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The discussed paper presents an interesting study on repairing and strengthening corroded 13 

prestressed concrete piles by using carbon fiber-reinforced polymer jacketing. The authors should 14 

be complimented for carrying out a careful experimental study. The discusser would like to thank 15 

the authors for providing an excellent paper and would also like to offer the following comments 16 

and questions, mainly about longitudinal reinforcement, so that the authors can consider them in 17 

further analyses and researchs. 18 

1. Based on the test setup capacity, a length scale of 1/2 in relation to the prototype piles was 19 

chosen by the authors for the prestressed concrete pile specimens. This fact also affects the actual 20 

bending moment. A scale of 1/2 was also applied to the diameter of the specimens. Therefore, the 21 

concrete cross-section was 1/4 in relation to the prototype piles, and the second area moment was 22 

1/16. How did the authors account for these different reduced-scale factors? Was the diameter of the 23 

longitudinal reinforcement also scaled or did it coincide with the reinforcement diameter of the 24 

prototype piles? 25 
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2. Longitudinal reinforcement consisted of 18 prestressing high-strength steel bars 7 mm (0.276 in.) 1 

in diameter, all pretensioned by a total of 49.0 kN (11.0 kips) axial force. The discusser believes 2 

that the manufacturing process of the specimens in the precast plant consisted of three stages33: 3 

tensioning the prestressing reinforcement; casting the concrete member around the prestressing 4 

reinforcement; and releasing the prestressing reinforcement force, which is transferred to the 5 

concrete by bond. Afterwards, the reinforcement stress varies from a zero value at the specimen 6 

ends to a constant maximum (effective stress) in the central zone of the prestressed specimen. The 7 

distance required to develop the effective stress in the prestressing reinforcement is defined as 8 

transfer length34. Transfer length depends on several parameters (e.g., reinforcement stress and 9 

diameter34, concrete properties35,36 and composition33,37), and can be estimated by using equations 10 

based on the equilibrium of forces36,38 or bond-slip,39 and can also be experimentally 11 

determined40,41. Transfer length is important not only after prestress transfer, but also when a 12 

bending moment is applied because transfer length remains whitin the required development length 13 

at loading34,42. As the corrosion simulation was carried out by partial concrete spalling and the 14 

concrete cover was removed, reinforcement-concrete bond loss resulted in the specimens. In the 15 

case of specimens C4N and C4R, four longitudinal reinforcing bars were cut off to simulate their 16 

full corrosion. However, the authors do not provide information on the longitudinal reinforcement 17 

stress as regards the transfer lengths and their changes –longitudinal reinforcement stress 18 

disminution–, which should be considered in the analyses of the observed behavior of the test 19 

specimens. The idealized longitudinal reinforcement stress profiles after simulating corrosion are 20 

shown in Fig.15. 21 

3. The disminution of longitudinal reinforcement stress caused by removing the concrete cover 22 

could be considered an equivalent prestress loss43 to a mass loss of this reinforcement. Therefore, 23 

this information should be included in Table 1 for specimens C2N-C2R and C3N-C3R. 24 

4. As the concrete cross-section diminishes asymmetrically by removing the concrete cover, an 25 

initial excentricity of the axial prestressing force prior to testing appears, which also depends on the 26 
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changes in longitudinal reinforcement stress, in addition to possible transfer length changes with 1 

time44.  2 

5. Insignificant effects of different confinement reinforcement levels on transfer length have been 3 

stated,45,46 also on the development length46. Do the authors have some information on the effect of 4 

the confinement by jacketing on the longitudinal reinforcement stress in the repaired specimens? 5 

6. As transfer length provisions differ from distinct codes and researchers,36,39,47 it would be 6 

interesting to detail the provisions used by the authors to design and manufacture the prestressed 7 

concrete pile specimens. Is the applied pretensioned axial force of 49.0 kN (11.0 kips) 8 

representative of the current practice in Taiwan from 18 prestressing high-strength steel bars 7 mm 9 

(0.276 in.) in diameter? 10 
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 23 

Fig. 15––Idealized longitudinal reinforcement stress profiles (TL = transfer length). 24 
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