g,N1 ∗ n(a, r)), sec(a, r′′))+
20.e(exp(g,N1 ∗ n(a, r)), sec(a, r′′))−
21.exp(g,N1 ∗ n(a, r))−
22.sec(a, r′′)+

23.exp(g,N2 ∗ n(b, r′))−
24.sec(a, r′′)−

25.e(exp(g,N2 ∗ n(b, r′), sec(a, r′′))+
26.e(exp(g,N2 ∗ n(b, r′)), sec(a, r′′))−

Step 1) describes Bob (i.e., principal named b) receiving an initiating message
from the intruder impersonating Alice. Step 2) describes Bob sending the re-
sponse, and Step 3) describes the intruder receiving it. Steps 4) through 9)
describe the intruder computing the key exp(g,N2 ∗n(b, r′)) she will use to com-
municate with Bob. Step 10) describes Alice initiating the protocol with a prin-
cipal B′. Step 11) describes the intruder receiving it, and steps 12) through 17)
describe the intruder constructing the key exp(g,N1 ∗ n(a, r)) she will use to
communicate with Alice. Steps 18) and 19) describe Alice receiving the response

12



from the intruder impersonating B′ and Alice sending the encrypted message.
Steps 20) through 22) describe the intruder decrypting the message to get the
secret. In steps 23) through 25) the intruder re-encrypts the secret with the key
she shares with Bob and sends it, and in Step 26) Bob receives the message.

Note that there are some intruder strands missing in the initial state because
certain terms are assumed to be trivially generable by the intruder, and so not
searched for; namely, intruder strands generating variable N1, variable N2, term
(a; b; exp(g,N2)), and term (a;B′; exp(g,N1)). Variables N1 and N2 can be
filled in with any nonce, for instance nonces generated by the intruder, such as
N2 = n(i, r′′′) and N1 = n(i, r′′′′) in the following way:

:: r′′′ :: [nil | (n(i, r′′′))+] & :: r′′′′ :: [nil | (n(i, r′′′′))+]

Also, note that nonces N2 and N1 are used by the intruder to generate messages
(a; b; exp(g,N2)) and (a;B′; exp(g,N1)) in the following way:

[nil | (a)+] & [nil | (b)+] & [nil | (B′)+] &
[nil | (g)+] & [nil | (g)−, N−2 , exp(g,N2)

+] & [nil | (g)−, N−1 , exp(g,N1)
+] &

[nil | (a)−, (b)−, (a; b)+] & [nil | (a; b)−, (exp(g,N2))
−, (a; b; exp(g,N2))

+] &

[nil | (B′)−, (a)−, (B′; a)+] & [nil | (B′; a)−, (exp(g,N1))
−, (B′; a; exp(g,N1))

+]

Finally, note that principal a believes she is talking to some B′ instead of b.
This is because substituting b’s name is not necessary for the intruder to produce
the attack: any arbitrary name will do.

4. Overview of State Space Reduction Techniques

In this section we present Maude-NPA’s state space reduction techniques.
They are applied when a state is generated in the backwards narrowing search.
A number of tests are applied. If a state is identified as unproductive, that
is, such that its removal does not affect reachability of the final state one way
or the other, it is also removed. Techniques for removing unproductive states,
which are later refined into unreachable and redundant states, are described
in Sections 5 and 6. A state can also be identified as potentially leading to a
state space explosion, in which case it may be delayed. Such a delay will be
complete, but not necessarily sound; in this case, the delay may have to be
reversed as the narrowing tree is generated in order to maintain soundness. We
have developed one technique that falls into this class: the super-lazy intruder,
which is described in Section 7.

In the remainder of this paper, we make use of a very general completeness
result satisfied by Maude-NPA.

Theorem 2 (Completeness). [11] Given a topmost rewrite theory RP =
(ΣP , EP , RP) representing protocol P, and a non-initial state St (with logi-
cal variables), if there is a substitution σ and an initial state Stini such that
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St

σ1

��

σ2

// St2
∗
θ2

// Stini2

ρ

=EPw�
St1

∗
θ1

// Stini1

Figure 1: St1 is a redundant state

σ(St)→∗
R−1
P ,EP

Stini, then there are substitutions σ′, ρ and an initial state St′ini

such that St;∗
σ′,R−1

P ,EP
St′ini, σ =EP σ

′ ; ρ, and Stini =EP ρ(St′ini).

We have developed means of detecting two kinds of unproductive states:
unreachable and redundant states. These are defined below.

Definition 1 (Unreachable States). Given a topmost rewrite theory RP =
(ΣP , EP , RP) representing protocol P, a non-initial state St (with logical vari-
ables) is unreachable if there is no sequence St ;∗

σ,R−1
P ,EP

Stini leading to an

initial state Stini.

Definition 2 (Redundant States). Given a topmost rewrite theory RP =
(ΣP , EP , RP) representing protocol P and a non-initial state St (with logical
variables), a backwards narrowing step St ;σ1,R

−1
P ,EP

St1 such that St1 is a

non-initial state is called redundant (or just state St1 is identified as redundant)
if for any initial state Stini1 reachable from St1, i.e., St1 ;∗

θ1,R
−1
P ,EP

Stini1,

there are states St2 6=EP St1 and Stini2, a narrowing step St ;σ2,R
−1
P ,EP

St2,

a narrowing sequence St2 ;∗
θ2,R

−1
P ,EP

Stini2, and a substitution ρ such that

σ1 ; θ1 =EP σ2 ; θ2 ; ρ and Stini1 =EP ρ(Stini2).

Redundant states are represented graphically in Figure 1, where plain arrows are
quantified universally, dotted arrows are quantified existentially, and a double-
dotted arrow means equational matching using the direction of the arrow from
a more general term to a less general term.

There are three reasons for wanting to detect and remove unproductive
states. One is to reduce, if possible, the initially infinite search space to a finite
one, as it is sometimes possible to do with the use of grammars, by removing
unreachable states. Another is to reduce the size of a (possibly finite) search
space by eliminating unreachable states early, i.e., before they are eliminated by
exhaustive search. This elimination of unreachable states can have an effect far
beyond eliminating a single node in the search space, since a single unreachable
state may appear multiple times and/or have multiple descendants. Finally, if
there are several steps leading to the same initial state, as for redundant states,
then it is also possible to use various partial order reduction techniques that can
further shrink the number of states that need to be explored.

Our discussion of Maude-NPA’s optimization techniques is organized as fol-
lows. In Section 5 we present Maude-NPA’s techniques for identifying unreach-
able states. In Section 6 we present Maude-NPA’s techniques for identifying
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redundant states. Finally, in Section 7, we present the super-lazy intruder tech-
nique for delaying states that may lead to state explosion and restoring them
to their unmodified version when necessary to maintain soundness.

5. Identifying Unreachable States

In this section we describe the various techniques Maude-NPA uses to iden-
tify unreachable states. These techniques have been adapted from those used
by its ancestor, NPA.

There are two ways in which Maude-NPA identifies unreachable states. One
is the use of inductive techniques to define grammars that characterize terms
that can never be learned by the intruder. This has been described in detail
in previous work, e.g. [11] and [23], so we give only a brief overview here in
Section 5.1. The other is the identification of states that describe impossible
events, e.g. states in which an intruder learns a term containing a nonce that
has not yet been created. This is described in Section 5.2.

5.1. Grammars

The Maude-NPA’s ability to reason effectively about a protocol’s algebraic
properties is a result of its combination of symbolic reachability analysis us-
ing narrowing modulo equational properties (see Section 2), together with its
grammar-based techniques for reducing the size of the search space. The key
idea of grammars is to detect terms t in positive facts t∈I of the intruder’s
knowledge of a state St that will never be transformed into a negative fact
θ(t)/∈I in any initial state St′ backwards reachable from St. This means that
St can never reach an initial state and therefore it can be safely discarded. Here
we briefly explain how grammars work as a state space reduction technique and
refer the reader to [23, 11] for further details.

Automatically generated grammars 〈G1, . . . , Gm〉 represent unreachability
information (or co-invariants), i.e., typically infinite sets of states unreachable
from an initial state. These automatically generated grammars are very impor-
tant in our framework, since in the best case they can reduce the infinite search
space to a finite one, or, at least, can drastically reduce the search space.

Maude-NPA generates grammars completely automatically, inferring initial
grammars from the protocol specification, and using built-in inference rules to
generated new grammars.

As an example of how grammars work, consider again the attack pattern (†)
in Example 2. This pattern contains the intruder knowledge fact sec(a, r”)∈I.
If we run Maude-NPA without any optimizations, it will generate a state con-
taining the facts (M ; sec(a, r”))∈I and sec(a, r”)/∈I, then a state containing
the facts (M ′;M ; sec(a, r”))∈I, (M ; sec(a, r”))/∈I, and sec(a, r”)/∈I, and so
on, producing an infinite sequence of states. We can describe the sequence be-
ginning with the state containing the facts (M ; sec(a, r”))∈I and sec(a, r”)/∈I
using the following grammar:
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grl M inL => (M’ ; M) inL . ;

grl M notInI, => (M’ ; M) inL .)

where the first production describes the concatenation of two terms, the second
of which is in the language L, and the second production gives the concatenation
of two terms, the second of which is not yet known by the intruder.

We now want to see if all members of the language characterized by this
grammar are unlearnable by the intruder. In order to do this, we attempt to
show that, if the intruder learns a member of the language, it must have already
known a member of the language. This is done by giving each production of
the grammar to Maude-NPA as a goal, and using it to determine that in each
preceding state the intruder knows a member of the language. Thus, if we
give the state (M ′;M)∈I to Maude-NPA, keeping in mind that the M is a
member of L, then we can see that one of the preceding states it finds contains
M∈I,M ′∈I. Since M is a member of L, this state requires that the intruder
knows a member of the language.

It is unlikely that initially all preceding states will require that the intruder
knows a member of the language. Whenever that is the case, Maude-NPA
employs heuristics to add or modify a production (by adding constraints of the
form M notLeq Pattern) so that some term known by the intruder is in the
language defined by the new grammar. This process is iterated until it either
reaches a fixed point, or no more heuristics can be applied. These heuristics
and a proof of correctness are given in [11].

For example, the initial grammar described above terminates in the follow-
ing:

grl M inL => e(E, M) inL . ;

grl M inL => d(E, M) inL . ;

grl M inL => (M ; M’) inL . ;

grl M inL => (M’ ; M) inL . ;

grl M notInI,

M notLeq exp(g, n(A, r)),

M notLeq B ; exp(g, n(A, r’)) => (M’ ; M) inL .)

where all the productions and exceptions refer to normal forms of messages
w.r.t. the equational theory EP .

Intuitively, the last production rule in the grammar above says that any term
with normal form (M ′;M) cannot be learned by the intruder if the subterm M is
different from exp(g, n(A, r)) and B; exp(g, n(A, r′)) (i.e., it does not match such
patterns) and the constraint M/∈I appears explicitly in the intruder’s knowledge
of the current state being checked for unreachability (described by constraints of
the form M notInI). Moreover, any term of any of the following normal forms:
e(E,M), d(E,M), (M ′;M), or (M ;M ′) cannot be learned by the intruder if
subterm M a member of the language described by the above grammar.

The interested reader can determine that the term we were originally inter-
ested in, i.e., the term (M ; sec(a, r”)), where sec(a, r′′) is not yet known by the
intruder, is indeed a member of the language.
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In order for Maude-NPA to generate grammars, it needs a set of initial gram-
mars to start from. In NPA, users had to define their own initial grammars.
Maude-NPA, however, generates initial grammars automatically. For any in-
truder strand of the form [(M1)−, . . . , (Mk)−, (f(M1, . . . ,Mk)+], it generates k+
1 initial grammars: an initial grammar with the production f(M1, . . . ,Mk) ∈ L,
and, for each negative termMi, an initial grammar with the productionMi /∈I ⇒
f(M1, . . . ,Mk) ∈ L.

5.2. Early Detection of Inconsistent States

There are several types of states that are always unreachable or inconsistent.
We give examples below.

Example 3. Consider again the attack pattern (†) in Example 2. After a couple
of backwards narrowing steps, the Maude-NPA finds the following state, where
the intruder learns e(exp(E′, n(B, r′)), sec(a, r′′)) by assuming she can learn
exp(E′, n(B, r′)) and sec(a, r′′) and combine them:

[ nil | (exp(E′, n(B, r′)))−, (sec(a, r′′))−, (e(exp(E′, n(B, r′)), sec(a, r′′)))+ ] &

:: r′ ::

[ (A;B;E′)−, (B;A; exp(g, n(B, r′)))+ | (e(exp(E′, n(B, r′)), sec(a, r′′)))− ] &

(sec(a, r′′)∈I, exp(E′, n(B, r′))∈I, e(exp(E′, n(B, r′)), sec(a, r′′))/∈I)

(‡)

From this state, the intruder tries to learn sec(a, r′′) by assuming she can learn
messages (e(exp(E′, n(B, r′)), sec(a, r′′))) and exp(E′, n(B, r′)) and combines
them in a decryption:

[ nil | (exp(E′, n(B, r′)))−, (e(exp(E′, n(B, r′)), sec(a, r′′)))−, (sec(a, r′′))+ ] &

[ nil | (exp(E′, n(B, r′)))−, (sec(a, r′′))−, (e(exp(E′, n(B, r′)), sec(a, r′′)))+ ] &

:: r′ ::

[ (A;B;E′)−, (B;A; exp(g, n(B, r′)))+ | (e(exp(E′, n(B, r′)), sec(a, r′′)))− ] &

(sec(a, r′′)∈I, exp(E′, n(B, r′))∈I,
e(exp(E′, n(B, r′)), sec(a, r′′))∈I, e(exp(E′, n(B, r′)), sec(a, r′′))/∈I)

But then this state is inconsistent, since we have both the challenge
e(exp(E′, n(B, r′)), sec(a, r′′))∈I and the already learned message
e(exp(E′, n(B, r′)), sec(a, r′′))/∈I) at the same time, violating the learn-only-
once condition in Maude-NPA.

If Maude-NPA attempts to search beyond an inconsistent state, it will never
find an initial state. For this reason, the Maude-NPA search strategy always
marks the following types of states as unreachable, and does not search beyond
them any further.
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Proposition 1. A state is marked as unreachable if one of the following situ-
ations holds:

1. A state St containing two contradictory facts t∈I and t/∈I (modulo EP)
for a term t.

2. A state St whose intruder’s knowledge contains the fact t/∈I and a strand
of the form [m±1 , . . . , t

−, . . . ,m±j−1 | m
±
j , . . . ,m

±
k ] (modulo EP).

3. A state St containing a fact t∈I such that t contains a fresh variable r
and the strand in St indexed by r, i.e., s =:: r1, . . . , r, . . . , rk :: [m±1 , . . . ,
m±j−1 | m

±
j , . . . ,m

±
k ], cannot produce r, i.e., r is not a subterm of any

output message in m±1 , . . . ,m
±
j−1.

4. A state St containing a strand of the form s = [m±1 , . . . , t
−, . . . ,m±j−1 |

m±j , . . . ,m
±
k ] for some term t such that t contains a fresh variable r and

the strand in St indexed by r cannot produce r.

Proof. The proofs of unreachability of each case are given below.

1. After backwards narrowing, this will result in a state that violates the
“intruder-learns-only-once” rule.

2. This state will become a case of 1 after backwards narrowing.

3. In order for t to be found by the intruder, some other strand besides the
strand in St indexed by r would need to produce it. But that strand would
also need to be indexed by r, which contradicts the unique origin of fresh
values.

4. We first note that any backward narrowing step will leave strand s still
unable to produce r. Moreover, eventually, a backwards narrowing step
must result in the addition of t∈I. Thus this state becomes a case of 3
after backwards narrowing. 2

6. Redundant States

In this section we describe how Maude-NPA identifies and removes redun-
dant states.

6.1. Limiting Dynamic Introduction of New Strands

As pointed out in Section 3.1, rules of type (4) are intended to be the only
ones that introduce new strands. Rules of type (1), (2), and (3) are not intended
for such an introduction. However, unless they are modified, they will introduce
new strands, but in an unproductive way. That is, new strands can also be
introduced by unification of a state containing a variable SS denoting a set of
strands and one of the rules of (1), (2), and (3), where variables L and L′

denoting lists of input/output messages will be introduced by instantiation of
SS. The same can happen with new intruder facts of the form X∈I, where X
is a variable, by instantiation of a variable IK denoting the rest of the intruder
knowledge.
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Example 4. Consider a state St of the form SS & IK where SS denotes a set of
strands and IK denotes a set of facts in the intruder’s knowledge. Now, consider
Rule (1):

SS’ & [L | M−, L′] & (M∈I, IK’)→ SS’ & [L,M− | L′] & (M∈I, IK’)

The following backwards narrowing step applying such a rule can be performed
from St = SS & IK using the unifier σ = {SS 7→ SS’ & [L,M− | L′], IK 7→
(M∈I, IK’)}

SS & IK
σ
 R,E SS’ & [L | M−, L′] & (M∈I, IK’)

but this backwards narrowing step is unproductive, since it is not guided by the
information in the attack state. Indeed, the same rule can be applied again using
variables SS’ and IK’ and this can be repeated many times.

In order to avoid a huge number of unproductive narrowing steps by useless
instantiation, we allow the introduction of new strands and/or new intruder
facts only by rule application instead of just by unification. For this, we do two
things:

1. we remove any of the following variables from attack patterns: SS denoting
a set of strands, IK denoting a set of intruder facts, and L,L′ denoting a
set of input/output messages; and

2. we replace Rule (1) by the following Rule (5), since we no longer have a
variable denoting a set of intruder facts that has to be instantiated:

SS & [L | M−, L′] & (M∈I, IK)→SS & [L,M− | L′] & IK (5)

One might imagine that Rule (3) and rules of type (4) must also be modified
in order to remove the M∈I expression from the intruder’s knowledge of the
right-hand side of each rule. However, this is not so, since, by keeping the
expression M∈I, we force the backwards application of the rule only when
there is indeed a message for the intruder to be learned. This provides some
form of on-demand evaluation of the protocol.

Since this optimization is achieved by putting restrictions on attack patterns
and rewrite rules, the soundness proof is trivial and thus omitted. However, a
proof of completeness is still needed. The set of rewrite rules actually used for
backwards narrowing is RP = {(5), (2), (3)}∪ (4); note that (4) represents a set
of rules. The following result ensures that RP and RP compute similar initial
states by backwards reachability analysis.

Definition 3 (Inclusion). Given a topmost rewrite theory RP = (ΣP , EP , RP)
representing protocol P, and two states St1, St2, we abuse notation and write
St1 ⊆ St2 to denote that every state element (i.e., strand or intruder fact) in
St1 appears in St2 (modulo EP).
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Proposition 2. Let RP = (ΣP , EP , RP) be a topmost rewrite theory represent-
ing protocol P and let RP be defined as above. Let St = ss& SS & (ik, IK). Let
ss = {s1, . . . , sn} be a multiset of strands, ik = {k1, . . . , km} be a set of intruder
facts, SS is a variable denoting a set of strands, and IK is a variable denoting
the intruder knowledge. Let St′ = ss& ik. If there is an initial state Stini and a
substitution σ such that St;∗

σ,R−1
P ,EP

Stini, then there is an initial state St′ini

and two substitutions σ′, ρ such that St′ ;∗
σ′,RP

−1
,EP

St′ini, σ =EP σ
′ ; ρ, and

ρ(St′ini) ⊆ Stini.

Proof. We obtain the narrowing sequence 1) St′ ;∗
σ′,RP

−1
,EP

St′ini from 2)

St ;∗
σ,R−1
P ,EP

Stini by removing σSS and σIK from every state in 2) and then

deleting the transitions that become trivial. We then check that this results in
a sequence resulting from application of the rules RP . This is straightforward,
except that we need to check that any conditions required by the new Rule (5)
are fulfilled. The only such condition is that the intruder’s knowledge be a set of
intruder facts without repeated elements, i.e., the union operator _,_ is ACUI
(associative-commutative-identity-idempotent). This follows directly from the
restriction in [11] that the intruder learns a term only once. 2

6.2. Partial Order Reduction Giving Priority to Input Messages

The different rewrite rules on which the backwards narrowing search from
an attack pattern is based are in general executed non-deterministically. This
is because the order of execution can make a difference as to what subsequent
rules can be executed. For example, an intruder cannot receive a term until it
is sent by somebody, and that send action within a strand may depend upon
other receives in the past. There is one major exception, Rule (5) (originally
Rule (1)), which, in a backwards search, only moves a negative term appearing
right before the bar into the intruder’s knowledge.

Example 5. Consider, for instance, the attack pattern (†) in Example 2.
Since the strand in the attack pattern has the input message
(e(exp(E′, n(B, r′)), sec(a, r′′)))− but also has the intruder challenge sec(a, r′′)∈I,
there are several possible backwards narrowing steps: some processing the in-
truder challenge, and Rule (5) processing the input message.

The execution of Rule (5) in a backwards search does not disable any other
transitions; indeed, it only enables send transitions. Thus, it is safe to execute
it at each stage before any other transition. For the same reason, if several
applications of Rule 5 are possible, it is safe to execute them all at once before
any other transition. Requiring all executions of Rule 5 to execute first thus
eliminates interleavings of Rule 5 with send and receive transitions, which are
equivalent to the case in which Rule 5 executes first. In practice, this typi-
cally cuts down in half the search space size. The completeness proof for this
optimization is trivial and thus omitted.
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Similar strategies have been employed by other tools in forward searches. For
example, in [30], a strategy is introduced that always executes send transitions
first whenever they are enabled. Since a send transition does not depend on any
other component of the state in order to take place, it can safely be executed
first. The original NPA also used this strategy; it had a receive transition
(similar to the input message in Maude-NPA) which had the effect of adding
new terms to the intruder’s knowledge, and which always was executed before
any other transition once it was enabled.

6.3. Subsumption Partial Order Reduction

Partial order reduction (POR) techniques are common in state exploration.
However, POR techniques for narrowing-based state exploration do not seem to
have been explored in detail, although they may be extremely relevant and may
afford greater reductions than in standard state exploration based on ground
terms rather than on terms with logical variables. For instance, the simple
concept of two states being equivalent modulo renaming of variables does not
apply to standard state exploration, whereas it does apply to narrowing-based
state exploration. In [16], Escobar and Meseguer studied narrowing-based state
exploration and POR techniques, which may transform an infinite-state system
into a finite one. However, the Maude-NPA needs a dedicated POR technique
applicable to its specific execution model.

Let us motivate this POR technique with an example before giving a more
detailed explanation.

Example 6. Consider again the attack pattern (†) in Example 2.

:: r′ :: [ (A;B;E′)−, (B;A; exp(g, n(B, r′)))+, (e(exp(E′, n(B, r′)), sec(a, r′′)))− |nil ]
& SS & (sec(a, r′′)∈I, IK)

(†)

After a couple of backwards narrowing steps, the Maude-NPA finds the state (‡)
of Example 3:

[ nil | exp(E′, n(B, r′))−, sec(a, r′′)−, (e(exp(E′, n(B, r′)), sec(a, r′′)))+ ] &

:: r′ ::

[ (A;B;E′)−, (B;A; exp(g, n(B, r′)))+ | (e(exp(E′, n(B, r′)), sec(a, r′′)))− ] &

(sec(a, r′′)∈I, exp(E′, n(B, r′))∈I, e(exp(E′, n(B, r′)), sec(a, r′′))/∈I)

However, the following state is also generated after a couple of narrowing steps
from the attack pattern, where, thanks to the equational theory, variable Y is
instantiated to exp(G,N) for G a generator –indeed the constant g— and N a
nonce variable:

21



[ nil | exp(G,n(B, r′))−, N−, exp(G,N ∗ n(B, r′))+ ] &

[ nil | exp(G,N ∗ n(B, r′))−, sec(a, r′′)−, (e(exp(G,N ∗ n(B, r′)), sec(a, r′′)))+ ] &

:: r′ :: [ (A;B; exp(G,N))−, (B;A; exp(g, n(B, r′)))+

| (e(exp(G,N ∗ n(B, r′)), sec(a, r′′)))− ] &

(sec(a, r′′)∈I, exp(G,n(B, r′))∈I, N∈I,
exp(G,N ∗ n(B, r′))/∈I, e(exp(G,N ∗ n(B, r′)), sec(a, r′′))/∈I)

However, the unreachability of the second state is implied (modulo EP) by the
unreachability of the first state; unreachability in the sense of Definition 1. In-
tuitively, the challenges present in the first state that are relevant for backwards
reachability are included in the second state, namely, the challenges sec(a, r′′)∈I
and exp(E′, n(B, r′))∈I. Indeed, the unreachability of the following “kernel”
state implies the unreachability of both states, although this kernel state is never
computed by the Maude-NPA:

:: r′ :: [ (A;B;E′)−, (B;A; exp(g, n(B, r′)))+ | (e(exp(E′, n(B, r′)), sec(a, r′′)))− ] &

(sec(a, r′′)∈I, exp(E′, n(B, r′))∈I)

Note that the converse is not true, i.e., the second state does not imply the first
one, since it contains one more intruder item relevant for backwards reachability
purposes, namely N∈I.

Let us now formalize this state space reduction and prove its completeness.

Definition 4. Given a topmost rewrite theory RP = (ΣP , EP , RP) represent-
ing protocol P, and two non-initial states St1 and St2, we write St1 . St2 (or
St2 / St1) if each intruder fact of the form t∈I in St1 appears in St2 (modulo
EP) and each non-initial strand in St1 appears in St2 (modulo EP and with the
vertical bar at the same position).

This is similar to the relation ⊆ given in Definition 3 in Section 6.1, except
for the condition that the two states be non-initial. This condition is imposed
because, otherwise, an initial state will imply any other state, erroneously mak-
ing the search space finite after an initial state has been found.

We define the relation St1 I St2 which extends St1 . St2 to the case where
St1 is more general than St2 w.r.t. variable instantiation.

Definition 5 (P-subsumption relation). Given a topmost rewrite theory
RP = (ΣP , EP , RP) representing protocol P and two non-initial states St1, St2,
we write St1 I St2 (or St2 J St1) and say that St2 is P-subsumed by St1 if
there is a substitution θ s.t. θ(St1) . St2.

We now show that, if St1 I St2, then St2 can be discarded without sac-
rificing completeness. We do this by showing how every path from St2 to an

22



initial state can be used to construct a path from St1 to an initial state, so that
unreachability of St1 implies unreachability of St2.

We first show that if St1 I St2, i.e. there is a θ such that θSt1 . St2, and a
narrowing step St2 ;σ2,R

−1
P ,EP

St′2 for some state St′2, then either σ2(θ(St1)) .

St′2 (and so St1 I St′2), or there is a narrowing step St1 ;σ1,R
−1
P ,EP

St′1 for

some state St′1 that is either initial or for which there is a substitution ρ such
that ρSt′1 . St

′
2 (and so St′1 I St

′
2). Once we have proven these results, we can

then use induction to show that, if there is a path from St2 to an initial state,
there is a path from St1 to an initial states, and we are done.

The following results provide the appropriate connection between
P-subsumption and narrowing transitions. First, we make use of the follow-
ing lemma, whose proof follows directly from the definition of ..

Lemma 1. Suppose that we have a topmost rewrite theory RP = (ΣP , EP , RP)
representing protocol P and two non-initial states St1, St2 and substitution θ
such that θ(St1).St2, i.e., St1 I St2. If there is a narrowing step St2 ;σ2,R

−1
P ,EP

St′2 where St′2 is non-initial such that σ2(θ(St1)) 6 . St′2, then either (a) there is
an intruder fact of the form t∈I in σ2(θ(St1)) that does not appear in St′2 (mod-
ulo EP), or (b) there is a non-initial strand in σ2(θ(St1)) that does not appear
in St′2 (modulo EP). In particular, if conditions a) and b) are not satisfied,
then St1 I St′2.

Suppose now that σ2(θ(St1))6 .St′2 so that we consider both cases of Lemma 1
separately: either an expression t∈I in St′2 or a non-initial strand in σ2(θ(St1)),
not appearing in St′2. First, the case where an expression t∈I in σ2(θ(St1)) does
not appear in St′2.

Lemma 2. Suppose that we have a topmost rewrite theory RP = (ΣP , EP , RP)
representing protocol P and two non-initial states St1, St2. If (i) there is a
substitution θ s.t. θ(St1) . St2, i.e., St1 I St′2, (ii) there is a narrowing step
St2 ;σ2,R

−1
P ,EP

St′2, and (iii) there is an intruder fact of the form t∈I in

σ2(θ(St1)) that does not appear in St′2 (modulo EP), then (a) t/∈I does appear
in St′2 (modulo EP) and (b) there is a state St′1 and a substitution σ1 such that
St1 ;σ1,R

−1
P ,EP

St′1 and either St′1 is an initial state or there is a substitution

ρ s.t. ρ(St′1) . St′2, i.e., St′1 I St
′
2,

Proof. We prove the result by considering the different rules applicable to St2
(remember that in R, rewriting and narrowing steps always happen at the top
position). Note that property (a) is immediate because rules in RP do not
remove expressions of the form m∈I. Note also that if t∈I does appear in St2
(modulo EP) and t/∈I does appear in St′2 (modulo EP), then only Rule (3) or
rules of type (4) have been applied to St2 as follows:

• Reversed version of Rule (3), i.e., St2 ;σ2,R
−1
P ,EP

St′2 using the following

rule

[L,M+ | L′] & SS & (M∈I, IK)→ [L | M+, L′] & SS & (M/∈I, IK).
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Recall that there is an intruder fact in σ2(θ(St1)) of the form t∈I for t a
message term that does not appear in St′2 (modulo EP) and t =EP σ2(M).
Thus, σ2(M)∈I does appear in σ2(θ(St1)) (modulo EP). Here we have
several cases:

– If the strand σ2([L,M+ | L′]) appears in σ2(θ(St1)), then the very
same narrowing step can be performed on St1, i.e., there exist σ1, ρ
such that St1 ;σ1,R

−1
P ,EP

St′1 with the same rule and θ ; σ2 =EP

σ1 ; ρ. Thus, either St′1 is an initial state or ρ(St′1) . St′2, since:
(i) each positive intruder fact in σ2(θ(St1)) of the form u∈I for u a
message term, except σ2(M)∈I, appears in ρ(St′1) (modulo EP), (ii)
σ2(M)/∈I appears in ρ(St′1) (modulo EP), (iii) each non-initial strand
in σ2(θ(St1)), except σ2([L,M+ | L′]), has not been modified and
appears in ρ(St′1) as well (modulo EP), and (iv) for σ2([L,M+ | L′])
in σ2(θ(St1)), ρ′([L |M+, L′]) appears in ρ(St′1) and in St′2.

– If the strand σ2([Lm,M
+ | L′]) does not appear in σ2(θ(St1)), then

the strand σ2([L,M+ | L′]) corresponds to a strand SP in the protocol
specification that had been introduced via a rule of the set (4), where
the strand’s bar was clearly more to the right than in σ2([L,M+ | L′]).
Note that it cannot correspond to a strand included originally in
the attack pattern, because we assume that St1 and St2 are states
generated by backwards narrowing from the same attack state and
then both St1 and St2 should have the strand. Therefore, since the
strand σ2([L,M+ | L′]) corresponds to a strand in SP and the set
(4) contains a rewrite rule for each strand of the form [ l1, u

+, l2 ]
in SP , there must be a rule α in (4) introducing a strand of the
form [ l1, u

+, l2 ] and there must be substitutions σ1, ρ such that
St1 ;σ1,R

−1
P ,EP

St′1 using the rule α and θ ; σ2 =EP σ1 ; ρ. Thus,

either St′1 is an initial state or ρ(St′1).St′2, since: (i) each positive in-
truder fact in σ2(θ(St1)) of the form u∈I for u a message term, except
σ2(M)∈I, appears in ρ(St′1) (modulo EP), (ii) σ2(M)/∈I appears in
ρ(St′1) (modulo EP), (iii) each non-initial strand in σ2(θ(St1)) has
not been modified and appears in ρ(St′1) as well (modulo EP), and
(iv) σ2([ l1 | u+, l2 ]) appears in ρ(St′1) and in St′2.

• Rules in (4), i.e., St2 ;σ2,R
−1
P ,EP

St′2 using a rule of the form

{SS & (u∈I, IK)→ [l1 | u+, l2] & SS & (u/∈I, IK) | [l1, u+, l2] ∈ P}.

Recall that there is an intruder fact in σ2(θ(St1)) of the form t∈I for t a
message term that does not appear in St′2 (modulo EP) and t =EP σ2(u),
where u is the message term used by the rewrite rule. Thus, σ2(u)∈I does
appear in σ2(θ(St1)) (modulo EP). That is, the same narrowing step is
available from σ2(θ(St1)) and there exist σ1, ρ such that St1 ;σ1,R

−1
P ,EP

St′1 with the same rule and θ ; σ2 =EP σ1 ; ρ. Thus, either St′1 is an
initial state or ρ(St′1) . St′2.
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This concludes the proof. 2

Second, we examine the case in which a non-initial strand in St′2 does not
appear in tσ2(θ(St1)).

Lemma 3. Given a topmost rewrite theory RP = (ΣP , EP , RP) representing
protocol P and two non-initial states St1, St2. If (i) there is a substitution θ s.t.
θ(St1) . St2, (ii) there is a narrowing step St2 ;σ2,R

−1
P ,EP

St′2, and (iii) there

is a non-initial strand [m±1 , . . . ,m
±
i | m

±
i+1, . . . ,m

±
n ] in σ2(θ(St1)) that does

not appear in St′2 (modulo EP), then (a) σ2|Var(St2) = id, (b) [m±1 , . . . ,m
±
i−1 |

m±i , . . . ,m
±
n ] does appear in St′2 (modulo EP) and (c) there is a state St′1 such

that St1 ;id,R−1
P ,EP

St′1 and either St′1 is an initial state or St′1 . St
′
2.

Proof. We prove the result by considering the different rules applicable to
St2 (remember that in R, rewriting and narrowing steps always happen at the
top position). Note that property (a) is immediate because rules in RP do
not remove strands, only move the vertical bar to the left of the sequences of
messages in the strands. Note also that if [m±1 , . . . ,m

±
i | m

±
i+1, . . . ,m

±
n ] appears

in σ2(θ(St1)) and [m±1 , . . . ,m
±
i−1 | m

±
i , . . . ,m

±
n ] appears in St′2, then only Rule

(2) or Rule (5) have been applied to St2 as follows:

• Reversed version of Rule (2), i.e., St2 ;σ2,R
−1
P ,EP

St′2 using the following

rule
[L,M+ | L′] & SS & IK→ [L | M+, L′] & SS & IK.

• Reversed version of Rule (5), i.e., St2 ;σ2,R
−1
P ,EP

St′2 using the following

rule

[L,M− | L′] & SS & IK→ [L | M−, L′] & SS & (M∈I, IK).

Note, however, that σ2|Var(St2) = id in both possible rewrite steps. Then,
there is a state St′1 such that St1 ;id,R−1

P ,EP
St′1 with the same rule and it is

straightforward that either St′1 is an initial state or St′1 I St′2, since only the
vertical bar has been moved. 2

Now we can formally define the relation between P-subsumption and one

narrowing step. In the following, ;
{0,1}
σ,R−1
P ,EP

denotes zero or one narrowing

steps.

Lemma 4. Given a topmost rewrite theory RP = (ΣP , EP , RP) representing
protocol P and two non-initial states St1, St2. If St1 I St2 and
St2 ;σ2,R

−1
P ,EP

St′2, then there is a state St′1 and a substitution σ1 such that

St1 ;
{0,1}
σ1,R

−1
P ,EP

St′1 and either St′1 is an initial state or St′1 I St
′
2.
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Proof. Since St1 I St2, there is a substitution θ s.t. θ(St1) . St2. If each
intruder fact of the form t∈I in σ2(θ(St1)) appears in St′2 (modulo EP) and
each non-initial strand in σ2(θ(St1)) appears in St′2 (modulo EP), then, by
Lemma 1, σ2(θ(St1)) . St′2, i.e., St1 I St′2. Otherwise, Lemma 1 states that
either (a) there is an intruder fact of the form t∈I in σ2(θ(St1)) that does not
appear in St′2 (modulo EP), or (b) there is a non-initial strand in σ2(θ(St1))
that does not appear in St′2 (modulo EP). For case (a), by Lemma 2, there is
a state St′1 and a substitution σ1 such that St1 ;σ1,R

−1
P ,EP

St′1 and either St′1
is an initial state or there is a substitution ρ s.t. ρ(St′1) . St′2. For case (b), by
Lemma 3, σ2|Var(St2) = id, and there is a state St′1 such that St1 ;id,R−1

P ,EP
St′1

and either St′1 is an initial state or St′1 . St
′
2, i.e., St′1 I St

′
2. 2

Preservation of reachability follows from the following main theorem. Note
that the relation I is applicable only to non-initial states, whereas the relation
⊆EP of Definition 3 is applicable to both initial and non-initial states.

Theorem 3. Given a topmost rewrite theory RP = (ΣP , EP , RP) representing
protocol P and two states St1, St2. If St1 I St2, Stini2 is an initial state, and
St2 ;∗

σ2,R
−1
P ,EP

Stini2 , then there is an initial state Stini1 and substitutions σ1

and θ such that St1 ;∗
σ1,R

−1
P ,EP

Stini1 , and θ(Stini1 ) ⊆EP Stini2 .

Proof. Consider St2 = U0, Stini2 = Un, σ2 = ρ1 · · · ρn, and U0 ;n
ρi,R

−1
P ,EP

Un. Note that n 6= 0, since St2 cannot be an initial state because St1 I St2
implies that both St1 and St2 are not initial states. Then, by Lemma 4, there
is j ≤ n such that for each i < j, Ui−1 ;ρi,R

−1
P ,EP

Ui and there is a step

U ′i−1 ;ρ′i,R
−1
P ,EP

U ′i s.t. U ′i I Ui. Note that U ′j is an initial state and there is a

substitution θ s.t. θ(U ′j) ⊆EP Uj ⊆EP Un. 2

This POR technique is used as follows: we keep all the states of the back-
wards narrowing-based tree and compare each new node of the tree produced by
the narrowing algorithm with all the states in the tree that have already been
produced. If a node is P-subsumed by a previously generated node in the tree,
we discard the subsumed node.

7. The Super-Lazy Intruder

Sometimes terms appear in the intruder’s knowledge that are trivially learn-
able by the intruder. These include terms initially available to the intruder
(such as names) and variables. In the case of variables, specially, the intruder
can substitute any arbitrary term of the same sort as the variable,5 and so there

5This, of course, is subject to the assumption that the intruder can produce at least one
term of that sort. But since the intruder is assumed to have access to the network and to all
the operations available to an honest principal, this is a reasonable restriction to make.
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is no need to try to determine all the ways in which the intruder can do this.
For this reason it is safe to temporarily drop these terms from the state. We
will refer to those terms as (super) lazy intruder terms, after the name lazy
intruder coined by Basin et al. [3] to describe another optimization technique
that involves delaying instantiation of variables.

To see how super-lazy terms arise, we consider the following example.

Example 7. Consider again the attack pattern (†) in Example 2.

:: r′ ::

[ (A;B;E′)−, (B;A; exp(g, n(B, r′)))+, (e(exp(E′, n(B, r′)), sec(a, r′′)))− |nil ]
& SS & (sec(a, r′′)∈I, IK)

(†)

After a couple of backwards narrowing steps, the Maude-NPA finds the following
state that describes how the intruder can learn sec(a, r′′) by assuming he can
learn a message e(K, sec(a, r′′)) and the key K:

[ nil | K−, e(K, sec(a, r′′)))−, sec(a, r′′)+ ] &

:: r′ ::

[ (A;B;E′)−, (B;A; exp(g, n(B, r′)))+ | (e(exp(E′, n(B, r′)), sec(a, r′′)))− ] &

(e(exp(E′, n(B, r′)), sec(a, r′′))∈I, K∈I, e(K, sec(a, r′′)))∈I, sec(a, r′′)/∈I)

(\)

Here variable K is a super-lazy term. The intruder can find it by instantiating
it by any term of the sort for keys from its initial knowledge, so we drop K∈I
from the state description.

Dropping super-lazy terms is complete by Theorem 3; but if we drop them
permanently we lose soundness. If the variables used in creating those terms
appear elsewhere in the state, they may become instantiated as the backwards
search continues. In that case, the super-lazy terms that were deleted may no
longer be trivial to find. This may result in the construction of narrowing se-
quences from the state that has the super-lazy terms removed to an initial state,
that does not correspond to any narrowing sequence that could be obtained if
the terms had been retained.

Example 8. Consider the state (\) described in Example 7. After some more
backwards narrowing steps, the tool unifies message e(K, sec(a, r′′))) with an
output message e(exp(X,n(A, r1)), sec(A, r2)) of an explicitly added Alice’s
strand of the form

:: r1, r2 ::

[ (A;B; exp(g, n(A, r1)))+, (B;A;X)−, (e(exp(X,n(A, r1)), sec(A, r2)))+]
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thus getting an instantiation for the super-lazy term K, namely
{K 7→ exp(X,n(a, r1))}. That is, obtaining the following state by some back-
wards narrowing steps from the state (\) of Example 7:

[ nil | exp(X,n(a, r1))−, e(exp(X,n(a, r1)), sec(a, r2)))−, sec(a, r2)+ ] &

:: r′ ::

[ (A;B;E′)−, (B;A; exp(g, n(B, r′)))+ | (e(exp(E′, n(B, r′)), sec(a, r2)))− ] &

:: r1, r2 ::

[ (a;B; exp(g, n(a, r1)))
+, (B; a;X)− | (e(exp(X,n(a, r1)), sec(a, r2)))+] &

(e(exp(E′, n(B, r′)), sec(a, r2))∈I, exp(X,n(a, r1))∈I,
(e(exp(X,n(a, r1)), sec(a, r2)))/∈I, sec(a, r′′)/∈I)

(\+)

Now the intruder can no longer construct K out of terms in its initial knowl-
edge, because n(a, r1) is not in its initial knowledge.

Since we intend Maude-NPA to be both sound and complete, we elect to
remove super-lazy terms only temporarily. When super-lazy terms are deleted
from a state, a copy of the original state known as a ghost state is retained. The
variables in the super-lazy terms are monitored to determine whether or not
they become instantiated during a narrowing step. If that is the case, the state
resulting from this narrowing step is deleted and replaced with the ghost state
with the super-lazy terms instantiated.

The operation of resuscitating the ghost state is complex; in particular care
must be taken to avoid interaction with subsumption partial order reduction.
Removing super-lazy terms from a state affects its status in the subsumption
partial order, and it is again affected when a ghost is resuscitated. The result
is that, if we wish to allow states with ghosts to participate in the subsump-
tion partial order reduction, we must proceed very carefully. In particular, if
we apply the subsumption partial order reduction indiscriminately, a resusci-
tated ghost state will be dominated in the partial order by the ancestor that
introduced the ghost, and so will be removed. Thus, we have implemented a pro-
cedure for identifying the ancestor of a resuscitated ghost state when checking
the subsumption partial order. See Sections 7.4 and 7.5.

The remainder of this section is organized as follows. In Section 7.1 we
give a formal definition of super-lazy terms. In Section 7.2 we describe the
procedure for creating and resuscitating ghost states. In Section 7.3 we describe
an optimization of the super-lazy intruder that allows one to identify cases
in which super-lazy terms will never be further instantiated, and thus can be
safely removed without creating a ghost state. Finally, in Sections 7.4 and 7.5
we describe how the potentially harmful interaction between the subsumption
partial order and the super-lazy intruder is handled.

7.1. Definition of Super-Lazy Terms

The set L(St) of super-lazy terms w.r.t. a state St is inductively generated
as a subset L(St) ⊆ TΩ(Y ∪ IK0) where IK0 is the basic set of terms known
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by the intruder at the beginning of a protocol execution, Y is a subset of the
variables of St, and Ω is the set of operations available to the intruder. The idea
of super-lazy terms is that we also want to exclude from L(St) the set IK6∈(St)
of terms that the intruder does not know and all its possible combinations with
symbols in Ω.

Definition 6 (Super-lazy terms). Let RP = (ΣP , EP , RP) be a topmost
rewrite theory representing protocol P. Let IK0 be the basic set of terms known
by the intruder at the beginning of a protocol execution, defined as
IK0 = {t′ | [t+] ∈ SP , t′ =EP t}. Let Ω be the set of operations available
to the intruder, defined indirectly as follows:

Ω = {f : s1 · · · sn → s | [(X1:s1)−, . . . , (Xk:sk)−, (f(X1:s1, . . . , Xk:sk))+] ∈ SP}.

Let St be a state (with logical variables). Let IK6∈(St) be the set of terms that
the intruder does not known at state St, defined as IK 6∈(St) = {m′ | (m/∈I) ∈
St, m′ =EP m}. The set L(St) of super-lazy terms w.r.t. St (or simply super-
lazy terms) is defined inductively as follows:

1. IK0 ⊆ L(St),

2. Var(St)− IK6∈(St) ⊆ L(St),

3. for each f : s1 · · · sn → s ∈ Ω and for all t1:s1, . . . , tk:sk ∈ L(St), if
f(t1:s1, . . . , tk:sk) 6∈ IK6∈(St), then f(t1:s1, . . . , tk:sk) ∈ L(St).

The idea behind the super-lazy intruder is that, given a term made out of lazy
intruder terms, such as “a; e(K,Y )”, where a is a public name and K and Y are
variables, the term “a; e(K,Y )” is also a (super) lazy intruder term by applying
the public operations e and ; available to the intruder.

7.2. The Super-Lazy Intruder and Ghost States

Let us first briefly explain how the ghost state mechanism works before
formally describing it. A ghost state is a state extended to allow expressions of
the form ghost(m) in the intruder’s knowledge, where m is a super-lazy term.
When, during the backwards reachability analysis, we detect a state St having
a super lazy term t in an expression t∈I in the intruder’s knowledge, we replace
the intruder fact t∈I in St by ghost(t) and keep the ghost version of St in the
history of states used by the transition subsumption of Section 6.3.

Example 9. The state (\) of Example 7 with a super-lazy intruder term K
would be represented as follows, where we have just replaced K∈I by ghost(K):

[ nil | K−, e(K, sec(a, r′′)))−, sec(a, r′′)+ ] &

:: r′ ::

[ (A;B;E′)−, (B;A; exp(g, n(B, r′)))+ | (e(exp(E′, n(B, r′)), sec(a, r′′)))− ] &

(ghost(K), e(exp(E′, n(B, r′)), sec(a, r′′))∈I, e(K, sec(a, r′′)))∈I, sec(a, r′′)/∈I)

(\)
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Similarly, the state (\+) of Example 8 would be represented as follows, where we
have just added the expression ghost(exp(X,n(a, r1))) to the intruder knowledge:

[ nil | exp(X,n(a, r1))−, e(exp(X,n(a, r1)), sec(a, r2)))−, sec(a, r2)+ ] &

:: r′ ::

[ (A;B;E′)−, (B;A; exp(g, n(B, r′)))+ | (e(exp(E′, n(B, r′)), sec(a, r2)))− ] &

:: r1, r2 ::

[ (a;B; exp(g, n(a, r1)))
+, (B; a;X)− | (e(exp(X,n(a, r1)), sec(a, r2)))+] &

(ghost(exp(X,n(a, r1))), e(exp(E
′, n(B, r′)), sec(a, r2))∈I, exp(X,n(a, r1))∈I,

(e(exp(X,n(a, r1)), sec(a, r2)))/∈I, sec(a, r′′)/∈I)

(\+)

Suppose that later in the backwards search tree we find a descendant state
St′ in which ghost(u) has been instantiated to ghost(t), where t is not a super
lazy intruder term as in the state (\+) of Example 9. For the intruder to learn
such a term t, it may be necessary for certain actions to occur before St′ was
produced. That is, we must “roll back” and replace the current state St′,
containing expression ghost(t), by an instantiated version of its ancestor state
St, namely θ(St), where t =EP θ(u). This is explained in detail in Definition 11
below.

A complication is introduced if the substitution θ binding variables in u
includes variables of sort Fresh. These must have been introduced by strands
indexed by these fresh variables. If the strand indexed by a fresh variable in
t already appears in St, then there is no problem. However, if the strand was
introduced later in the backwards narrowing process, and we do not include
them in St, then this will result in difficulties. If such a strand is not in the
reactivated version of St, it will not be re-introduced in the backwards narrowing
search, because the fresh variables in newly introduced strands are non-unifiable
with any of the fresh variables already present. Therefore, the strands indexed
by these fresh variables must also be included in the “rolled back” state, even
if they were not there originally. Moreover, they must have the bar at the place
where it was when the strands were originally introduced. We show below how
this is accomplished. Furthermore, if any of the strands thus introduced have
other variables of sort Fresh as subterms, then the strands indexed by those
variables must be included too, and so on. That is, when a state St′ properly
instantiating a ghost expression ghost(t) is found, the procedure of rolling back
to the original state St that gave rise to that ghost expression implies not only
applying the bindings for the variables of t to St, but also introducing in St all
the strands from St′ that produced fresh variables and that either appear in the
variables of t or are recursively connected with them.

Example 10. Consider the states (\) and (\+) of Example 9. After the tool
finds an instantiation for variable K in the narrowing step from state (\) to
state (\+), the tool rolls back to the state (\), originating the super-lazy term K,
as follows; where we have transformed state (\+) by moving the vertical bar of

30



Alice’s strand at the rightmost position because it is the strand generating the
Fresh variable r2:

[ nil | exp(X,n(a, r1))−, e(exp(X,n(a, r1)), sec(a, r2)))−, sec(a, r2)+ ] &

:: r′ ::

[ (A;B;E′)−, (B;A; exp(g, n(B, r′)))+ | (e(exp(E′, n(B, r′)), sec(a, r2)))− ] &

:: r1, r2 ::

[ (a;B; exp(g, n(a, r1)))
+, (B; a;X)−, (e(exp(X,n(a, r1)), sec(a, r2)))

+ | nil] &
(e(exp(E′, n(B, r′)), sec(a, r2))∈I, exp(X,n(a, r1))∈I,
e(exp(X,n(a, r1)), sec(a, r2))∈I, sec(a, r′′)/∈I)

(\	)

In order for the super-lazy intruder mechanism to be able to tell where the
bar was when a strand was introduced, we must modify the set of rules of type
(4) introducing new strands:

{ [ l1 |u+] & {u/∈I,K} → {u∈I,K} | [ l1, u
+, l2 ] ∈ SP} (6)

Note that rules of type (4) introduce strands [ l1 | u+, l2 ], whereas here rules of
type (6) introduce strands [ l1 | u+ ]. This slight modification makes it possible
to safely move the position of the bar back to the place where the strand was
introduced. However, now the strands added may be partial, since the whole
sequence of actions performed by the principal is not directly recorded in the
strand. Therefore, the set of rewrite rules used by narrowing in reverse are now
R̃P = {(5), (2), (3)} ∪ (6); note that (6) represents a set of rules.

First, we define a new relation vEP between states, which is similar to ⊆EP
of Definition 3 but considers partial strands.

Definition 7 (Partial Inclusion). Given two states St1, St2, we abuse nota-
tion and write St1 vEP St2 to denote that every intruder fact in St1 appears
in St2 (modulo EP) and that every strand [m±1 , . . . ,m

±
k ] in St1, either appears

in St2 (modulo EP) or there is i ∈ {1, . . . , k} s.t. m±i = m+
i and [m±1 , . . . ,m

+
i ]

appears in St2 (modulo EP).

The following result ensures that if a state is reachable via backwards reachabil-
ity analysis using RP , then it is also reachable using R̃P . Its proof is straight-
forward, and we omit it.

Proposition 3. Let RP = (ΣP , EP , RP) be a topmost rewrite theory represent-
ing protocol P. Let St = ss& SS & (ik, IK) where ss is a term representing a set
of strands, ik is a term representing a set of intruder facts, SS is a variable for
strands, and IK is a variable for intruder knowledge.
If there is an initial state Stini and a substitution σ such that
St ;∗

σ,R−1
P ,EP

Stini, then there is an initial state St′ini and two substitutions

σ′, ρ such that St;∗
σ′,R̃P

−1
,EP

St′ini, σ =EP σ
′ ; ρ, and ρ(St′ini) vEP Stini.
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Now, we describe how to reactivate a state. First, we formally define a ghost
state.

Definition 8 (Ghost State). Given a topmost rewrite theory RP =
(ΣP , EP , RP) representing protocol P and a state St containing an intruder
fact t∈I such that t is a super-lazy term, we define the ghost version of St,
written St, by replacing t∈I in St by ghost(t) in St.

Now, in order to resuscitate a state, we need to formally compute the strands
that are generating Fresh variables relevant to the instantiation found for the
super-lazy term.

Definition 9 (Strand Reset). Given a strand s of the form :: r1, . . . , rk ::
[m±1 , . . . | . . . ,m±n ], when we want to move the bar to the rightmost position
(denoting a final strand), we write s� =:: r1, . . . , rk :: [m±1 , . . . ,m

±
n | nil].

Definition 10 (Fresh Generating Strands). Given a state St containing an
intruder fact ghost(t) for some term t with variables, we define the set of strands
associated to t, denoted strandsSt(t), as the least set satisfying the following two
conditions:

• for each strand s in St of the form :: r1, . . . , rk :: [m±1 , . . . | . . . ,m±n ],
if there is i ∈ {1, . . . , k} s.t. ri ∈ Var(t), then s� is included into
strandsSt(t); or

• for each strand s in St of the form :: r1, . . . , rk :: [m±1 , . . . | . . . ,m±n ], if
there is another strand s′ of the form :: r′1, . . . , r

′
k′ :: [w±1 , . . . | . . . , w

±
n′ ]

in strandsSt(t), and there are i ∈ {1, . . . , k} and j ∈ {1, . . . , n′} s.t. ri ∈
Var(wj), then s� is included into strandsSt(t).

Now, we formally define how to resuscitate a state.

Definition 11 (Resuscitation). Given a topmost rewrite theory RP =

(ΣP , EP , R̃P) representing protocol P and a state St containing an intruder
fact t∈I such that t is a super-lazy term, i.e., St = ss& (t∈I, ik) where ss is
a term denoting a set of strands and ik is a term denoting the rest of the in-
truder knowledge. Let St be the ghost version of St. Let St′ be a state such that
St ;∗

σ,R̃P
−1
,EP

St′ and σ(t) is not a super-lazy term. Let σt = σ|Var(t). The

reactivated (or resuscitated) version of St w.r.t. state St′ and substitution σt
is defined as Ŝt = σt(ss) &σt((t∈I, ik)) & strandsSt′(σt(t)).

Example 11. Consider the state (\	) in Example 10. We can check that state
(\	) is the resuscitated version of state (\) w.r.t. state (\+) and the substitution
{K 7→ exp(X,n(a, r1)), A 7→ a}.

Let us now prove the completeness of this state space reduction technique.
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Theorem 4. Given a topmost rewrite theory RP = (ΣP , EP , R̃P) representing
protocol P and a state St containing an intruder fact t∈I such that t is a
super-lazy term, if there exist an initial state Stini and substitution θ such that
St;∗

θ,R̃P
−1
,EP

Stini , then (i) there exist a state St′ and substitutions τ, τ ′ such

that St ;∗
τ,R̃P

−1
,EP

St′, θ =EP τ ; τ ′, and τ(t) is not a super-lazy term, and

(ii) there exist a reactivated version Ŝt of St w.r.t. St′ and τ , an initial state

St′ini , and substitutions θ′, ρ such that Ŝt;∗
θ′,R̃P

−1
,EP

St′ini , θ =EP θ
′ ; ρ, and

ρ(St′ini) ⊆EP Stini .

Proof. The sequence from St to Stini can be decomposed into two fragments,
computing substitutions τ and τ ′, respectively, such that there is a state St′

and substitutions τ , τ ′ such that τ(t) is not a super-lazy term, θ = τ ; τ ′,
St ;∗

τ,R̃P
−1
,EP

St′ ;∗
τ ′,R̃P

−1
,EP

Stini , and the sequence St ;∗
τ,R̃P

−1
,EP

St′

can be viewed as St = St0 ;
τ1,R̃P

−1
,EP
· · · ;

τk,R̃P
−1
,EP

Stk = St′ such that

for all i ∈ {1, . . . , k − 1}, τi(t) is a super-lazy term. However, using the com-
pleteness results of narrowing, Theorem 1, there must be a narrowing sequence
from St computing such substitution τ . That is, there is a state St′′ such that
St;∗

τ,R̃P
−1
,EP

St′′ and St′′ differs from St′ (modulo EP -equivalence and vari-

able renaming) only in that τ(t)∈I is replaced by ghost(τ(t)). Let τt = τ |Var(t),
there exists a substitution τ ′′ s.t. τ =EP τt ; τ ′′. Let Ŝt be the resuscitated
version of St w.r.t. state St′′ and substitution τt. Then, by narrowing com-
pleteness, i.e., Theorem 1, there exist a state St′ini and substitutions σ, ρ such

that Ŝt;∗
σ,R̃P

−1
,EP

St′ini , τ
′′ ; τ ′ =EP σ ; ρ, and ρ(St′ini) =EP Stini . 2

7.3. Optimizing the Super-Lazy Intruder.

When we detect a state St with a super lazy term t, we may want to analyze
whether the variables of t may be eventually instantiated or not before creating
a ghost state. The following definition provides the key idea.

Definition 12 (Void Super-Lazy Term). Given a topmost rewrite theory

RP = (ΣP , EP , R̃P) representing protocol P, and a state St containing an in-
truder fact t∈I such that t is a super-lazy term, if for each strand [m±1 , . . . ,m

±
j−1 |

m±j , . . . ,m
±
k ] in St and each i ∈ {1, . . . , j − 1}, Var(t) ∩ Var(mi) = ∅, and for

each term w∈I in the intruder’s knowledge, Var(t) ∩ Var(w) = ∅, then, t is
called a void super-lazy term.

Proposition 4. Given a topmost rewrite theory RP = (ΣP , EP , R̃P) represent-
ing protocol P and a state St containing an intruder fact t∈I such that t is a
void super-lazy term, let St be the ghost version of St w.r.t. the void super-
lazy term t. If there exist an initial state Stini and a substitution θ such that
St ;∗

θ,R̃P
−1
,EP

Stini , then there exist an initial state St′ini and substitutions

σ, ρ such that St;∗
σ,R̃P

−1
,EP

St′ini , θ =EP σ ; ρ, and ρ(St′ini) ⊆EP Stini .
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Figure 2: States obtained using the super-lazy intruder optimization

Proof. Since t is a super-lazy term, Stini contains a sequence of intruder
strands of SP generating t. Let θt = θ|Var(t), there exists a substitution θ′

s.t. θ =EP θt ; θ′. Since t is a void super-lazy term, there is a state St′′ini such
that θ′(St)→∗

R̃P
−1
,EP

St′′ini . Then, by narrowing completeness, i.e., Theorem 1,

there are an initial state St′ini and substitutions σ, ρ such that St ;∗
σ,R̃P

−1
,EP

St′ini , θ
′ =EP σ ; ρ, and ρ(St′ini) ⊆EP St′′ini . Finally, St′′ini ⊆EP Stini , since

Stini simply has the strands generating t that St′′ini does not contain. 2

7.4. Transition Subsumption and the Super-Lazy Intruder.

Transition subsumption in the presence of the lazy intruder is computed for
the most part as if the lazy intruder did not exist. That is, we define a partial
order on states with ghosts that extends the relation I of Section 6.3:

Definition 13. Let St1 = ss1 & (ghost(t1), . . . , ghost(tn), ik1) and let St2 =
ss2 & (ghost(t′1), . . . , ghost(t′m), ik2). Let St′1 = ss1 & (t1∈I, . . . , tn∈I, ik1) and
let St′2 = ss2 & (t′1∈I, . . . , t′m∈I, ik2). We say that St1I0St2 if St′1ISt

′
2.

However, we cannot use this definition without modification. If we do, then
when a ghost state is reactivated, we see from Definition 13 that such a re-
activated state will be P-subsumed by the original state that raised the ghost
expression, as shown in the following example.

Example 12. As explained in Example 11, the state (\	) is the resuscitated
version of state (\) w.r.t. state (\+). But, since the state (\+) is obtained after
one backwards narrowing step from state (\), then a state (\	+), described below,
is obtained after one backwards narrowing step from state (\	), where (\	+) is

similar to (\+) except that the ghost expression is transformed into a proper
intruder fact. That is, we will find state (\+) twice in the search space, one
as the descendant (\+) of (\) and again as the descendant (\	+) of (\	). This
situation is depicted in Figure 2.
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Therefore, we modify the relation I0 into a new relation n, given in Proposi-
tion 5 below, by excluding resuscitated descendants which are defined by a new
relation y as follows.

Definition 14 (Resuscitated Descendant). Given a topmost rewrite theory

RP = (ΣP , EP , R̃P) representing protocol P, and three non-initial states St0,
St, and St′ such that St0 contains an intruder fact t∈I, and t is a super-lazy
term, we say that state St′ is a resuscitated descendant of St, written Sty St′,
if:

1. given the ghost version St0 of St0 w.r.t. the super-lazy term t, then there
exist k ≥ 1, states St1, . . . , Stk, substitutions τ1, . . . , τk, and i ∈ {1, . . . , k}
such that

St0 ;
τ1,R̃P

−1
,EP

St1 · · ·Sti−1 ;
τi,R̃P

−1
,EP

Sti · · ·Stk−1 ;
τk,R̃P

−1
,EP

Stk,

St =EP Stk, τ1 ; · · · ; τj(t) is a super-lazy term for 1 ≤ j ≤ i − 1, and
τ1 ; · · · ; τi(t) is not a super-lazy term, and

2. given the reactivated version S̃t0 of St0 w.r.t. Sti and τ = τ1 ; · · · ; τi,
and let τt = τ |Var(t), then there exist states St′1, . . . , St

′
k, substitutions

τ ′1, . . . , τ
′
k such that τj = τt ; τ ′j for 1 ≤ j ≤ k, and a narrowing sequence

S̃t;
τ ′1,R̃P

−1
,EP

St′1 · · ·St′k−1 ;
τ ′k,R̃P

−1
,EP

St′k

such that St′ =EP St
′
k.

Example 13. As explained in Example 12, state (\+) is a descendant of state
(\) and state (\	+) is a descendant of state (\	) where (\+) and (\	+) are the
same state. It is very easy to check that any descendant of (\	) is a resuscitated
descendant of an appropriate descendant of (\) according to Definition 14, e.g.
(\	+) is a resuscitated descendant of (\+).

Proposition 5 (P-subsumption relation I). Given a topmost rewrite the-

ory RP = (ΣP , EP , R̃P) representing protocol P, let n be a partial order on
states such that St n St′ implies that StI0St

′ and St 6y St′. Then the partial
order reduction imposed by n preserves completeness of reachability as defined
in Theorem 3.

7.5. Implementing Subsumption Partial Order Reduction in the Presence of the
Super-Lazy Intruder

In this section we describe how the subsumption partial order is actually
implemented in Maude-NPA in the presence of the super-lazy intruder. Propo-
sition 5 gives a simple way of doing this, but is not very efficient if implemented
in a straightforward way, since it requires extensive examination of the search
tree, examining not only the two states being compared but the narrowing path
between them. Instead, we use an approximation of the y relation that can be
computed directly via a syntactic check on the state information.
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This section is quite technical and depends heavily on details about Maude-
NPA. The reader who is interested mainly in understanding the basic principals
of the super-lazy intruder, and is not concerned about how it is actually im-
plemented in Maude-NPA, can safely skip it. However, we believe that it is
valuable to include there these technical details because it not only documents
what actually is implemented in the tool, but demonstrates how one can use
approximation to maximize state space reduction while minimizing the amount
of search tree examination required.

In order make the presentation easier to follow, we describe our approxima-
tion in terms of a series of approximations, relations 99K, �, and �+, where
99K and�+ are over-approximations of the relation y (and thus preserve com-
pleteness of reachability) but � is an under-approximation of the relation y
(and thus does not preserve completeness of reachability though it helps us to
define the relation �+).

To begin with, we extend protocol states to include the actual message ex-
change sequence between principal or intruder strands and add a new expression
resuscitated(m) to indicate when a state has been resuscitated. This informa-
tion, except for resuscitated(m), was already included in Maude-NPA states,
but its purpose before had been to assist the user in reconstructing attacks, not
in performing the search itself.

The set of rewrite rules is extended to compute the exchange sequence as
follows, where X is a variable denoting an exchange sequence:

[L | M−, L′] & SS & (M∈I, IK) & (M
−
, X)→ [L,M

− | L′] & SS & (M∈I, IK) & X

[L | M+
, L
′
] & SS & IK & (M

+
, X)→ [L,M

+ | L′] & SS & IK & X

[L | M+
, L
′
] & SS & (M/∈I, IK) & (M

+
, X)→ [L,M

+ | L′] & SS & (M∈I, IK) & X

for each [ l1, u
+
, l2 ] ∈ SP : [ l1 | u+

, l2 ] &SS & (u/∈I, IK) & (u
+
, X)→ SS& (u∈I, IK) & X

Completeness reachability and soundness is clearly preserved for this set of rules
and for the obvious extensions to RP and R̃P .

Example 14. The state (\) of Example 9 will be written as the following state
(\) by adding the message exchange sequence:

[ nil | K−, e(K, sec(a, r′′)))−, sec(a, r′′)+ ]&

:: r′ ::

[ (A;B;E′)−, (B;A; exp(g, n(B, r′)))+ | (e(exp(E′, n(B, r′)), sec(a, r′′)))− ]&

(e(exp(E′, n(B, r′)), sec(a, r′′))∈I, ghost(K), e(K, sec(a, r′′)))∈I, sec(a, r′′)/∈I) &

(K−, e(K, sec(a, r′′))−, sec(a, r′′)+, e(exp(E′, n(b, r′)), sec(a, r′′))−)

(\)

The state (\+) of Example 9 will be written as the following state (\+) by adding
the message exchange sequence:
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[ nil | exp(X,n(a, r1))−, e(exp(X,n(a, r1)), sec(a, r2)))−, sec(a, r2)+ ]&

:: r′ ::

[ (A;B;E′)−, (B;A; exp(g, n(B, r′)))+ | (e(exp(E′, n(B, r′)), sec(a, r2)))− ]&

:: r1, r2 ::

[ (a;B; exp(g, n(a, r1)))
+, (B; a;X)− | (e(exp(X,n(a, r1)), sec(a, r2)))+]&

(ghost(exp(X,n(a, r1))), e(exp(E
′, n(B, r′)), sec(a, r2))∈I, exp(X,n(a, r1))∈I,

(e(exp(X,n(a, r1)), sec(a, r2)))/∈I, sec(a, r′′)/∈I) &

(e(exp(X,n(a, r1)), sec(a, r2))
+, exp(X,n(a, r1))

−,

e(exp(X,n(a, r1)), sec(a, r2))
−, sec(a, r2)

+, e(exp(E′, n(b, r′)), sec(a, r2))
−)

(\+)

The resuscitated state (\	) of Example 10 will be written as the following state
(\	), where the resuscitated message is the first item in the exchange sequence:

[ nil | exp(X,n(a, r1))−, e(exp(X,n(a, r1)), sec(a, r2)))−, sec(a, r2)+ ]&

:: r′ ::

[ (A;B;E′)−, (B;A; exp(g, n(B, r′)))+ | (e(exp(E′, n(B, r′)), sec(a, r2)))− ]&

:: r1, r2 ::

[ (a;B; exp(g, n(a, r1)))
+, (B; a;X)−, (e(exp(X,n(a, r1)), sec(a, r2)))

+ | nil]&
(e(exp(E′, n(B, r′)), sec(a, r2))∈I, exp(X,n(a, r1))∈I,
e(exp(X,n(a, r1)), sec(a, r2))∈I, sec(a, r′′)/∈I) &

(resuscitated(exp(X,n(a, r1))), exp(X,n(a, r1))
−,

e(exp(X,n(a, r1)), sec(a, r2))
−, sec(a, r2)

+, e(exp(E′, n(b, r′)), sec(a, r2))
−)

(\	)

And the state (\	+) of Example 8 will be given as follows:

[ nil | exp(X,n(a, r1))−, e(exp(X,n(a, r1)), sec(a, r2)))−, sec(a, r2)+ ]&

:: r′ ::

[ (A;B;E′)−, (B;A; exp(g, n(B, r′)))+ | (e(exp(E′, n(B, r′)), sec(a, r2)))− ]&

:: r1, r2 ::

[ (a;B; exp(g, n(a, r1)))
+, (B; a;X)− | (e(exp(X,n(a, r1)), sec(a, r2)))+]&

(e(exp(E′, n(B, r′)), sec(a, r2))∈I, exp(X,n(a, r1))∈I,
(e(exp(X,n(a, r1)), sec(a, r2)))/∈I, sec(a, r′′)/∈I) &

(e(exp(X,n(a, r1)), sec(a, r2))
+,

resuscitated(exp(X,n(a, r1))), exp(X,n(a, r1))
−,

e(exp(X,n(a, r1)), sec(a, r2))
−, sec(a, r2)

+, e(exp(E′, n(b, r′)), sec(a, r2))
−)

(\	+)

where (\	+) is obtained from \	 by one backwards narrowing step.

In [13], we provided a very simple rule for approximating the relation y.
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Definition 15. Given a topmost rewrite theory RP = (ΣP , EP , R̃P) represent-
ing protocol P and two non-initial states St1, St2, we write St1 99K St2 if there
exists a message term m such that St1 contains an expression ghost(m) and St2
contains the expression resuscitated(m).

Example 15. Consider the state (\), the state (\+), the state (\	), the state

(\	+), and the substitution ρ = {K 7→ exp(X,n(a, r1)), r′′ 7→ r2}. It is clear now

that ρ(\) 99K (\	), ρ(\) 99K (\	+), ρ(\+) 99K (\	), and ρ(\+) 99K (\	+) because all

have ghost(exp(X,n(a, r1))) in one side and resuscitated(exp(X,n(a, r1))) on
the other side. However, it is a rough approximation of the relation y, since
we only have ρ(\) y (\	) and ρ(\+) y (\	+).

The following result establishes that 99K is an over-approximation of y, as
shown in the previous example.

Lemma 5. Given a topmost rewrite theory RP = (ΣP , EP , R̃P) representing
protocol P and two non-initial states St1, St2, if St1 y St2, then there is a
substitution ρ such that ρ(St1) 99K St2.

Proof. Immediate, since St1 y St2 implies that there is a substitution ρ such
that ρ(St1) contains ghost(m) and St2 contains resuscitated(m). 2

Now, we can provide a better transition subsumption relation.

Proposition 6 (P-subsumption relation II). Given a topmost rewrite the-

ory RP = (ΣP , EP , R̃P) representing protocol P, let nII be a partial order on
states such that St nII St

′ implies that StI0St
′ and there is a substitution θ

s.t. θ(St) 699K St′. Then the partial order reduction imposed by nII preserves
completeness of reachability as defined in Theorem 3.

Though this method solves the problem, since it is safe when a state St′ is
discarded by StnIISt

′, and StnIISt
′ implies StnSt′ but not vice versa, it dis-

ables almost completely the benefits of transition subsumption for those states
after a resuscitation, since the relation n is able to remove many more states
than nII in that case. Consider just Figure 2, then for any narrowing sequence
from (\) to a state St, there is a narrowing sequence from (\	) to a similar state
St′ but the transition subsumption would never be attempted between St and
St′. Here, we provide a more concise definition of the interaction between the
transition subsumption and the super-lazy intruder reduction techniques.

We characterize those states after a resuscitation that are truly linked to
the parent state. First, we identify those states that are resuscitated versions
of a former state. Intuitively, by comparing the exchange sequences of the two
states, we can see whether the exchange sequence of the former is (L1,M

−
1 , L2)

and it has a ghost expression ghost(M1), whereas the exchange sequence of the
resuscitated version is (L1, resuscitated(M1),M−1 , L2).
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Definition 16. Given a topmost rewrite theory RP = (ΣP , EP , R̃P) represent-
ing protocol P and two non-initial states St1, St2, we say that St2 is a resusci-
tated version of St1, written St1 � St2, if there are messages M1 and M2 and
a substitution ρ such that:

1. state St1 has a ghost of the form ghost(M1),

2. the exchange sequence of state St1 is of the form

(L1,M
−
1 , L2)

3. the exchange sequence of state St2 is of the form

(L′1, resuscitated(M2),M−2 , L
′
2),

4. and ρ(L1,M
−
1 , L2) =EP (L′1,M

−
2 , L

′
2).

Example 16. Consider again the state (\), the state (\+), the state (\	), the

state (\	+), and the substitution ρ = {K 7→ exp(X,n(a, r1)), r′′ 7→ r2}. It is easy

to check that ρ(\) � (\	) and ρ(\+) � (\	+), whereas in Example 15, we had

ρ(\) 99K (\	), ρ(\) 99K (\	+), ρ(\+) 99K (\	), and ρ(\+) 99K (\	+). Indeed, the

relation � has approximated the relation y, where we have only ρ(\) y (\	)

and ρ(\+) y (\	+).

Relation � tries to approximate y better than 99K, but it fails, since it
is an under-approximation, as shown by the following example, rather than an
over-approximation, which is necessary for completeness.

Example 17. With one backwards narrowing step from the state (\	+), we get

the following state where message exp(X,n(a, r1)) is learned, e.g. by extracting
it from a longer message (Y ; exp(X,n(a, r1))):

[ (Y ; exp(X,n(a, r1)))
− | exp(X,n(a, r1))+ ]&

[ nil | exp(X,n(a, r1))−, e(exp(X,n(a, r1)), sec(a, r2)))−, sec(a, r2)+ ]&

:: r′ ::

[ (A;B;E′)−, (B;A; exp(g, n(B, r′)))+ | (e(exp(E′, n(B, r′)), sec(a, r2)))− ]&

:: r1, r2 ::

[ (a;B; exp(g, n(a, r1)))
+, (B; a;X)− | (e(exp(X,n(a, r1)), sec(a, r2)))+]&

(e(exp(E′, n(B, r′)), sec(a, r2))∈I, exp(X,n(a, r1))∈I,
(e(exp(X,n(a, r1)), sec(a, r2)))/∈I, sec(a, r′′)/∈I) &

((exp(X,n(a, r1))
+,

e(exp(X,n(a, r1)), sec(a, r2))
+,

resuscitated(exp(X,n(a, r1))),

exp(X,n(a, r1))
−,

e(exp(X,n(a, r1)), sec(a, r2))
−,

sec(a, r2)
+,

e(exp(E′, n(b, r′)), sec(a, r2))
−)

(γ)

39



We have that \+ 6� γ because γ contains one more action in the message ex-

change sequence than \+ does, namely exp(X,n(a, r1))+. However, \+ I0 γ,

since \+ has only two challenges in the intruder knowledge: e(exp(E′, n(B, r′)),

sec(a, r2))∈I and exp(X,n(a, r1))∈I, and so the transition subsumption is ap-
plied, discarding state γ as unreachable whereas it should not be discarded.

We cannot prove completeness of reachability but we can prove soundness
of the relation �.

Lemma 6. Given a topmost rewrite theory RP = (ΣP , EP , R̃P) representing
protocol P and two non-initial states St1, St2, if St1 � St2, then St1 y St2.

Proof. Immediate by the fact that St1 � St2 implies there is a substitution
ρ such that ρ(St1) has a term ghost(m) and St2 has a term resuscitated(m), and
the exchange sequence of both states is identical except the message
resuscitated(m). 2

We need to go even further and restrict � to obtain a closer characteri-
zation of y, namely a new relation �+. Relation St1 � St2 takes into ac-
count only whether St2 is a resuscitated version of St1, but does not consider
what happens beyond the state that produced the instantiation that reacti-
vated the ghost state. That is, descendants of the state that produced the
ghost state that are instantiations of descendants St1. Intuitively, in the fol-
lowing definition below, we compare the exchange sequences of the two states
to see whether the exchange sequence of the first is (L1, L2,M

−
1 , L3) and it

has a ghost expression ghost(M1), whereas the exchange sequence of the second
is (L1,M

+
1 , L2, resuscitated(M1),M−1 , L3). Indeed, a recursive definition can

be given here that becomes extremely useful when several resuscitations have
happened in a concrete state.

Definition 17. Given a topmost rewrite theory RP = (ΣP , EP , R̃P) represent-
ing protocol P and two non-initial states St1, St2, we say that St2 is a resus-
citated version of St1, written S1 �+ St2, if either S1 � St2 or there are
messages M1 and M2, a substitution ρ, and sequences L′1, L

′′
1 such that:

1. state St1 has a ghost of the form ghost(M1),

2. the exchange sequence of state St1 is of the form

(L1, L2,M
−
1 , L3)

3. the exchange sequence of state St2 is of the form

(L′1,M
+
2 , L

′
2, resuscitated(M2),M−2 , L

′
3)

4. ρ(L2,M
−
1 , L3) =EP (L′2,M

−
2 , L

′
3)

5. and either

(a) there is a subsequence L′′′1 of L′1 such that ρ(L1) =Ep
(L′′′1 ) or
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(b) St′1 �
+ St′2 where St′1 is St1 without the ghost(M1) expression and

St′2 is St2 with the shorter exchange sequence (L′1, L
′
2,M

−
2 , L

′
3).

The following result establishes that �+ is a better approximation of y
than 99K.

Lemma 7. Given a topmost rewrite theory RP = (ΣP , EP , R̃P) representing
protocol P and two non-initial states St1, St2, if St1 y St2, then St1 �+ St2.

Proof. If St1 y St2, then state St1 has at least one ghost expression of the
form ghost(M1) for a message M1, the exchange sequence of state St1 is of the
form (L1,M

−
1 , L2) for two message sequences L1 and L2, the exchange sequence

of state St2 is of the form (L′1, resuscitated(M2),M−2 , L
′
2) for a message M2

and two message sequences L′1 and L′2, and there is a substitution ρ such that
ρ(M−1 , L2) =EP (M−2 , L

′
2). Now, we prove the result by induction on the number

of ghost expressions in St1.
If there is only one ghost expression in St1, then we consider whether L1

and L′1 match or not. If there is a substitution σ1 such that σ1(L1) =EP L′1,
then we are done, since (σ1(L1), ρ(M1)−, ρ(L2)) =EP (L′1,M

−
2 , L

′
2) and this

implies St1 � St2. Otherwise, L′1 contains at least one action M+
2 that does

not appear in L1 which could never be done from St1 because ρ(M1) appeared
in St1 as a ghost expression instead of an expression ρ(M1)∈I. That is, L′1 is of
the form (L′1,1,M

+
2 , L

′
1,2) for message sequences L′1,1 and L′1,2, i.e., the message

sequence of St2 is of the form (L′1,1,M
+
2 , L

′
1,2, resuscitated(M2),M−2 , L

′
2), and

L1 is of the form (L1,1, L1,2) for message sequences L1,1, L1,2, i.e., the message
sequence of St1 is of the form (L1,1, L1,2, ρ(M1)−, ρ(L2)). Then, there is a
substitution σ2 such that σ2(L1,2) =EP L

′
1,2, since L1,2 and L′1,2 correspond to

actions related to M−1 and not related to M+
2 . Furthermore, since St1 �+ St2,

there is a subsequence of L′1,1 containing all the elements of σ2(L1,1), so that
the remaining elements of L′1,1, which are not contained in σ2(L1,1), are related

to M+
2 . This concludes the case for one ghost expression.

If there are more than one ghost expression in St1, then there is no subse-
quence of L′1,1 containing all the elements of L1,1 in the previous case because
there is more than one resuscitation between St1 and St2. In this case, we
remove all the material from St1 and St2 connected to the ghost term M2

(and ρ(M1)) obtaining terms St′1 and St′2 and, since St1 y St2, we have that
St′1 y St′2 because only the message exchange sequence is altered and, by in-
duction hypothesis, St′1 �

+ St′2 concluding that St1 �+ St2. 2

Now, we can provide a better transition subsumption relation.

Proposition 7 (P-subsumption relation III). Given a topmost rewrite the-

ory RP = (ΣP , EP , R̃P) representing protocol P, let nIII be a partial order on
states such that St nIII St

′ implies that StI0St
′ and St 66�+ St′. Then the

partial order reduction imposed by nIII preserves completeness of reachability
as defined in Theorem 3.
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Protocol none All optimizations %
Needham-Shroeder Public Key 5 19 142 727 4904 4 6 4 2 1 99
Needham-Shroeder Lowe’s fix 5 19 142 727 4902 4 7 6 2 - 81

SecReT06 1 6 22 111 312 2 3 2 - - 98
SecReT07 8 24 212 902 8047 5 1 1 1 - 99

Diffie-Hellman 3 24 72 316 1884 4 6 10 9 12 98
Homo-hpc 1 8 22 100 533 2 2 1 1 1 98
Homo-NSL 4 15 92 418 2409 4 9 10 9 11 98

Amended Needham-Shroeder 1 8 24 121 781 2 4 9 20 41 91
Carlsen’s Secret Key Initiator Protocol 5 19 145 764 5931 4 7 10 18 12 99

Denning-Sacco 6 16 65 357 1628 1 2 3 5 7 99
ISO-5-Pass Authentication 5 19 145 766 5982 5 5 13 19 20 99

Kao Chow Repeated Authentication 5 19 144 795 6059 4 7 9 11 5 99
Kao Chow Repeated Authentication-Handshake Key 1 7 22 99 555 2 2 6 12 18 94

Kao Chow Repeated Authentication-Ticket 5 19 139 715 5382 8 35 33 27 118 96
NSL-ECB-homo 5 18 116 532 3006 3 8 15 16 10 98

NSL-XOR-modified 1 10 42 442 6184 4 5 5 5 2 99
Otway-Rees 1 7 18 55 237 2 6 14 34 84 55

Wide Mouthed Frog 6 31 226 1492 11788 6 13 27 44 65 98
Woo-Lam 1 8 24 115 936 3 5 6 5 6 97

Table 1: Number of new states produced in each of 1,2,3,4 and 5 backwards narrowing steps
comparing each optimization of Sections 5.1,5.2,6.2,6.3, and 7.

8. Experimental Evaluation

In order to measure the contribution that the various optimization tech-
niques make to improve the Maude-NPA protocol analysis, we ran Maude-NPA
on several example protocols, with no reduction method in place, with only
one reduction method in place, and with all the reduction methods in place.
Note that Maude-NPA was never intended to run without these optimizations.
Maude-NPA will never terminate unless at least the grammars or the subsump-
tion relation are used and, thus, we also provide information on whether or not
we were able to achieve termination, that is, if we reached a depth at which all
states are initial. In our experiments, we use the results for the case with no
optimizations as a baseline that allows us to compare the different optimization
techniques with each other.

In Table 1 we summarize the experimental evaluation of the impact of the
different state space reduction techniques for these example protocols searching
up to depth 5. We also provide tables for each single reduction method. Table 3
analyzes the most powerful reduction method, grammars, of Section 5.1. Table 4
shows the comparison of the reduction method of Section 5.2. Table 5 analyzes
the transition subsumption of Section 6.3, which is one of the most powerful
reduction methods. And Table 6 analyzes the also powerful super-lazy intruder
reduction method of Section 7.

The experiments have been performed on a Linux machine with an Intel
Xeon processor using Maude 2.7. All protocol specifications are included in the
official Maude-NPA website6. Note that the label “-” means that the reachabil-
ity analysis finished some levels before.

6Available at http://maude.cs.uiuc.edu/tools/Maude-NPA.
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Protocol Is State Space Finite?
Needham-Shroeder Public Key Yes, by Grammars and Subsumption
Needham-Shroeder Lowe’s fix Yes, by Grammars and Subsumption

SecReT06 Yes, by Subsumption or (Grammars and Lazy)
SecReT07 Yes, by Subsumption and Lazy

Diffie-Hellman Yes, by Grammars and Subsumption
Homo-hpc Yes, by Grammars and Subsumption
Homo-NSL Yes, by Grammars, Subsumption and Lazy

Amended Needham-Shroeder No and no attack is found
Carlsen’s Secret Key Initiator Protocol No and no attack is found

Denning-Sacco Yes, by Grammars, Subsumption and Lazy
ISO-5-Pass Authentication No and no attack is found

Kao Chow Repeated Authentication Yes, Grammars, Subsumption and Lazy
Kao Chow Repeated Authentication-Handshake Key No and no attack is found

Kao Chow Repeated Authentication-Ticket Yes, by Grammars, Subsumption and Lazy
NSL-ECB-homo Yes, by Grammars and Subsumption

NSL-XOR-modified Yes, by Grammars, Subsumption and Lazy
Otway-Rees No, but an authentication attack is found

Wide Mouthed Frog No, but a secrecy attack is found
Woo-Lam Yes, Grammars and Subsumption

Table 2: Finite state space achieved by reduction techniques

The overall percentage of state-space reduction for each protocol and the
average of nearly 95% suggest that our combined techniques are remarkably
effective (the reduced number of states is almost only 5% or less of the original
number of states).

Table 2 shows whether the protocols have a finite state space or not. We
show the different techniques yielding a finite space for each protocol, when it is
the case. The use of grammars and the transition subsumption are clearly the
most useful techniques in general. Note that grammars are insufficient to achieve
termination for the SecReT07 example, while subsumption and the super lazy
intruder are essential in this case.

9. Comparison with Related Work

As we have remarked earlier, optimization techniques are not always well
documented in the literature. However, even so, there are a number of excep-
tions in which particular techniques have been well documented. In this section
we describe some of these techniques and show how the Maude-NPA techniques
are related to them.

The grammar generation technique, with is taken from the one used in NPA
with very little change, can be thought of as implementing something similar
to a resolution technique, in which backwards narrowing steps are applied until
saturation is achieved. This is probably closest in spirit to the use of resolution to
generate a search space, for example, in ProVerif [5]or SPASS [33]. In these tools
actions of principals are represented as Horn clauses, and a form of resolution
(resolution with free selection in ProVerif and ordered resolution in SPASS),
until saturation is achieved. The application of the technique, of course, is very
different, since ProVerif and SPASS use resolution to generate a search space,
while in the generation of grammars the goal is to give a finite description of
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Protocol none Grammars %
Needham-Shroeder Public Key 5 19 142 727 4904 4 12 49 185 769 82
Needham-Shroeder Lowe’s fix 5 19 142 727 4902 4 12 50 190 804 81

SecReT06 1 6 22 111 312 1 2 6 15 36 86
SecReT07 8 24 212 902 8047 7 21 181 747 6713 16

Diffie-Hellman 3 24 72 316 1884 3 12 30 80 233 84
Homo-hpc 1 8 22 100 533 1 2 4 10 23 93
Homo-NSL 4 15 92 418 2409 4 14 78 336 1671 28

Amended Needham-Shroeder 1 8 24 121 781 1 3 7 24 96 85
Carlsen’s Secret Key Initiator Protocol 5 19 145 764 5931 4 13 62 265 1322 75

Denning-Sacco 6 16 65 357 1628 2 4 10 27 54 95
ISO-5-Pass Authentication 5 19 145 766 5982 4 14 73 322 1562 71

Kao Chow Repeated Authentication 5 19 144 795 6059 4 13 63 271 1336 75
Kao Chow Repeated Authentication-Handshake Key 1 7 22 99 555 1 5 13 40 152 69

Kao Chow Repeated Authentication-Ticket 5 19 139 715 5382 5 19 139 715 5382 0
NSL-ECB-homo 5 18 116 532 3006 2 6 21 75 295 89

NSL-XOR-modified 1 10 42 442 6184 1 8 34 353 5193 16
Otway-Rees 1 7 18 55 237 1 3 6 13 44 78

Wide Mouthed Frog 6 31 226 1492 11788 4 18 93 458 2357 78
Woo-Lam 1 8 24 115 936 1 3 7 23 135 84

Table 3: Number of new states produced in each of 1,2,3,4 and 5 backwards narrowing steps
with and without the optimization of Section 5.1.

a set of words not learnable by the intruder. It is perhaps closer in intent to
a heuristic used in the Scyther tool [7, 8] to recognize cyclical dependencies
among terms sent in messages, although Scyther uses a technique that is closer
to Maude-NPA’s “intruder-learns-only-once” rule.

The partial order reduction giving priority to input messages is an old tech-
nique, used, as we have remarked, by NPA, and a similar reduction, giving
priority to output messages, is used by Shmatikov and Stern [30] for forward
search. It is also mentioned as a general technique in [2].

The use of heuristics to identify unreachable states is probably the least well
documented of optimization techniques. However we note that [8] describes a
mechanism used in the Scyther tool for identifying the case in which a nonce is
used before it has been generated. NPA also had a mechanism for doing this,
which was very similar to the one used in Maude-NPA. The main difference
with NPA is that our use of the strand space model often allows us to identify
these anomalous states before the event in question has actually been produced
in the narrowing sequence.

Our super-lazy intruder, as the name suggests, has much in common with
the concept of the lazy intruder used in constraint-based analysis. The lazy
intruder, first proposed by Huima7[22], and later expanded upon by a num-
ber of others, for example [1, 27, 4, 6], is a technique used in connection with
constraint-based protocol analysis. It arises from the fact that the actual value
of a certain part of a message may be irrelevant to the receiver, for example,
when the receiver will simply pass it on without interpreting it. Determining all
the ways an intruder could construct a message would lead to a needless state
space explosion. Thus, instead the decision is postponed by replacing the “ir-

7although not under that name, which was coined by Basin et al. in [4]
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Protocol none Inconsistency %
Needham-Shroeder Public Key 5 19 142 727 4904 5 18 96 318 1663 63
Needham-Shroeder Lowe’s fix 5 19 142 727 4902 5 18 97 318 1664 63

SecReT06 1 6 22 111 312 1 6 22 107 290 5
SecReT07 8 24 212 902 8047 8 22 178 697 6210 22

Diffie-Hellman 3 24 72 316 1884 3 21 27 132 342 77
Homo-hpc 1 8 22 100 533 1 8 22 91 427 17
Homo-NSL 4 15 92 418 2409 4 14 60 190 883 60

Amended Needham-Shroeder 1 8 24 121 781 1 7 8 59 162 74
Carlsen’s Secret Key Initiator Protocol 5 19 145 764 5931 5 18 100 348 2182 61

Denning-Sacco 6 16 65 357 1628 5 5 29 74 439 73
ISO-5-Pass Authentication 5 19 145 766 5982 5 18 100 349 2206 61

Kao Chow Repeated Authentication 5 19 144 795 6059 5 18 99 362 2186 61
Kao Chow Repeated Authentication-Handshake Key 1 7 22 99 555 1 7 22 93 476 12

Kao Chow Repeated Authentication-Ticket 5 19 139 715 5382 5 19 135 677 4589 13
NSL-ECB-homo 5 18 116 532 3006 5 17 90 281 1291 54

NSL-XOR-modified 1 10 42 442 6184 1 7 10 143 1422 76
Otway-Rees 1 7 18 55 237 1 6 6 33 65 65

Wide Mouthed Frog 6 31 226 1492 11788 6 29 189 1183 8591 26
Woo-Lam 1 8 24 115 936 1 8 24 108 812 12

Table 4: Number of new states produced in each of 1,2,3,4 and 5 backwards narrowing steps
with and without the optimization of Section 5.2.

relevant” part of the message with a variable and recording, as a constraint, the
information on which knowledge the intruder can used to generate the message.
Because the relevant information is carried along with the variable, the solving
of the constraint can be delayed until more information is known about how the
lazy term will be used by a recipient of a message containing it.

For the super-lazy intruder, we also delay finding how to reach certain
“super-lazy” terms in the intruder knowledge about which little is known, until
one or more variables in the term are further instantiated. However, our search
method differs from that done in constraint-based systems in that the evaluation
of a constraint can take place at any point in a search, while in Maude-NPA a
search for a term must be executed at the point in the search tree corresponding
to the time the term was learned by the intruder. This means that if a search
for a term is delayed until it has been further instantiated, the state must be
“rolled back” to the point in the search tree at which the term was learned in
the intruder.

The super-lazy intruder technique was also used by NPA, but the way in
which ghost states were implemented and resuscitated was considerably differ-
ent. First of all, ghost states were not automatically resuscitated when super-
lazy variables were instantiated. It was left to the user to determine whether or
not a particular attack path appeared to be valid. If not, the user could elect
to resuscitate ghosts in the states leading to the path and redo the analysis.
Resuscitating ghost states only at the user’s discretion made for a smaller state
space, but also made the tool more difficult to use.

Secondly, unlike Maude-NPA, in which ghost terms are included in the sub-
sumption partial order computation, the partial order in NPA was computed
on states without their ghosts. That meant, that when a state St was replaced
by a resuscitated ghost, any state St′ that St dominated in the subsumption
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Protocol none Subsumption %
Needham-Shroeder Public Key 5 19 142 727 4904 5 15 61 107 237 92
Needham-Shroeder Lowe’s fix 5 19 142 727 4902 5 15 61 107 237 92

SecReT06 1 6 22 111 312 1 6 15 31 40 79
SecReT07 8 24 212 902 8047 6 15 61 165 506 91

Diffie-Hellman 3 24 72 316 1884 2 14 26 102 288 81
Homo-hpc 1 8 22 100 533 1 8 15 72 174 59
Homo-NSL 4 15 92 418 2409 4 12 41 68 181 89

Amended Needham-Shroeder 1 8 24 121 781 1 8 15 70 203 68
Carlsen’s Secret Key Initiator Protocol 5 19 145 764 5931 5 15 69 192 825 83

Denning-Sacco 6 16 65 357 1628 6 11 44 102 393 73
ISO-5-Pass Authentication 5 19 145 766 5982 5 15 69 194 837 83

Kao Chow Repeated Authentication 5 19 144 795 6059 5 15 68 194 792 84
Kao Chow Repeated Authentication-Handshake Key 1 7 22 99 555 1 7 13 53 144 68

Kao Chow Repeated Authentication-Ticket 5 19 139 715 5382 5 15 69 204 858 81
NSL-ECB-homo 5 18 116 532 3006 5 14 55 129 410 83

NSL-XOR-modified 1 10 42 442 6184 1 8 16 71 152 96
Otway-Rees 1 7 18 55 237 1 7 12 43 104 47

Wide Mouthed Frog 6 31 226 1492 11788 6 20 76 212 721 92
Woo-Lam 1 8 24 115 936 1 8 15 67 246 68

Table 5: Number of new states produced in each of 1,2,3,4 and 5 backwards narrowing steps
with and without the optimization of Section 6.3.

partial order would have to be resuscitated too, since St′ might not be domi-
nated by the resuscitated ghost. Since resuscitating ghost states was done only
rarely in NPA, this was an acceptable cost. But in Maude-NPA, where ghosts
are constantly being resuscitated, a more conservative approach is desirable.

Finally, subsumption partial order reduction is probably closest to a partial
order reduction used in the OFMC model checker in connection with the lazy in-
truder technique. This technique, known as constraint differentiation [28] works
by identifying overlaps between the constraints that arise in the application of
the lazy intruder technique. If the constraints belonging to two different states
overlap, then the constraints in the overlap are ultimately applied to only one of
the states. The subsumption partial order can be thought of as taking a similar
approach, in which substitutions are being compared instead of constraints, and
instead of identifying overlaps, one identifies cases in which one state subsumes
another, which for constraint differentiation would correspond to the case in
which one set of constraints contains another. This use of differentiation in-
stead of subsumption may be an interesting avenue to explore for future work
in Maude-NPA optimization.

10. Concluding Remarks

The Maude-NPA can analyze the security of cryptographic protocols, mod-
ulo given algebraic properties of the protocol’s cryptographic functions in exe-
cutions with an unbounded number of sessions and with no approximations or
data abstractions. In this full generality, protocol security properties are well-
known to be undecidable. The Maude-NPA uses backwards narrowing-based
search from a symbolic description of a set of attack states by means of patterns
to try to reach an initial state of the protocol. If an attack state is reachable
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Protocol none Super-lazy Intruder %
Needham-Shroeder Public Key 5 19 142 727 4904 5 19 142 726 4822 1
Needham-Shroeder Lowe’s fix 5 19 142 727 4902 5 19 142 726 4820 1

SecReT06 1 6 22 111 312 1 6 22 111 306 1
SecReT07 8 24 212 902 8047 8 22 62 199 648 89

Diffie-Hellman 3 24 72 316 1884 3 24 72 297 1307 25
Homo-hpc 1 8 22 100 533 1 8 22 100 533 0
Homo-NSL 4 15 92 418 2409 4 15 92 417 2335 2

Amended Needham-Shroeder 1 8 24 121 781 1 8 24 95 573 25
Carlsen’s Secret Key Initiator Protocol 5 19 145 764 5931 5 15 59 266 1291 76

Denning-Sacco 6 16 65 357 1628 6 16 63 237 1014 35
ISO-5-Pass Authentication 5 19 145 766 5982 5 15 59 268 1307 76

Kao Chow Repeated Authentication 5 19 144 795 6059 5 15 59 269 1321 76
Kao Chow Repeated Authentication-Handshake Key 1 7 22 99 555 1 1 1 6 13 96

Kao Chow Repeated Authentication-Ticket 5 19 139 715 5382 5 15 57 243 1115 77
NSL-ECB-homo 5 18 116 532 3006 5 18 116 531 2896 3

NSL-XOR-modified 1 10 42 442 6184 1 10 42 311 2077 63
Otway-Rees 1 7 18 55 237 1 7 18 49 193 15

Wide Mouthed Frog 6 31 226 1492 11788 6 23 113 663 3872 65
Woo-Lam 1 8 24 115 936 1 8 24 90 331 57

Table 6: Number of new states produced in each of 1,2,3,4, and 5 backwards narrowing steps
with and without the optimization of Section 7.

from an initial state, the Maude-NPA’s complete narrowing methods are guar-
anteed to prove it. But if the protocol is secure, the backwards search may be
infinite and never terminate.

It is therefore very important, both for efficiency, and to achieve full verifi-
cation whenever possible when a protocol is secure, to use state-space reduction
techniques that: (i) can drastically cut down the number of states to be ex-
plored; and (ii) have in practice a good chance to make the, generally infinite,
search space finite without compromising the completeness of the analysis; that
is, so that if a protocol is indeed secure, failure to find an attack in such a fi-
nite state space guarantees the protocol’s security for that attack relative to the
assumptions about the intruder actions and the algebraic properties. We have
presented a number of state-space reduction techniques used in combination by
the Maude-NPA for exactly these purposes. We have given precise characteri-
zations of theses techniques and have shown that they preserve soundness and
completeness, so that: 1) any attact that is found is valid, and 2) if no attack is
found and the state space is finite, full verification of the given security property
is achieved.

Using several representative examples we have also given an experimental
evaluation of these techniques. Our experiments support the conclusion that,
when used in combination, these techniques: (i) typically provide drastic state
space reductions, removing as much as 95 percent of the states that would
otherwise by generated; and (ii) they can often yield a finite state space, so
that whether the desired security property holds or not can in fact be decided
automatically, in spite of the general undecidability of such problems.
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