Document downloaded from:

http://hdl.handle.net/10251/49446

This paper must be cited as:

Garcia Moll4, VM.; Vidal Macia, AM.; Gonzélez Salvador, A.; Roger Varea, S. (2014).
Improved Maximum Likelihood Detection through Sphere Decoding combined with Box
Optimization. Signal Processing. 98:284-294. doi:10.1016/j.sigpro.2013.11.041.

The final publication is available at

http://dx.doi.org/10.1016/j.sigpro.2013.11.041

C ight
opyng Elsevier

Improved Maximum Likelihood Detection through
Sphere Decoding combined with Box Optimization

Victor M. Garcia-Molla®*, Antonio M. Vidal?®, Alberto Gonzalez”!, Sandra
Roger”

%Department of Information Systems and Computing, Universitat Politécnica de Valéncia,
Camino de Vera s/n 46022 Valencia SPAIN.
b Institute of Telecommunications and Multimedia Applications, Universitat Politécnica de
Valéncia, Camino de Vera s/n 46022 Valencia SPAIN.

Abstract

Sphere Decoding is a popular Maximum Likelihood algorithm that can be used
to detect signals coming from multiple-input, multiple-output digital commu-
nication systems. It is well known that the complexity required to detect each
signal with the Sphere Decoding algorithm may become unacceptable, espe-
cially for low signal-to—noise ratios. In this paper, we describe an auxiliary
technique that drastically decreases the computation required to decode a sig-
nal. This technique was proposed by Stojnic, Hassibi and Vikalo in 2008, and
is based on using continuous box-bounded minimization in combination with
Sphere Decoding. Their implementation is, however, not competitive due to
the box minimization algorithm selected. In this paper we prove that by ju-
diciously selecting of the box minimization algorithm and tailoring it to the
Sphere Decoding environment, the computational complexity of the resulting
algorithm for low signal-to-noise ratios is better (by orders of magnitude) than
standard Sphere Decoding implementations.

Keywords: MIMO communication systems, Sphere decoding, Box
minimization

1. Introduction

This paper addresses the solution of the discrete linear least squares problem

sopt = argmin [H-s—y|” (1)
s G’DNL CRNL

*Corresponding author. Phone Number +34 963879723
Email addresses: vmgarcia@dsic.upv.es (Victor M. Garcia-Molla),
avidal@dsic.upv.es (Antonio M. Vidal), agonzal@dcom.upv.es (Alberto Gonzalez),
sanrova@iteam.upv.es (Sandra Roger)
'EURASIP member

April 29, 2015

where H € R™"™ s ¢ R,y € R”,n > m, and D C R. D is a finite constellation
or alphabet, with cardinality L.

This problem has applications in cryptography [1], global positioning systems
[2], etc. However, its main application is the detection of signals that are sent
through a multiple-input multiple-output (MIMO) communication system. In
this case, H is called the channel matrix, s is the sent signal, y is the received
signal, and s, is the exact solution to this problem; s, is called the Maximum
Likelihood (ML) solution.

Signal detection algorithms that can solve (1) exactly (i.e., obtain the ML so-
lution) are known as ML algorithms. Considering only the accuracy of the signal
detected, these are optimal algorithms since they compute the exact solution of
the problem. However, all the algorithms in this category are computationally
very expensive, especially in the low signal-to-noise ratio (SNR) regime.

There are many other detection algorithms (such as Zero Forcing (ZF) or
MMSE [3]) that are faster, but the solution obtained might not be the ML
solution; therefore these algorithms are known as suboptimal. Among the ML
algorithms, the Sphere Decoding (SD) family of algorithms is the most popular
[4,5,6,7,8,9]. These algorithms perform a search in a tree of partial solutions;
the size of the tree becomes the critical factor for the computational complexity.
Many research papers have been written about this subject, describing all sorts
of optimizations to enhance SD algorithms: geometrically based [10], increasing
the radius [11], acceleration through ordering the components of the signal [12,
13], and many more. One of the best known versions of the algorithm, and
one with a better performance, is the one that uses adaptive radius search and
Schnorr-Euchner ordering of the elements of the constellation [6, 7].

One technique to reduce the size of the SD tree, which was described in
[14], is based on computing lower bounds for some subproblems that arise dur-
ing the search; several possible bounds were proposed and compared. One of
these bounds was computed using quadratic minimization with box restrictions,
also called box minimization in several references (polytope relaxation in [14]).
However, the overall computational complexity of that technique was described
as being not competitive (compared to the other techniques described in [14]).
Similar discrete optimization techniques have been used also to improve the
performance of non-ML methods, see for example [15, 16].

This paper, presents our findings after further research in the use of box
minimization combined with SD. We have studied the existing box minimization
algorithms in depth, and the possibilities to adapt them for joint use with SD.
As a result we have adapted a box minimization algorithm that was proposed
in [17]. By using the special characteristics of the problem, the cost of each
minimization has been reduced to a small fraction of flops. Furthermore the
number of nodes of the tree is greatly reduced (as was already discovered in
[14]). The overall algorithm has been tested in terms of the number of nodes
visited, the execution time and flops. Under any of these criteria, the overall
complexity reduction for low SNR is very large, compared to Schnorr-Euchner
Sphere Decoding (SD-SE).

The paper is organized as follows: Section 2 describes the problem in hand

and the box optimization technique. Section 3 presents the relation between
the problem of box minimization and the Sphere Decoding algorithm. Section
4 discusses the chosen box optimization algorithm, and its adaptation to work
with the SD algorithm. Then, Section 5 shows the complete detection algorithm
proposed, and in Section 6 numerical results are provided to assess our algorithm
compared with other SD algorithms.

2. Problem description

The detection of the signal sent through a MIMO digital system is obtained
solving problem (1)(either exactly with a ML method, or approximately with a
suboptimal method).

This detection problem is usually described in complex-valued form (i.e.,
HeCvseCry e C",D c C). However, the procedure to transform
problem (1) from complex-valued to real-valued form is easy and well known.
On the other hand, some of the algorithms described in this paper require
a real-valued formulation. Therefore, we will use the real-valued formulation
throughout this paper.

The simplest suboptimal algorithm to solve (1) starts by removing the con-
straint over the components of s (that they must belong to D a finite subset of
R) and solving the continuous least squares problem:

§=argmin|H s —y|? . 2)
seRm

Then, all the components of § are rounded to the nearest element of the con-
stellation D (this process is called quantization). The vector obtained after this
process is 84, known as the Zero-Forcing estimator. This estimator may be a
good approximation to s,,; when the SNR is high, but it is known to give bad
results if the noise increases. The computation of the § vector requires the QR
decomposition of the channel matrix, premultiplication of the received signal y
by the matrix Q7 and solving a triangular system of equations. The vectors §
and §, will play an important role in the algorithms, described further on.

This paper is concerned mainly with the SD algorithm; which is a Branch—
and-Bound algorithm that is adapted to the MIMO Detection problem. There
are many versions of this algorithm. To apply this algorithm, it is necessary to
transform problem (1) into an equivalent problem using the QR decomposition
of the channel matrix:

Sopt = argmin |[R-s—z|? , (3)
s€D™CR™
where H = Q - R, R is upper triangular and z = QT - y.

The solution is obtained by traversing a tree of partial solutions, where the
maximum depth of the tree is m and each node can have at most L descendants.
A full search of the tree would generate all the possible signals, which would be
very inefficient.

The number of solutions to be visited in the tree can be reduced by selecting
a radius r so that the solutions that do not fulfill the condition

IR s —z||” <+ (4)

are discarded.

Expression (4) is used in the SD algorithm to detect components of the signal
s one by one, starting with the last one, taking advantage of the structure of R.
For the first level of the tree (level m), this is done by rewriting R, z, and s as
follows:

_ Rl:mfl,l:mfl Rl:mfl,m _ Z1:m—1 _ S1:m—1
R — 0 Rm’m 7Z - Zom, 7S - Sm Y (5)
where Rynm € RV, Rigno1,1m—1 € R™7H71 and Rip—1,m € R™7HL
Using this partition of the problem, inequality (4) is rewritten as:

HR ©S — Z||2 = HRl:mfl,lszl *S1:m—1t Rl:mfl,m *Sm — Zl:mle2 +
2 (6)
||Rm,m *Sm — Zm” S 72 .

From here, the pruning condition used in standard SD algorithms is ob-
tained:
2 2 2 2
IR s—2z|" <7r*= |[Rum Sm —2zZml| <7°. (7)
Only the values of s,, € D verifying (7) are feasible values, so only these
values become nodes to be expanded.
In the level k of the tree (1 < k < m), expression (4) is rewritten as:

IR-s—z|* = IR1:k—1,1:5—1 - S1:p—1 + Rl:kz—l,k:m Shim — Z1h—1|)° + (8)
||Rk::m,k::m *Skim — zk:m” S 7“2 .

Taking into account that the components sj1.,,, have already been assigned
values, the general pruning condition for the component sy, is:

HRk:m,k':m *Skim — Zk:m||2 < ’/‘2 . (9)

The selection of the initial radius r is an interesting problem. If the initial
radius is too small, then there may be no signal verifying (4). If the radius is
too large, then the number of signals verifying (4) may be very high, and the
cost of the detection will increase. The radius should be as small as possible,
but should also guarantee that there is at least one signal that verifies (4). The
first solution that an adaptive SD-SE decoder should find is the zero—forcing
decision—feedback—equalization (ZF-DFE) estimator or Babai point [9]. There-
fore, the effective radius for an SD—SE decoder would be the radius computed
using the ZF-DFE estimator. Another standard technique is to compute an
initial radius using the ZF estimator §,:

rep = H-8 -yl . (10)

The radius estimate computed withe the ZF-DFE is typically better than
the computed with the ZF estimator. However, it shall be shown later that the
ZF estimator is more relevant for the techniques described in this paper.

2.1. Distance of § to the constellation space

Given a finite, m-dimensional constellation D" we say that a vector s € R™
is in the constellation if

min (D) <s; <max(D);1 <i<m. (11)

Obviously, if any (or several) components of s are out of the interval [min (D) ,
max (D)] then we say that the vector is out of the constellation.

To define the distance of a vector s to the constellation, we previously define
the vector dist(s, D) as an R™—vector whose i—th component is defined as

0 if min(D) <s; < max(D)
dist(s,D); = ¢ s; —max(D) if s; > max(D) . (12)
min(D) —s; if s; < min(D)

Then, the distance of the vector s to the constellation can be simply defined
as the Euclidean norm of the vector dist(s, D).

It is well known that, given a channel matrix H and a received signal y,
the efficiency of the SD algorithm in decoding the signal depends mainly on
two factors: the noise affecting the received signal, and the conditioning of the
channel matrix. However, in a given problem, it may be difficult to determine
whether both factors are present, or just one of them. We have observed that
the distance of the § vector (the solution of the unconstrained least squares
problem (2)) to the constellation space usually gives more information about the
performance of the SD. If the § vector is in the constellation, the SD algorithm
usually obtains the solution by expanding few nodes. On the other hand, if the
§ vector is out of the constellation, then the number of nodes explored by the SD
algorithm will be larger, and the number of nodes will grow (even exponentially)
with the distance of § to the constellation.

The cost of computing § is quite small in a SD environment, since two
of the operations needed should have already been carried out, i.e. the QR
decomposition and the premultiplication of the received signal y by Q.

2.2. Box minimization as an auxiliary technique

The main proposal in this work is to use continuous constrained minimization
techniques to help SD algorithm, in the cases where the § vector is out of the
constellation. The auxiliary problem to be solved is:

st = argmin |[H-s — y||*, min (D) < s; < max (D) . (13)
seR™
Compared to problem (1), this is a continuous problem: the components of
the solution vector do not need to belong to D; the only restriction is that the
search zone be bounded.
The example in Figure 1 illustrates the situation. A simple 2 x 2 real-valued
MIMO system, with constellation D = {—3/2,—1/2,1/2,3/2} is considered.
The channel matrix is a 2 x 2 random real matrix.

The possible sent signals are chosen from the set D?, depicted as blue circles
in subfigure 1a). The solution of the detection problem must be chosen from the
set of possible sent signals. Subfigure 1b) depicts the possible received signals
in absence of noise (i.e., the images of the possible sent signals) as black circles.
The lattice formed by the possible sent signals is deformed through the effect
of the channel matrix.

Due to the effect of noise, the received signal y will not coincide with any
of the images of the possible sent signals (the black circles). Under some cir-
cumstances (high noise, and/or bad conditioning of the channel matrix), the
estimator § (obtained by solving the continuous unconstrained least squares
problem (2)) may be out of the constellation, as in the situation portrayed in
subfigure 1a).

To obtain a more reliable estimator, it may be better to solve problem (13).
In the case of subfigure 1a), this amounts to solving the continuous least squares
problem (2), but considering the solution only in the box delimited by the dis-
continuous red line. In this case the box is [-3/2,3/2] x [—-3/2,3/2]. Therefore,
while § can be located anywhere, the estimator st is forced to remain in the
box.

It should be clear that, if § is in the constellation, then § = sr. Thus, the
computation of sr only makes sense if § is out of the constellation. Then, sr
will necessarily lie on the border of the box, and at least one of its components
must take either the value max (D) or min (D) (this is an important fact that
will be used in Section 4).

Since the bounds are fixed, this is usually described as a box minimization
problem. Problem (13) can be solved much faster than (1).

There are several possibilities for using problem (13) to enhance MIMO
Detection. A first proposal was described in [18], applied to the code-division
multiple access (CDMA) multiuser detection problem. Another possibility is to
quantize the estimator sr, giving the estimator srqy. This estimator has been
proposed in several papers [19, 20] as an independent suboptimal estimator for
low SNR detection since it performs quite well.

Another possibility proposed in [20] is the use of srq to compute an approx-
imation to the initial SD radius;

Tafopt = |[H - stq =y (14)

As reported in [20], in large noise situations this radius estimate is usually
more accurate than the standard radius estimate using the ZF estimator (10).
A similar technique is applied in [21], for the case where the constellation is
D = {—1,+1}. There, box minimization is combined with quantization in
several ways, obtaining good results. However, the technique proposed cannot
be applied to larger constellations.

Generally speaking, the solution of problem (13) is quite costly. However,
in a SD environment, the cost can be reduced using the special features of the
minimization problems that appear in the SD algorithm.

3. Combination of box minimization with SD

The way in which box minimization can be used to improve SD performance
was first proposed and described in [14]; the proposal was to obtain a bound
that is tighter than (9), by also using the remaining term in inequality (8),

IR1G:k—1,1:6—1 - S1:k—1 + Rik—1 kom - Skem — zi|” (15)

This can be done by obtaining a lower bound ¢ of this term, so inequality
(8) can be written as:

||Rk::m,k:m *Skim — zk:mH2 < 7’2 —C, (16)

which is a tighter pruning condition than (9). This should provide a reduc-
tion of the number of feasible values of s, and, consequently, in the number of
visited nodes.

To obtain bounds for (15), it is useful to consider that this norm is equivalent
to the one appearing in (4) but for a deflated MIMO detection problem where the
channel matrix is Ry.x—1,1:x—1, the received signal is z1.5—1 — Ri.k—1 k:m * Skim,
and the signal to be detected is s1.5_1.

In [14] several methods to compute lower bounds of (15) were proposed,
discussed and evaluated. The technique that gave the best results (in terms of
overall flop reduction) was based on the minimum singular value of the subma-
trix Ry.5—11:5—1. That proposal was also used and tested in [22].

One of the proposals in [14] was to use box minimization to compute a lower
bound of (15). As mentioned above, this can be done considering (15) as a
deflated MIMO detection problem. If the continuous least squares problem is
solved:

§" 1= argmin |Rig 1141 Sth-1+ Rik 1 kim - Skem — zir|” (17)

S1:p—1 ERF-1

the estimator §*~! is obtained, which is analogous to the estimator § computed
as in (2) but for the deflated problem. It must be noted that the problem (17) is
actually a standard triangular system of linear equations, whose solution §F~1
is computed exactly and fulfills:

[Rik—1,1:6-1 - &+ Rt hm * Skom — Z1e1 || = 0. (18)

If 851 is out of the constellation, then the estimator sr*~* (analogous to
st for the deflated problem) is computed solving the box minimization problem
for the deflated problem:

st = argmin |Rok 1061 S1k—1 + Rk 1 kom - Skom — Z1:k71||2
S1:k—1 (19)
min (D) <s; <max(D);1<i<k-—1.

Problem (19) is analogous to (13) and can also be solved using box mini-
mization techniques. The solution sv* 71 fulfills that, for all 8.1 € D*1:

2
ak—1
HRlzk—Ll:k—l - Sr + Rl:k:—l,k:m *Skim — Z1:k—1 H (2())
< Rak—1,1:6-1 - S1:k—1 + Ritk—1 ko - Skeom — Zrk—1]|” -

Hence, the proposal is to use the lower bound c:

2
ak—1
c= HRlzk—l,l:k—l St + Rick—1,km - Skim — Zl:k—l” (21)

in inequality (16).
Of course, if §*~! is in the constellation, §*~! = s“rk_l, and thus the bound
would be useless since, like in (18),

2
HRl:k—l,lzk—l St Rk 1 ko - Skem — Zl:k—lH =0. (22)

In this case, it would be better to use other bounding techniques, (such as
the technique based on the minimum singular value described in [14]) or, simply
not to use any additional bound, since the standard SD-SE algorithm performs
quite well in this case.

As shown in section 6, the bound (21) proposed in [14] obtains excellent
results in terms of visited nodes. However, in [14], this technique was discarded
because the reported overall complexity (in terms of flops and time) of the
algorithm was not competitive. In our view, there are two reasons why this
proposal was discarded in [14]: first, the box minimization was carried out using
a standard Matlab [23] routine (quadprog), which cannot take into account the
special characteristics of the detection problem and of the SD algorithm; and,
second, the constellation used for the tests was a simple constellation {—1,1}
with only two elements; as shall be seen in section 6, this technique is really
beneficial for larger constellations.

We will show in section 6 that this bound is indeed competitive, no matter
if it is examined in terms of visited nodes, computing times, or flops. In section
4 we will study how to tailor an specific box minimization algorithm to be used
with the sphere decoding algorithm.

4. Linear least squares problems with inequality constraints

There exist several algorithms for the solution of linear least squares prob-
lems with inequality constraints. These are usually common minimization meth-
ods (Maximum Descent, Newton’s method, Quasi-Newton’s methods, ...) adapted
to start from a feasible point (i.e., a point that verifies the inequality constraints,
or, in our problem, a point in the constellation) and where the minimization pro-
ceeds through “descent directions”. The length of the steps taken through the
descent directions is chosen to guarantee that the new point remain in the con-
stellation. In the following, we use standard minimization terminology, denoting
as feasible a point that satisfies the inequality constraints, or, equivalently, a
point that is in the constellation.

First, the special characteristics of box minimization combined with SD that
can be used to reduce significantly the computational cost should be mentioned.
When expanding a node, at most L new nodes will be obtained. To determine
which of these L nodes must be expanded, inequality (7) must be evaluated
for the candidate nodes. For the nodes satisfying (7), the tighter inequality
(16) must be evaluated to check whether this node must be finally expanded.
Therefore, at most, L instances of the minimization problem (19) must be solved,
although the number will be usually smaller. The cost of these minimizations
can be reduced selecting carefully the starting point. Indeed, it is well known
that in most iterative minimization methods, a good choice for the starting
point (a starting point close to the solution) usually reduces the computing
cost. This is especially relevant in this case for the minimizations in each level
k, the constrained minimum coming from the previous level sr” provides an
excellent starting point by simply selecting the &k — 1 first components.

We have tested several basic minimization algorithms with relatively good
results. Thanks to the selection of the starting point outlined above, we have
adapted an algorithm described in the book [17, chap. 2] by Ake Bjorck, so
that the resulting algorithm works very well combined with SD. A summarized
version is included in subsection 4.1 (see [17] for the extended version).

4.1. Box minimization algorithm adapted to SD

As described above, in our proposed version of the SD algorithm, a box
minimization problem (13) must be solved to decide (using inequality (16))
whether a level k node must be expanded. Recall that problem (13) must be
solved only if the local estimator §*~! is out of the constellation, and that, in
this situation, there will be several components in st¥~1 that take the extreme
values of the constellation, max (D) or min (D). Intuitively, this means that the
solution st*~1 is located in one “side” of the box.

For any feasible point x € R*~1 its components can be divided into two
sets: those that take the extreme values of the constellation, (i.e., those that
place x be on a side) and those that take other internal values. Expressed
more rigorously, this means that for any feasible point x, there will exist a
set of components B = {iy,is,...} such that, for all i € B | x; = max (D) or
x; = min (D). This splits the index of components {1,2...,k — 1} into two sets,
B and F, where for all i € F, min (D) < x; < max (D). B is called the set of
active constraints or components, whereas F' is called the set of free constraints
or components.

4.1.1. Minimization algorithm with known active constraints

Suppose that the final solution st*1 is not known but that the set of active
constraints B associated to st* 7! is known, as well as the values of the active
variables (this is equivalent to know which side of the box stP lies on, but
the exact position of st*~1 on that side is not yet known). From here we can
obtain the solution sr*~! straight away, as follows:

Let xp be the (known) values of the active restrictions.

1. Split the matrix R into two matrices Rp and Rp; Rp is composed of the
columns of R whose index is in B, and R is similarly defined; in Matlab
notation: R = R(:;, B); Rp = R(:, F). Also split x accordingly into xp
and Xp.

2. Zaux = 2 — Rp - xp.

3. Solve a reduced least squares problem, only for the variables in F: xp =
RF\zaux'

4. The solution sr
the indexes B and F'. We express this operation as: sr

F=1 is built by joining xp and xp together, according to

k-l =xp UXp.

The main cost of this algorithm is the solution of the reduced least squares
problem in step 3. For general matrices in R™™ the theoretical cost of each
solution is O(m?) . However, by using the previous triangular structure of R
and applying a QR update using Givens rotations [24] to triangularize Rp, the
cost is reduced to a small fraction. This algorithm allows the creation of zeros
in selected locations of the matrix. Since the columns that will form part of Rg
are chosen from a triangular matrix, they already have many zeros that do not
need to be processed.

For an efficient implementation, it is important to note that 1) only Rp
must be triangularized, and 2) when forming Rp, it is important to keep the
relative order in which the columns were located in the original matrix. This is
so because the closer a matrix is to being triangular, the less Givens rotations
will be needed to actually make it triangular.

Since the actual cost of this QR update depends on the sets of active/free
variables, which in turns depends on the received signal, it is quite difficult to
give a priori estimations or bounds of the number of flops. Instead, we have
chosen to count the actual flops just by slightly modifying the code, by including
flop counters.

4.1.2. Complete Minimization algorithm

The algorithm in the previous section proves that an accurate determination
of the set of active constraints associated to the solution brings a fast solution
to the box minimization problem.

Algorithms seeking to determine the set of active constraints are called “ac-
tive set algorithms”. They interchange variables between the sets B and F' until
the active set for the optimal solution is determined. The following algorithm,
proposed in [17], belongs to this family:

Step 1. Start from a feasible point x%; determine the sets B and F. Split x°
according to the sets, in x°p and x% 5.
Step 2. Solve a reduced least squares problem, only for the variables in F":

Rp = R(:aB)§RF = R(vF)
Zaux = Z— Rp - XOB (23)
xtp = RF\Zaux .

10

Step 3. If the new tentative solution x* = x%p Ux®r is not feasible (out of the

constellation), then the line going from x° to x* is computed. Then,
the new solution moves along the line as far as possible, in direction
of x* while still remaining feasible. The solution obtained is renamed
again x9; this process moves at least a component from F to B, so that
these sets must be updated. Then, the algorithm goes back to step 2.

Step 4. If the new tentative solution, x* = x% U x%, is feasible (in the constel-
lation), the Lagrange multipliers (gradient of the active variables) are
examined to check optimality. If the solution is optimal, srhTl = xt
and the algorithm finishes. If the solution is not optimal, the compo-
nent that causes the non-optimality is sent from B to F, x° = x*, and
the algorithm goes back to step 2.

In the following we discuss some of the details of this algorithm.

— The main cost per iteration (steps 2-4) is caused by the solution of a linear
unconstrained least squares problem in step 2. The algorithm to solve this
problem is the based on a QR update with Givens rotations, which is outlined
in the previous section.

—For a given feasible point x, the Lagrange multipliers are computed as the
gradient of the problem R”-(z — R - x). If the Lagrange multipliers correspond-
ing to active variables are positive, the point x is optimal.

—In each iteration of steps (2-4) a component goes from B to F or from F
to B. If the initial active set B is very different from the final one, then the
number of iterations required for convergence will be quite large. Fortunately,
this problem can be resolved because of the special features of the SD algorithm.
Since in all levels, a minimization problem has probably been solved in the
previous level, the solution of that minimization problem provides an excellent
starting point for the minimizations needed in the lower levels.

To describe this procedure precisely, suppose that the SD algorithm is in
the level k; then, it must be determined if the node corresponding to s; should
be expanded or not. Let us also suppose that the inequality (7) is verified, so
inequality (16) must be checked to determine if the present node is expanded.
Therefore, the box minimization algorithm must be executed.

Previously, in the k + 1 level, either §* or st* must have been computed (or
both). If st* has been computed, then the initial point for the box minimization
x0 is selected as the first k — 1 components of s‘rk; if sv* has not been computed,
then the initial point x° is selected as the first k& — 1 components of §j.

This initial point selection works well because the subproblems in level £ —1
are just projections of the subproblem in the previous level k, so the variables
that belong to B in the estimator st are very likely to belong to B also in the
estimators sty of the next level. We will try to provide some insight with the
example shown in Figure 2.

Figure 2 (left) shows a typical situation, in which the remaining subproblem
is three dimensional and the constellation is D = {—3/2,—1/2,1/2,3/2}. The
discontinuous lines mark the limits of the constellation. In this case, the §°
estimator is out of the constellation, which means that the s¥® estimator is

11

located on a side of the constellation (usually, on the side closest to §%). In this
case, the components of the st® would be z = 3/2,y = 3/2 and the value of z
would be between —3/2 and 3/2. Let this value be called z.

Let us suppose that the next component whose values will be examined
is the y component. The y component has four possible values, all of which
are associated to a two-dimensional problem. These problems are obtained
projecting the three—dimensional problem over each possible value of y. If it
were necessary to solve minimization problems, the initial minimization point
x9 for all of them would be (z = 3/2,2 = 2).

One of these subproblems, for y = 1/2, is shown in Figure 2 (right). The
associated subproblems for the other possible values of y {3/2,—-1/2,—-3/2}
should look quite similar. Clearly, the desired solution for the minimization
subproblem (sArZ) would be located very close to the initial minimization point
and on the same side of the constellation. When this happens, the minimization
algorithm converges in a single iteration as shown in 4.1.1.

In section 6 we will show empirically that in a very high percentage of the
cases, the initial vector sri.p_1 or §;.5_1 is already on the correct side, so the
box minimization algorithm converges in a single iteration.

5. Modified SD algorithm

In this section, we put together all the ingredients of the proposed new
SD algorithm. We have taken the standard Schnorr-Euchner adaptive radius
Sphere Decoding as basic algorithm, and have carried out several modifications
to include our proposals. We have included an initial radius estimate based on
the § estimator (if § is in the constellation) or in the st estimator (if § is out of
the constellation) .

Either § or st must be propagated down in the tree to be used as starting
points for the minimizations.

First, we show the modifications made to the preprocessing needed for the
SD-SE:

Algorithm 1. Preprocessing for SD-SE with minimization bound.

1. Computation of the QR decomposition of the channel matriz H
(which may already be computed).

2. Computation of z= QT - y.

3. Computation of § = R\z.

4. If 8 is in the constellation,

5. set initial radius as: Tini = |R -84 — z||.
6. EndlIf

7. If § is out of the constellation

8. compute ST.

9. set initial radius as: Tin; = |R - stq — 2.
10. End If

12

If the distance of § to the constellation is larger than zero but small, the
radius computed using §, may be smaller than the radius computed using srq. In
this case, the simplest possibility is to compute both radii and use the smallest.

Now we turn to the phase where the tree is traversed. The algorithm is
a Schnorr-Euchner adaptive radius sphere decoding. We assume an algorithm
using recursion over the tree levels k, where the algorithm starts on level m and
ends on level 2 (level 1 would be unnecessary, since the remaining subproblems
are unidimensional). We focus the description on the modifications in the logic
that are needed to determine whether or not a node is expanded:

Algorithm 2. SD-SE search with minimization bound. Procedure to expand a
node at level k

1. For each s, € D (ordered using Schnorr-Euchner)
2 If condition (7) is verified

3 compute 81 solving (17)

4 If 8"~ in the constellation

5. expand node corresponding to sk

6 else

7. compute st¥71 through box minimization
8. compute ¢ as in (21)

9. If condition (16) is verified

10. expand node corresponding to sk
11. Else

12. discard s

13. End If

14. End If

15. FElse

16. discard sy,

17. Ezit For loop

18. End If

19. End For

In each node that is not pruned by the standard condition, either stk or gk

are computed. These vectors must be propagated down in the tree to be used
as the initial values of the minimizations that are needed on the lower levels of
the tree.

6. Numerical results

MIMO Detection algorithms are usually evaluated in terms of accuracy (com-
puting the Bit-Error-Rate, BER vs. SNR) and in terms of efficiency (where the
units can be the number of flops, the number of visited nodes, or the execution
times, in seconds). In this case, since the proposed method is a ML method, its
BER curve would look exactly like the BER curve of any ML method, which
is not too interesting. Therefore, we will concentrate on the efficiency of the
method. All the computing times were obtained with Matlab implementations,

13

running on a Core 2 computer, with 4 Gb of RAM, using Matlab v 11.0. The
flops were recorded by modifying the codes to include flop counters throughout
the algorithm.

The experiments have been carried out for SNRs between 1 and 30 dBs. The
noise variance o was chosen to obtain the desired SNR, taking into account that
a SNR of k dBs corresponds to Z; = 10¥/10 . P represents the signal power at
the receiver. Then, each signal to be detected y was generated asy = H-s+n,
where the entries of the vector s were randomly selected from the elements of
the constellation used, each entry of the channel matrix H was independently
drawn from a complex N(0,1) distribution, and each component of the noise
vector n was independently drawn from a complex N(0,c?) distribution.

Finally, the visited nodes were counted taking into account all the nodes
whose partial distance had been computed, not just those that had been ex-
panded.

6.1. Comparison 1

Our first experiment was designed using 4 x 4 complex matrices and a 64-
QAM constellation (which were transformed into a real model, of dimension 8 x
8, with constellation of cardinality 8). Experiments were carried out varying the
SNR from 1 to 30, generating 50 channel matrices for each SNR and detecting
50 signals with each matrix. For each SNR, the average number of visited nodes,
the average computing times, and the average number of flops were recorded.
In this initial experiment, we compare three implementations of the SD-SE: the
proposed SD—SE version with minimization bound, described in section 5; the
version proposed in [14] and used in [22], using a bound based on the minimum
singular value; and a standard adaptive radius SD—SE decoder.

Figure 3 clearly shows the large improvement obtained in terms of flops,
using this new bound. The actual figures in flops, computing times, and visited
nodes are shown in Table 1 for some of the SNRs in the experiment. Although
the minimization algorithm may seem costly and complicated, figures comparing
flops and computing times make clear that the reduction in number of nodes is
large enough to compensate the cost of the minimizations.

It is important to note that the average complexity remains virtually con-
stant across all the SNRs tested.

The same experiment was carried out, but recording different data, in order
to check the efficiency of the box minimization algorithm proposed. The results
are summarized in Figure 4.

The black line shows the average number of minimizations per detected
signal. For low SNR, this figure oscillates between 25 and 35, which may seem
too costly. However the overall reduction in visited nodes is so important that
the global number of flops ends up being much smaller.

The blue line shows the maximum number of inner iterations of the mini-
mization algorithm (steps 2-4 of the minimization algorithm in section 4.1.2),
which coincides with the maximum number of linear systems solved for each
minimization. In this case (where the number of dimensions of the minimiza-
tion problem solved is 8), the maximum number of iterations is 4.

14

Finally, the red line shows the average number of inner iterations per min-
imization. The average number hardly reaches 1.5 for SNR = 1, decreasing
towards 1 when the SNR increases. This means that, in a vast majority of
the cases, the minimization algorithm converges to the solution in a single it-
eration. This happens only when the initial set of active variables is the right
one, converging to the solution in a single iteration. This is clearly a conse-
quence of using the first components of the estimator st* as starting point for

the minimizations in the level k — 1.

6.2. Comparison 2

The effect of the minimization bound becomes more important when the size
of the problem increases. Experiments like the one described in the subsection
6.1 were carried out, increasing the size of the problem to 6 x 6, (12 x 12 in
the real-valued version). The difference between the SD-SE with minimization
bound and the standard SD-SE was, in this case, too large, and the running
times for Standard SD—-SE were too long to carry out meaningful simulations.
Therefore, we show only the results comparing the SD—SE versions with min-
imization bound versus the version with singular value bound. To obtain rea-
sonable running times, we limited the number of experiments for each SNR, to
20 matrices and 20 signals decoded with each matrix. Only the computation of
the case with SN R = 1 with the singular value bound lasted more than 2 hours;
simulations with Standard SD—SE would have been far longer. The results are
shown in table 2.

6.3. Comparison 3, increasing the dimension of the problem

Since the proposed algorithm can handle large problems with ease, it is
natural to consider how it behaves when the size of the problem is increased.
To this end, we carried out experiments with fixed SNR, increasing the size of
the problem (increasing the number of antennas). The constellation was fixed
to 64-QAM. The sizes of the matrices has varied from 5 x 5 to 16 x 16; these
were the sizes of the complex-valued problems, which were cast into real-valued
problems with double dimension (from 10x 10 to 32x32). Two experiments were
conducted, one with SNR=5 and other with SNR=20, generating 20 channel
matrices for each size and detecting 20 signals with each matrix. The results
are shown in Figure 5.

The results show an unusual property; when the size of the problem grows,
the proposed algorithm performs better in presence of noise. This shows how
effective the minimization bound is in chopping the tree, in situations with small
SNR.

Another interesting point is that there are still some well-known techniques
that can be applied to enhance the algorithm, such as reordering of the columns
of the channel matrix (no reordering has been done in these experiments).

15

6.4. Discussion of the results

The application of the proposed technique delivers an important cost reduc-
tion. The keys to these results are the reduction in number of nodes (already
reported in [14]) and the reduced number of average flops per node obtained
with our implementation. However, Figure 5 shows that, when the number of
antennas grows, the complexity of the search still grows exponentially (although
the complexity grows much more without applying the technique proposed in
this paper). So, while the proposed procedure allows ML detection for a rela-
tively large number of antennas, even well-tuned implementations may take too
long to decode a signal if the number of antennas is too large.

On the other hand, the number of simulations used for this study is small,
causing irregular performance that can be observed in some points of Figure 3.
However, as mentioned above, the time cost of these simulations is very high.
Furthermore, the tests were designed to assess the difference in performance
between the SD method with and without the new technique. From this point
of view, we believe that the simulations prove clearly the effect of the technique
proposed in this paper.

7. Conclusion

The results show that the algorithm proposed in this work generates a huge
improvement over other known versions of SD-SE algorithms, when the constel-
lations used are large enough. It presents a nearly constant complexity average
over all the SNRs considered, meaning that it is virtually insensitive to noise.
Furthermore, the technique proposed makes it possible to consider problems of
larger sizes. In addition, there is room for even further improvement, since stan-
dard optimizations (such as reorderings) have not been used. It must be noted
that the proposed algorithm may be especially appropriate for application in
soft SD detectors.

Standard SD is usually not considered to be viable for practical applica-
tions, since signals may appear that are very costly to detect (even in low noise
situations). The algorithm proposed prevents the appearance of these cases.
Therefore, we believe that this is an interesting step towards a real use of Max-
imum Likelihood detection in practical applications.

8. Acknowledgements

This work has been partially funded by Universitat Politecnica de Valéncia
through Programa de Apoyo a la Investigacion y Desarrollo de la UPV (PAID-
06-11) and (PAID-05-12), by Generalitat Valenciana through projects PROM-
ETEO/2009/013 and Ayudas para la realizacion de proyectos de I+D para gru-
pos de investigacion emergentes GV/2012/039, and by Ministerio Espanol de
Economia y Competitividad through project TEC2012-38142-C04 .

16

References

1]

2]

[11]

[12]

[13]

D. Micciancio, S. Goldwasser, Complexity of Lattice Problems, Springer,
(2002).

A. Hassibi, S. Boyd, Integer parameter estimation in linear models with
applications to GPS, IEEE Transactions on Signal Processing, 46 (1998)
2938-2952.

B. Hassibi, An efficient square-root algorithm for BLAST, in: ICASSPO0O0:
Proceedings of the Acoustics, Speech, and Signal Processing, 2000. IEEE
International Conference, 2 (2000), I1737-11740.

R. Kannan, Improved algorithms for integer programming and related lat-
tice problems, ACM Symp. Theory of Computing (1983).

U. Fincke, M. Pohst, Improved methods for calculating vectors of short
length in a lattice, including a complexity analysis, Mathematics of Com-
putation, 44 (170) (1985) 463-471.

C.P. Schnorr, M. Euchner, Lattice basis reduction: Improved practical al-
gorithms and solving subset sum problems, Math. Programming, 66 (1994)
181-191.

E. Agrell, T. Eriksson, A. Vardy, K. Zeger, Closest point search in lattices,
IEEE Transactions on Information Theory, 48 (2002) 2201-2214.

B. Hassibi, H. Vikalo, On sphere decoding algorithm. I. expected complex-
ity, IEEE Transactions on Signal Processing, 53 (2005) 2806-2818.

M.O. Damen, H. El Gamal, G. Caire, On Maximum-Likelihood Detection
and the Search for the Closest Lattice Point, IEEE Transactions on Infor-
mation Theory, 49 (2003) 2389-2402.

C.Z.W. Hassell, J.S. Thompson, Orthotope sphere decoding and paral-
lelotope decoding- reduced complexity optimum detection algorithms for
MIMO channels, Signal Processing, 86 (2006) 1518-1537.

W. Zhao, G. Giannakis, Sphere Decoding Algorithms With Improved Ra-
dius search, IEEE Transactions on Communications, 53 (7) (2005) 1104
1110.

G.J. Foschini, G.D. Golden, F. Reinaldo, A. Valenzuela, P.W. Wolniansky,
Simplified Processing for High Spectral Efficiency Wireless Communica-
tion Employing Multi-Element Arrays, IEEE Journal On Selected Areas in
Communications, 17 (11) (1999), 1841-1852.

K. Su, I. J. Wassell, A New Ordering for Efficient Sphere. Decoding, Inter-
national Conference on Communications (2005).

17

[14]

[15]

[16]

[20]

[21]

[22]

M. Stojnic, H. Vikalo, B. Hassibi, Speeding up the Sphere Decoder with H*°
and SDP inspired lower bounds, IEEE Transactions on Signal Processing ,
56 (2) (2008) 712-726.

R.C. de Lamare, R. Sampaio-Neto, Minimum Mean Squared Error Iterative
Successive Parallel Arbitrated Decision Feedback Detectors for DS-CDMA
Systems, IEEE Trans. on Commun., 56 (5) (2008) 778 — 789.

P. Li, R.C. de Lamare, R. Fa, Multiple Feedback Successive Interference
Cancellation Detection for Multiuser MIMO Systems, IEEE Transactions
on Wireless Communications, 10 (8)(2011), 2434-2439.

A. Bjorck, Numerical Methods for Least Squares Problems, STAM,
Philadelphia, 1996.

A. Yener, R.D. Yates, S. Ulukus, CDMA Multiuser Detection: A Nonlin-
ear Programming Approach, IEEE Transactions on Communication 50 (6)
(2002) 1016-1024.

S. Park, H. Zhang, J. Kim, E.S. Kang, W. Hager, A Fast Suboptimal Al-
gorithm for Detection of 16-QAM Signaling in MIMO Channels, in: Help
Military Communications Conference, 2007, MILCOM 2007, IEEE Inter-
national Conference.

X. Wen, Q. Han, Solving Box—Constrained Integer Least Squares Problems,
IEEE Transactions on Wireless Communications, 7 (1) (2008) 277-287.

Y. Zakharov, J. Luo, C. Kasparis, Joint box-constraint and deregularization
in multiuser detection, in: Proceedings of the European Signal Processing
Conference, EUSIPCO’2006, Florence, Italy.

J. Maurer, J. Jalden, D. Seethaler, G. Matz, Achieving a continuous
diversity-complexity tradeoff in wireless MIMO systems via pre-equalized
Sphere-Decoding, IEEE Journal of Selected Topics in Signal Processing, 3
(6) (2009) 986—999.

The Mathworks Inc., MATLAB R14 Natick MA (2004).

G.H. Golub and C.F. Van Loan. Matrix Computations. The Johns Hopkins
University Press, Baltimore, MD, USA, third edition, 1996.

18

Captions:

Caption for figure 1: Position of the § and st estimators.

Caption for figure 2: Three dimensional problem, and its projection to one
of its four two dimensional subproblems.

Caption for figure 3: Average number of flops per decoded signal.

Caption for figure 4: Average number of minimizations per detected signal;
Maximum number of inner iterations per minimization; Average number of inner
iterations per minimization.

Caption for figure 5: (a)Average computing times; (b)Average flops.

19

Space of sent signals Space of received signals

T 4

S
3l
/ sr Y
*
oL
P -0 ~FO -9
| | 1k o *
| | ° o
5] o o [¢] ¢} ° o
| | ol o o
| | o o o
[o) o o o o © o
| ! [e]
| | -1y o
b- -0 o - -0
ol
3l
-4
-3 -2 -1 0 1 2 3 4 -4 -3 -2 -1 0 1 2 3
1.a) 1.b)

Figure 1:

20

/ &
*
<
(=]
= N
/ <
o
I S
! |
| .
! (=
! |
l
!
.
S —®
o o q S
3 S - T
[l
~
—
=

K

= *

&

@ N
/ &
ey
N\ N
o ' o

\ g1
[| :,2
! |
\ N
! \ | P
b I
N =
| 1mmm B
| ! ! I
- -t - === \ |
N ! N [
N I \ T4
\ | \
\ | \ ! ~
\ VS
v NI
! NN
[, ,\\Lfo_u
o 4
N o = =
q [N
) =] P «

Figure 2:

21

Average flops per detected signal

—+— SD-SE with minimization bound
—©— SD-SE with singular value bound
—%— Standard SD-SE

10

Figure

22

15 20 P
SNR[dB]

3:

35 I I I
—%— y axis: average number of minimizations per signal
—©6— y axis: maxim number of iterations per minimization
30+ —+— y axis: average number of iterations per minimization
25
20
151
10
5 —
0 | | | | |
0 5 10 15 20 25 30
SNR [dB]

Figure 4:

23

average computing times

average flops

25

—+— SNR=5
—*— SNR=20
20+
151
101
5 -
0 * - -
4 6
size
(a)
x 107
12 T
—+— SNR=5 |
—%— SNR=20
101
8 -
6 -
4 -
2 L
0 ¥ ¥ ¥ *
4 6 8 10 12 14 16
size
(b)
Figure 5:

24

Table 1: Average flops, times and visited nodes for detection of a signal in a 4x4 complex
MIMO system with constellation 64—QAM.

SNR Minimiz. Bound Min. s. v. Bound Standard

flops nodes time flops nodes time flops nodes time
1 1.5e4 1.2e2 1.5e-2 1.4eb5 4.5e3 2.5e-1 7.0eb 4.6e4 6.6e-1
3 1.3e4 1.3e2 1.3e-2 6.8e4 2.3e3 1.2¢-2 2.5e5 1.7ed 2.5e-1
6 1.0e4 1.5e2 1.1e-2 2.7e4 9.6e2 4.7e-2 7.6e4 5.2e3 7.9e-2
10 1.0e4 1.8¢2 1.1e-2 1.8e4 6.8e2 3.1e-2 5.led 3.5e3 5.4e-2
14 9.6e3 2.1e2 1.0e-2 1.led 4.2e2 1.8e-2 2.2e4 1.2e3 1.9e-2
18 9.1e3 2.2¢2 1.0e-2 8.2e3 3.1e2 1.3e-2 6.7ed 6.7¢2 1.0e-2
22 7.8e3 1.8e2 8.2¢-3 6.0e3 2.1e2 9.2e-3 9.0e3 6.0e2 9.4e-3
26 5.2e3 1.2e2 5.3e-3 3.9e3 1.2¢2 5.2e-3 3.2e3 1.8¢2 3.2¢-3
30 4.0e3 8.6el 3.8e-3 3.0e3 8.6el 3.4e-3 2.5e3 1.1e2 2.0e-3

25

Table 2: Average flops, times(seconds) and visited nodes for detection of a signal in a 6 x 6
complex MIMO system with constellation 64—QAM.
SNR Minimiz. Bound Min. s. v. Bound
flops nodes time flops nodes time
1 8.7ed 2.9e2 5.3e-2 1.5e7 2.4ed 1.9el
3 8.4ed4 3.2e2 5.1e-2 6.9e6 1.1led 8.9e0
6 8.4e4 4.7e2 5.4e-2 59e6 1.2¢5 6.8e0
10 7.0e4 5.8e2 4.6e-2 5.0e5 9.3e3 6.5e-1
14 6.7e4 7.0e2 4.6e-2 3.9e5 8.7e3 4.9e-1
18 7.0e4 7.8e2 4.6e-2 9.3ed4d 2.0e3 1.2e-1
22 4.5e4 5.7e2 3.le-2 3.2e4 T.1le2 3.9e-2
26 3.0e4 3.5e2 2.0e-2 3.2¢e4 6.6e2 4.2e-2
30 1.7e4 1.9e2 1.1e-2 1.3e4 2.3e2 1.4e-2

26

