TRABAJO DE FIN DE GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

POTENCIACIÓN DE UN MOTOR DE AUTOMOCIÓN

AUTOR: CÉSAR GUILLÉN CARRIÓN
TUTOR: D. JOSÉ JAVIER LÓPEZ SÁNCHEZ

Curso Académico: 2013 – 14
ÍNDICE

1 INTRODUCCIÓN ... 5
 1.1 OBJETO DEL TRABAJO ... 5
 1.2 ALCANCE DEL TRABAJO .. 5

2 MARCO TEÓRICO ... 7
 2.1 INTRODUCCIÓN A LOS MCIA Y AL MOTOR DE ENCENDIDO POR COMPRESIÓN (MEC) .. 7
 2.2 PARÁMETROS CARACTERÍSTICOS BÁSICOS DE LOS MCIA 8
 2.3 SOBREALIMENTACIÓN EN MOTORES DE COMBUSTIÓN INTERNA ALTERNATIVOS 11
 2.4 POTENCIACIÓN DE MOTORES EN MEC .. 11

3 PRESENTACIÓN DEL MOTOR ... 13
 3.1 INTRODUCCIÓN ... 13
 3.2 FICHA TÉCNICA ... 13

4 PUESTA A PUNTO DEL MODELO DE SIMULACIÓN .. 15
 4.1 INTRODUCCIÓN .. 15
 4.2 SUPOSICIONES PREVIAS .. 15
 4.3 METODOLOGÍA .. 18
 4.3.1 Procedimiento ... 18
 4.3.2 Parámetros del motor ... 20
 4.3.3 Equilibrio turbina-compresor ... 21
 4.4 RESULTADOS .. 23
 4.4.1 Introducción .. 23
 4.4.2 Motor .. 23
 4.4.3 Compresor .. 23
 4.4.4 Turbina ... 24
 4.4.5 Conclusiones .. 25

5 POTENCIACIÓN .. 27
 5.1 INTRODUCCIÓN .. 27
 5.2 LIMITACIONES .. 27
 5.3 METODOLOGÍA .. 28
 5.4 FASE 1: INCREMENTO DE LA PRESIÓN DE ADMISIÓN .. 30
 5.5 FASE 2: INCREMENTO DE LA PRESIÓN DE ADMISIÓN Y DE LA PMAX DEL CILINDRO ... 31
 5.6 FASE 3: INCREMENTO DE LA PRESIÓN DE ADMISIÓN Y REDUCCIÓN DE LA RELACIÓN DE COMPRESIÓN .. 32
 5.7 FASE 4: CAMBIO DEL TURBOGRUPO ... 33
 5.7.1 Motivación .. 33
 5.7.2 Nuevo turbogrupo .. 33
 5.7.3 FASE 4.1 PMAX=160 & RC=18 .. 34
 5.7.4 FASE 4.2 PMAX=200 & RC=18 .. 35
 5.7.5 FASE 4.3 PMAX=160 & RC=14 .. 35
 5.7.6 FASE 4.4 PMAX=200 & RC=14 .. 36
 5.8 RESUMEN ... 37

6 CONCLUSIONES ... 39
7 PRESUPUESTO .. 41
 7.1 INTRODUCCIÓN .. 41
 7.2 COSTE DE LA MANO DE OBRA .. 41
 7.3 AMORTIZACIÓN DE LOS EQUIPOS ... 42
 7.4 PRESUPUESTO TOTAL .. 43
8 NOMENCLATURA / SIGLAS ... 45
9 ANEXOS .. 47
 9.1 ANEXO A1. TURBOGRUPO GT-1749V. MAPA DEL COMPRESOR 47
 9.2 ANEXO A2. SOFTWARE ACT. .. 48
 9.3 ANEXO A3. DESARROLLO DE LA FÓRMULA PARA LAS PÉRDIDAS A LA ENTRADA DEL COMPRESOR .. 53
 9.4 ANEXO A4. DESARROLLO DE LA FÓRMULA PARA LAS PÉRDIDAS A LA SALIDA DE LA TURBINA ... 54
 9.5 ANEXO A5. SISTEMA DE ECUACIONES DEL CAPÍTULO 4. RESOLUCIÓN DE LA TEMPERATURA A LA ENTRADA DE LA TURBINA (T\textsubscript{3}) .. 54
 9.6 ANEXO A6. CÁLCULO DE LA PRESIÓN MEDIA EFECTIVA Y DE LA PRESIÓN MEDIA INDICADA DEL MOTOR EN SU PUNTO DE MÁXIMA POTENCIA ... 55
 9.7 ANEXO A7. CÁLCULO DE LA TEMPERATURA ISENTRÓPICA A LA SALIDA DEL COMPRESOR ... 56
 9.8 ANEXO A8. CÁLCULO DEL RENDIMIENTO DEL COMPRESOR 57
 9.9 ANEXO A9. SISTEMA DE ECUACIONES DEL CAPÍTULO 4. CÁLCULO DE V\textsubscript{3} Y T\textsubscript{3} PARA EL PUNTO DE MÁXIMA POTENCIA ... 59
 9.10 ANEXO A10. CÁLCULO DE LA TEMPERATURA ISENTRÓPICA A LA SALIDA DE LA TURBINA ... 60
 9.11 ANEXO A11. TABLAS DE RESULTADOS PARA LOS CASOS DE ESTUDIO DEL CAPÍTULO 4 ... 61
 9.12 ANEXO A12. RESOLUCIÓN DEL SISTEMA DE ECUACIONES DEL CAPÍTULO “5. POTENCIACIÓN” .. 61
 9.13 ANEXO A13. CÁLCULOS PARA LA FASE 1 DEL CAPÍTULO “5. POTENCIACIÓN” ... 63
 9.14 ANEXO A14. CÁLCULOS PARA LA FASE 2 DEL CAPÍTULO “5. POTENCIACIÓN” ... 66
 9.15 ANEXO A15. CÁLCULOS PARA LA FASE 3 DEL CAPÍTULO “5. POTENCIACIÓN” ... 67
 9.16 ANEXO A16. TURBOGRUPO GT2056, MAPA DEL COMPRESOR 69
 9.17 ANEXO A17. MAPAS DE COMPRESORES QUE NO CUMPLÍAN CON LAS NECESIDADES DEL ESTUDIO .. 70
 9.18 ANEXO A18. CÁLCULOS PARA LA FASE 4.1 DEL CAPÍTULO “5. POTENCIACIÓN” ... 72
 9.19 ANEXO A19. RENDIMIENTO PARA EL COMPRESOR DEL TURBOGRUPO GT2056 ... 76
10 BIBLIOGRAFÍA ... 77
1 INTRODUCCIÓN

1.1 Objeto del trabajo
El objetivo principal del trabajo es demostrar que es posible aumentar la potencia de un motor de automoción sin realizar cambios que afecten al diseño base (nº cilindros, carrera, diámetro…) del mismo. No es necesario aumentar el tamaño del motor modificando su cilindrada total, se puede lograr simplemente realizando algún cambio en la relación de compresión o en el turbogrupo encargado de la sobrealimentación para obtener un extra de potencia del motor.

1.2 Alcance del trabajo
El presente trabajo pretende mostrar diferentes métodos o vías de potenciación de un motor de encendido por compresión (MEC) sin modificar su diseño base, y cuáles de ellas son las más útiles y/o efectivas.

Es necesario añadir que todo este documento se basa en cálculos mediante simulación, y que en ningún momento se ha dispuesto del hardware necesario para comprobar los resultados de forma empírica, pero se puede tener la certeza de que en caso de haber dispuesto del motor en cuestión, los resultados obtenidos de forma experimental serían muy similares a los expuestos en este trabajo.
2 MARCO TEÓRICO

2.1 Introducción a los MCIA y al motor de encendido por compresión (MEC)

A día de hoy se podría decir que prácticamente la totalidad de los motores de combustión interna alternativos usados en automoción son motores de cuatro tiempos. Este tipo de motores se caracterizan por necesitar dos revoluciones del cigüeñal para realizar un ciclo de trabajo.

Dentro de los motores 4T podemos encontrar 2 tipos, el MEP y el MEC.

El motor de encendido provocado (MEP) es aquel que necesita de un elemento externo como suele ser una bujía para el encendido de la mezcla aire combustible presente en el cilindro. Por otra parte se encuentran los motores de encendido por compresión (MEC), que son aquellos en los que la mezcla (aire + combustible) se autoenciende cuando dentro del cilindro se dan unas determinadas condiciones de presión y temperatura.

El ciclo de trabajo de un motor MEC está compuesto por cuatro movimientos, llamados también carreras, que se van a describir a continuación:

- En primer lugar se encuentra la admisión, carrera que realiza el pistón desde el punto muerto superior hasta el inferior, donde el cilindro se llena con el aire necesario para más tarde provocar el autoencendido de la mezcla.

- En segundo lugar ocurre la compresión. Es el movimiento del pistón desde el PMI hasta el PMS donde el aire recogido en la carrera de admisión adquiere unas condiciones de presión y temperatura propicias para el inicio de la combustión y también es la fase donde ocurre la inyección del combustible, normalmente unos instantes antes de llegar al PMS.

- En tercer lugar ocurre la combustión/expansión, donde el pistón recorre el cilindro desde el PMS hasta el PMI aprovechando la energía liberada por el combustible. Esta fase es la única de las cuatro que aporta trabajo al sistema.

- Por último está la carrera de escape, en la cual el pistón expulsa los gases quemados de la combustión en un movimiento desde el PMI hasta el PMS.

Llegados a este punto se repetiría el ciclo comenzando por la fase de admisión.

Todos estos movimientos del pistón se pueden representar en un diagrama p-V, que muestran la evolución de la presión y el volumen dentro del cilindro.

Con el volumen en el eje de abscisas, y la presión en el eje de ordenadas, este diagrama representa una pieza fundamental para el estudio realizado en este trabajo, ya que muchos de los cálculos que se realizarán están relacionados con él de un modo u otro.

Se pueden distinguir dos lazos, uno de ellos con un “-”, que es el denominado lazo de bombeo compuesto por las fases de escape y admisión y que suponen pérdidas para el motor. Por otro lado está el lazo con un “+”, denominado lazo de alta presión que es el encargado de aportar trabajo al sistema y que se forma a partir de las diferencias de presión y volumen generadas entre la carrera de compresión y la de combustión/expansión.
Fig. 1 – Diagrama p-V

2.2 Parámetros característicos básicos de los MCIA

Hay una serie de conceptos que vale la pena mencionar antes de comenzar a desarrollar el trabajo realizado, ya que ayudarán a entender con más facilidad todo lo expuesto posteriormente.

Son en su mayoría parámetros relacionados con los MCIA y su funcionamiento. Se resumen a continuación:

- **Gasto máximo de referencia**: Es el gasto máximo por unidad de tiempo asociado al volumen total desplazado por el motor en unas condiciones de referencia.

 \[
 m_{\text{ref}} = \rho_{\text{ref}} \cdot V_T \cdot n \cdot i
 \]

 (2.1)

- **Gasto máximo de aire**: Es la masa de aire admitida por el motor.

 \[
 m_a \left[\frac{kg}{s} \right]
 \]

- **Gasto de combustible**: Parámetro que cuantifica la cantidad de combustible por unidad de tiempo suministrado al motor.

 \[
 m_f \left[\frac{kg}{s} \right]
 \]
- **Dosado absoluto:** Es la relación másica entre aire y combustible.

\[F = \frac{m_f}{m_a} \]

(2.2)

- **Dosado estequiométrico:** Es la relación entre combustible y aire necesaria para que en caso de combustión, el aire y el combustible reaccionen sin que quede nada de reactivos. Este dosado depende únicamente de la composición química del combustible y del aire. Para este trabajo se está estudiando el comportamiento de un motor MEC, que usa como combustible gasóleo, por lo tanto el dosado relativo será:

\[F_e = \frac{1}{14.5} \]

(2.3)

- **Dosado relativo:** Se obtiene dividiendo el dosado absoluto por el dosado estequiométrico, y sirve para indicar la falta o exceso de combustible para una combustión estequiométrica.

\[F_r = \frac{F}{F_e} \]

(2.3)

- **Rendimiento volumétrico:** Es un indicador del llenado del cilindro, que proporciona información sobre lo bien o mal que se ha ocupado el volumen del cilindro con la mezcla fresca dispuesta para su combustión en el siguiente ciclo.

\[\eta_v = \frac{m_a}{m_{ref}} \]

(2.4)

- **Trabajo indicado:** Es el trabajo producido en el ciclo cerrado (área dentro del diagrama p-V)

\[Wi = \int_{P_{M1_{ad}}}^{P_{M1_{es}}} p \cdot dV > 0 \]

(2.5)

- **Potencia indicada:** Es el trabajo indicado por unidad de tiempo.

\[Ni = Wi \cdot n \cdot i \]

(2.6)
- **Rendimiento indicado**: Es la relación entre la potencia indicada desarrollada por el motor y la potencia térmica consumida.

\[\eta_i = \frac{Ni}{m_f \cdot PCI} \]
\[(2.7) \]

- **Presión media indicada**: Es la presión constante que durante una carrera produce un trabajo igual al trabajo indicado.

\[pmi = \frac{Wi}{V_d} \]
\[(2.8) \]

- **Presión media de pérdidas mecánicas**: Parámetro que contabiliza las pérdidas de la presión media de bombeo, la presión media de fricción y la presión media de auxiliares.

\[pmpm = pmb - pmR - pma \]
\[(2.9) \]

- **Presión media efectiva**: Presión constante que durante una carrera produce un trabajo igual al trabajo efectivo.

\[pme = pmi - pmpm \]
\[(2.10) \]

- **Rendimiento efectivo**: Es la relación entre la potencia efectiva desarrollada por el motor y la potencia térmica consumida.

\[\eta_e = \frac{Ne}{m_f \cdot PCI} \]
\[(2.11) \]

- **Relación de compresión**: Es la relación de tamaño que existe entre el volumen unitario de un cilindro y el de la cámara de combustión.

\[Rc = \frac{V_d + V_{cc}}{V_{cc}} \]
\[(2.12) \]
2.3 Sobrealimentación en motores de combustión interna alternativos
Esta técnica consiste en aumentar la densidad del aire de admisión por medio de un aumento de la presión. El aumento de la presión en el colector de admisión se consigue mediante un compresor. Esto provoca un incremento en la densidad del aire a la entrada del motor, que se traduce en un mayor gasto máximo de aire, que, si se mantiene el dosado, hace que el gasto de combustible se aumente en la misma proporción.

La compresión del aire de admisión conduce a un aumento de temperatura, ya que el proceso está alejado del isotermo. Esto se provoca que podamos encontrar temperaturas de entrada al motor entre los 100 y 200 ºC, en función de la temperatura ambiente y de la relación de compresión.

Este aumento de la temperatura en la admisión, produce una disminución de la densidad del aire, y por tanto hace que tengamos menos masa de oxígeno que hará que podamos quemar menos combustible.

Para solucionar este problema se usa un intercooler, que es un refrigerador del aire de la sobrealimentación, que enfria el aire tras haber pasado este por el compresor. Esto nos permitirá bajar la temperatura del aire y por lo tanto aumentar su densidad.

2.4 Potenciación de motores en MEC
En este trabajo se van a estudiar algunas estrategias sobre como potenciar un motor de combustión. Para ello es conveniente tener unas nociones previas sobre lo que se puede hacer para potenciar un motor y en qué puntos se hará especial hincapié en este trabajo.

Una de las fórmulas de la potencia efectiva de un motor es la siguiente:

\[
Ne = \rho_{adm} \cdot \eta_t \cdot \eta_m \cdot \eta_{fu} \cdot Fr \cdot Fe \cdot PCI \cdot V_T \cdot n \cdot i
\]

Aquí se pueden apreciar todos los elementos que se pueden optimizar o cambiar a la hora de extraer más potencia de un motor.

Notar que cualquier cambio en alguno de estos parámetros afectará de forma directa y proporcional a la potencia efectiva del motor en estudio.

En el caso que se estudia, la mayoría de ellos van a ser constantes, a excepción de dos, la densidad de referencia y el rendimiento indicado.

La forma en que se va a aumentar la densidad de referencia será incrementando la presión en la admisión gracias al compresor del turbogrupo. Como ya se ha visto anteriormente este aumento de la densidad de referencia se traduce en una mayor masa de aire en el cilindro que permite quemar más combustible, y por lo tanto, obtener más potencia.
Por otro lado la estrategia que se usará para aumentar el rendimiento indicado será la de avanzar la inyección de combustible sobre el PMS tanto como permitan las condiciones del problema, ya que es conocido que ésta es una estrategia efectiva para aumentar la presión media indicada. Las limitaciones para este avance de la inyección se presentarán en forma de límite de presión en el cilindro, ya que avanzar la combustión implica un aumento de las presiones durante el ciclo de compresión, y por otra parte se podría encontrar el avance óptimo para unas determinadas condiciones, lo que quiere decir que por más que se adelante la inyección ya no se ganará en presión media indicada, si no todo lo contrario, ésta empezará a disminuir. A continuación se muestra una imagen que plasma lo explicado anteriormente.

![Gráfico](image)

Fig. 2 – Evolución de la presión media indicada con el avance de la inyección
3 PRESENTACIÓN DEL MOTOR

3.1 Introducción
Se va a trabajar como ya se ha dicho anteriormente con un MEC, concretamente el DW10B del grupo PSA Peugeot-Citroën. Un motor de 2 litros de cilindrada, 4 cilindros en línea y 100kW de potencia, sobrealimentado por el turbogrupo GT-1749V de la marca Garrett, cuyo mapa del compresor podemos encontrar en el anexo A1. Este motor se usa actualmente en el mundo de la automoción, y lo podemos encontrar en coches de la marca Citroën o Peugeot entre otros. Es un motor que se usa generalmente en berlinas como es el caso del Citroën C5, entre muchos otros.

3.2 Ficha técnica

Tabla 1 Ficha técnica del PSA DW10B.

<table>
<thead>
<tr>
<th>PSA DW10B</th>
<th>Datos técnicos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cilindrada</td>
<td>1998 cc</td>
</tr>
<tr>
<td>Cilindros</td>
<td>4 en línea</td>
</tr>
<tr>
<td>Carrera</td>
<td>88 mm</td>
</tr>
<tr>
<td>Diámetro</td>
<td>85 mm</td>
</tr>
<tr>
<td>V_d</td>
<td>499,35 cm3</td>
</tr>
<tr>
<td>V_{cc}</td>
<td>29,37 cm3</td>
</tr>
<tr>
<td>Relación de compresión</td>
<td>18</td>
</tr>
<tr>
<td>Sobrealimentación</td>
<td>Turbo de geometría variable</td>
</tr>
<tr>
<td>Potencia @ rpm</td>
<td>100 kW @ 4000 rpm</td>
</tr>
<tr>
<td>Par @ rpm</td>
<td>320 Nm @ 1750 rpm</td>
</tr>
</tbody>
</table>

Fig. 3 – PSA DW10B
4 PUESTA A PUNTO DEL MODELO DE SIMULACIÓN

4.1 Introducción
La simulación se llevará a cabo mediante el programa ACT, un software facilitado por el Departamento de Máquinas y Motores Térmicos, que a partir de unos datos de entrada será capaz de proporcionar unos archivos de salida con todos los datos necesarios para realizar el estudio presentado en este trabajo.

En el anexo A2 se encuentra una descripción un poco más detallada sobre ACT y su funcionamiento.

4.2 Suposiciones Previas
Antes de comenzar a describir los pasos que se han seguido para la consecución de esta simulación, es importante tener en mente una serie de suposiciones que ayudarán tanto a resolver los cálculos como a entender la visión global del problema en su conjunto.

Se describen a continuación una a una aportando información del por qué de esas suposiciones.

1. **Dosado Relativo.**
 En un motor MEC nunca se llega a tener un dosado relativo de 1, ya que no hay tiempo suficiente desde el momento de la inyección, hasta el momento en el que comienza la combustión para que el aire y el combustible presentes en el cilindro formen una mezcla completamente homogénea. Debido a esto, en regímenes de par máximo (de unas 1500 rpm a unas 3000 rpm, dependiendo del motor), se pueden alcanzar dosados relativos de 0,9 o incluso algo mayores. Pero en este caso vamos a trabajar para el punto de máxima potencia, que se da a 4000 rpm, lo que implica un menor tiempo para producir la mezcla, por lo que se asumirá que el dosado relativo para estas condiciones es de 0,85.

2. **Rendimiento volumétrico.**
 Al igual que el dosado relativo, este parámetro varía en función del punto de operación en el que se esté trabajando. En situaciones de par máximo puede tener valores de 0,95 o incluso más cercanos a uno, depende de lo bien diseñado que esté el motor. Para el caso de máxima potencia, donde el motor gira más rápido y hay menos tiempo para evacuar los gases de la combustión y admitir mezcla fresca, este valor se ve afectado ligeramente de forma negativa. Se asumirá un valor de 0,9 para estas condiciones.

3. **Temperatura a la entrada del compresor.**
 Se tomará esta temperatura T1 como 298K, una temperatura ambiente razonable para el estudio.

4. **Temperatura de admisión.**
 Se supondrá de 60ºC, debido al efecto del intercooler presente tras el compresor.
5. **Presión de inyección.**
Este motor posee un sistema Common-Rail (Raíl común) para la inyección de combustible, donde el combustible se almacena a una determinada presión y del que los inyectores sustraen el gasóleo para inyectarlo en el cilindro.

Una primera generación de este sistema Common-Rail podía llegar a trabajar hasta una presión de inyección de 1300 bar. Este motor en concreto monta una segunda generación donde la presión máxima de inyección es de 1600 bar. Cabe mencionar que a mayor régimen de giro es necesaria una mayor presión de inyección para que el combustible pueda mezclarse correctamente con el aire.

Por lo tanto, para este estudio, y en el punto de máxima potencia, se ha supuesto una presión de inyección de 1500 bar.

6. **Presión máxima en el cilindro.**
Se trabajará hasta una presión máxima de 160 bar, valor típico para motores de automoción de serie, en el que el fabricante se ve obligado a cumplir unas restricciones de vida útil y durabilidad del motor.

En motores de competición se puede llegar incluso a presiones en cámara de hasta 250 bar, aunque algo muy común en esos casos es cambiar los pistones de aluminio por pistones de acero para soportar estas cargas mecánicas extra.

7. **Presión media de pérdidas mecánicas.**
Vendrá dada por la siguiente fórmula, extraída de un estudio mediante métodos experimentales en motores similares.

Destacar que al ser un parámetro de presión media, no está afectado por el tamaño del motor. En dicha fórmula “n” es el régimen de giro del motor en rpm.

\[p_{mpm} = (4,3469 \cdot 10^{-4} \cdot n) + 7,7 \cdot 10^{-3} \]

(4.1)

8. **Constantes para los gases de escape.**
Para este trabajo se les han asignado los siguientes valores:

\[R_g = \frac{270 \cdot J}{kg \cdot K} \]

\[\gamma_g = 1,3 \]

\[C_{p_{gases}} = R_g \cdot \frac{\gamma_g}{\gamma_g - 1} = 1170 \cdot \frac{J}{kg \cdot K} \]

\[C_{v_{gases}} = R_g \cdot \frac{1}{\gamma_g - 1} = 900 \cdot \frac{J}{kg \cdot K} \]
9. **Caída de presión a la entrada del compresor.**
Debido al filtro de aire y otros elementos que provocan pérdidas en la admisión, se ha considerado que para una presión de admisión de 2 bar (Valor típico de sobrealimentación en motores de automoción), la caída de presión a la entrada del compresor sería de 0,15 bar.
Es decir, que para una presión ambiente de 1 bar, se supondrá que la presión a la entrada del compresor es de 0,85 bar.
Para cualquier otra presión de admisión, se realizará este cálculo mediante la siguiente fórmula:

\[\Delta p = K_{\text{comp}} \cdot m_{\text{a}}^2 \]

(4.2)

En el anexo A3 se explica cómo hallar \(K_{\text{comp}} \).

10. **Sobrepresión a la salida de la turbina.**
Puesto que a la salida de la turbina hay que vencer las pérdidas producidas por elementos como el tubo de escape o mecanismos para el tratamiento de partículas contaminantes, se ha estimado que para una presión de admisión de 2 bar, las pérdidas que se producirían en el escape serían de 0,4 bar.
Por lo tanto, para esta presión de admisión, la presión a la salida de la turbina será de 1,4 bar (1 bar presión atmosférica + 0,4 bar pérdidas en el escape).
Para cualquier otra presión de admisión, se calculará este valor de sobrepresión mediante la fórmula:

\[\Delta p = K_{\text{turb}} \cdot m_{\text{a}}^2 \]

(4.3)

En el anexo A4 se detalla el valor de \(K_{\text{turb}} \).

11. **Rendimiento mecánico del turbogrupo.**
Se asumirá que este rendimiento vale la unidad, es decir, toda la potencia que entrega la turbina llega al compresor. Es una suposición aceptable ya que para estos equipos de sobrealimentación de motores de automoción el rendimiento mecánico se approxima bastante a 1.

12. **Rendimiento de la turbina.**
Por ser la turbina del turbogrupo del motor una TGV (Turbina de geometría variable), se ha supuesto su rendimiento en un valor entre 0,5 y 0,6 (valores típicos de una turbina de este tamaño trabajando en el punto de máxima potencia), debido a que puede adaptar la geometría de paso de los gases en función de las necesidades del compresor, ya que en muchos casos, la energía en el escape es bastante mayor que la necesaria en el compresor para operar en unas determinadas condiciones.
4.3 Metodología

4.3.1 Procedimiento
Se trata de encontrar cuáles son las condiciones reales a las que trabaja el motor, y para la puesta a punto del modelo se usará su punto de máxima potencia, ya que es el punto del que se disponen más datos, y el más útil también puesto que el siguiente capítulo tratará de aumentar la potencia en dicho punto. Para todo esto, y mediante el programa de simulación ACT, se realizarán una serie de iteraciones y cálculos que finalizarán con la solución del modelo.

Este esquema será de ayuda a la hora de seguir los pasos del proceso:
Se dividirá este procedimiento en dos partes, una primera relacionada con los parámetros del propio motor y otra que se encargará de estudiar el comportamiento del turbogrupo.

1. En la parte relacionada con los parámetros del motor se trabajará del siguiente modo:

 Se parte de la potencia efectiva máxima del motor, a partir de la cual se puede calcular su presión media efectiva y gracias a la presión media de pérdidas mecánicas también se podrá obtener la presión media indicada de operación del motor.

 Por otro lado se introducirán como dato de entrada para el software ACT una presión de admisión razonable que pudiera ser la real a la que estuviera trabajando el motor. Tras ejecutar el programa se obtendrán una presión media indicada del lazo de alta presión del diagrama p-V.

 Una vez llegados a este punto, se dispone de los datos necesarios para obtener la presión media de bombeo a la que está trabajando el motor para las condiciones de presión de admisión impuestas anteriormente.

 Y gracias a esta misma presión de admisión y a la presión media de bombeo se puede calcular la presión de entrada a la turbina del turbogrupo.

2. Por su parte, en la fase encargada del turbogrupo se realizará lo siguiente:

 El objetivo en esta fase es determinar si el turbogrupo que se encarga de la sobrealimentación del motor está equilibrado para las condiciones de presión de admisión impuestas en un principio.

 Para ello, es necesario hallar una serie de incógnitas que aún se desconocen, por tanto se formulará un sistema de ecuaciones que una vez resuelto nos proporcionará todos los datos necesarios para proseguir con el estudio.

 Resueltas las incógnitas del sistema ya es posible calcular si el turbogrupo está en equilibrio.

 Se pueden dar dos situaciones, la primera de ellas es que el turbogrupo esté equilibrado, en cuyo caso habrá acabado el estudio y la presión de admisión impuesta en un principio en ACT será la de funcionamiento del motor.

 Por otro lado, puede ocurrir que el trabajo del compresor y el de la turbina sean diferentes, lo que lleva a estudiar los siguientes casos:

 a. Por un lado que $W_c > W_t$, donde el trabajo del compresor sería mayor que el aportado por la turbina, algo imposible para el correcto funcionamiento de un motor. Por lo tanto hay una falta de energía en esta última que habrá que compensar en el siguiente ensayo incrementando la presión de admisión, que implica un mayor gasto máximo de aire y por consiguiente de combustible, que se traduce en unos gases de escape con mayor carga térmica.
b. Por otro lado puede ocurrir que $W_c < W_t$, donde la energía en la turbina es excesiva y proporciona al compresor más de la que éste necesita para trabajar en ese punto de máxima potencia. La solución para el siguiente ensayo consiste en bajar la presión de admisión, ya que de este modo la turbina no dispondrá de tanta energía de los gases de escape.

A continuación se describen con más detalle las fórmulas que permitirán abordar con éxito todo el procedimiento descrito anteriormente.

4.3.2 Parámetros del motor

Vamos a explicar aquí brevemente cómo se han calculado cada uno de ellos:

Conocida la potencia efectiva, se puede obtener la presión media efectiva:

$$p_{me} = \frac{N_e}{V_T \cdot n \cdot l}$$

(4.4)

Con ésta, podemos hallar la presión media indicada:

$$p_{mi} = p_{me} + p_{mpm}$$

(4.5)

Una vez obtenida la presión media indicada del lazo de alta presión proporcionada por ACT, se puede calcular la presión media de bombeo:

$$p_{mb} = p_{mi_{hp}} - p_{mi}$$

(4.6)

Y por último, esta presión media de bombeo, junto con la presión de admisión nos permite conocer la presión de entrada a la turbina:

$$P3 = p_{mb} + P_{adm}$$

(4.7)
4.3.3 **Equilibrio turbina-compresor**

Llegados a este punto, queda por comprobar que el turbogrupo esté equilibrado, es decir, que el trabajo proporcionado por el compresor, sea el mismo que recibe por parte de la turbina. A continuación se explica cómo calcular cada uno de ellos.

4.3.3.1 **Compresor**

Quedan definido el trabajo del compresor como:

\[W_c = m_a \cdot C_p \cdot (T_2 - T_1) \]

(4.8)

Puesto que no se posee ningún método para obtener la T2 real, se trabajará a partir de una T2s ideal y un rendimiento del compresor proporcionado por su mapa de funcionamiento, para a partir de ahí poder obtener el trabajo real del compresor.

\[\eta_c = \frac{(T_{2s} - T_1)}{(T_2 - T_1)} \]

(4.9)

De esta forma queda:

\[W_c = \frac{m_a \cdot C_p \cdot (T_{2s} - T_1)}{\eta_c} \]

(4.10)

Donde \(m_a \) y T2s son variables que cambiarán su valor dependiendo de la presión de admisión a la que se realice el ensayo.

El rendimiento del compresor se obtendrá de su mapa de funcionamiento adjuntado en los anexos, siendo éste función de la relación de compresión y del gasto másico de aire.

Por otro lado \(C_p \) y T1 serán constantes de valor 1000 \(\left[\frac{1}{\text{kg} \cdot \text{K}} \right] \) y 298 [K] respectivamente.

Y la temperatura T2s se calculará como:

\[T_{2s} = T_1 \cdot \left(\frac{P_2}{P_1} \right)^{\frac{\gamma - 1}{\gamma}} \]

(4.11)
4.3.3.2 Turbina

Por su parte, la turbina suministra trabajo siguiendo la siguiente fórmula:

$$\dot{W}_t = (m_a + m_f) \cdot C_{pgases} \cdot (T3 - T4)$$

(4.12)

Análogamente al compresor, no se dispone de las herramientas suficientes para conocer la T4 real de la turbina, por lo tanto se hará uso de su rendimiento para a partir de una T4s ideal, obtener el trabajo realizado por la turbina.

$$\eta_t = \frac{(T3 - T4)}{(T3 - T4s)}$$

(4.13)

De este modo queda:

$$\dot{W}_t = (m_a + m_f) \cdot C_{pgases} \cdot \eta_t \cdot (T3 - T4s)$$

(4.14)

Donde m_a, m_f, $T3$ y $T4s$ varían en función de la presión de admisión.

El rendimiento de la turbina (η_t) variará entre 0,5 y 0,6 como se comentó en las suposiciones previas en función de las necesidades del compresor.

Por su parte el C_{pgases} tendrá un valor de 1170 $\left[\frac{1}{kg.k} \right]$.

La temperatura $T4s$ se calculará como:

$$T4s = T3 \cdot \left(\frac{P4}{P3} \right)^{\frac{\gamma -1}{\gamma}}$$

(4.15)

Y por último, la temperatura a la entrada de la turbina T3 habrá que calcularla mediante el uso de un sistema de ecuaciones que se detalla en el anexo A5.
4.4 Resultados

4.4.1 Introducción
La presión de admisión con la que se ha conseguido tanto obtener la potencia efectiva de 100 kW, como que el turbogrupo estuviera equilibrado fue de 1,8 bar, un valor razonable para un motor de automoción trabajando en el punto de máxima potencia.

A continuación se presentan los resultados para esta presión de admisión final de cada uno de los componentes del proceso que se usaron para llevar a cabo la puesta a punto del modelo de simulación.

4.4.2 Motor
Llegados a este punto, los parámetros finales son los siguientes:

\[Ne = 100 \, kW \]
\[pme = 15 \, bar \]
\[pmpm = 1,75 \, bar \]
\[pmi = 16,76 \, bar \]

Estos cálculos están más desarrollados en el anexo A6.

Para una presión de admisión de 1,8 bar, ACT proporcionaba la siguiente presión media indicada para el lazo de alta presión:

\[pm_{ihp} = 17,34 \, bar \]

Por lo que la presión media de bombeo es:

\[pmb = pm_{ihp} - pmi = 0,58 \, bar \]

De este modo ya se puede hallar la presión a la entrada de la turbina:

\[P3 = pmb + P_{adm} = 0,58 + 1,8 = 2,38 \, bar \]

4.4.3 Compresor
Como ya se había comentado anteriormente, se define como:

\[W_c = \frac{m_a \cdot C_p \cdot (T_2s - T_1)}{\eta_c} \]

(4.16)
Donde los datos conocidos para la solución son:

\[C_p = 1000 \left[\frac{J}{kg \cdot K} \right] \]
\[T_1 = 298 [K] \]

La temperatura \(T_{2s} \) y el gasto máscico de aire están resueltos en el anexo A7, dando como resultados:

\[m_a = 0,1129 \left[\frac{kg}{s} \right] \]
\[T_{2s} = 365,8 [K] \]

El rendimiento del compresor se resuelve tal y como se muestra en el anexo A8:

\[\eta_c = 0,7 \]

Con todos estos datos se sustituye en la fórmula del trabajo del compresor y se obtiene el siguiente resultado:

\[\dot{W_c} = 10935 [W] \]

4.4.4 Turbina

Por su parte, la turbina realiza trabajo siguiendo la siguiente fórmula:

\[\dot{W_t} = (m_a + m_f) \cdot C_{p\text{gases}} \cdot \eta_t \cdot (T_3 - T_{4s}) \]

\[(4.17)\]

Donde los datos conocidos para la solución son:

\[C_{p\text{gases}} = 1170 \left[\frac{J}{kg \cdot K} \right] \]
\[m_a = 0,1129 \left[\frac{kg}{s} \right] \]

El flujo de combustible es:

\[m_f = m_a \cdot F_r \cdot F_e = 0,1129 \left[\frac{kg}{s} \right] \cdot 0,85 \cdot \frac{1}{14,5} = 0,00661828 \left[\frac{kg}{s} \right] \]

\[(4.18)\]
El rendimiento de la turbina se asume:

\[\eta_t = 0,57 \]

Resolviendo el sistema de ecuaciones planteado tal y como se muestra en el anexo A9 donde las incógnitas son \(V_3 \) y \(T_3 \) se obtiene:

\[V_3 = 0,00133608 [m^3] \]
\[T_3 = 1080,84 [K] \]

De esta forma ya se puede hallar \(T_{4s} \), cuyo desarrollo se encuentra en el anexo A10:

\[T_{4s} = 944,2 [K] \]

El trabajo proporcionado por la turbina para una presión de admisión de 1,8 bar será:

\[\dot{W}_t = 10891 [W] \]

4.4.5 Conclusiones

Se presenta una tabla con los resultados obtenidos, para el punto de máxima potencia.

Tabla 2 Resultados para el punto de operación de máxima potencia.

<table>
<thead>
<tr>
<th>Padm</th>
<th>Av. Iny.</th>
<th>(\eta_i)</th>
<th>Pcil</th>
<th>T3</th>
<th>(\eta_c)</th>
<th>(\eta_t)</th>
<th>pme</th>
<th>Ne</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,8</td>
<td>-21,83º</td>
<td>0,406</td>
<td>160 bar</td>
<td>1080,8 K</td>
<td>0,7</td>
<td>0,56</td>
<td>15 bar</td>
<td>100 kW</td>
</tr>
</tbody>
</table>

Es evidente que \(\dot{W}_c \) no es exactamente igual que \(\dot{W}_t \),

\[\dot{W}_c = 10935 [W] \]
\[\dot{W}_t = 10891 [W] \]

pero se dará por válido debido a la gran cantidad de suposiciones previas que se han realizado, al fin y al cabo la diferencia entre estas dos magnitudes es mínima, y cualquier pequeño cambio en alguno de los factores que influyen en sus fórmulas de cálculo haría que estos valores se igualaran sin mucha dificultad.

Se incluye un anexo A11, en el que se muestran los datos para los experimentos de presión de admisión 2 y 1,9 bar, que resultaron no ser las condiciones del funcionamiento real de nuestro motor.
5 POTENCIACIÓN

5.1 Introducción
Una vez obtenido con éxito el modelo de simulación, el objetivo es aumentar la potencia del motor. Para ello se realizarán algunos pequeños cambios en ciertos parámetros o en las condiciones de contorno.

Este capítulo se dividirá en 4 fases, donde en cada una de ellas se estudiarán la eficacia de los cambios que se realicen en el motor a la hora de aumentar su potencia.

Los procesos a estudiar serán: Aumentar la presión de admisión, aumentar la presión máxima del cilindro, disminuir la relación de compresión y por último cambiar el turbogrupo encargado de la sobrealimentación del motor.

Todos estos cambios afectarán de un modo u otro a la entrega final de potencia por parte del motor, durante los estudios podrán aparecer limitaciones térmicas, mecánicas y de uso de algunos de los componentes del motor, por tanto habrá que establecer algunas limitaciones.

El propósito es que el lector sea consciente de lo relativamente fácil que es potenciar un motor de automoción, sin necesidad de recurrir a cambios que afecten al diseño base del mismo. Con tan solo unas pequeñas modificaciones se podrán obtener unos CV de potencia extra como se expone a continuación.

Se presentan ahora algunas de las limitaciones que habrá que tener en cuenta a la hora de realizar este estudio.

5.2 Limitaciones
Como ya se ha visto anteriormente, el motor está compuesto, entre otros elementos por el turbogrupo y el bloque motor.

El turbogrupo es el que encargado de suministrar el aire necesario a los cilindros del motor para que en éstos se genere la mezcla que dé lugar a la combustión y por tanto a la liberación de energía por parte del sistema.

En la actualidad, la tecnología relacionada con compresores y turbinas está muy avanzada, por lo que se pueden de encontrar compresores que trabajen con unas relaciones de compresión que introducirían en el cilindro una cantidad de aire tan grande, que la cantidad de combustible que habría que inyectar para mantener el dosado generaría una combustión que llevaría a su límite térmico (por temperatura), y a su límite mecánico (por presión en la cámara del cilindro) a los materiales del motor.

Por ello, es conveniente establecer unos límites de trabajo para el motor:

- Presión máxima en el cilindro (Pmáx): 200 bar
- Temperatura a la entrada de la turbina (T3): 1323 K
5.3 Metodología
A continuación se muestra un esquema que ayudará a aclarar las ideas sobre cómo se va a desarrollar este capítulo del trabajo:

En este apartado los pasos a seguir serán diferentes a los vistos en el capítulo anterior. Esto es debido a que ahora el objetivo es potenciar, y eso impide conocer la potencia final, puesto que no se puede saber de qué forma afectarán los cambios que se realicen en el comportamiento del motor.

Para empezar, se introducirá una presión de admisión o una relación de compresión como dato de entrada para el programa ACT, que dará como salida la presión media indicada del lazo de alta presión del ensayo realizado.
Por otro lado, para lograr hallar la potencia final del motor, que es realmente la incógnita del problema, llevaremos a cabo un sistema de ecuaciones que proporcionará las variables necesarias para conseguirlo.

Este sistema de ecuaciones estará formado por 2 ecuaciones con 2 incógnitas. La primera de estas ecuaciones será la usada en el capítulo anterior para calcular la expansión espontánea de los gases de la combustión al abrir la válvula de escape.

$$m \cdot C_v \cdot (T_3 - T_{evo}) = -P_3 \cdot \Delta V$$

(5.1)

Y la segunda será la ecuación de equilibrio del turbogrupo:

$$\dot{W}_c = \dot{W}_t$$

(5.2)

Mediante la resolución de este sistema de ecuaciones, se resuelven dos problemas en uno, puesto que no solo se obtienen los resultados de las variables que permitirán obtener la potencia efectiva del motor, si no que, además, se asegura que el turbogrupo está en equilibrio y funciona con normalidad.

El sistema de ecuaciones está resuelto con más detalle en el anexo A12.

Una vez obtenidas P_3 y T_3 para el ensayo, se puede hallar la presión media de bombeo.

$$p_{mb} = P_3 - P_{adm}$$

(5.3)

Llegados a este punto, el cálculo de la potencia final es bastante sencillo.

Conocida la presión media de bombeo, se obtiene la presión media indicada del ensayo:

$$p_{mi} = p_{mi_{hp}} - p_{mb}$$

(5.4)

De forma similar se calcula la presión media efectiva correspondiente:

$$p_{me} = p_{mi} - p_{m_{pm}}$$

(5.5)

Y por último, se resuelve la potencia efectiva obtenida en el ensayo:

$$N_e = p_{me} \cdot V_T \cdot n \cdot i$$

(5.6)
5.4 **FASE 1: Incremento de la presión de admisión.**

La primera opción escogida para aumentar la potencia del motor es la de incrementar la presión de admisión. Es algo bastante lógico, puesto que aumentar la presión de admisión supone un mayor gasto másico de aire, y por tanto una mayor cantidad de oxígeno, que permite introducir una mayor cantidad de combustible en el cilindro, que se traduce en más potencia.

Las únicas restricciones en este ensayo será la de una presión máxima en el cilindro de 160 bar (como en todo el proceso de puesta a punto del modelo) y el correcto funcionamiento del turbogrupo.

En el capítulo 4 el objetivo era simular el funcionamiento real del motor, y para ello se tenía que suponer una presión de admisión determinada. El primer ensayo se realizó a una presión de admisión de 2 bar, donde el compresor se salía de su área de funcionamiento.

![Fig. 4 – Mapa del compresor GT1749V](image)
Como se puede observar en la imagen, a medida que se aumenta la presión de admisión, aumenta el gasto másico de aire y también la relación de compresión, por lo que cuando se pretende potenciar un motor, la intersección de estos dos elementos en el mapa del compresor tiende a moverse hacia arriba y hacia la derecha.

Por tanto, el único margen del que se disponía para esta primera fase, era el de trabajar con una presión de admisión de 1,9 bar.

Los resultados de esta fase se muestran en la siguiente tabla:

Tabla 3 **Resultados de la FASE 1.**

<table>
<thead>
<tr>
<th>Padm</th>
<th>Av. Iny.</th>
<th>pml_{hp}</th>
<th>η</th>
<th>Pcil</th>
<th>T3</th>
<th>η_{c}</th>
<th>η_{t}</th>
<th>pme</th>
<th>Ne_{FASE1}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,9 bar</td>
<td>-20,42º</td>
<td>18,33 bar</td>
<td>0,407</td>
<td>160 bar</td>
<td>1097 K</td>
<td>0,71</td>
<td>0,56</td>
<td>15,87 bar</td>
<td>105,69 kW</td>
</tr>
</tbody>
</table>

Los cálculos mediante los que se ha llegado a estos resultados se encuentran en el anexo A13.

5.5 **FASE 2: Incremento de la presión de admisión y de la $Pmáx$ del cilindro.**

En este segundo apartado se trabajará con la presión de admisión del ensayo anterior, la máxima para el turbogrupo, es decir 1,9 bar, pero se podrá incrementar la presión máxima dentro del cilindro hasta los 200 bar.

Esto implica una menor durabilidad para el motor, pero posiblemente sea una reducción aún admisible para su vida útil.

Este margen de 40 bar respecto a los 160 con los que se ha trabajado hasta ahora, permitirá aumentar la potencia.

Como ya se comentó en el marco teórico, avanzar la inyección de combustible en un MEC incrementa la potencia suministrada por el motor, siempre que el avance esté dentro de un rango determinado, ya que si se avanza demasiado, la liberación de energía por parte del combustible es tan temprana que realizaría trabajo en contra del sistema y por lo tanto se reduciría la potencia obtenida.

Teniendo esto en cuenta, se sabe que hay un “avance óptimo” de la inyección, es decir, el avance que dará la mayor potencia posible, dentro de unas determinadas condiciones.

Este punto será el de máxima pml_{hp}, valor suministrado por ACT.

Tras realizar diversos ensayos con el programa, los resultados obtenidos son los siguientes.
Cabe destacar que apenas se ha incrementado la presión máxima con respecto a la FASE 1, lo que quiere decir que el motor estaba bastante cerca del avance óptimo, ya que para la presión nominal de 160 bar estaba muy cerca de desarrollar toda la potencia posible en cuanto a avance de la inyección se refiere.

Se observa también que el aumento de la potencia respecto a la FASE 1 es mínimo, pero queda demostrado que ampliar el margen de la presión máxima dentro del cilindro es una vía útil para aumentar la potencia entregada por un MCIA.

En el anexo A14 se encuentran los cálculos mediante los cuales se ha llegado a estos resultados.

5.6 FASE 3: Incremento de la presión de admisión y reducción de la relación de compresión.

En esta tercera fase se presenta una nueva vía para el incremento de la potencia de un motor. Es el descenso de su relación de compresión.

Al igual que en la fase anterior, este cambio va a permitir avanzar la inyección de combustible, ya que las temperaturas y las presiones al final de la carrera de compresión no serán tan grandes debido al aumento de la cámara de combustión.

La relación de compresión sin modificar de este motor es de 18. Para esta fase la reduciremos hasta 14. La forma de hacerlo, tal como se puede apreciar en la fórmula de la relación de compresión, es rebajando la cámara de combustión del pistón, ya que el volumen unitario del cilindro se dijo desde un principio que no iba a ser modificado.

\[
R_c = \frac{V_d + V_{cc}}{V_{cc}}
\]

(5.7)

Se limitará el valor de la relación de compresión a 14 debido a que al inyectar antes el combustible y ser las temperaturas y presiones menores al final de la carrera de compresión, hay tiempo suficiente para que el aire y el combustible se mezclen, y esto provoca que un gran porcentaje de la combustión se genere de forma premezclada, lo que produce mayor ruido y castigo mecánico para el motor.

En la siguiente tabla se muestran los resultados para una relación de compresión de 14 y un límite de presión en el cilindro de 160 bar.

<table>
<thead>
<tr>
<th>Padm</th>
<th>Av. Iny.</th>
<th>(p_{mi_{hp}})</th>
<th>(\eta_i)</th>
<th>Pcil</th>
<th>T3</th>
<th>(\eta_c)</th>
<th>(\eta_t)</th>
<th>(pm)</th>
<th>(Ne_{FASE2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,9 bar</td>
<td>-22°</td>
<td>18,37 bar</td>
<td>0,408</td>
<td>166,6 bar</td>
<td>1089 K</td>
<td>0,71</td>
<td>0,56</td>
<td>15,9 bar</td>
<td>105,9 kW</td>
</tr>
</tbody>
</table>

Tabla 3 Resultados de la FASE 2.
Tabla 4
Resultados de la FASE 3.

<table>
<thead>
<tr>
<th>Padm</th>
<th>Av. Iny.</th>
<th>$p_{mi_{hp}}$</th>
<th>η_i</th>
<th>Pcil</th>
<th>T3</th>
<th>η_c</th>
<th>η_t</th>
<th>p_{me}</th>
<th>$N_{e_{FASE3}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,9 bar</td>
<td>-36,9°</td>
<td>19,24 bar</td>
<td>0,427</td>
<td>160 bar</td>
<td>1105 K</td>
<td>0,71</td>
<td>0,56</td>
<td>16,8 bar</td>
<td>111,87 kW</td>
</tr>
</tbody>
</table>

En el anexo A15 se muestran los cálculos realizados para llegar a estos resultados.

5.7
FASE 4: Cambio del turbogrupo

5.7.1
Motivación
Como ya se vió en el apartado 2, la densidad en la admisión es un valor que afecta de forma directa y proporcional a la potencia. Puesto que el turbogrupo inicial está limitado a una presión máxima en la admisión de 1,9 bar, resulta una solución muy útil y eficaz el cambio del turbogrupo.

5.7.2
Nuevo turbogrupo
El nuevo grupo de sobrealimentación es el GT2056 de la marca Garrett, cuyo mapa del compresor se encuentra en el anexo A16.

El objetivo es claro, había que encontrar un turbogrupo que fuera capaz de sobrealimentar el motor a una presión de admisión superior a los 1,9 bar que se conseguían con el GT1749V.

Durante la búsqueda se tantearon diversos turbogrupos para comprobar si eran capaces de trabajar a presiones de admisión en torno a los 2,5 o los 3 bar para este motor.

En el anexo A17 hay algunas fotos de mapas de compresores que no servían para esta aplicación, y una breve explicación de por qué fue tan complicado encontrar un compresor que se ajustara a las necesidades del motor DW10B.

Una vez elegido el GT2056 como nuevo turbogrupo, comenzó a trabajarse con él.

Con este nuevo equipo, se podía alimentar al motor con una presión de admisión de 2,5 bar, que equivale a un caudal másico de aire de $m_a = 0,1567 \frac{kg}{s}$, y que corregido, según la fórmula vista en el anexo A8, da un $m_c = 25,12 \frac{lbs}{min}$.

Con estos datos se puede resolver el rendimiento del compresor tal y como se muestra en el anexo A19, resultando un $\eta_c = 0,753$ para estas condiciones.

Es importante destacar que, con las suposiciones previas realizadas para calcular la caída de presión a la entrada del compresor y la sobrepresión a la salida de la turbina, se obtenían unos valores de relación de compresión para el compresor (τ_c) excesivamente altos, que obstaculizaban en gran medida la búsqueda de un turbogrupo para el motor.
Se tomó en este caso una decisión bastante lógica, que muy a menudo se realiza en el mundo real. Y fue asumir que junto al turbogrupo, se cambiarían también los conductos de admisión y escape, dotándolos de una mayor sección para disminuir las pérdidas.

Con todo esto, se asumió que para este nuevo turbogrupo, las pérdidas serían las nominales que se usaron para el otro turbogrupo trabajando a 2 bar, es decir:

Caída de presión a la entrada del compresor: $\Delta p = 0,15$ bar \Rightarrow $P_1 = 0,85$ bar

Sobrepresión a la salida de la turbina: $\Delta p = 0,4$ bar \Rightarrow $P_4 = 1,4$ bar

Para el nuevo equipo de sobrealimentación se realizaron ensayos con diferentes condiciones de contorno, para comprobar cuál de ellas proporcionaba mejores resultados.

Como en los puntos estudiados anteriormente, se trabajó variando la presión máxima del cilindro (de 160 a 200 bar) y la relación de compresión (de 18 a 14).

El procedimiento de cálculo es totalmente análogo a los estudiados anteriormente, con las variaciones correspondientes a cada ensayo y al cambio del turbogrupo.

$5.7.3 \text{ FASE 4.1 } P_{máx}=160 \text{ & } R_c=18$

Esta primera fase con el nuevo turbogrupo se podría considerar como un caso de partida, ya que no tiene demasiado sentido cambiar el equipo de sobrealimentación del motor manteniendo las mismas restricciones que con el turbogrupo de serie.

Por tanto, en estas condiciones, se obtuvieron los siguientes resultados:

<table>
<thead>
<tr>
<th>P_{adm}</th>
<th>Av. Iny.</th>
<th>$p_{m_{hp}}$</th>
<th>η_i</th>
<th>P_{cil}</th>
<th>T_3</th>
<th>η_c</th>
<th>η_t</th>
<th>p_{me}</th>
<th>$N_{FASE4.1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,5 bar</td>
<td>-13,6º</td>
<td>23,39 bar</td>
<td>0,395</td>
<td>160 bar</td>
<td>1170 K</td>
<td>0,753</td>
<td>0,56</td>
<td>20,9 bar</td>
<td>139,14 kW</td>
</tr>
</tbody>
</table>

En el anexo A18 se muestran con más detalle todos los cálculos realizados.
5.7.4 **FASE 4.2 Pmáx=200 & Rc=18**
Para estas nuevas condiciones, donde se permite aumentar la presión en cámara del cilindro hasta un valor de 200 bar, los resultados obtenidos fueron los siguientes:

Tabla 6
Resultados de la FASE 4.2.

<table>
<thead>
<tr>
<th>Padm</th>
<th>Av. Iny.</th>
<th>pmh</th>
<th>ηi</th>
<th>Pcil</th>
<th>T3</th>
<th>ηc</th>
<th>ηt</th>
<th>pme</th>
<th>NefASE4.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5 bar</td>
<td>-22,15º</td>
<td>24,26 bar</td>
<td>0,409</td>
<td>200 bar</td>
<td>1129 K</td>
<td>0,753</td>
<td>0,56</td>
<td>21,66 bar</td>
<td>144,23 kW</td>
</tr>
</tbody>
</table>

Para llegar hasta ellos tan solo hay que seguir el anexo A18, donde únicamente varían los valores que se muestran en la siguiente tabla:

Tabla 7
Parámetros que cambian para la FASE 4.2.

<table>
<thead>
<tr>
<th>Tevo</th>
<th>Pevo</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>1337 K</td>
<td>10,33 bar</td>
<td>0,00151325 kg</td>
</tr>
</tbody>
</table>

5.7.5 **FASE 4.3 Pmáx=160 & Rc=14**
Se vuelve ahora a la restricción para la presión máxima del cilindro a 160 bar pero bajando en este caso la relación de compresión del motor a 14.

Para estas condiciones se obtuvieron los siguientes resultados:

Tabla 8
Resultados de la FASE 4.3.

<table>
<thead>
<tr>
<th>Padm</th>
<th>Av. Iny.</th>
<th>pmh</th>
<th>ηi</th>
<th>Pcil</th>
<th>T3</th>
<th>ηc</th>
<th>ηt</th>
<th>pme</th>
<th>NefASE4.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5 bar</td>
<td>-24,72º</td>
<td>23,76 bar</td>
<td>0,401</td>
<td>160 bar</td>
<td>1156 K</td>
<td>0,753</td>
<td>0,56</td>
<td>21,23 bar</td>
<td>141,42 kW</td>
</tr>
</tbody>
</table>

Para llegar hasta ellos tan solo hay que seguir el anexo A18, donde únicamente varían los valores que se muestran en la siguiente tabla:

Tabla 9
Parámetros que cambian para la FASE 4.3.

<table>
<thead>
<tr>
<th>Vevo</th>
<th>Tevo</th>
<th>Pevo</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,00053776 m³</td>
<td>1337 K</td>
<td>10,33 bar</td>
<td>0,00151316 kg</td>
</tr>
</tbody>
</table>
5.7.6 **FASE 4.4 Pmáx=200 & Rc=14**

Por último, se prueba para una presión máxima en el cilindro de 200 bar y una relación de compresión de 14.

Para estas condiciones, se obtuvieron los siguientes resultados:

Tabla 10 *Resultados de la FASE 4.4.*

<table>
<thead>
<tr>
<th>Padm</th>
<th>Av. Iny.</th>
<th>pmi</th>
<th>ηi</th>
<th>Pcil</th>
<th>T3</th>
<th>ηc</th>
<th>ηt</th>
<th>pme</th>
<th>NeFASE4.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,5 bar</td>
<td>-35,81°</td>
<td>24,94 bar</td>
<td>0,421</td>
<td>200 bar</td>
<td>1112 K</td>
<td>0,753</td>
<td>0,56</td>
<td>22,29 bar</td>
<td>148,44 kW</td>
</tr>
</tbody>
</table>

Para llegar hasta ellos tan solo hay que seguir el anexo A18, donde únicamente varían los valores que se muestran en la siguiente tabla:

Tabla 11 *Parámetros que cambian para la FASE 4.4.*

<table>
<thead>
<tr>
<th>Vevo</th>
<th>Tevo</th>
<th>Pevo</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,00053776 m³</td>
<td>1311 K</td>
<td>9,96 bar</td>
<td>0,00151389 kg</td>
</tr>
</tbody>
</table>
5.8 Resumen
Como se puede observar en la siguiente tabla resumen, la técnica que consigue un aumento de la potencia más pronunciado es la del cambio del equipo de sobrealimentación. Donde la potencia es capaz de crecer desde los 100 kW iniciales hasta un máximo de 148,44 kW.

Tabla 12 Tabla resumen de las FASES del TFG.

<table>
<thead>
<tr>
<th>FASE</th>
<th>Padm</th>
<th>Pmáx</th>
<th>Rc</th>
<th>pme</th>
<th>Ne</th>
<th>%mejora</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1,8 bar</td>
<td>160 bar</td>
<td>18</td>
<td>15 bar</td>
<td>100 kW</td>
<td>0 %</td>
</tr>
<tr>
<td>1</td>
<td>1,9 bar</td>
<td>160 bar</td>
<td>18</td>
<td>15,87 bar</td>
<td>105,69 kW</td>
<td>5,69 %</td>
</tr>
<tr>
<td>2</td>
<td>1,9 bar</td>
<td>200 bar</td>
<td>18</td>
<td>15,9 bar</td>
<td>105,89 kW</td>
<td>5,89 %</td>
</tr>
<tr>
<td>3</td>
<td>1,9 bar</td>
<td>160 bar</td>
<td>14</td>
<td>16,8 bar</td>
<td>111,87 kW</td>
<td>11,87 %</td>
</tr>
<tr>
<td>4.1</td>
<td>2,5 bar</td>
<td>160 bar</td>
<td>18</td>
<td>20,89 bar</td>
<td>139,14 kW</td>
<td>39,14 %</td>
</tr>
<tr>
<td>4.2</td>
<td>2,5 bar</td>
<td>200 bar</td>
<td>18</td>
<td>21,66 bar</td>
<td>144,23 kW</td>
<td>44,23 %</td>
</tr>
<tr>
<td>4.3</td>
<td>2,5 bar</td>
<td>160 bar</td>
<td>14</td>
<td>21,23 bar</td>
<td>141,42 kW</td>
<td>41,42 %</td>
</tr>
<tr>
<td>4.4</td>
<td>2,5 bar</td>
<td>200 bar</td>
<td>14</td>
<td>22,29 bar</td>
<td>148,44 kW</td>
<td>48,44 %</td>
</tr>
</tbody>
</table>

Cabe mencionar también, que hay una creencia popular bastante extendida que se basa en que una gran forma de incrementar la potencia de un motor es la de aumentar su relación de compresión. En parte es cierto, ya que para unas mismas condiciones de trabajo, al aumentar la relación de compresión, las presiones en la cámara del cilindro también aumentarán, y a la par ocurrirá con el rendimiento indicado.

Pero en cambio si tienes acceso a la ECU (Electronic Central Unit) que se encarga del control electrónico del motor, y eres capaz de cambiar el avance de la inyección del mismo, ha quedado demostrado que con una relación de compresión menor se puede sacar incluso más potencia que con una relación de compresión alta.

A continuación se muestra un gráfico que permitirá ver con claridad los aumentos de potencia que han proporcionado cada una de las técnicas que hemos ido aplicando a lo largo del trabajo.

En primer lugar se muestra el DW10B de serie que era capaz de suministrar una potencia efectiva de 100 kW.

En segundo lugar notar el aumento de unos 6 kW que ha ofrecido la FASE 1 al pasar de una presión de admisión de 1,8 a 1,9 bar.

Por su parte, el apenas perceptible incremento que ha supuesto la FASE 2, donde se incrementaba el margen de la presión máxima del cilindro hasta los 200 bar, se debe, tal y como se dijo anteriormente, a que las condiciones de trabajo del motor se encontraban muy cerca del avance óptimo, y por tanto poco se pueda mejorar antes de que el rendimiento indicado comenzara a disminuir si se seguía incrementando el avance de la inyección.
A continuación la FASE 3 donde se redujo la relación de compresión de 18 a 14 y queda demostrado de nuevo, que esta disminución junto con un avance de la inyección, se puede traducir en un aumento de la potencia del motor en estudio.

Por último, las FASES 4.1, 4.2, 4.3 y 4.4, que supusieron el mayor aumento de potencia para el motor debido al cambio del turbogrupo.

Fig. 5 – Gráfico comparativo de los resultados obtenidos en las diferentes fases
6 CONCLUSIONES

Se ha conseguido simular con éxito el comportamiento real de un motor de combustión interna alternativo gracias a un modelo ajustado para las condiciones de contorno pertinentes.

Este modelo ha permitido estudiar qué repercusiones podían tener en el comportamiento del motor una serie de cambios con el fin de aumentar su potencia.

Se han analizado los resultados obtenidos llegando a conclusiones lógicas, como el hecho de que aumentar la presión en la admisión se tradujera en una mayor potencia y otras un tanto inesperadas, cuando al reducir la relación de compresión también se ha generado un aumento de la potencia.

Se confirman, por tanto, como métodos para potenciar un motor todos los estudiados durante este trabajo:

- Incrementar la presión de admisión del equipo de sobrealimentación.
- Disminuir la relación de compresión del motor.
- Incrementar la presión máxima admisible para el cilindro.
7 PRESUPUESTO
En este apartado se estima el coste total del TFG, dividiéndolo en diversos puntos donde se calcularán presupuestos parciales.

Para la elaboración de este presupuesto se han tenido en cuenta los materiales empleados, equipos instalados y mano de obra necesaria para su realización, para cada una de las partes que lo componen.

Todos los precios reflejados vienen expuestos sin el impuesto del valor añadido (IVA), cuyo importe es del 21% y que se considerará en los posteriores apartados.

7.1 Coste de la mano de obra
Puesto que la carga de trabajo de este TFG es de 12 ECTS, se traduce en 300 horas de trabajo por parte del Ingeniero en Tecnologías Industriales.

Tabla 13 Presupuesto parcial de la mano de obra del TFG.

<table>
<thead>
<tr>
<th>Mano de obra</th>
<th>Cantidad (h)</th>
<th>Denominación</th>
<th>Precio/hora</th>
<th>Total (€)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>300</td>
<td>Ingeniero en Tecnologías Industriales</td>
<td>13,37</td>
<td>4 011 €</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td></td>
<td>4 011 €</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total Capítulo 7.2</td>
<td></td>
<td>4 011 €</td>
</tr>
</tbody>
</table>
7.2 Amortización de los equipos
En este apartado se calcula el valor de amortización de los equipos utilizados para llevar a cabo este trabajo de fin de grado. Para ellos será necesario recurrir a la siguiente fórmula:

\[
A = \frac{C}{H} \cdot h
\]

(7.1)

Donde:
- \(A\): amortización.
- \(C\): coste anual de amortización.
- \(H\): horas de funcionamiento anual.
- \(h\): horas de funcionamiento para la sala.

Tabla 14 Presupuesto parcial de la amortización de los equipos usados en el TFG.

<table>
<thead>
<tr>
<th>Equipo</th>
<th>Precio (€)</th>
<th>Vida útil (años)</th>
<th>C</th>
<th>H</th>
<th>h</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Portátil ASUS F550L</td>
<td>699 €</td>
<td>6</td>
<td>116,5 €</td>
<td>1825 h</td>
<td>300 h</td>
<td>19,15 €</td>
</tr>
</tbody>
</table>

Amortización de los equipos

<table>
<thead>
<tr>
<th>Cantidad (h)</th>
<th>Denominación</th>
<th>Precio/hora</th>
<th>Total (€)</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td>Portátil ASUS F550L</td>
<td>0,0638 €/h</td>
<td>19,15 €</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>19,15 €</td>
</tr>
<tr>
<td></td>
<td>Total Capítulo 7.3</td>
<td></td>
<td>19,15 €</td>
</tr>
</tbody>
</table>
Tabla 15 Presupuesto total del TFG.

<table>
<thead>
<tr>
<th>DESGLOSE</th>
<th>COSTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capítulo 7.1</td>
<td>4 011,00 €</td>
</tr>
<tr>
<td>Capítulo 7.2</td>
<td>19,15 €</td>
</tr>
<tr>
<td>SUBTOTAL</td>
<td>4 030,15 €</td>
</tr>
<tr>
<td>IVA (21%)</td>
<td>846,33 €</td>
</tr>
<tr>
<td>TOTAL</td>
<td>4 876,48 €</td>
</tr>
</tbody>
</table>

El precio total del TFG es:

CUATRO MIL OCHOCIENTOS SETENTA Y SEIS EUROS CON CUARENTA Y OCHO CÉNTIMOS.
8 NOMENCLATURA / SIGLAS

<table>
<thead>
<tr>
<th>NOMENCLATURA DEL TRABAJO</th>
<th>SIGNIFICADO</th>
</tr>
</thead>
<tbody>
<tr>
<td>2T</td>
<td>Dos tiempos</td>
</tr>
<tr>
<td>4T</td>
<td>Cuatro tiempos</td>
</tr>
<tr>
<td>Av. Iny.</td>
<td>Avance de la inyección</td>
</tr>
<tr>
<td>Cp</td>
<td>Calor específico a presión constante del aire</td>
</tr>
<tr>
<td>Cpgases</td>
<td>Calor específico a presión constante de los gases de escape</td>
</tr>
<tr>
<td>Cv</td>
<td>Calor específico a volumen constante del aire</td>
</tr>
<tr>
<td>Cvgases</td>
<td>Calor específico a volumen constante de los gases de escape</td>
</tr>
<tr>
<td>F</td>
<td>Dosado absoluto</td>
</tr>
<tr>
<td>Fe</td>
<td>Dosado estequiométrico</td>
</tr>
<tr>
<td>Fr</td>
<td>Dosado relativo</td>
</tr>
<tr>
<td>i</td>
<td>Parámetro indicador de motor 2T o 4T ($i = n^o _{ciclos/vuelta}$)</td>
</tr>
<tr>
<td>K_{comp}</td>
<td>Constante para el cálculo de la caída de presión a la entrada del compresor</td>
</tr>
<tr>
<td>K_{turb}</td>
<td>Constante para el cálculo de la sobrepresión a la salida de la turbina</td>
</tr>
<tr>
<td>m</td>
<td>Masa</td>
</tr>
<tr>
<td>M</td>
<td>Masa molar</td>
</tr>
<tr>
<td>m_a</td>
<td>Gasto másico de aire</td>
</tr>
<tr>
<td>m_c</td>
<td>Gasto másico de aire corregido para Garrett</td>
</tr>
<tr>
<td>MEC</td>
<td>Motor de encendido por compresión</td>
</tr>
<tr>
<td>MEP</td>
<td>Motor de encendido provocado</td>
</tr>
<tr>
<td>m_f</td>
<td>Gasto másico de combustible</td>
</tr>
<tr>
<td>m_{ref}</td>
<td>Gasto másico de referencia</td>
</tr>
<tr>
<td>n</td>
<td>Revoluciones del motor</td>
</tr>
<tr>
<td>Ne</td>
<td>Potencia efectiva del motor</td>
</tr>
<tr>
<td>η_e</td>
<td>Rendimiento efectivo</td>
</tr>
<tr>
<td>Ni</td>
<td>Potencia indicada</td>
</tr>
<tr>
<td>η_i</td>
<td>Rendimiento indicado</td>
</tr>
<tr>
<td>η_m</td>
<td>Rendimiento mecánico</td>
</tr>
<tr>
<td>η_v</td>
<td>Rendimiento volumétrico</td>
</tr>
<tr>
<td>η_C</td>
<td>Rendimiento del compresor</td>
</tr>
<tr>
<td>η_t</td>
<td>Rendimiento de la turbina</td>
</tr>
<tr>
<td>P_1</td>
<td>Presión a la entrada del compresor</td>
</tr>
<tr>
<td>P_2</td>
<td>Presión a la salida del compresor</td>
</tr>
<tr>
<td>P_3</td>
<td>Presión de entrada a la turbina</td>
</tr>
<tr>
<td>P_4</td>
<td>Presión a la salida de la turbina</td>
</tr>
<tr>
<td>P_{atm}</td>
<td>Presión atmosférica</td>
</tr>
<tr>
<td>PCI</td>
<td>Poder calorífico del combustible</td>
</tr>
<tr>
<td>P_{cil}</td>
<td>Presión en el cilindro</td>
</tr>
<tr>
<td>P_{evo}</td>
<td>Presión justo antes de la apertura de la válvula de escape</td>
</tr>
<tr>
<td>p_{ma}</td>
<td>Presión media de auxiliares</td>
</tr>
<tr>
<td>p_{mb}</td>
<td>Presión media de bombeo</td>
</tr>
<tr>
<td>p_{me}</td>
<td>Presión media efectiva</td>
</tr>
<tr>
<td>p_{mi}</td>
<td>Presión media indicada</td>
</tr>
<tr>
<td>PMI</td>
<td>Punto muerto inferior</td>
</tr>
<tr>
<td>p_{mi_{hp}}</td>
<td>Presión media efectiva del lazo de alta presión</td>
</tr>
<tr>
<td>p_{pmpm}</td>
<td>Presión media de pérdidas mecánicas</td>
</tr>
<tr>
<td>Variable</td>
<td>Explicación</td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
</tr>
<tr>
<td>(p_{mR})</td>
<td>Presión media de fricción</td>
</tr>
<tr>
<td>PMS</td>
<td>Punto muerto superior</td>
</tr>
<tr>
<td>(P_{ref,Garrett})</td>
<td>Presión de referencia para turbos Garrett</td>
</tr>
<tr>
<td>(R_c)</td>
<td>Relación de compresión del motor</td>
</tr>
<tr>
<td>(\pi_c)</td>
<td>Relación de compresión del compresor</td>
</tr>
<tr>
<td>(R_g)</td>
<td>Constante de los gases de escape</td>
</tr>
<tr>
<td>(T_1)</td>
<td>Temperatura a la entrada del compresor</td>
</tr>
<tr>
<td>(T_2)</td>
<td>Temperatura a la salida del compresor</td>
</tr>
<tr>
<td>(T_{2s})</td>
<td>Temperatura isentrópica a la salida del compresor</td>
</tr>
<tr>
<td>(T_3)</td>
<td>Temperatura de entrada a la turbina</td>
</tr>
<tr>
<td>(T_4)</td>
<td>Temperatura a la salida de la turbina</td>
</tr>
<tr>
<td>(T_{4s})</td>
<td>Temperatura isentrópica a la salida de la turbina</td>
</tr>
<tr>
<td>(T_{adm})</td>
<td>Temperatura de admisión</td>
</tr>
<tr>
<td>(T_{evo})</td>
<td>Temperatura justo antes de la apertura de la válvula de escape</td>
</tr>
<tr>
<td>(T_{ref,Garrett})</td>
<td>Temperatura de referencia para turbos Garrett</td>
</tr>
<tr>
<td>(V_3)</td>
<td>Volumen de los gases a la entrada de la turbina</td>
</tr>
<tr>
<td>(V_{cc})</td>
<td>Volumen de la cámara de combustión</td>
</tr>
<tr>
<td>(V_d)</td>
<td>Volumen unitario de un cilindro</td>
</tr>
<tr>
<td>(V_T)</td>
<td>Cilindrada total del motor</td>
</tr>
<tr>
<td>(W_i)</td>
<td>Trabajo indicado</td>
</tr>
<tr>
<td>(\gamma)</td>
<td>Coeficiente de dilatación adiabática</td>
</tr>
<tr>
<td>(\gamma_g)</td>
<td>Coeficiente de dilatación adiabática para los gases de escape</td>
</tr>
<tr>
<td>(\rho_{adm})</td>
<td>Densidad de admisión</td>
</tr>
<tr>
<td>(\rho_{ref})</td>
<td>Densidad de referencia</td>
</tr>
</tbody>
</table>
9 ANEXOS

Fig. 6 – Mapa del compresor GT1749V
9.2 **Anexo A2. Software ACT.**

9.2.1 **Introducción**

Este programa es un modelo de combustión que se basa en el análisis termodinámico del proceso de mezcla y combustión de un motor diesel.

Posee tres modelos internos que son los siguientes:

- Modelo del tiempo de retraso de la combustión
- Modelo de combustión premezclada
- Modelo de combustión por difusión

En este programa hay una equivalencia muy clara entre mezcla y combustión. Como se detallará más adelante el modelo simula el comportamiento del combustible inyectado dentro del cilindro, y cuando se alcanzan condiciones de dosado relativo 1, se comienza a quemar dicho combustible.

Con este proceso se consigue obtener las presiones y temperaturas dentro del cilindro en función del ángulo, y puesto que el volumen dentro del cilindro es conocido en cada momento, permite construir un diagrama p-V del lazo de alta presión del ciclo, es por eso que el dato de salida de ACT es la presión media indicada del lazo de alta presión.

Usaremos esta herramienta para predecir algunos parámetros operativos de nuestro motor, como por ejemplo la ley de combustión, la evolución y gradiente de presiones en el interior del cilindro o las condiciones en las que se encuentran los gases de escape.

Es un programa muy útil, ya que para una sola ejecución, nos permite realizar varios “Test” donde en cada uno de ellos podemos imponer unas determinadas condiciones de operación para nuestro motor.

9.2.2 **Interfaz del programa**

Este es un programa que fundamentalmente trabaja con dos carpetas:

Una de ellas es la carpeta “input”, donde encontramos varios ficheros de entrada que tendremos que rellenar, son los siguientes:

- *Engine_model_constants.dat*: contiene las constantes de los diferentes modelos que tiene el programa. Este fichero no se debe tocar.
- *Constant_parameters.dat*: contiene los principales parámetros geométricos del motor. Ahí es donde se puede cambiar, entre otras cosas, la relación de compresión y las características del inyector (nº orificios y diámetro).
- *Injection_system_parameters.dat*: contiene datos para simular las leyes de inyección. Este fichero se tiene que adaptar siempre que se cambien las características del inyector (nº de orificios y diámetro).
o **Injection_parametersN.dat**: contiene la información sobre los pulsos de inyección de cada simulación. Es el fichero de entrada para el programa *Injection_rate 8.3.EXE*. Tras la ejecución de este programa se generan los ficheros *Injection_rate.dat*, *Injection_rate_parameters.dat* y *CAD_injection_rate.dat* (que también son necesarios para la simulación con ACT). Por tanto, antes de ejecutar ACT (programa *Main.EXE*) es preciso ejecutar antes *Injection_rate 8.3.EXE*. También se ha de tener presente que en el cálculo de la ley de inyección influye la presión de inyección, y este dato se da dentro del fichero *Test_variables.dat*.

o **Test_variables.dat**: en él se dan las variables de operación de cada simulación. Entre otras cosas, se define el régimen de giro, la cantidad de aire, la cantidad de combustible, la temperatura de las paredes…

Por otro lado se encuentra la carpeta “output”, que generará unos archivos de salida en los que podremos ver la evolución de la presión en el cilindro, la ley de liberación de calor, o la cantidad de calor cedido por las paredes del motor. Son los siguientes:

o **Accum_injection_rate.dat**: ley de inyección acumulada, expresada en J de energía (para que sea comparable a la ley de liberación de calor).

o **Cylinder_pressure.dat**: ley de presión en el cilindro.

o **Cylinder_temperature.dat**: ley de temperatura en el cilindro.

o **Heat_transfer.dat**: cantidad de calor cedido a las paredes (da el total y también el que corresponde al cilindro, pistón y culata).

o **HRL.dat**: ley de liberación de calor.

o **Mean_variables.dat**: da las variables medias, como por ejemplo el rendimiento indicado, la presión máxima…

De todos estos archivos de la carpeta “output”, el que realmente nos interesa es el llamado “**Mean_variables.dat**”, que nos proporcionará todos los datos con los que trabajaremos a lo largo de este estudio.
A continuación se adjunta una imagen de lo que nos muestra este archivo.

Fig. 7 – Imagen del fichero “mean_variables.dat” de ACT

9.2.3 Funcionamiento interno de ACT
La estructura del modelo de simulación propuesto puede ser clasificada entre los modelos adimensionales; este es modelo adimensional con una determinación precisa de las condiciones locales. La estructura del modelo puede ser dividida en dos diferentes bloques:

1. Usando la tasa de inyección y conociendo las condiciones instantáneas dentro del cilindro, el modelo de mezcla mediante atomizador permite llegar a la evolución de la temperatura y las especies de cada orificio de combustible pulverizado.
2. Ambos modelos, el de combustión y el de auto-ignición son desarrollados sobre la base de una de una previa derivada instantánea de las condiciones locales para la fracción de masa y temperatura.

Este modelo es apto para diferentes configuraciones de motores, y es posible mediante la aplicación de los ya conocidos modelos físicos junto a la simplificación y parametrización de los efectos transitorios y modelos cinéticos químicos más complejos.
Modelo termodinámico en la cámara de combustión.

Para calcular la presión y temperatura instantánea del cilindro en la cámara de combustión, el modelo usa la primera ley de la Termodinámica aplicada a una zona. La ecuación para la combustión de un fluido estacionario con conservación la energía es:

\[
d (m \cdot u) = -p \cdot dV + h_f \cdot dm_f - h_m \cdot dm_{bb} + Q_c
\]

(A2.1)

donde \(d(m\cdot u)\) es el incremento de energía interna debido a la mezcla del aire, combustible y gases quemados considerados en conjunto como gases ideales, \(p\) es la presión dentro del cilindro, \(V\) es el volumen desplazado por el pistón debido al movimiento del mecanismo del cigüeñal teniendo en cuenta las deformaciones mecánicas, \(Q_w\) es la transferencia de calor a la pared del cilindro utilizando las correlaciones de Woschni, \(h_f\) es la entalpía del combustible, \(m_f\) es la masa de combustible inyectada, \(h_m\) es la entalpía de los gases del cilindro, \(dm_{bb}\) representa la fracción de masa que se fuga por el espacio entre el pistón-cilindro y los segmentos y \(Q_c\) es el término que indica la liberación de calor durante la combustión.

Descripción del modelo de mezcla

Existen dos tipos de modelos que describen el proceso de mezcla:

Un tipo de modelo que proporciona los parámetros globales sin la posibilidad de mostrar ninguna condición local.

O un modelo que se basa en una única dimensión que tiene sus límites en la descripción del atomizado a pequeña escala y su interacción con el movimiento del aire, pero que en este caso proporciona información sobre las condiciones locales.

Mediante la doble discretización de la cámara de combustión (en dos volúmenes) y el atomizado (en un determinado número de orificios), ACT está situado entre un modelo de dimensión cero y un modelo local. Este modelo no predice en detalle el comportamiento del atomizado pero tiene acceso a las condiciones locales a través del modelo de mezcla.
Para desarrollar la estructura multi-zona, el modelo toma dos tipos de discretización:

- La discretización de la cámara de combustión en dos zonas (*bowl* y volumen muerto). La cámara de combustión está dividida en dos zonas: la zona del *bowl* y la zona de volumen muerto. Estas dos zonas son uniformes existe transferencia de masa y especies entre ellas. Las condiciones iniciales del *bowl* son utilizadas para definir la composición del gas (aire fresco, gases de escape recirculados y productos de la combustión).

- La discretización del atomizado en orificios de combustible (i, j): la masa total de combustible inyectada es dividida entre los orificios definidos. Para cada punto de inyección cinco orificios (i, j) con diferentes trayectorias definidas dentro del atomizado.

Cada pulso (i, j) de combustible se mezcla con los gases que vienen del *bowl*. En el proceso de combustión o formación de las emisiones, las especies de cada pulso sufren transformaciones químicas. Consecuentemente, estos procesos cambiarán la composición de los pulsos de combustible y esas transformaciones se volverán en contra de las condiciones iniciales del gas contenido en el *bowl*.

La variación temporal de la composición y temperatura de cada pulso de combustible permite obtener las condiciones de atomizado local, que es la base para la auto-ignición, de los modelos de combustión y emisiones.
9.3 **Anexo A3. Desarrollo de la fórmula para las pérdidas a la entrada del compresor.**

\[\Delta p = K_{comp} \cdot m_a^2 = 0,15 \text{ bar} \]
(A3.1)

Conocida la caída de presión \(\Delta p = 0,15 \text{ bar} \), falta calcular el gasto másico de aire para la presión de admisión de 2 bar y poder entonces despejar fácilmente la \(K_{comp} \).

La fórmula del gasto másico de aire es:

\[m_a = \eta_V \cdot \rho_{adm} \cdot V_T \cdot n \cdot i \]
(A3.2)

La \(\rho_{adm} \) para una presión de admisión de 2 bar y una \(T_{adm} \) de 333 K es:

\[\rho_{adm} = \frac{P_{adm}}{R \cdot T_{adm}} = 2,092685 \frac{kg}{m^3} \]
(A3.3)

Con esto, la suposición para el rendimiento volumétrico (\(\eta_V = 0,9 \)) y los datos de cilindrada total (\(V_T = 1998 \text{ cm}^3 \)) y régimen de giro (\(n = 4000 \text{ rpm} \)), queda un gasto másico de aire de:

\[m_a = 0,1254 \frac{kg}{s} \]

Ya se conocen todos los datos para hallar la \(K_{comp} \) con una presión de admisión de 2 bar:

\[\Delta p = K_{comp} \cdot m_a^2 \]

\[K_{comp} = \frac{\Delta p}{m_a^2} = 9,5388 \frac{bar \cdot s^2}{kg^2} \]
9.4 **Anexo A4. Desarrollo de la fórmula para las pérdidas a la salida de la turbina.**

Tal y como se ha calculado en el anexo anterior, el gasto másciso de aire para una
presión de admisión de 2 bar es "$m_a = 0,1254 \frac{kg}{s}$".

Por lo tanto:

$$\Delta p = K_{turb} \cdot m_a^2$$

(A4.1)

$$K_{turb} = \frac{\Delta p}{m_a^2} = \frac{0,4 \text{ bar}}{0,1254 \frac{kg}{s}} = 22,697 \frac{\text{bar} \cdot s^2}{kg^2}$$

9.5 **Anexo A5. Sistema de ecuaciones del capítulo 4. Resolución de la temperatura a la entrada de la turbina (T_3).**

La primera ecuación de este sistema es la ecuación de estado, a aplicar a la entrada de la

$$P3 \cdot V3 = m \cdot R_g \cdot T3$$

(A5.1)

La segunda es una ecuación que representa una expansión irreversible de un fluido. Se ha usado para representar el momento en el que se abre la válvula de escape y los gases de la combustión a una $Tevo$ y $Pevo$ se expanden y se enfrian hasta una $P3$ y $T3$.

$$m \cdot Cv_{gases} \cdot (T3 - Tevo) = -P3 \cdot \Delta V$$

(A5.2)

Tras la resolución de $V3$, la obtención de la $T3$ es inmediata.

Se tiene el siguiente sistema:

a. $P3 \cdot V3 = m \cdot R_g \cdot T3$

b. $m \cdot Cv_{gases} \cdot (T3 - Tevo) = -P3 \cdot \Delta V$

Con $\Delta V = (V3 - (V_{cc} + V_d))$.
Despejando $T3$ en “a” obtenemos:

$$T3 = \frac{P3 \cdot V3}{m \cdot R_g}$$ \hspace{1cm} (A5.3)

Sustituyendo esta ecuación en “b” queda:

$$m \cdot C_{v \text{gases}} \cdot \left(\frac{P3 \cdot V3}{m \cdot R_g} - Tevo \right) = -P3 \cdot (V3 - (V_{cc} + V_d))$$ \hspace{1cm} (A5.4)

Operando y despejando $V3$ queda la siguiente fórmula:

$$V3 = \frac{(m \cdot R \cdot C_{v \text{gases}} \cdot Tevo) + \left(P3 \cdot R_g \cdot (V_{cc} + V_d) \right)}{P3 \cdot (C_{v \text{gases}} + R_g)}$$ \hspace{1cm} (A5.5)

9.6 **Anexo A6. Cálculo de la Presión media efectiva y de la Presión media indicada del motor en su punto de máxima potencia.**

Con una $Ne = 100 kW$, una cilindrada total de $V_T = 1998 cm^3$, un régimen de giro $n = 4000 rpm$, y una $i = 0.5$, se obtiene una presión media efectiva de:

$$pme = \frac{Ne}{V_T \cdot n \cdot i} = 15 \text{ bar}$$ \hspace{1cm} (A6.1)

Para calcular la presión media indicada es necesario obtener primero la presión media de pérdidas mecánicas.

$$pmpm = (4,3469 \cdot 10^{-4} \cdot 4000 \text{ rpm}) + 7,7 \cdot 10^{-3} = 1,75 \text{ bar}$$ \hspace{1cm} (A6.2)
Ahora ya es posible calcular la presión media indicada:

\[p_{mi} = p_{me} + p_{pm} = 15 + 1,75 = 16,75 \text{ bar} \]
(A6.3)

9.7 Anexo A7. Cálculo de la temperatura isentrópica a la salida del compresor.

\[T_{2s} = T_1 \cdot \left(\frac{P_2}{P_1} \right)^{1-\frac{1}{\gamma}} \]
(A7.1)

Siendo P2 la presión a la salida del compresor, es decir, la presión de admisión, que para el caso de la solución es de 1,8 bar y siendo P1 la presión a la entrada del compresor, que siguiendo la fórmula del punto 9 de las suposiciones previas queda como:

\[P_1 = P_{atm} - \Delta p = P_{atm} - K_{comp} \cdot m_a^2 \]
(A7.2)

El gasto másico de aire para una presión de admisión de 1,8 bar es de \(m_a = 0,1129 \frac{kg}{s} \)

Por tanto la P1 será:

\[P_1 = P_{atm} - K_{comp} \cdot m_a^2 = 1 \text{ bar} - \left(9,5388 \frac{\text{bar} \cdot s^2}{\text{kg}^2} \cdot \left(0,1129 \frac{\text{kg}}{s} \right)^2 \right) \]

\[P_1 = 0,8784 \text{ bar} \]

De este modo:

\[T_{2s} = 298 K \cdot \left(\frac{1,8}{0,8784} \right)^{14-1}^{1,4} = 365,8 K \]
9.8 **Anexo A8. Cálculo del rendimiento del compresor.**

Se calculará a partir de su mapa de funcionamiento, formado por dos ejes. La relación de compresión en el eje Y, y el gasto másico de aire corregido en el eje X.

Para la solución del modelo con una presión de admisión de 1,8 bar, la relación de compresión será:

\[\pi_c = \frac{P_{adm}}{P1} = \frac{1,8 \text{ bar}}{0,8784 \text{ bar}} = 2,05 \text{ bar} \]

(A8.1)

El gasto másico de aire corregido viene dado por la siguiente fórmula:

\[m_c = m_a \cdot \left(\frac{T1}{T_{ref,Garrett}} \right)^{0.5} \left(\frac{P_{ref,Garrett}}{P1} \right) \]

(A8.2)

El gasto másico de aire \(m_a \) para una presión de admisión de 1,8 bar es de 0,1129 \(\frac{kg}{s} \), por tanto el gasto corregido queda como:

\[m_c = 0,1129 \frac{kg}{s} \cdot \left(\frac{298 K}{288 K} \right)^{0.5} \left(\frac{0,8784 \text{ bar}}{1,013 \text{ bar}} \right) = 0,1368 \frac{kg}{s} \]
El cuál hay que pasar a libras por minuto para usar el mapa del compresor:

\[m_c = 0,1368 \, \frac{kg}{s} = 18,1 \, \frac{lbs}{min} \]

Fig. 8 – Mapa del compresor GT1749V

De este modo, queda un rendimiento del compresor \(\eta_c = 0,7 \).

Como ya se había visto en el anexo A5, del sistema de ecuaciones:

a. \[P3 \cdot V3 = m \cdot R_g \cdot T3 \] \hspace{1cm} (A9.1)
b. \[m \cdot C_{v\text{gases}} \cdot (T3 - T_{\text{evo}}) = -P3 \cdot \Delta V \] \hspace{1cm} (A9.2)

Con $\Delta V = (V3 - (V_{cc} + V_d))$, se despejaba $V3$ y se obtenía la siguiente expresión:

\[
V3 = \frac{(m \cdot R_g \cdot C_{v\text{gases}} \cdot T_{\text{evo}}) + (P3 \cdot R_g \cdot (V_{cc} + V_d))}{(P3 \cdot (C_{v\text{gases}} + R_g))}
\]

\hspace{1cm} (A9.3)

Siendo “m” la masa de gases de escape que se encuentran en el cilindro y que para nuestra solución vale lo siguiente:

\[
P_{\text{evo}} \cdot V_{\text{evo}} = m \cdot R_g \cdot T_{\text{evo}}
\]

\hspace{1cm} (A9.4)

\[
m = \frac{P_{\text{evo}} \cdot V_{\text{evo}}}{R_g \cdot T_{\text{evo}}}
\]

\hspace{1cm} (A9.5)

\[
m = \frac{P_{\text{evo}} \cdot (V_{cc} + V_d)}{R_g \cdot T_{\text{evo}}}
\]

\hspace{1cm} (A9.6)

Para una $P_{\text{evo}} = 7,1 \text{ bar}$, un volumen de la cámara de combustión $V_{cc} = 29,3738 \text{ cm}^3$, un volumen unitario de cilindro de $V_d = 499,3562 \text{ cm}^3$, una $R_g = 270 \frac{J}{kg \cdot K}$ y una $T_{\text{evo}} = 1276,78 \text{ K}$, se obtiene una masa para los gases de escape de:

\[
m = 0,00108896 \text{ [kg]}
\]
Por lo tanto, conocidos los datos anteriores, que \(C_{u_{\text{gases}}} = 900 \, \frac{J}{kg\cdot K} \), y siendo la presión a la entrada de la turbina \(P_3 = 2,38 \, \text{bar} \), \(V_3 \) queda como:

\[
V_3 = 0,00133608 \, [m^3]
\]

Conocido \(V_3 \), la temperatura a la entrada de la turbina queda:

\[
T_3 = \frac{P_3 \cdot V_3}{m \cdot R_g} = 1084,84 \, [K]
\]

\((A9.7)\)

9.10 **Anexo A10. Cálculo de la temperatura isentrópica a la salida de la turbina.**

\[
T_{4s} = T_3 \cdot \left(\frac{P_4}{P_3} \right)^{\frac{y_g-1}{y_g}}
\]

\((A10.1)\)

Siendo \(P_4 \) la presión a la salida de la turbina, que teniendo en cuenta las pérdidas generadas en el escape tal y como se comenta en el punto 10 de las suposiciones previas, quedaría como:

\[
P_4 = P_{\text{atm}} + \Delta p = P_{\text{atm}} - K_{\text{turb}} \cdot m_a^2
\]

\((A10.2)\)

El gasto másico de aire para una presión de admisión de 1,8 bar es de \(m_a = 0,1129 \, \frac{kg}{s} \)

Por tanto la \(P_4 \) será:

\[
P_4 = \frac{P_{\text{atm}} + K_{\text{turb}} \cdot m_a^2}{1 \, \text{bar} + \left(22,697 \, \frac{\text{bar} \cdot s^2}{kg^2} \cdot \left(0,1129 \, \frac{kg}{s} \right)^2 \right)}
\]

\[
P_4 = 1,324 \, \text{bar}
\]
De este modo:

\[T_{4s} = 1080,84 \, K \cdot \left(\frac{1,324}{2,38} \right)^{\frac{13-1}{1,3}} = 944,2 \, [K] \]

9.11 **Anexo A11. Tablas de resultados para los casos de estudio del capítulo 4.**

Tabla 17
Casos de estudio para el capítulo 4.

<table>
<thead>
<tr>
<th>Padm</th>
<th>Av. Iny.</th>
<th>(\eta_i)</th>
<th>Pcil</th>
<th>(\dot{W}_c)</th>
<th>(\dot{W}_t)</th>
<th>(\eta_c)</th>
<th>(\eta_t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,8 bar</td>
<td>-21,83(^\circ)</td>
<td>0,406</td>
<td>160 bar</td>
<td>10934 W</td>
<td>10890 W</td>
<td>0,7</td>
<td>0,57</td>
</tr>
<tr>
<td>1,9 bar</td>
<td>-20,42(^\circ)</td>
<td>0,406</td>
<td>160 bar</td>
<td>13772 W</td>
<td>18446 W</td>
<td>0,65</td>
<td>0,57</td>
</tr>
<tr>
<td>2 bar</td>
<td>-20(^\circ)</td>
<td>0,406</td>
<td>160 bar</td>
<td>#</td>
<td>24775 W</td>
<td>#</td>
<td>0,57</td>
</tr>
</tbody>
</table>

Se puede comprobar también en el mapa del compresor cómo para una presión de admisión de 2 bar, el punto de rendimiento del compresor queda fuera del mapa.

9.12 **Anexo A12. Resolución del sistema de ecuaciones del capítulo “5. Potenciación”.**

Se tienen las siguientes ecuaciones:

a. \[m \cdot C_{v\text{gases}} \cdot (T3 - T_{\text{envo}}) = -P3 \cdot \Delta V \]
 \[\text{(A12.1)} \]

b. \[\dot{W}_t = \dot{W}_c = (m_a + m_f) \cdot C_{p\text{gases}} \cdot T3 \cdot \eta_t \cdot \left(1 - \left(\frac{P4}{P3} \right)^{\frac{\gamma - 1}{\gamma}} \right) \]
 \[\text{(A12.2)} \]

La primera ecuación queda de la siguiente forma:

a. \[m \cdot C_{v\text{gases}} \cdot (T3 - T_{\text{envo}}) = -P3 \cdot (V3 - (V_{cc} + V_d)) \]
 \[\text{(A12.3)} \]

De la ecuación de los gases ideales se sabe que:

\[P3 \cdot V3 = m \cdot R_{\gamma} \cdot T3 \]
 \[\text{(A12.4)} \]
Sustituyendo V_3 en “a” se obtiene:

\[
\text{a. } m \cdot C_{v_{\text{gases}}} \cdot (T_3 - T_{\text{tevo}}) = -P_3 \left(\frac{m \cdot R_g \cdot T_3}{P_3} \right) - (V_{cc} + V_d)
\]

\[V_3 = \frac{m \cdot R_g \cdot T_3}{P_3} \tag{A12.5}\]

Y despejando de esta ecuación T_3 queda:

\[
T_3 = \frac{m \cdot C_{v_{\text{gases}}} \cdot T_{\text{tevo}} + P_3 \cdot (V_{cc} + V_d)}{m \cdot (C_{v_{\text{gases}}} + R_g)}
\]

\[T_3 = \frac{m \cdot C_{v_{\text{gases}}} \cdot T_{\text{tevo}} + P_3 \cdot (V_{cc} + V_d)}{m \cdot (C_{v_{\text{gases}}} + R_g)} \tag{A12.6}\]

Ahora es el momento de introducir esta fórmula para T_3 en “b”, y de ahí despejar P_3. Tras varios cálculos y simplificaciones queda la siguiente ecuación.

\[
\text{b. } \left\{ P_3 \left(\frac{T_{\text{tevo}}}{T_g} \right) \cdot (V_{cc} + V_d) \right\} + \left\{ P_3 \left(\frac{T_{\text{tevo}}}{T_g} \right) \cdot \left(m \cdot C_{v_{\text{gases}}} \cdot T_{\text{tevo}} \right) = \left(\frac{\eta_{c} \cdot m \cdot (C_{v_{\text{gases}}} + R_g)}{m \cdot (m_j + m_{a_{c}}) \cdot C_{v_{\text{gases}}}} \right) \right\}
\]

\[
\left\{ P_3 \cdot P_4 \left(\frac{T_{\text{tevo}}}{T_g} \right) \cdot (V_{cc} + V_d) \right\} - \left\{ P_4 \left(\frac{T_{\text{tevo}}}{T_g} \right) \cdot m \cdot C_{v_{\text{gases}}} \cdot T_{\text{tevo}} \right\} = 0
\]

\[\left\{ P_3 \cdot P_4 \left(\frac{T_{\text{tevo}}}{T_g} \right) \cdot (V_{cc} + V_d) \right\} - \left\{ P_4 \left(\frac{T_{\text{tevo}}}{T_g} \right) \cdot m \cdot C_{v_{\text{gases}}} \cdot T_{\text{tevo}} \right\} = 0 \tag{A12.8}\]

De la misma, excepto P_3, todo son datos conocidos o proporcionados por el programa de simulación ACT. Por lo que mediante una de las herramientas de iteración de Excel se resuelve la P_3 correspondiente al ensayo realizado, y sustituyendo en la ecuación inmediatamente anterior se obtendrá el valor de T_3.

62

Para una presión de admisión de 1,9 bar, y un límite de presión en el cilindro de 160 bar, ACT proporcionaba una presión media indicada del lazo de alta presión de:

\[p_{mi_{hp}} = 18,326 \text{ bar} \]

Por su parte el sistema de ecuaciones da como resultados:

\[T3 = 1097 [K] \]
\[P3 = 2,61 \text{ bar} \]

Se muestra a continuación cómo se ha trabajado con el sistema.

Se tenían las siguientes ecuaciones:

a. \[m \cdot C_{v_{gases}} \cdot (T3 - Tevo) = -P3 \cdot \Delta V \] \hspace{1cm} (A13.1)

b. \[Wt = Wc = \left(m_a + m_f \right) \cdot C_{p_{gases}} \cdot T3 \cdot \eta_t \cdot \left(1 - \frac{p_a}{p_3} \right) \] \hspace{1cm} (A13.2)

De donde se consiguió dejar parcialmente despejada la ecuación para la presión a la entrada de la turbina:

\[
\begin{align*}
&\left\{ p_3 \left(\frac{r_a - 1}{r_a} \right) \cdot (V_{cc} + V_d) \right\} + \left\{ p_3 \left(\frac{r_a - 1}{r_a} \right) \cdot \left(m \cdot C_{v_{gases}} \cdot Tevo \right) - \frac{Wc \cdot m \cdot \left(C_{v_{gases}} + R_a \right)}{\eta_t \cdot \left(m_f + m_a \cdot C_{p_{gases}} \right)} \right\} \\
&\quad - \left\{ p_3 \cdot p_4 \left(\frac{r_a - 1}{r_a} \right) \cdot (V_{cc} + V_d) \right\} - \left\{ p_4 \left(\frac{r_a - 1}{r_a} \right) \cdot m \cdot C_{v_{gases}} \cdot Tevo \right\} = 0
\end{align*}
\] \hspace{1cm} (A13.3)

Donde para una presión de admisión de 1,9 bar:

\[Vevo = (V_{cc} + V_d) = (0,00052873 \text{ m}^3) \]
\[Tevo = 1293,2 [K] \]
\[Pevo = 7,593 \text{ bar} \]
Con todos estos datos, y la ayuda de una herramienta de cálculo, se llega a una presión de entrada a la turbina:

\[P_3 = 2.61 \text{ bar} \]

Tan solo queda ahora despejar en la siguiente ecuación para obtener la temperatura a la entrada de la turbina:

\[T_3 = \frac{m \cdot C_{v gases} \cdot T_{evo} + (P_3 \cdot (V_{cc} + V_d))}{m \cdot (C_{v gases} + R_g)} \]

(A13.6)

\[T_3 = 1097 \text{ [K]} \]
Obtenida la $P3$ y conocida la presión de admisión, se calcula la presión media de bombeo:

$$pmb = P3 - Padm = 0,71 \text{ bar}$$

(A13.7)

Con esta presión media de bombeo y la pmi_{hp} obtenida mediante ACT, se resuelve la presión media indicada:

$$pmi = pm i_{hp} - pmb = 17,62 \text{ bar}$$

(A13.8)

Se trata ahora de obtener la presión media efectiva, sabiendo que $pmpm = 1,75 \text{ bar}$, puesto que esta presión media de pérdidas mecánicas depende únicamente del régimen de giro, y todos los ensayos realizados en este trabajo se han hecho a 4000 rpm.

$$pme = pmi - pmpm = 15,87 \text{ bar}$$

(A13.9)

Y ya por último, se determina la potencia efectiva final que hemos alcanzado mediante este ensayo:

$$Ne = pme \cdot V_T \cdot n \cdot i$$

(A13.10)

$$V_T = 1998 \text{ cm}^3$$

$$n = 4000 \text{ rpm}$$

$$i = 0,5$$

$$Ne = 105,69 \text{ [kW]}$$

Para una presión de admisión de 1,9 bar, y un límite de presión en el cilindro de 200 bar ACT proporcionaba una presión media indicada del lazo de alta presión de:

$$p_{mi_{hp}} = 18,37 \text{ bar}$$

Por su parte el sistema de ecuaciones da como resultados:

$$T3 = 1089 [K]$$

$$P3 = 2,62 \text{ bar}$$

Se trata de usar el mismo sistema de ecuaciones que en la FASE 1, donde los únicos cambios en los datos son:

$$T_{evo} = 1282 [K]$$

$$P_{evo} = 7,527 \text{ bar}$$

$$m = \frac{P_{evo} \cdot V_{evo}}{R_g \cdot T_{evo}} = 0,00114975 [kg]$$

(A14.1)

Obtenida la $P3$ y conocida la presión de admisión, la presión media de bombeo queda como:

$$p_{mb} = P3 - P_{adm} = 0,72 \text{ bar}$$

(A14.2)

Con esta presión media de bombeo y la $p_{mi_{hp}}$ obtenida mediante ACT, se resuelve la presión media indicada:

$$p_{mi} = p_{mi_{hp}} - p_{mb} = 17,65 \text{ bar}$$

(A14.3)

Se puede calcular ahora la presión media efectiva, sabiendo que $p_{mpm} = 1,75 \text{ bar}$, puesto que esta presión media de pérdidas mecánicas depende únicamente del régimen de giro, y todos los ensayos realizados en este trabajo se han hecho a 4000 rpm.
\[pme = pmi - pmpm = 15.9 \text{ bar} \]

(A14.4)

Y ya por último, se determina la potencia efectiva final que se ha alcanzado mediante este ensayo:

\[Ne = pme \cdot V_T \cdot n \cdot i \]

(A14.5)

\[V_T = 1998 \text{ cm}^3 \]

\[n = 4000 \text{ rpm} \]

\[i = 0.5 \]

\[Ne = 105,89 \text{ [kW]} \]

9.15 **Anexo A15. Cálculos para la FASE 3 del capítulo “5. Potenciación”**.

Para una presión de admisión de 1.9 bar, un límite de presión en el cilindro de 160 bar y una relación de compresión de 14, ACT proporcionaba una presión media indicada del lazo de alta presión de:

\[pmi_{hp} = 19.24 \text{ bar} \]

Por su parte, el sistema de ecuaciones da como resultados:

\[T3 = 1105 \text{ [K]} \]

\[P3 = 2.60 \text{ bar} \]

Se trata de usar el mismo sistema de ecuaciones que en la FASE 1, donde los únicos cambios en los datos son:

\[V_{evo} = (V_{cc} + V_d) = (0.000537762 \text{ m}^3) \]

\[Tevo = 1302 \text{ [K]} \]

\[Pevo = 7.524 \text{ bar} \]
Obtenida la P_3 y conocida la presión de admisión, se calcula la presión media de bombeo:

$$p_{mb} = P_3 - P_{adm} = 0,70 \text{ bar}$$

(A15.2)

Con esta presión media de bombeo y la $p_{mi_{hp}}$ obtenida mediante ACT, se resuelve la presión media indicada:

$$p_{mi} = p_{mi_{hp}} - p_{mb} = 18,54 \text{ bar}$$

(A15.3)

Se trata ahora de obtener la presión media efectiva, sabiendo que $p_{mpm} = 1,75 \text{ bar}$, puesto que esta presión media de pérdidas mecánicas depende únicamente del régimen de giro, y todos los ensayos realizados en este trabajo se han hecho a 4000 rpm.

$$p_{me} = p_{mi} - p_{mpm} = 16,79 \text{ bar}$$

(A15.4)

Y ya por último, se determina la potencia efectiva final que se ha alcanzado mediante este ensayo:

$$N_e = p_{me} \cdot V_T \cdot n \cdot i$$

(A15.5)

$$V_T = 1998 \text{ cm}^3$$

$$n = 4000 \text{ rpm}$$

$$i = 0,5$$

$$N_e = 111,87 \text{ [kW]}$$

Fig. 9 – Mapa del compresor GT2056
9.17 **Anexo A17. Mapas de compresores que no cumplían con las necesidades del estudio.**

Como ya se ha comentado, los datos de entrada para estos mapas son el gasto másico corregido y la relación de compresión del compresor.

El gasto corregido para el estudio realizado a una presión de admisión de 2,5 bar vale \(m_c = 25,12 \frac{lbs}{min} \), y la relación de compresión es:

\[
\pi_c = \frac{P_{adm}}{P_1} = \frac{2.5 \text{ bar}}{0.85 \text{ bar}} = 2.94
\]

(A17.1)

Resultó bastante costoso encontrar un turbogrupo que se adaptara a las necesidades de gasto másico y relación de compresión para este estudio. Por norma general, los coches que se consideran deportivos suelen ser en la inmensa mayoría de los casos motores MEP, es decir, motores que usan gasolina como combustible.

Este tipo de motores poseen un régimen de giro bastante mayor que los MEC, por tanto en el punto de máxima potencia un MEP puede encontrarse entre las 5500 y las 7000 rpm, dependiendo del motor.

Esto se traduce en un mayor gasto másico de aire para la misma cilindrada y presión de admisión del motor. Por lo que si el motor a potenciar fuera un MEP de 2 litros, el gasto corregido podría variar entre las \(34 \frac{lbs}{min} \) y las \(44 \frac{lbs}{min} \).

De hecho si este motor MEP tuviera una cilindrada mayor de 2 litros, como suele ocurrir en el caso de motores que se pretende potenciar, el gasto másico aún se vería aumentado en mayor medida. Por poner un ejemplo, un motor MEP de 3 litros de cilindrada tendría un gasto másico entre \(51 \frac{lbs}{min} \) y \(66 \frac{lbs}{min} \).

Por tanto el objetivo era encontrar un compresor cuyo punto de máxima potencia se encontrara en torno a las \(25,12 \frac{lbs}{min} \) y una relación de compresión de 2,94, algo complicado tras lo explicado anteriormente.

A continuación se adjuntas algunas imágenes de compresores que no se adaptaban a las necesidades del motor en estudio, y que reflejan todo lo que se ha comentado.
Fig. 10 – Mapa del compresor GT2860RS

Fig. 11 – Mapa del compresor GT30R

Fig. 12 – Mapa del compresor GT3582R

Fig. 13 – Mapa del compresor GTX2863R
Por último comentar que el punto de máxima potencia debe encontrarse en torno al lugar donde se encuentra la zona coloreada de azul.

El mapa del compresor está restringido a una determinada zona de funcionamiento, delimitada a su derecha por la denominada zona de choque, que es aquella en la que el flujo másico puede superar la velocidad del sonido y provocar un fallo en el turbogrupo, y a su izquierda por la zona de bombeo, que es aquella en la que debido a la poca cantidad de movimiento que pudiera tener el flujo debido a la escasa energía de los gases en el escape, el sentido del gasto de aire en el compresor podría invertirse y dejar de entrar en el motor.

Es por ello que hay que ser cuidadosos a la hora de seleccionar el turbogrupo, para que el motor sea capaz de trabajar en cualquier condición de operación, no solo en máxima potencia, sin ningún tipo de inconveniente.

9.18 **Anexo A18. Cálculos para la FASE 4.1 del capítulo “5. Potenciación”**.

\[P_{\text{máx}}=160 \ & \ Rc=18 \]

Para el nuevo turbogrupo, con una presión de admisión de 2,5 bar, y un límite de presión en el cilindro de 160 bar, ACT proporcionaba una presión media indicada del lazo de alta presión de:

\[p_{mi_{hp}} = 23,39 \text{ bar} \]

Por su parte el sistema de ecuaciones da como resultados:

\[T_3 = 1170 \text{ [K]} \]
\[P_3 = 3,25 \text{ bar} \]

Se muestran a continuación cómo se ha trabajado con el sistema.

Se tenían las siguientes ecuaciones:

a. \[m \cdot C_{v_{\text{gases}}} \cdot (T_3 - T_{\text{evo}}) = -P_3 \cdot \Delta V \] (A18.1)

b. \[W_t = \dot{W}_c = \left(m_a + m_f \right) \cdot C_{p_{\text{gases}}} \cdot T_3 \cdot \eta_t \cdot \left(1 - \left(\frac{P_4}{P_3} \right)^{\frac{\gamma g - 1}{\gamma g}} \right) \] (A18.2)
De donde se consiguió dejar parcialmente despejada la ecuación para la presión a la entrada de la turbina:

\[
\left\{ p_3 \left(\frac{\gamma_s - 1}{\gamma_s} \right) \cdot (V_{cc} + V_d) \right\} + \left\{ p_3 \left(\frac{\gamma_s - 1}{\gamma_s} \right) \cdot \left[m \cdot Cv_{gases} \cdot Tevo \right] - \left(\frac{Wc \cdot m \cdot (Cv_{gases} + R_g)}{\eta_t \cdot (m_f + m_a) \cdot Cp_{gases}} \right) \right\} = 0
\]

\[
- \left\{ p_3 \cdot p_4 \left(\frac{\gamma_s - 1}{\gamma_s} \right) \cdot (V_{cc} + V_d) \right\} - \left\{ p_4 \left(\frac{\gamma_s - 1}{\gamma_s} \right) \cdot m \cdot Cv_{gases} \cdot Tevo \right\} = 0
\]

(A18.3)

Donde para una presión de admisión de 2,5 bar:

\[
Vevo = (V_{cc} + V_d) = (0,00052873 \, m^3)
\]

\[
Tevo = 1395[K]
\]

\[
P_{evo} = 10,78 \, bar
\]

\[
Cv_{gases} = 900 \, \frac{J}{kg \cdot K}
\]

\[
R_g = 270 \, \frac{J}{kg \cdot K}
\]

\[
(m_f + m_a) = (0,00918586 + 0,1567) \, \frac{kg}{s}
\]

\[
m = \frac{Pevo \cdot Vevo}{R_g \cdot Tevo} = 0,00151324 \, [kg]
\]

(A18.4)

\[
T2s = 405,58 \, [K]
\]

\[
\eta t = 0,56
\]

\[
\eta c = 0,753
\]

\[
Wc = \frac{m_a \cdot Cp \cdot (T2s - T1)}{\eta c} = 22388 \, [W]
\]

(A18.5)
El rendimiento del compresor se obtiene del mapa del mismo, tal y como se muestra en el anexo A19.

Con todos estos datos, y la ayuda de una herramienta de cálculo, se llega a una presión de entrada a la turbina:

\[P_3 = 3,25 \text{ bar} \]

Tan solo queda ahora despejar en la siguiente ecuación para obtener la temperatura a la entrada de la turbina:

\[
T_3 = \frac{m \cdot C_{v\text{gases}} \cdot T_{\text{evo}}} {m \cdot (C_{v\text{gases}} + R_g)} + \left(P_3 \cdot (V_{cc} + V_d) \right)
\]

(A18.6)

\[T_3 = 1170 [K] \]

Obtenida la \(P_3 \) y conocida la presión de admisión, se calcula la presión media de bombeo:

\[p_{mb} = P_3 - P_{adm} = 0,75 \text{ bar} \]

(A18.7)

Con esta presión media de bombeo y la \(p_{mi_{hp}} \) obtenida mediante ACT, se resuelve la presión media indicada:

\[p_{mi} = p_{mi_{hp}} - p_{mb} = 22,64 \text{ bar} \]

(A18.8)

Se trata ahora de obtener la presión media efectiva, sabiendo que \(p_{mmpm} = 1,75 \text{ bar} \), puesto que esta presión media de pérdidas mecánicas depende únicamente del régimen de giro, y todos los ensayos realizados en este trabajo se han hecho a 4000 rpm.

\[p_{me} = p_{mi} - p_{mmpm} = 20,89 \text{ bar} \]

(A18.9)
Y ya por último, se determina la potencia efectiva final que se ha alcanzado mediante este ensayo:

\[Ne = pme \cdot V_T \cdot n \cdot i \]

(A18.10)

\[V_T = 1998 \, cm^3 \]
\[n = 4000 \, rpm \]
\[i = 0,5 \]

\[Ne = 139,14 \, [kW] \]
9.19 *Anexo A19.* Rendimiento para el compresor del turbogrupo GT2056.

Fig. 14 – Mapa del compresor GT2056
10 BIBLIOGRAFÍA

- Wikipedia
- www.turbomaster.info