
 

Document downloaded from: 

 

This paper must be cited as:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The final publication is available at 

 

 

Copyright 

http://dx.doi.org/10.1016/j.ijhydene.2013.05.121

http://hdl.handle.net/10251/49867

Elsevier

Pérez Page, M.; Pérez Herranz, V. (2014). Study of the electrochemical behaviour of a 300
W PEM fuel cell stack by Electrochemical Impedance Spectroscopy. International Journal
of Hydrogen Energy. 39(8):4009-4015. doi:10.1016/j.ijhydene.2013.05.121.



 1 

UNMARKED COPY 

 

Study of the Electrochemical behavior of a 300 W PEM Fuel Cell Stack by 

Electrochemical Impedance Spectroscopy 

M. Pérez-Page, V. Pérez-Herranz* 

IEC Group. Departamento de Ingeniería Química y Nuclear. Universitat Politècnica de 

Valencia. Camino de Vera s/n. 46022 Valencia, Spain. 

*Corresponding author. Tel.: +34-96-3877632; fax: +34-96-3877639;  

e-mail address: vperez@iqn.upv.es (V. Pérez-Herranz) 

 

Abstract. 

 

Electrochemical impedance spectroscopy (EIS) is a suitable and powerful diagnostic 

testing method for fuel cells because it is non-destructive and provides useful 

information about fuel cell performance and its components. In this work, EIS 

measurements were carried out on a 300 W stack with 20 elementary cells. 

Electrochemical impedance spectra were recorded either on each cell or on the stack. 

Parameters of a Randles-like equivalent circuit were fitted to the experimental data. In 

order to improve the quality of the fit, the classical Randles cell was extended by 

changing the standard plane capacitor into a constant phase element (CPE). The effects 

of output current, cell position, operating temperature and humidification temperature 

on the impedance spectra were studied. 

 

 

Key words: PEM fuel cells; Electrochemical Impedance Spectroscopy; Charge transfer 

resistance; Mass transfer resistance. 
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1. INTRODUCTION. 

 

Among many kinds of fuel cells, the polymer electrolyte membrane fuel cell 

(PEMFC) has received much attention in the last two decades because of its 

lightweight, compactness, high power and low cost. PEMFCs have low emissions, high 

power density, a relatively simple design, quick start up, low noise emissions, and high-

energy conversion efficiency (40%–60%) compared to traditional power sources.  

Therefore, PEMFCs are regarded as the most competitive candidates to replace the 

traditional forms of power conversion and they are being considered for near term 

service of several remote and mobile applications [1-5]. 

 

Polarization curves are the most common method for characterizing the 

electrochemical performance of fuel cells. However, there are some details of the fuel 

cell operation that cannot be detected by this technique. The major losses occurring in 

the electrochemical reactions of a fuel cell are due to the charge transfer through 

electrode–electrolyte interfaces, the transport of gases through the porous layer and the 

conduction of protons through the polymer electrolyte membrane. These losses and 

their dependency on the current density are described in terms of overvoltages. 

Nonetheless, a distinction of the single processes and their contribution to the overall 

losses is not possible by static measurements. To describe the dynamic electrochemical 

behavior of a fuel cell and to distinguish single loss factors, further information and 

dynamic measurements are needed [5-8]. 

 

Electrochemical Impedance Spectroscopy (EIS) or ac impedance is an 

electrochemical technique that can be used to characterize fuel cell performance non-

invasively and in situ. In the case of fuel cells, in particular of the PEMFCs, it provides 

detailed information on the intrinsic loss factors, on the conductivity of the membrane, 

on the electrode processes, and on kinetic losses. The measurement of the impedance 

spectrum at an operating point and the identification of an appropriate impedance model 

enable the desired distinction of loss terms, and a description of the dynamic 

electrochemical behaviour of a fuel cell [9-16].  

 

In this work, the electrochemical behavior of a single cell and a 300 W stack was 

studied measuring impedance spectra at different operating conditions. The frequency 
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response was modelled by an equivalent circuit and the model parameters were 

identified by nonlinear complex parameter identification as a function of the operation 

temperature, humidification temperature, current density and cell position.  
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2. EXPERIMENTAL. 

 

Figure 1 shows a scheme of the experimental arrangement. It consisted of a 300 W 

fuel cell stack with 20 individual cells and an active area of 58 cm2. The MEA consisted 

of a Nafion 115 membrane with a total Pt catalyst loading of 0.4 mg cm−2. The stack 

was built from graphite composite bipolar plates with parallel flow channels. Cooling 

passages are provided by a central channel in each bipolar plate. Under optimal 

conditions with regard to pressure, humidity, reactants flow and temperature, the 

electrical output capability of the stack was 300 W. The supply of air to the cathode was 

handled by a compressor and the hydrogen was stored in a high-pressure tank at up to 

200 bar. Using reduction valves, mass flow controllers, and an external humidifier, 

hydrogen and air were fed to the fuel cell stack. Purge valves were used to assist the 

removal of water droplets in the flow channels. The liquid cooling loop consisted of a 

continuous controlled pump and a heat exchanger. The temperatures were measured by 

thermocouples. 

 

The system was fully instrumented to measure the process variables such as 

temperature and pressure of the different components, operating voltage and current of 

the PEMFC stack, and hydrogen and oxygen mass flows. A computer-based control and 

data acquisition system, based on a LabVIEW software developed application, collects 

and multiplexes the respective signals and feeds them into a PC responsible for the 

overall system control. A master control virtual instrument (VI) supervises the high-

level control and data monitoring activities. The individual cell voltages were monitored 

through this system. Control of the individual components was achieved through the use 

of RS-232 communication ports. 

 

Hydrogen was supplied to the fuel cell stack in the dead-end mode, while air was 

supplied with a stoichiometric ratio of 5. Before entering the stack, the reactant gases 

were passed through a humidifier where the humidification temperature was controlled.  

 

Experiments were performed in galvanostatic mode using an Agilent N3300A 

electronic load. Impedance measurements were carried out using an Autolab 

PGSTAT302 potentiostat with an Autolab FRA2 (frequency response analyser) module 

combined with the electronic load. The frequency range from 5 kHz to 0.25 Hz was 
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covered by 50 points. The current was modulated through the stack and the voltage was 

measured either across a single cell (EIS of cell) either across the stack (EIS of the 

stack). The AC signal amplitude was optimized for this study at high current. To 

achieve a steady-state before starting each impedance measurement, the fuel cell stack 

was operated at 0.25 A cm2 (individual cell potential about 0.6 V) for about 30 min., 

until a steady-state voltage was obtained. After this stabilization period, the stack was 

operated at the working point for 5 min to ensure that the voltage was stable. After this, 

an EIS spectrum was measured. This measurement cycle was repeated three times in 

order to check and ensure a good reproducibility of the measurements. The voltages 

before and after the EIS measurement were determined to verify the stability of the cell. 

Experiments were carried out at three current densities of 0.0862, 0.1724 and 0.2586 

A/cm2, different operation temperatures from 40 to 70ºC and two humidification 

temperatures of 50ºC and 60ºC. The operation pressure was 1 bar. 
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3. RESULTS AND DISCUSSION. 

 

 Electrochemical impedance spectroscopy was applied to separate and to quantify 

the processes governing the fuel cell response. The study was conducted at three current 

densities of 0.0862, 0.1724 and 0.2586 A/cm2. Typical impedance spectra measured in 

the fuel cell stack and in a single cell are presented in Figures 2a and b, where two 

depressed semicircles can be observed. The impedance spectra of PEMFCs are 

practically entirely determined by the cathode losses, which are the main contribution to 

overpotential. The high frequencies loop or kinetic loop corresponds to the charge 

transfer process of the oxygen reduction reaction. The low frequencies loop is related 

with the mass transport and gas diffusion processes. The low frequencies loop appears 

to be most interesting, since it may provide information on diffusional processes 

responsible for an important part of the total resistance. However, the origin of this loop 

is controversial; the loop was assigned to the slow diffusion of oxygen through the 

backing, back diffusion of water through the membrane, or diffusion of water in the 

catalyst layer [17-19]. As can be seen in Figure 2a, the impedance of the fuel cell stack 

is about 20 times the impedance of a single cell. In this case, the stack involves 20 

elementary cells assumed to be equivalent and consequently its impedance is 20 times 

the impedance of a single cell. 

 

The impedance spectra presented in Figures 2a and b suggest two time constants 

and can be modelled by the equivalent circuit shown in Figure 2c [20-23]. The 

depressed semicircles can been explained by a number of phenomena, depending on the 

nature of the system being investigated, as for instance in-homogeneous electrode 

surface or distribution of activation or relaxation processes. However, the common 

thread among these explanations is that some property of the system is not 

homogeneous or that there is a distribution of the value of some physical parameter. 

These depressed semicircles are usually dealt with by changing the standard plane 

capacitor of the Randles cell with Warburg finite-length diffusion element into a 

constant phase element (CPE) [24, 25], as seen in Figure 2c. Therefore, the electric 

circuit is composed by the membrane or ohmic resistance, Rm, that represents the total 

ohmic resistance of the fuel cell and it is the high frequency intercept of the kinetic loop 

with the real axis; Rct is the charge transfer resistance due to the oxygen reduction 

reaction; CPE1 is a constant phase element which reflects the Rct associated to the 
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catalyst layer capacitance properties and Ws is the Warburg impedance, that is related to 

mass transfer and diffusion processes [26-28]. 

 

The impedance of a constant phase element is given by equation 1, where CPET 

y ϕ  are constant phase element parameters [9, 14, 27]. 

( )[ ]ϕω⋅⋅
=

jCPE
Z

T
CPE

1                                                     (1) 

 

The Warburg impedance is the impedance arising from one-dimensional 

diffusion of a species to the electrode. The general case, describing the effect of the 

diffusion of species is shown in equation 2, where Rtm is the mass transport resistance 

and Tw is a Warburg parameter that is described in equation 3 where δ is a diffusion 

lengthy and Da is de diffusivity.  
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The impedance spectra of a single cell and their fitting curves at three different 

current densities, when fuel cell is working at operation and humidification 

temperatures of 60ºC, are presented in Figure 3. The impedance spectra have been 

corrected with respect to the ohmic resistance. It can be seen that an increment of 

current density reduces the diameter of the kinetic loop which reveals the decrement of 

the charge transfer resistance. As current density increases, the driving force of the 

oxygen reduction reaction gradually increases, therefore, the charge transfer resistance 

of the cell decreases. On the other hand, an increment of current density increases the 

low frequency loop related with the mass transport and gas diffusion processes.  

 

For the lowest current density of 0.0862 A/cm2, the diameter of the kinetic loop 

is higher than the diameter of the mass transfer loop. Conversely, for the highest current 

density of 0.2586 A/cm2, the diameter of the kinetic loop is lower than the diameter of 

the mass transfer loop. As current density increases, the driving forces of the oxygen 

reduction reaction gradually increase, so the charge transfer of the fuel cell gradually 

decreases. Also, the amount of generated water will increase; therefore, mass transport 
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limitation will become more significant, which causes the mass transport resistance 

increases gradually with the increase of current density [11, 12, 28]. 

 

The experimental impedance data were fitted to the equivalent circuit of Figure 

2c using the complex nonlinear least square (CNLS) fitting method with Zview 

software package, and the different parameters of the equivalent circuit were obtained. 

Figures 4a-c show the effect of current density on the ohmic resistance (a), charge 

transfer resistance (b) and mass transfer resistance (c) at different operation 

temperatures and a humidification temperature of 60ºC. In these figures can be seen that 

the ohmic resistance and the charge transfer resistance decrease as the current density 

increases. However, the mass transfer resistance increases with current density.  

 

The generated water increases as the current density increase which improves 

the hydration level of the membrane. Also, the membrane conductivity improves with 

the water content and this improvement may be the result of an increase of the proton 

mobility, leading to the decrease of the ohmic resistance with the increase of current 

density and with the decrease of the operation temperature, as can be seen in Figure 4a 

[12, 14]. This would also explain why the effect of the operation temperature on the 

ohmic resistance is greater at the lowest current density. In Figure 4b can be seen that 

the charge transfer decreases with the increase of current density and with the decrease 

of the operation temperature because the increase of the current density improves the 

kinetic of the oxygen reduction reaction that it is produced on the cathode [29, 30]. The 

effect of the operation temperature on the charge transfer resistance is greater at the 

lowest current density. On the other hand, the operation temperature has little effect on 

the mass transport resistance, especially at low current densities, as can be seen in 

Figure 4c, but the mass transport resistance increases with current density due to 

limitation of oxygen transport to the catalyst layer. The current density increase 

produces an increase in the water content that favours the membrane hydration; 

however, at higher current densities, water can be accumulated on the cathode. This 

water accumulation can block the catalytic active sites, then, the oxygen reduction 

reaction may not be produced. This effect produces that the mass transfer resistance 

increases [31-33].  
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 EIS has been used to study the effect of the cell position on the performance of 

the fuel cell stack. This study was carried out by measuring the impedance spectra in 

three different cells of the fuel cell stack, cell 1, located at the cooling water inlet, cell 

20, located at the cooling water outlet, and cell 10, located in the center of the stack. 

Figures 9a-b show the impedance spectra and their fitting curves of the three cells 

obtained at the current densities of 0.0862 A/cm2 and 0.2586 A/cm2 respectively. The 

impedance spectra have been corrected with respect to the ohmic resistance. As can be 

seen in Figure 5a, for low current densities, the three cells have a similar performance. 

However, as can be seen in Figure 5b, at the highest current density of 0.2586 A/cm2, 

cell 1 provides the highest impedance, and therefore, the worst performance. At this 

current density, cell 10 has the lowest impedance and therefore better performance. 

 

 The differences found in the three cells at the different current densities can be 

explained from the temperature variation along the stack. The inlet temperature, which 

coincides approximately with the temperature of the cell 1, remains almost constant 

with current density. However, the outlet temperature, which coincides with the 

temperature of the cell 20, increases with current density. At low current densities, the 

temperature difference between the inlet and outlet of the water cooling loop is minimal 

and remains almost constant with current density. Therefore, at low current densities, all 

cells operate at similar temperatures; the cells show a similar behaviour and the 

impedance spectra of all cells are similar as shown in Figure 5a. However, at high 

current densities, cell 1 operates at the lowest temperature and the cell 20 at the highest 

temperature. This would explain the differences observed in the impedance spectra of 

the three cells shown in Figure 5b. For the conditions shown in Figure 5b, cell 10 show 

the best performance because the best combination of humidification and operation 

temperatures. 

 

 Figures 6a-b show the effect of the cell position on the ohmic resistance, charge 

transfer resistance and mass transport resistance for two current densities of 0.0862 

A/cm2 and 0.2586 A/cm2 respectively, for a humidification temperature of 50ºC and an 

operation temperature of 40ºC. As shown in Figure 6a, for the lowest current density of 

0.0862 A/cm2, the ohmic resistance is much greater than the charge transfer and mass 

transport resistances, for the reasons discussed previously. However, for the highest 

current density of 0.2586 A/cm2, is the mass transport resistance which presents higher 
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values, as shown in Figure 6b. Furthermore, for the highest current density of 0.2586 

A/cm2, cell 10 presents the lowest values of the ohmic, charge transfer and mass 

transport resistances due to variations in temperature within the stack which have been 

mentioned previously. 
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4. CONCLUSIONS. 

 

 Electrochemical Impedance Spectroscopy has been used to study of the 

electrochemical behaviour of a PEMFC stack. The impedance spectra of the fuel fell 

stack and single cells have been obtained. These spectra present two loops, the first loop 

at high frequencies, which is related with the oxygen reduction reaction kinetics, and the 

second loop at low frequencies, which is related with mass transport and diffusion 

processes.  

  

 The experimental impedance data have been fitted at an equivalent circuit in 

which the standard plane capacitor of the Randles cell with Warburg finite-length 

diffusion element into a constant phase element (CPE). The experimental impedance 

data were fitted to the equivalent circuit, and the different parameters of the equivalent 

circuit were obtained. 

 

 Current density affects the impedance spectra. An increment of current density 

reduces the diameter of the kinetic loop obtained at high frequencies, which reveals the 

decrement of the charge transfer resistance. On the other hand, an increment of current 

density increases the high frequency loop related with the mass transport and gas 

diffusion processes. Ohmic and charge transfer resistances decrease with current density 

due to improved membrane humidification and oxygen reduction reaction kinetics. 

Mass transport resistance increases with current density due to mass transport 

limitations caused by water accumulation.  

 

 Changes in temperature along the fuel cell stack with current density causes the 

cells that compose the stack behave differently, especially at high current densities. As a 

result, the ohmic, charge transfer and mass transport resistances change with the 

position of the cells. 
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Figure 1. Scheme of the experimental arrangement. 
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Figure 2. Impedance spectra and equivalent circuit. Impedance spectra of the fuel cell 

stack (a). Impedance spectra of a single cell (b). Equivalent circuit (c). 
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Figure 3. Effect of current density on the impedance spectra of a single cell. 
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Figure 4. Effect of current density on the ohmic resistance (a), charge transfer 

resistance (b), and mass transport resistance (c) at a humidification temperature of 60ºC 

and different operation temperatures. 
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Figure 5. Effect of the cell position on the impedance spectra for current densities of 

0.0862 A/cm2 (a) and 0.2586 A/cm2 (b) at a humidification temperature of 50ºC and an 

operation temperature of 40ºC. 
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Figure 6. Effect of the cell position on the ohmic resistance, charge transfer resistance 

and mass transport resistance for current densities of 0.0862 A/cm2 (a) and  0.2586 A/cm2 

(b) at a humidification temperature of 50ºC and an operation temperature of 40ºC. 

 

 

 

 
  

 


