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Abstract

The paper presents a formulation of the energy management problem for Hybrid Electrical Vehicles and Plug-in Hybrid Electrical
Vehicles alike, which permits to consider different cost indexes like fuel consumption, total and primary energy consumption,
economic cost or CO, footprint. In-depth analysis of the problem optimal solution is done by means of the application of the A-plot
method, which also permits the optimal tuning of other implementable control strategies. Such an approach is used to understand
the effect of the selected cost index, the regional energetic share, the driving conditions, and for deriving rules for battery sizing.

Keywords: HEV, PHEV, hybrid electrical vehicle, range extender, energy management, optimal control, optimisation,
automotive engine

1. Introduction

Increasing concern about global warming and availability of fossil fuel resources is pushing society to search for
new solutions towards sustainable mobility (Mierlo et al., 2006). Accordingly, over the past decades important efforts
started being carried out in order to increase the efficiency of internal combustion engines (ICE). Despite ground
vehicles have been powered almost exclusively by ICEs since more than 100 years ago, alternative powertrain archi-
tectures are currently under evaluation for reducing transport ecological footprint (Ferndndez et al., 2011; Katrasnik,
2007a,b). Hybrid Electric Vehicles (HEV) combine a fuel-driven power source with an electric drivetrain allowing the
engine to stop at idling and low load conditions where its efficiency is low (Xiong et al., 2009; Banjac et al., 2009).
Regenerative braking is also possible with HEVs. Then, HEVs have aroused the interest of the transportation sector,
at least as a temporary solution on the way to zero emission road vehicles.

HEV is a general term referring a vehicle whose powertrain combines an ICE with one or more electric machines
and a reversible energy storage system, however its use is usually restricted to charge sustaining HEVs, i.e. the class of
vehicles for which energy consumed comes ultimately from the fuel tank. On the other hand, Plug-in Hybrid Electric
Vehicles (PHEVs) are able to recharge their batteries through direct connection to the energy grid, allowing depleting
the battery during driving mission and then improving the vehicle fuel economy.

HEV control has been widely studied and many works address it through the optimal control theory (Sciarreta and
Guzzella, 2007): optimal control policy is that providing the minimum fuel consumption while satisfying the battery
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charge sustainability (Delprat et al., 2001). Nevertheless, the introduction of other primary energy sources than the
fuel tank in the PHEV may require to take into account other costs in addition to fuel consumption, since battery
recharging contribute to vehicle operation cost and emissions.

The present paper uses a general formulation of the energy management problem for HEV and PHEV alike. The
formulation is able to easily consider different cost indexes (i.e. fuel consumption, total energy consumption, primary
energy consumption, economic cost or CO, emission footprint). The general problem is solved through three of the
most common methods in HEV/PHEV energy management: Dynamic Programing (DP) (Mosbech, 1980; Sundstrom
et al., 2010), Pontryagin Minimum Principle (PMP) (Serrao et al., 2011) and Equivalent Consumption Minimization
(ECMS) (Paganelli et al., 2001; Won and Langari, 2005; Sciarretta et al., 2004).

The method used in this paper to tune both PMP and ECMS builds upon the results presented in Guardiola et al.
(2012). The method is based on the numerical analysis of the optimal solution from DP and provides a suitable
framework for comparing different control strategies. Such an approach will be used for highlighting the differences
between the HEV and PHEV optimisation problem: while in the HEV control the final state of the battery is always
constrained, in the case of the PHEV this constraint will only be active depending on the selected cost index, the
energetic share and electrical grid characteristics, the driving conditions, and the battery size.

Although the methodologies shown in the paper are general and could be applied to a wide variety of powertrain
configurations, the simulations have been restricted to the series hybrid configuration, which is being actively screened
for PHEV (using the ICE engine as range extender).

2. Problem formulation

The Energy Management Problem in a HEV consists in finding the sequence of power split that minimises a cost
index over a driving cycle. The index or function to minimise depends on the vehicle objectives and its application.
Energy, economical cost and CO, emissions are some of the most widely used variables to minimise and, for the sake
of generality, the problem can be formally defined as finding the control law u (f) over time ¢ that minimises the cost:

'y

J:\f‘1?(”0)J)+0Pb0“ﬂ,EbU%tﬂh ey
fp

where Py and P, are the fuel and battery power consumed at each instant of the driving cycle, and « is a weighting

constant whose value depends on the optimisation objective. The battery power is considered positive when the battery

is being discharged and negative when the battery is being charged. Ej is the only state variable in the problem and

represents the energy stored in the battery, whose dynamics is given by:

E,=-P, 2

Although E}, has been selected in the current formulation as state variable, all plotted results will be normalised
by the total battery energy E} 4, resulting in the battery state of energy S OE:

E
SOE = —°

3

b.max

Both the S OF or the battery state of charge S OC are other possible choices for the state variable; this aspect will
be treated in the Appendix.

Note that in the case of a HEV, it is, a charge-sustaining hybrid vehicle, the battery may not be externally recharged.
Usual assumption (Delprat et al., 2001; Ambiihl et al., 2010; Stockar et al., 2011) is considering that the battery state
of energy at the beginning and the end of the trip is roughly the same (note that this assumption can be extremely
unrealistic when short displacements are considered; some authors (Sciarretta et al., 2004; Sciarreta and Guzzella,
2007) propose as an alternative to add a penalty for compensating the deviations in the battery charge at the end of the
trip). Consequently, the only contributing term in (1) is the fuel power P. Therefore, minimising fuel consumption is
equivalent to minimise energy consumption, fuel cost or CO, emissions (as far as a net quantity of energy is required).
Although the usual option in the HEV control bibliography is considering @ = 0, any arbitrary selection of @ will lead
to the same solution if charge sustainability is imposed (i.e. the integral of the battery power P, over the cycle is zero).
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If the depletion of the battery is allowed, as in the case of PHEVs, the selection of the optimisation objective is of
major importance. Since two energy sources are available (electricity from the grid and fuel), a weighted sum of the
two concepts may be considered in order to define a metric proportional to the overall energy consumption, cost or
emissions. Four different options, summarised in Table 1, are next discussed.

If the goal is to minimise the vehicle energy consumption, both fuel and battery power should be considered and
they can be directly summed (¢ = 1). The main drawback of this approach is that primary energy consumption
can importantly differ from the direct addition, since electricity and fuel have different production and distribution
efficiencies.

Hence, in order to consider the primary energy consumption, @ should represent the ratio between the primary
energy cost of the engine fuel and the energy stored in the battery @ = €,/e7, where € corresponds to the inverse of
the well-to-tank efficiency for the battery stored energy (referred with subscript b), and the fuel (f). In case both grid
electricity and engine fuel are produced from the same source (e.g. petroleum), using @ = €,/€; would lead to the
overall energetic optimal; however, in many cases different energy sources are used in the electricity generation, and
the primary energy cost of the fuel and electricity may not be comparable. In this case, availability or strategic factors
may be of major importance.

Another possibility for the cost index is the CO, footprint. Accordingly, @ must adopt the value p; /11, where u
refers to the CO, emissions attached to the electricity production or the fuel burning (e.g. in g of CO, per kWh). This
selection of a explicitly considers the CO, emissions during the vehicle operation. In this line, some authors have
also proposed including in the cost index (1) the emission of other pollutants, as NO, or particulate matter (Nuesch
etal., 2012).

Finally, overall economic operation cost may be minimised, which results of high interest for the end user. For
that, o must be equal to the ratio between x;/x s, where x is the energy price of electricity or fuel.

Note that the values of the energy price y, CO, emission yu, and primary energy consumption €, strongly depend
on the regional energy market and the share of different technologies in the electrical production, and the selected
value will affect the optimal solution.

Table 1. Value of @ according to different cost metrics

a=0 HEV

a=1 PHEYV vehicle energy
a = ¢,/e, PHEV well-to-wheel energy
a =xp/xy PHEV economic cost
a = up/uy  PHEV CO, emissions

In addition to the cost function, the minimisation problem also includes the following constraints:

Epmin < Ep (t) < Epnax “)

Primin (@) < Ppi (), 8) < Pyimax )Vi=1,..,N 5)
0 < Pe(u(®),n) < Pepmax (1) (6

P min (Ep (1) 1) < Py (1) < Ppax (Ep (1) , 1) @)

where subscript i refers to each of the N electrical machines m (motors and generators) in the powertrain, while the
subscript e refers to the internal combustion engine. Other constraints associated to the operation of the different
subsystems could be also considered, as emissions during transients or noise and vibration of the engine (Millo et al.,
2013).
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Additionally, the following global constraint associated to the charge sustainability should be considered for
HEVs: "
f Py (u(t),Ey(1),0)dt =0 (8)
fo
Finally, the vehicle power requirements P, (f) should be attended. The mathematical expression of this last
constraint depends on the powertrain architecture, which may exhibit different number of electrical machines and
transmission elements. Despite the wide range of existing powertrain configurations (Chan et al., 2009), the series
architecture has been chosen in this paper for illustrative purposes because of its simplicity, and because it is being
studied for PHEV applications (Emadi et al., 2005). Nevertheless, this arbitrary selection does not reduce the for-
mulation applicability, and the methods presented are independent of the selected configuration; in Guardiola et al.
(2012) the same methods have been applied to a parallel configuration.

Series hybrid architecture

dE,
Fuel tank |P,=——"
de
vt o+
Engine [#® Generator
P’I + v-lpm,Z
Battery —
pe-dt §
de
Motor
A p =p
v+ m,1 req
Gearing
_A
vt
Wheels

Figure 1. HEV/PHEV powertrain layout, nomenclature and sign criteria.

Figure 1 shows a scheme of the power flow in the series hybrid architecture with the sign criterion used; there
the motor is supplied with electrical energy coming from an electric storage system (usually batteries) or alternatively
from a generator consisting of an internal combustion engine and an electrical machine (i.e. range extender). In this
sense, the engine is not directly coupled to the wheels, thus allowing the engine to operate in a narrow region around
its sweet spot or maximum efficiency line. Since P,,» + P, must provide the electrical input for P,,;, control action
may be defined as the electrical output of the generator:

u(t) = Ppo(f) ©

Since the vehicle wheels are exclusively driven by an electric motor (or a set of electric motors), the constraint
due to the power requirements becomes:

Preq (t) = Pm,l (t) (10)

2.1. Implementation details

For the present work a backward quasi-static approach was employed to model the vehicle dynamics (Rizzoni
et al., 1999), which allows the computation of the benchmarking solution based on DP. Engine and motor efficiencies
were mapped with rotational speed and torque, while maximum and minimum torques were defined as functions of the
speed. Main characteristics for the powertrain architectures used in the HEV and PHEV simulations are summarised
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in Table 2. Basically, the same configuration was used for the PHEV and HEV alike, except for the bigger battery size
of the PHEV configuration.

A zero order model was considered for the battery, whose open circuit voltage and equivalent resistance was
mapped as function of S OF as shown in Figure 2. In order to analyse the influence of the battery characteristics on
the final solution, two different battery chemistries, hereinafter called A and B, were considered. Battery A is based
on a NiCd battery, while battery B is based on lithium-ion technology. For both batteries the model parameters were
obtained from actual measurements.

Table 2. Description of the main vehicle features

HEV PHEV
Vehicle mass 1600 kg 1600 kg
Engine power 75 kW 75 kW
Generator power 60 kW 60 kW
Motor power 160 kW 160 kW
Battery power 80 kW 80 kW

Battery energy capacity (A/B) 633 MJ/7.82MJ 11.02/13.61 MJ
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Figure 2. Open circuit voltage and equivalent electrical resistances during charge (circles) and discharge (triangles) and open circuit voltage for
battery A (grey) and B (black).

For illustrating different aspects of the research, the NEDC, US06 and FTP75 cycles were considered, whose
speed profiles are shown in Figure 3. Because the range of the vehicle is usual higher than the cycles selected, in some
simulations several consecutive repetitions of a given cycle are used (the notation 3-US06 is used for 3 repetitions of
the USO06 cycle).

3. Energy management strategies

There is a wide literature on HEV/PHEV control that ranges from rule-based control (Baumann et al., 2000;
Schouten et al., 2003; Poursamad and Montazeri, 2008) to the application of the optimal control theory (a few exam-
ples may be found in Wei et al. (2007), Bernard et al. (2010), Kermani et al. (2012), and van Keulen et al. (2012)); in
some cases, simple implementable rule-based control may be explicitly obtained from the application of the optimal
control theory (Lin et al., 2003; Ambiihl et al., 2010; Bianchi et al., 2011).
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Figure 3. Speed profile of three homologation cycles used for the simulations: FTP75 (top), US06 (centre) and NEDC (bottom).

For the optimal control approach, the a priori knowledge of the driving cycle is usually assumed (although stochas-
tic optimisation concepts have also been applied, as for example in Moura et al. (2011); Chan-Chiao et al. (2004)).
Next three usual approaches are described.

3.1. Dynamic Programming

The DP algorithm is based on Bellman’s principle of optimality, which reads: ”An optimal policy has the property
that whatever the initial state and initial decision are, the remaining decisions must constitute an optimal policy with
regard to the state resulting from the first decision” (Lewis and Syrmos, 1995). The method consists in applying
a proper discretisation of the problem in both controls and states; starting from the final state, the DP algorithm
determines the optimal control law choosing at each step the control which minimises the cost function subject to the
set of constraints. The DP code used in this work is that presented in Sundstrém and Guzzella (2009); Sundstrom
etal. (2010).

Since the DP uses a non-causal backward approach to solve the optimisation problem, it is assumed that the
complete driving profile is known a priori, which prevents its utilisation for on-line control purposes. Nevertheless,
the result can be used as a benchmark for the performance of other strategies, or even to derive the tuning parameters
required by other methods.

3.2. Pontryagin Minimum Principle
The application of the PMP allows to reduce the global optimisation into a local minimisation problem (Delprat
et al., 2001; Serrao et al., 2011). The PMP applied to minimising (1) subject to (5)-(8) states that if u* is an optimal
solution of the control problem as defined in Section 2, and Ej is the optimal trajectory of the battery energy over the
entire driving profile, then:
H(u*, Ej, A1) < H (u, Ej, ", t)Yu € U,t € [to, 17] (11)
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where U is the space of possible control actions, and H is the Hamiltonian function for the optimal problem (1),
subject to (4)-(8), defined as:

H=Ps+aP,—AE, = Py + (@ + ) Py (12)

Note that the PMP provides necessary conditions of optimality of a given control trajectory. Moreover, if the
optimisation problem admits a unique solution, that provided by the PMP is the optimal solution (Kim et al., 2011),
leading to use the necessary conditions of optimality as sufficient conditions to seek for the optimum. It is also
interesting to note that in equation (12), and as a direct consequence of selecting E;, as the state variable, Py and P,
share the same units, and hence @ and the Lagrange multiplier A are dimensionless. On the other hand, while « is a
constant related to the parameter to optimise, the PMP provides conditions to define the evolution of A:

_OH _ 0 (Py/Pu)
" OE, OE,,

where P, is the electrical power provided by the battery. Note that, according to Figure 1, P,; only depends on the
required power and the power split between the generator and the battery (which is imposed through u (¢)):

. AP
hl (am)a—];; = (@ + )P, (13)

Pel:Preq_Pm,ZZPreq_u (14)

and consequently depends on u (f) and #, but not on E;,. However, as the battery behaviour is affected by its state of
energy, this statement is not true for P;; the ratio n, = P,/ P,; corresponds to the battery efficiency (or its inverse) when
charging (or discharging) and depends on the battery energy level due to the variation of the battery characteristics as
shown in Figure 2. Consequently, (13) may be rewritten as:
: oy
A=(@+ DPy— 15
(@+ VP 9E, s)
This last expression is implementable if the battery efficiency is mapped with Ej;, and P,. Thus, given a time
discretisation of the problem and an initial value for the Lagrangian multiplier 1y = A(%j), the evolution of A may be
computed:

N (Peti—1, Epiz1) (
O,

and the optimal control policy calculated through the minimisation of (12) at each time step.

Despite (16) superficially seems to be independent of the driving cycle, the optimal value of Ay depends on the
considered cycle and constraints. This issue can be partially solved through the application of adaptive methods
(Chasse et al., 2010).

Additionally, if the final state is not restricted, A(tf) = O (Pontryagin et al., 1962; Naidu, 2003), while if the
terminal value of the state is constrained as in

A=A + (@ + A1) Peg ti—ti-1) (16)

Eb,min < Eb (tf) < Eb,max (17)

and such restriction becomes active, then A(z;) # 0. PMP also allows considering constraints in the state variable
evolution, as (4) is, through the use of penalty functions (Stockar et al., 2011), interior point constraints or slack
variables (Naidu, 2003).

3.3. Equivalent Consumption Minimization Strategy

The ECMS was introduced in Paganelli et al. (2001) as a method to solve the energy management problem in
charge sustaining HEV. The idea underlying ECMS is that, as grid energy is not used for recharging the battery, all
the energy used comes ultimately from fuel, so it is possible to define a cost for the battery usage in order to take
into account the potential of discharging the batteries in the current moment and recharge them in the future or vice
versa. In this way, it is possible to define an instantaneous cost which takes into account both fuel and electric energy
consumption, for instance:

f =P Ft sPy (18)
7
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where the parameter s is traditionally defined as an equivalent factor between fuel and battery energy sources. From
a mathematical point of view, ECMS can be seen as a simplification of the PMP approach in which the Lagrangian
multiplier A is constant over the driving cycle (Serrao et al., 2009); according to (13) this will be exactly true if the
battery efficiency is independent of the battery energy level, thus is a reasonable simplification in most cases.

As in the case of PMP, the optimal value of the parameter s depends on the driving profile; nevertheless, different
adaptive methods have been developed for mitigating this issue (Musardo et al., 2005; Onori et al., 2010).

4. Control strategy tuning through the A-plot method

Although both ECMS and PMP may be implemented in a forward looking simulator, their optimality is not
guaranteed online, since their behaviour is strongly dependent on the selection of the initial value of A(#), and s
respectively. Additionally, since these values depend on the driving cycle, their optimal value cannot be obtained
a priori. The issue of obtaining the initial value of A can be solved by means of a shooting method (Serrao et al.,
2011); however, if the optimal solution is available (through DP or otherwise), this information can be used for
inferring the initial value by means of the A-plot method presented in Guardiola et al. (2012), which was developed
exclusively for @ = 0, but that can be slightly modified for coping with the more general problem. The underlying
idea is that, according to (11), the optimal Lagrange multiplier (1*) must satisfy along the whole optimal trajectory
(OH [OPy),,; = 0, what applied to (12) yields to:

. oPy
X(t) = _(a_Pb) —a (19)
opt

However, due to the existence of singular points and saturations, P, or P, may not be differentiable in some points
of their domains, and also (6Pf/6Pb) may depend on the sign of the considered variation 6P,. To deal with this
issue, numerical differentiation of the optimal solution is done by considering variations of different size in the control
action ou, and analysing their effect on the battery power 6P, and on the fuel power 6P; in all cases the satisfaction
of the different constraints must also be checked. This allows to compute A*(f) = max <—6Pf /6Pb) with 6P, > 0,

and A (t) = min (—6P r/ 6Pb) with 6P, < 0, which provide a manifold where the value of the 1" trajectory should be
contained:

O <O +a <A @) (20)

Figure 4 shows an example of the results obtained during simulations with battery A and a HEV configuration in
both NEDC and US06 cycles; the DP solution has been locally differentiated in order to provide estimates for A*(¢)
and A7 (¢), marked in the top plots as + and - respectively. The precision of the 2™ and A~ estimates depends on the
numerical differentiation used, and also on the precision of the original DP solution; in general the resolution in the
numerical differentiation (6P;) should be kept in the same order of magnitude of the discretization used in the DP
solution. On the other hand, if a saturation is reached with 6P, > 0, " may not be calculated because there are
no feasible points and A~ provides an abnormal high value; this is due to the fact that the constraint in the saturated
variable is restricting the solution. Correspondingly, A* exhibits low values when the solution is not feasible with
(5Pb <0.

Initial values of A*(#) and A~ (¢) provide an interval for A(¢) (as for the HEV case a = 0), which may be used as an
initial guess for A(#y) to be used for PMP simulation (some fine tuning through shooting may be still necessary, but the
search interval is bounded). Figure 4 also shows the trajectory of A for the PMP simulation if such initial value is used.
Despite the existence of few outliers, A trajectory is always within the [1*, 17] range, and the evolution of the battery
S OE for the PMP strategy is almost identical to that of the DP solution, as depicted in the lower plots of Figure 4.
This illustrates that the PMP tuned through the so called A-plot method replicates the DP solution, which is assumed
to be optimal. The few detected outliers are probably related with (limited) non-convexities in the problem, which
can be consequence of the local restrictions, saturations or the time discretisation considered; however, this issue
clearly exceeds the scope of the present paper (note that the optimisations methods used are based on the convexity
assumption).
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Figure 4. Evolution of the A parameter during the NEDC (left) and US06 cycle (right) inside the manifold provided by A~ () and A* (+) for a HEV
(@ = 0); dashed line represents the value of s used for the ECMS. In lower plots, the evolution of the S OF calculated with DP (dashed black), PMP
(grey) and ECMS (black) is presented; driving profile is also shown for reference (light grey).

As shown in the top plots of Figure 4, A variation during the cycle is not significant. Hence using a constant
parameter s (dashed line in top plots) with the ECMS approach would provide similar results. The manifold [1*, 17]
also provides a good initial estimate of s. Results of the S OF trajectory for the ECMS are shown in bottom plots of
Figure 4; as one could expect ECMS provides a solution almost identical to the one of the DP and the PMP in the
NEDC cycle (left plots), since there the variation of A is lower. For the US06 cycle (right plots) although the S OF
trajectory is quite similar, some differences can be appreciated.

5. Results and discussion

5.1. Differences between HEV and PHEV control and « effect

For investigating the effects of the differences between the HEV and PHEV control, several simulations were run
for the three repetitions of the studied cycles with the PHEV configuration and varying the value of @ (for HEV a = 0
was considered and the charge sustainability was imposed). DP solution was computed in all cases, and both PMP
and ECMS were tuned on the basis of the A-plot derived from the DP using the approach sketched in Section 4.
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SOE() [-]

|
|
|
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Figure 5. Effect of the @ parameter on the S OF at the end of the 3-US06 (black), 3-NEDC (dark grey) and 3-FTP75 (light grey); critical values a,
are marked with a coloured circle. Dashed lines show the @ values according to CO, minimisation in Spain (ES), United States of America (US)
and Germany (DE).
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Figure 5 shows the results of the final battery state of energy for the three cycles when varying the value of a.
Results are shown for the PMP simulation once A(#y) was adjusted; DP results are not shown but are almost identical.
As it can be clearly noticed, for low values of «, the solution is limited by the battery minimum charge; this situation
corresponds to depleting the battery, and since in that situation the amount of net energy coming from the battery is
kept constant, the solution is not sensitive to variations of a. For all these cases S OE (tf) = SOE,,;,. For values of o
higher than a critical value (a.), the restriction in the end state (E,(¢) or its equivalent S OE(%y)) is no longer active,
and then the solution is sensitive to the selected value of .

Figure 6 shows two examples of the evolution for the 3-NDEC cycle, with a value of a lower (left) and higher
(right) than a,. It can be appreciated that with @ > a. (right plot) the final state of the battery is higher than the
minimum allowed (S OE,,;,, = 0.225), and then the problem solution corresponds to the optimum of the unconstrained
problem (i.e. the problem without considering the terminal state constraint (17)). Accordingly, the terminal value of
the Lagrange multiplier A(ty) is zero (A(¢y) + & = a = 3.25, as shown in the right A-plot of Figure 6).

On the other hand, with @ < a. as in the left-hand plots on Figure 6, A(t;) gets a positive value (A(#f) + @ > @), that
is needed for forcing the state to fulfil the restriction of the final state (17). In that case, the solution of the problem is
qualitatively similar to that of the HEV energy management, considering the following restriction instead of (8):

'
Ep(to) — Ep(ty) = f Py (u(t), Ep (1), 1) dt = Ep(t0) — Epmin 21

fo
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Figure 6. Evolution of A and S OF in the 3-NDEC cycle for the PHEV considering @ = 3 (left) and o = 3.25 (right).

For investigating the transition between the constrained and the unconstrained solution of the original problem,
the optimisation problem was solved without considering the restriction on the minimum energy in the battery. This
was done by DP for several values of @, and then PMP was tuned for replicating the DP solution in order to provide
insight on A(ty). Figure 7 depicts the values obtained when (17) was not considered (circles) and the solution of the
constrained problem (squares). As in the case of Figure 5, here the solution of the problem with the constraint on
the final state also exhibits a transition between the solution of the unconstrained problem (for @ > ., marked in the
figure with a black square), and the solution of the problem satisfying (21).

It is clear the transition between the two problems, and that the value of A(t;) is a metric of the effort needed for
fulfilling the final state constraint. This fact is coherent with the PMP theory (Naidu, 2003), since if no restriction is
considered in the final state A(ts) = 0, while when the restriction is active, A(ty) gets the value that ensures H(ty) =
0. As expected, in the case of the solution to the unconstrained problem, marked with circles in the Figure, A(ty)
approaches O (actual values are slightly different to 0, but it is attributed to the numerical precision and discretization
errors).
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The critical value o, corresponds to the transition between the two situations, and consequently the solution for
this case must satisfy both Ej(t7) = Ejp uin and A(z7) = 0.
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Figure 7. Value of A(t5) (top) and S OE(ty) bottom obtained with PMP for several values of a considering (squares) or not (circles) the battery
energy constraint in the 3-NEDC cycle.

5.2. Comparing fuel, energy and CO, minimisation

On the basis of the precedent discussion, it is clear that there is a shift in the system behaviour according to the
considered value of o with regards to the critical a.. As stated above, for @ < «a., the final state of the battery is
an active constraint, and hence the solution is the same regardless of the cost to be minimised. This is similar to the
situation that occurs with the HEV, where the total amount of energy provided by the battery is constant (0, in the case
of HEV; Ey(ty) — Epmin for the PHEV vehicle). In this case there is no difference at all regardless of the cost to be
optimised.

However, if @ > a, (i.e. the battery is not depleted during the operation), the selection of the cost function clearly
impacts the solution. In this case, optimising fuel consumption, energy or CO, is no longer equivalent. The effect of
the selection of a has been shown in Figure 5.

According to Table 1, @ depends not only on the cost to be minimised, but also on regional parameters including
energy generation and distribution costs (and taxing) and carbon intensity in the energy production (energy generation
mix). Figure 8 shows the value of @ according to two different criteria (economic cost and CO, emission) for different
countries; it may be noticed that there is a huge variation among countries. In countries like France or Sweden, where
the share of the nuclear or renewable energy on the electricity generation mix is very high, using acp, implies using
an almost pure electrical solution (combustion engine is only used after the battery depletion); because electricity cost
is also comparatively low, ., is also quite low, and the resulting solution is similar. However, in most countries
Qeost < @co, (dashed line in Figure 8 shows the equivalence between both factors), and optimal economic cost
(presumably end user objective) will increase the electrical energy consumption beyond the CO, optimal solution.
This issue could be corrected through taxation or regulation if the final goal is the global warming control.

As an example, aco, for three different countries has been marked in Figure 5. Note that the optimal solution with
regards to CO, minimisation in the US06 cycle is shifted depending of the considered country, although in the rest of
the cycles @, < @, and all the solutions will be equal regardless of the considered country. Because in all countries
Qeost < @, the optimal solution considering economic cost will be that depleting the battery.

5.3. Effect of the battery size on the solution and optimal battery sizing

It is important to note that the value of @, depends on the driving cycle characteristics and the battery size: driving
profiles with lower requirements or bigger batteries cause @, to diminish. This is because in that situations the battery
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Figure 8. Values of a considering cost (x/x ) or CO2 emission (u,/uy) for different countries. Data from EABEV (2008).

energy limitations are less stringent and the system is allowed to operate in the global optimum (rather than the
optimum of the problem constrained by the terminal condition); this is the case of the 3-US06 cycle (with lower
energy demand, despite higher power requirements) when compared to the 3-FTP75 or 3-NEDC cycles, as shown in
Figure 5.

In order to evaluate the effect of the battery size on the solution, 3-NEDC and 3-FTP cycles were run with different
values of @ and batteries of different capacities, ranging from the original battery of the considered PHEV configura-
tion (12 Ah) to an infinite capacity battery. Figure 9 summarises the results of such simulations. If the infinite battery
is considered, a characteristic line for the cycle may be obtained, which provides the battery energy consumed for a
given a. As expected, this line depends on the considered cycle, and for very low « values gets saturated (@ = 2.1 for
the 3-FTP and o = 1.3 for the 3-NEDC): it corresponds to a pure electrical solution and the battery provides all the
needed energy for running the cycle.
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Figure 9. Consumed battery energy during 3-NEDC (top) and 3-FTP (bottom) with different values of @ and battery capacities. Black dashed line
corresponds to an infinite capacity battery.

In the case of finite size batteries, they behave as the infinite size battery if high values of « are considered.
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However, when the battery efficiency drops as it is being depleted, its characteristic line goes below that of the infinite
battery. @, depends on the battery, and it is defined on the basis of the minimum allowable S OF and the battery
characteristic line.

Correspondingly, given a value of « and a driving cycle, it is possible to derive the minimum size of the battery
that allows operating in the global optimum. Despite many other criteria are to be evaluated, this could be of interest
as a design criterion for sizing the battery for a given application.

Figure figBatSize provides a good framework for the battery selection. For example, for the case of the 3-FTP
cycle and o = 3, any battery with a capacity lower than 18 Ah would be depleted (i.e. @ < a.), while a battery of
18 Ah will be able to operate without activating the terminal restriction. However, its efficiency will be lower than that
of a higher capacity battery. Going to 40 Ah capacity would allow operating in a situation near of the ideal infinite
capacity battery.

Note that the initial parts of the characteristic lines for all battery sizes collapse in the infinite capacity battery line.
This provides the possibility of extrapolating the results between batteries of different sizes. Figure 10 represents the
divergence between the behaviour of the infinite capacity battery and the different batteries simulated. It may be seen
that approaching (or extrapolating) the results between the different batteries is only possible when S OF > 0.3, which
corresponds to the battery linear zone.
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Figure 10. Divergence with regards to an infinite capacity battery as a function of the final SOE for 3-NEDC (top) and 3-FTP (bottom).

5.4. Effect of the battery chemistry on the solution

Since battery properties affect the powertrain efficiency, they impact on the vehicle optimal behavior. Figure 11
shows the evolution of the optimal S OE trajectory during the NEDC for the HEV with two different batteries. It
can be observed how battery B, with lower equivalent resistance and higher open circuit voltage (so higher efficiency)
allows a wider range of variations in the S OF during the driving profile, then taking advantage of the higher efficiency
of the electrical powertrain. Regarding the evolution of the 4, it shows a quite flat behavior due to the low variations
in the equivalent resistance and open circuit voltage in the operating range when varying the battery charge level (see
Figure 2). However, A values with battery A are higher due to its lower efficiency (the use of the electrical energy path
involves a higher cost due to the lower battery efficiency). As it can be noticed in Figure 11, the flatter the behaviour
in A, the most the ECMS behaviour fits that of the PMP and DP.

5.5. Hints on the PMP and ECMS tuning by shooting for PHEV

PMP and ECMS tuning by shooting has been widely used for the case of HEV, because the terminal value of
the battery energy is known. However shooting reference is not clear when the system final state is unknown, as
may occur in the PHEV control problem (Stockar et al., 2011). As it has been demonstrated, the solution for PHEV
is quite similar in the cases where the final battery energy constraint is activated (the battery is depleted), and then
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Figure 11. Evolution of the S OE (lower plot) and optimal A (upper plot) for the NEDC cycle obtained with PMP (continuous line) and ECMS
(dotted line) approaches during tests with battery A (grey) and B (black).

usual shooting methods considering Ej(tf) = Ejp s can be used. However, in the cases where the optimal solution
corresponds to E,(tf) > Ej in no shooting reference is available. According to the discussion in the present paper,
PMP can be then tuned using A(zy) = 0 as shooting objective.

A two-step algorithm can be done then for tuning the PMP (and ECMS likewise): initially solving the uncon-
strained problem by shooting for E(ts) = Ejpmix; then, if the resulting A(fy) is negative, shooting for A(t;) = 0 (the
reverse procedure can be also used: searching A(ty) = 0 and if Ej(¢7) < Ep nin, then shooting for Ey(1) = Ep jin).

For the ECMS calibration the problem is similar: if the constraint in the battery size is active then it can be solved
like in HEV by shooting for Ej(t;) = Ej in. On the other hand, in the case the « value yields to a global optimum,
then the final state is unknown; however, because terminal value of A(¢y) = 0, then s = @ will be a good approximation
of the optimum (note that if the variation of the battery efficiency with the battery energy level is high, ECMS is no
longer able to provide the optimal solution).

6. Conclusions

A formulation of the Energy Management Problem for both HEV and PHEV able to deal with different cost
indexes has been presented, and the A-plot method has been extended for fitting the formulation. The A-plot method
allows to obtain a suitable tuning of the ECMS and PMP control strategies from the differentiation of the optimal
solution provided by the DP. Despite sometimes a fine tuning of s and Ay parameters is required, the A-plot method
provides a narrow range to search within. In any case, the method advantages go beyond the co-state estimation, since
the A-plots provide insight into the optimal solution, and shows the conditions in which ECMS is equivalent to PMP.
Outliers in the plot also reveal non-convexities in the problem which prevent both strategies from reaching DP results.

The study of different cases has contributed to the understanding of the differences between the HEV and PHEV
optimization, mainly related to the final state constraint. In the same line, it has been demonstrated that in the case of
PHEVs, the minimisation of different cost functions is equivalent when the battery final state of energy is constraining
the solution; however, optimal trajectories differ for the cases where constraint on the final battery state of energy is
not activated. Accordingly, a method has been presented for estimating the battery size which allows a vehicle to
operate in the global optimum for a given cycle and a given ratio between electricity and fuel costs (@). Finally, the
effects of the battery parameters have been studied, showing that for a given driving cycle the S OF evolution and
therefore the operating range of the engine are strongly affected by the battery efficiency curve.
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Appendix A. Equivalence between alternative formulations

Appendix A.l. Selection of the state variable

In the present paper the battery energy Ej, has been selected as state variable in the problem formulation; however,
this is not by far the most used variable. More usual selections are the battery state of energy (S OE) or state of charge
(S OC). The first one is obtained through the normalisation of the battery energy with respect to the maximum stored
energy (SOE = E,/Ejpmay), While the second considers electrical charge normalised with respect to the maximum
capacity, rather than energy.

The advantage of using E, (and its time derivative —P;) instead of SOE or SOC is based on the dimension
coherence in (12), that causes @ and A to be dimensionless and easily interpretable. However, the developed method
is general and with a few modifications can be directly applied to alternative formulations employing S OF (with
H =P;— (X +a')S OE)or SOC (H” = Pr— (A" +a")S OC). Both formulations are quite common in the literature
when dealing with HEV control (i.e. @ = 0) (Guzzella and Sciarretta, 2005).

For the first, it suffices to slightly modify (13):

OH’ , , Pel 37];,
= =1+

asoE -~ VT, 550
For the second formulation, the relationship between the stored energy and the battery charge must be considered.

In the case of the zero order model it stands:

37

(A.1)

dS0C _ voo
ISOE ~ vy

where vy is the open circuit voltage of the battery for the given energy level, and v is its value at maximum battery
level (SOC = SOE = 1). Then, (13) results:

(A.2)

377 aH” ” ’” P€l Voo a’]b
= ="+ — A3
gsoc ~ W e p s as0C (A-3)
Appendix A.2. Selection of the cost function
Alternatively, (1) can be written as:
1y
I = a(Ep (1) - Ey (1)) + f Pr(u(r),Ep (1), 0 dt (A4)
fo

and its associated Hamiltonian results:

H"” =P;+A1"Py (A.5)

It is straightforward deducing that the graphical method may be applied to this problem (i.e. A* < A < A7).

As it can be easily deduced, there is direct relationship between the new Lagrange multiplier and that of the initial
formulation in Guardiola et al. (2012):

A" =+« (A.6)

On the other hand, when the final value of the state is not forced, and according to the PMP, then:

(@ (Ey ()~ Ev (1))
A7 (1) = - 5] =a (A7)

which is equivalent to 4 (tf) =0.
Note that the discussion in section 5.5 is still valid but the critical value of A" (tf) for shifting between the two

shooting problems is « (and the shooting objectives become Ej(tf) = Ejp jin or A (tf) = «, alternatively).
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