

Curso Académico:

INDICE

- 1-MEMORIA DESCRIPTIVA
- **2-PLANOS**
- **3-PRESUPUESTO**
- **4-ANEXO DE CALCULO**

1-MEMORIA DESCRIPTIVA

INDICE

1.1-INTRODUCCION
1.2-OBJETIVO
1.3-ANTECEDENTES
1.3.1-LOCALIZACION GEOGRAFICA
1.3.2-POBLACION
1.3.3-FUENTES DE SUMINISTRO
1.3.4-SISTEMA DE ALMACENAMIENTO
1.4-NORMATIVA
1.5-INSTALACION A DISEÑAR
1.5.1-INTRODUCCION
1.5.2-TOPOLOGIA Y TOPOGRAFIA
1.5.3-ELEMENTOS
1.5.3.1-TUBERIAS
1.5.3.2-VALVULAS
1.5.3.3-DESAGÜES
1.5.3.4-VENTOSAS
1.5.3.5-ZANJAS, ARQUETAS Y REGISTROS
1.5.3.6-HIDRANTES DE INCENDIO
1.6-ANALISIS DE LA DEMANDA
1.6.1-DOTACION
1.6.2-CURVA DE MODULACION13
1.6.3-COEFICIENTES PUNTA
1.6.4-PROCEDIMIENTO DE CARGA
1.7-DISEÑO DE LA RED

1.7.1-INTRODUCION	14
1.7.2-ACERCA DE EPANET	14
1.7.3-CAUDAL PUNTA	17
1.7.4-PROCESO PARA CÁLCULO DE DIAMETROS .	18
1.7.5- PROCESO PARA EL CÁLCULO DEL DIAME DE LAS VALVULAS REDUCTORAS	
1.7.6-COMPROBACION DE PUESTA FUERA	
SERVICIO DE CONDUCCIONES	
1.7.7-COMPROBACION DE HIDRANTES	20
1.8-RESULTADOS	20
1.8.1-INVENTARIO	20
1.8.1.1-LONGITUDUDES DE TUBERIAS DIAMETROS	
1.8.1.2-N° DE VALVULAS POR DIAMETROS	21
1.8.1.3-N° DE VALVULAS REDUCTORAS	21
1.8.1.4-N° DE VENTOSAS POR DIAMETROS	21
1.8.1.5-N° DE HIDRANTES	21
1.8.1.6-N° DE DESAGÜES	21
1.8.2-OPERACIONES DE LA RED EN HORA PUNTA	
1.8.2.1-EN CONDICIONES DE CAUDAL MEDIO	22
1.8.2.2-EN CONDICIONES DE LA PUESTA FUER.	A DE
SERVICIO DE CONDUCCIONES DESFAVORABLE	
1.8.2.3-EN CONDICIONES DE OPERACIÓN HIDRANTE MÁS DESFAVORABLE	
1.9-ANALISIS DINAMICO	25

1.1-INTRODUCCION

El agua siempre ha sido un factor imprescindible para el desarrollo de una población. Las poblaciones antiguamente se situaban cerca de ríos o lagos para poder satisfacer sus necesidades.

Hoy en día gracias a los avances de la ingeniería se han desarrollado sistemas de suministros compuestos de tuberías, válvulas, estaciones de bombeo, etc. por los que una población puede ser abastecida de agua sin necesidad de estar al lado de un rio o lago.

Por otro lado el crecimiento de la población o el desarrollo industrial hacen que muchas veces las redes de distribución de agua tengan que ser ampliadas o reformadas, para satisfacer las nuevas demandas.

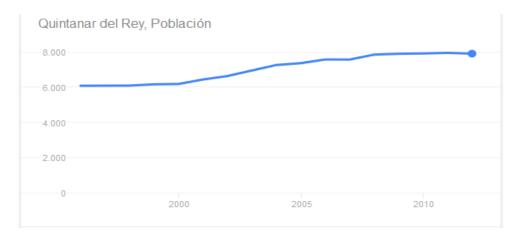
Estos sistemas de suministros pueden ser diseñados por software informáticos que facilitan el trabajo y que optimizan los recursos. Uno de los software más utilizados para diseñar este tipo de redes es EPANET, que fue desarrollado por la USEPA (U.S. Enviromental Protection Agency), organización creada en 1970 en EE.UU. y encargada de velar por los recursos naturales del país.

Este programa de dominio público, y que la versión en español ha sido desarrollada por la Universidad Politécnica de Valencia, permite calcular complejas redes de abastecimiento y regadío, desde un punto de vista hidráulico y de calidad, ofreciendo una rápida capacidad de reacción así como una previsión del comportamiento del sistema.

El programa, pionero en este tipo de cálculos y tomado como ejemplo, se caracteriza por su elevado nivel de fiabilidad. Otros programas similares a EPANET en el ámbito privado RAwin, Hidro-NET y ABAST.

1.2-OBJETIVO

El objetivo del proyecto es el diseño de una red de distribución de agua potable en Quintanar del Rey (Cuenca), con el objeto de valorar la reposición de la red actual. Esto es debido al crecimiento del pueblo, tanto en dimensiones como en población, además de por el deterioro de la red actual.


1.3-ANTECEDENTES

1.3.1-LOCALIZACION GEOGRAFICA

El municipio de Quintanar del Rey es un pueblo de la provincia de cuenca (España), situado al sur de la misma cerca del límite de la provincia de Albacete. Véase el *plano de localización geográfica*.

1.3.2-POBLACION

La población de Quintanar del Rey ha crecido en los últimos trece años alrededor de un 22%, unos 1800 hab. Siendo la población en el año 2000 de 6.175 hab. y en el año 2013 de 7886 hab. Este crecimiento puede observarse en la grafica 1:

Grafica 1

Fuente: Instituto nacional de estadística

1.3.3-FUENTES DE SUMINISTRO

La red de distribución es suministrada por un pozo subterráneo a unos 2 km del pueblo, el cual tiene la suficiente capacidad para satisfacer las actuales y futuras necesidades de suministro por lo que no sería necesario reformarlo y por lo tanto no es objeto de este proyecto.

1.3.4-SISTEMA DE ALMACENAMIENTO

El sistema de almacenamiento es un depósito que se sitúa al lado del pozo subterráneo. Dicho depósito tiene la suficiente capacidad para satisfacer las actuales y futuras necesidades de almacenamiento, por lo que no sería necesario reformarlo y por lo tanto no es objeto de este proyecto.

Como el depósito se encuentra situado a una altura piezométrica mayor que la de la población, no es necesario instalar ninguna estación de bombeo.

1.4-NORMATIVA

La normativa que se ha utilizado es la siguiente:

Para fundición dúctil: UNE-EN 545Para polietileno: UNE-EN 1220

- Para la rugosidad de la tubería: UNE-EN 805

- Para las válvulas UNE-EN 1074

1.5-INSTALACION A DISEÑAR

1.5.1-INTRODUCCION

A continuación se especificaran las características de tanto de la ubicación del pueblo, como de los elementos principales de la instalación.

1.5.2-TOPOLOGIA Y TOPOGRAFIA

En el *plano ID Nudos y en el plano ID Líneas* se observa la identidad tanto de los nudos como de las líneas de la red de distribución.

En el *plano de cotas de nudos* se observa las cotas de los nudos de la red de distribución y se puede ver que está ubicado en una ladera, ya que toda la red del pueblo está en inclinación progresiva que va desde el punto más bajo a una cota de 722m hasta el punto más alto a una cota de 754m, por otro lado, el depósito se encuentra a una cota de 783m.

Las cotas han sido obtenidas a través de un plano urbanístico proporcionado por el ayuntamiento de Quintar del Rey.

Además del mapa topográfico esta inclinación se puede observar a través de la figura 1:

Figura 1

1.5.3-ELEMENTOS

1.5.3.1-TUBERIAS

Las tuberías son elementos muy importantes para una red de distribución de agua, ya que son las encargadas de transportar el agua del depósito hasta donde sea demandada.

Los materiales que se van a utilizar para las tuberías en la instalación serán:

-Fundición dúctil:

La fundición dúctil, conocida también como fundición nodular o de grafito esferoidal, es aquélla en la que el grafito se presenta principalmente en forma de esferas.

Entre las ventajas de los tubos de fundición dúctil debe destacarse, en primer lugar, el excelente comportamiento de los mismos ante la presión hidráulica interior y la acción de las cargas externas, lo que hace que su campo de aplicación abarque tanto los diámetros pequeños, como los medianos y los grandes.

Por otro lado, estos tubos van provistos de revestimientos tanto interiores como exteriores (ya que por su condición de metálicos requieren de algún tipo de protección cuya elección depende de las características del agua a transportar y del medio en el que se instalen.

En la instalación utilizaremos tuberías de fundición dúctil cuando los diámetros interiores, diámetro nominal (DN), sean mayores o iguales a 250 mm.

Concretamente en la instalación se utilizaran tuberías de clase de espesor K=9, con revestimiento exterior de zinc y barniz negro, y revestimiento interior de mortero de cemento centrifugado.

Figura 2

- Polietileno

Los tubos de PE tienen la condición de termoplásticos y están compuestos de una resina de polietileno.

Entre sus ventajas deben citarse su ligereza (con la consiguiente simplificación de las tareas de instalación de los tubos en obra), su baja rugosidad (lo que supone una mayor capacidad hidráulica frente a otros materiales), la ausencia de incrustaciones, la elevada resistencia a las tensiones y deformaciones altas con cargas instantáneas, su condición de aislante eléctrico, su elevada resistencia al ataque químico o a la acción de los terrenos agresivos y en este caso particular.

En la instalación los utilizaremos en el caso de que los diámetros interiores requeridos sean menores de 250 mm. En este caso, el diámetro interior no coincide con el diámetro nominal, ya que el diámetro nominal coincide con el diámetro exterior, por lo que para saber el diámetro interior tendremos que restarle al diámetro nominal dos veces el espesor.

Concretamente utilizaremos tuberías de alta densidad (PE-100) y P.N. 10.

Figura 3

1.5.3.2-VALVULAS

Las válvulas son elementos muy importantes en instalación, ya que son las encargadas de seleccionar el camino del fluido a través de las tuberías, además de poder cerrar zonas para que en caso de que alguna tubería necesite ser reparada o sustituida el resto de la instalación no se vea afectada.

A continuación se muestran las características de las válvulas que van a ser usadas en la instalación.

-Válvulas de compuerta:

Estas válvulas se emplean en tuberías con diámetros nominales inferiores a 250 mm, debido a la mayor resistencia que ofrecen en su maniobra. Están constituidas básicamente por un cuerpo, tapa, obturador, husillo o vástago y mecanismo de maniobra.

El diseño de las válvulas de compuerta debe ser tal que sea posible desmontar y retirar el obturador sin necesidad de separar el cuerpo de la válvula de la tubería. Asimismo, debe ser posible sustituir o reparar los elementos de estanquidad del mecanismo de maniobra, estando la conducción en servicio, sin necesidad de desmontar la válvula ni el obturador. La parte inferior del interior del cuerpo, en general, no debe tener acanaladuras, de forma que una vez abierta la válvula no haya obstáculo alguno en la sección de paso del agua, ni huecos donde puedan depositarse sólidos arrastrados por el agua. La sección de paso debe ser como mínimo el 90% de la correspondiente al DN de la válvula, debiendo mantenerse en la reducción de sección perfiles circulares sin que existan aristas o resaltos.

La unión de las válvulas se realiza, habitualmente, mediante bridas o con unión flexible. En el caso de la unión con bridas, ésta se efectúa, por lo general, intercalando un carrete de anclaje por un lado y un carrete de desmontaje por el otro.

Las válvulas de compuerta pueden instalarse bien alojadas en cámaras o registros o arquetas, bien enterradas (en cuyo caso la arqueta que sirve de acceso al mecanismo de maniobra ha de ser fácilmente localizable) o bien a la intemperie.

La cantidad de válvulas de compuerta que son necesarias en la instalación se aproxima al ratio de 10 válvulas de compuerta por kilómetro de tubería de diámetro menor de 250 mm

En la figura 4 se muestra una válvula de compuerta.

Figura 4

-Válvulas de mariposa:

Estas válvulas se emplean en tuberías con diámetros 250 mm y superiores. Están constituidas, básicamente, por un cuerpo, un obturador circular (lenteja o mariposa) y un mecanismo de maniobra. El obturador, que puede ser hueco o macizo, debe ser tal que las perturbaciones que produzca en el flujo del agua sean mínimas. Se recomienda que siempre dispongan de un indicador de posición del obturador que permita, en todo momento, conocer la situación del mismo.

El eje de giro puede ser único o constar de dos partes o semiejes y, asimismo, puede ser excéntrico o estar situado en el plano de simetría del obturador. Las maniobras de apertura y cierre se realizan por medio de un mecanismo de desmultiplicación.

Las válvulas deben instalarse en arquetas, registros o cámaras con el eje o semiejes en posición horizontal. En el caso de válvulas con dos semiejes, deben montarse de forma que éstos queden aguas arriba en relación a la mariposa.

La unión de las válvulas se realiza, habitualmente, mediante bridas o con tornillos pasantes (unión tipo *Wafer o Sandwich*). En el caso de unión con bridas, ésta se efectúa por lo general intercalando un carrete de anclaje por un lado y un carrete de desmontaje por el otro. Las uniones tipo *Wafer* ensartan la válvula mediante tornillos pasantes roscados a los tubos contiguos.

La cantidad de válvulas de mariposa que son necesarias en la instalación se aproxima al ratio de 10 válvulas de mariposa por km de tubería mayor de 250 mm de diámetro.

Estas válvulas de mariposa irán colocadas en arquetas. Véase el plano de arquetas de válvulas.

En la *figura 5* se muestra una válvula de mariposa.

Figura 5

-Válvulas reductoras de presión:

Este tipo de válvulas están constituidas, básicamente, por un cuerpo y un elemento de regulación formado, en el caso de diámetros pequeños, por un disco móvil o émbolo, un muelle de empuje que se pueda tarar y otros dispositivos de control, según modelos. En el caso de diámetros mayores, el accionamiento es básicamente hidráulico, mediante conexión o desconexión de la cara superior del émbolo con las presiones aguas arriba y aguas abajo de la válvula.

Las válvulas reductoras de presión admiten diferentes diseños, fijándose sus dimensiones de forma que se garantice su resistencia, y prestándose especial atención a los efectos de la cavitación.

La válvula debe tener incorporado, o se montará en combinación con ella, un filtro con malla de paso inferior o igual a 4 mm. El cuerpo de la válvula tiene habitualmente una o dos tapas o sombreros, sujetas por tornillos, que permitan examinar y reparar el interior. Usualmente, las velocidades de paso por la válvula no deben ser superiores a 5 m/s, no requiriéndose usualmente reducciones de presión mayores del 50%, por lo que, de ser éstas necesarias, se aconseja se coloquen dos válvulas reductoras en serie.

En general, antes y después de las válvulas reductoras de presión es recomendable que se coloquen válvulas de paso (compuerta o mariposa) con sus respectivos carretes de desmontaje. Asimismo, se deben disponer dos manómetros colocados uno aguas arriba y otro aguas abajo.

Para calcular el diámetro que vamos a necesitar de este tipo de válvulas véase en el anexo de cálculos 3.

Las válvulas reductoras irán colocadas en arquetas. Véase en el plano de arquetas de válvula mariposa y de válvula reductora.

Figura 6

1.5.3.3-DESAGÜES

Están constituidos, básicamente, por un orificio o por una pieza en T, ambos situados en la parte inferior de la tubería, a continuación de los cuales, y mediante las correspondientes piezas especiales, se coloca una válvula de compuerta y/o de mariposa, y posteriormente un tramo de tubería hasta llegar al alcantarillado o a un punto de desagüe adecuado.

El desagüe tiene que instalarse en la parte baja de la zona a instalar, ya que así se asegura un vaciado completo de la instalación.

Para estimar el número de desagües necesario para la instalación se ha tenido en cuenta que al menos cada cerrada debe tener un desagüe, además de haber utilizado el ratio de un desagüe por cada kilómetro de tubería.

Todos los desagües irán ubicados en arquetas. Véase plano de arquetas de desagüe y ventosas.

1.5.3.4-VENTOSAS

Están constituidas, básicamente, por un cuerpo, flotadores esféricos o cilíndricos y, algunas veces, por un juego de palancas, sobre las que actúa el flotador, las cuales accionan las válvulas de cierre de los orificios de entrada y salida del aire.

Las ventosas de admisión de aire tratan de evitar el aplastamiento de la tubería por la presión atmosférica exterior cuando la tubería se vacía. Mientras que las ventosas de expulsión de aire (también conocidas como purgadores) tratan de eliminar lentamente el aire evitando el golpe de ariete que se produce por parada brusca de la columna líquida al eliminar totalmente el aire.

Las ventosas se tienen que colocar en la parte alta de la zona donde se vayan a instalar ya que así se asegura un llenado completo de la instalación.

Para estimar el número de ventosas necesario para la instalación se ha tenido en cuenta que al menos cada cerrada debe tener una ventosa, además de haber utilizado el ratio de 2 ventosas por kilómetro de tubería.

Todas las ventosas se encontraran ubicadas en arquetas. Véase plano de arquetas de desagües y ventosas.

En la *figura 7* se muestra como es una ventosa:

Figura 7

1.5.3.5-ZANJAS, ARQUETAS Y REGISTROS

-Zanjas:

Una zanja es un corte y extracción de las tierras que se realiza sobre el terreno. Es una excavación lineal.

Según en qué zona está ubicada la zanja, esta será de una manera diferente. Es decir si una zanja está ubicada en la acera se diferente de una zanja que este ubicada en la calzada. También dependiendo de la profundidad que se requiera, lanza podrá necesitar taludes o no.

Por otro lado las dimensiones de una zanja dependen en parte de las dimensiones de la tubería que vaya a contener.

El relleno de las zanjas se realizara primero con una capa de machaca, seguida de una capa de arena en la que se encontrara la tubería, después se continúa con una capa de zahorra y por último se termina con una capa de hormigón.

En la instalación según el diámetro de tubería que se requiera las zanjas se pueden clasificar en 2 tipos: una para tuberías de diámetros menores de 200 mm, y otra para tuberías de diámetros mayores de 200 mm. *Véase el plano de zanjas*.

En la *figura 8* se muestra como es una zanja para tuberías de diámetros menores a 200 mm.

Figura 8

-Arquetas:

Una arqueta es un pequeño depósito utilizado para recibir, enlazar y distribuir canalizaciones o conductos subterráneos; suelen estar enterradas y tienen una tapa superior para poder registrarlas y limpiar su interior de impurezas.

Se utilizan en redes de saneamiento, de agua potable y de regadío, pudiendo albergar las llaves de corte de redes enterradas.

Se construyen de ladrillo, revocadas y fratasadas interiormente con mortero de cemento; también pueden ser prefabricadas en hormigón o en materiales plásticos. Las tapas se suelen fabricar de materiales metálicos como la fundición.

Todas las válvulas de sección mayores de 200 mm irán ubicadas en arquetas. En la *figura 9* se muestra como es una arqueta.

Figura 9

-Registros:

Un registro es un pequeño cuadro donde suelen colocadas principalmente válvulas, contadores, o elementos de control. En un registro no es accesible la totalidad del elemento, solamente es accesible la parte que lo controla.

Todas las válvulas de seccionamiento de diámetros inferiores a 200 mm tendrán acceso a través de registros.

En la figura 10 se muestra como es un registro.

Figura 10

1.5.3.6-HIDRANTES DE INCENDIO

Se tratan de una boca de incendio es una toma de agua diseñada para proporcionar un caudal considerable en caso de incendio.

Una pareja de hidrantes deben proporcionar al menos un caudal de 1000 litros por minuto cada uno, y la presión mínima a mantener en la red debe ser al menos de 10 metros de columna de agua. Además, los hidrantes no deben estar situados a más de 200 metros separación entre ellos.

Los hidrantes de incendio irán colocados en tuberías de diámetro superiores a 150 mm.

En la *figura 11* se muestra como es un hidrante de incendio.

Figura 11

1.6-ANALISIS DE LA DEMANDA

1.6.1-DOTACION

Para poder realizar una instalación optima, es necesario hacer un buen análisis de la demanda que va a tener que satisfacer la red de distribución.

Los principales factores que afectan a los volúmenes consumidos y a los caudales circulantes son:

- La población y su crecimiento
- El nivel de vida y las costumbres
- El clima
- Actividad industrial
- Tipo de viviendas
- Niveles de presión
- Variaciones estacionales
- Variaciones horarias

Atendiendo a los criterios anteriores se ha optado para el diseño una dotación de 200 litros por habitante y día, ya que se trata de un pueblo donde no hay apenas industria debido a que la gran mayoría de la población se dedica al sector agrícola. Además al ser un pueblo del interior, no sufre grandes cambios en el número de habitantes al variar las estaciones.

Este valor se ha tomado a referencia de la *tabla 1*:

Núcleo de población con un	Dotación (l/hab.dia)
número de habitantes	
Menor de 1000	100
Entre 1000 y 6000	150
Entre 6000 y 12000	200
Entre 12000 y 50000	250
Entre 50000 y 250000	300
Mayor de 250000	400

Fuente: "Normas para la redacción de Proyectos de Abastecimiento de agua y Saneamiento de Poblaciones" del M.O.P.

Tabla 1

En esta dotación se incluye, además del consumo de la población, las fugas de agua que se producen en la instalación. Por lo tanto, la dotación empleada es suficiente para satisfacer las necesidades de la red.

1.6.2-CURVA DE MODULACION

Una curva de modulación determina como varia el consumo alrededor de un periodo. Según el tipo de zona la curva de modulación puede cambiar considerablemente, ya que la hora de mayor consumo no es la misma en una zona industrial que en una población.

En la instalación al tratarse de un pueblo situado en el interior, donde estacionalidad no es relevante para el consumo, ya que la población no varía, o varía muy poco a lo largo de todo el año.

Por lo tanto la curva de modulación será la misma para todo el año, y variara según la hora del día en que se encuentre.

La curva de modulación que se utiliza en el diseño se muestra en la figura 12:

Figura 12

Siendo los coeficientes:

Periodo	1	2	3	4	5	6	7	8
Multiplicador	0.6	0.6	0.6	0.6	0.7	0.8	0.8	1.1
		•						
Periodo	9	10	11	12	13	14	15	16
Multiplicador	1.2	1.2	1	1	1	1.2	1.3	1.4
Periodo	17	18	19	20	21	22	23	24
Multiplicador	1.6	1.4	1.3	1.2	1	1	0.7	0.7

1.6.3-COEFICIENTES PUNTA

El coeficiente punta que se ha utilizada para simular la instalación en su momento más crítico ha sido de 1.6 a las 16:00 horas. Por lo tanto, la instalación tiene que satisfacer la demanda con estas condiciones cumpliendo los requisitos mínimos de funcionamiento.

1.6.4-PROCEDIMIENTO DE CARGA

Para cargar la red para poder simularla primero se ha dividido el caudal total necesario por los metros totales de tubería, obteniendo así los litros por metro de tubería que se demandaran en la red. Una vez obtenido este valor se multiplicara cada tubería por dicho valor, obteniendo así el caudal que se demandara en cada tubería. Este caudal se repartirá a partes iguales entre el nudo inicial y el nudo final de las tubería correspondiente, trasladando así el caudal que demanda en la tubería a los nudos que conectan dicha tubería. Como un nudo puede conectar varias tuberías, las demandas de dichas tuberías se sumaran al mismo nudo, obteniendo así la demanda total de cada nudo.

Estos valores han sido trasladados a epanet para poder así diseñar correctamente la instalación.

1.7-DISEÑO DE LA RED

1.7.1-INTRODUCION

En este apartado se va a hacer una pequeña introducción sobre epanet, además de hablar de los procedimientos y criterios que han sido utilizados para un diseño de la red óptimo.

1.7.2-ACERCA DE EPANET

Dos de los requisitos fundamentales para poder construir con garantías un modelo de la calidad del agua son la amplitud de prestaciones y la precisión del modelo hidráulico utilizado. EPANET contiene un simulador hidráulico muy avanzado que ofrece las siguientes prestaciones:

- No existe límite en cuanto al tamaño de la red que puede procesarse.
- Las pérdidas de carga pueden calcularse mediante las formulas de Hacen-Williams, de Darcy-Weisbach o de Chezy-Manning.
- Contempla perdidas menores en codos, accesorios, etc.
- Admite bombas de velocidad fija o variable.

- Determina el consumo energético y sus costes.
- Permite modelizar varios tipos de válvulas, tales como válvulas de corte, de retención, y reguladoras de presión o caudal.
- Admite depósitos de geometría variable (esto es, cuyo diámetro varíe con el nivel).
- Permite considerar diferentes tipos de demanda en los nudos, cada uno con su propia curva de modulación en el tiempo.
- Puede modelizar salidas de agua cuyo caudal dependa de la presión (p.ej. rociadores)
- Admite leyes de control simples, basadas en el valor del nivel en los depósitos o en la hora prefijada por un temporizador, y leyes de control más complejas basadas en reglas lógicas.

Por otro lado, para poder interpretar una red en epanet es necesario el conocimiento de los siguientes elementos usados en él:

-Tuberías: Epanet asume que las tuberías se encuentran completamente llenas en todo momento, de modo que el flujo es a presión. El flujo circulara desde los nudos de mayor altura piezométrica hacia los de menor altura. Su simbolo en epanet se muestra en la *figura 13*.

Figura 13

La pérdida de carga o altura piezométrica en una tubería debida a la fricción por el paso del agua, puede calcularse utilizando las siguientes formulaciones:

- Darcy-Weisbach (para todo tipo de líquidos y regímenes)
- Hazen-Williams (sólo para agua)
- Chezy-Manning (para canales y tuberías de gran diámetro)

Para el diseño de esta instalación se ha optado por la formulación de Darcy-Weistbach, cuyo comportamiento se modela por la siguiente ecuación:

$$h_I = A * Q^B$$

Siendo:

$$A = 0.0827 * f(\varepsilon, d, Q) * d^{-4.871} * L$$

$$B = 1.8252$$

Donde:

 h_1 : perdida de carga

Q: caudal

A: coeficiente de resistencia

B: exponente de caudal

ε: coeficiente de rugosidad de Darcy-Weisbach (m)

d: diámetro de la tubería (m)

Q: caudal (m^2/s)

L: longitud de la tubería (m)

Y se ha tomado como ε para todas las tuberías el valor de 0.1 mm.

-Nudos de caudal: son aquellos puntos donde confluyen las tuberías, a través de los cuales sale o entra agua. Pueden tener asociados distintos tipos de demandas. Su símbolo en epanet se muestra en la *figura 14*.

Figura 14

-Embalses: son una fuente externa de alimentación o sumideros con capacidad ilimitada. Representan lagos, ríos, acuíferos o entradas a otros subsistemas. No existen resultados derivados del cálculo, ya que no se ven afectados por lo que ocurre en la red. Su símbolo en epanet se muestra en la *figura 15*.

Figura 15

En esta red de distribución se realiza a efectos de cálculos con un embalse en vez de un depósito, ya que el depósito que ya ahí es suficientemente grande para satisfacer la demanda necesaria.

-Depósitos: tienen una capacidad limitada de almacenamiento. En ellos puede variar el nivel de agua con el tiempo durante la simulación. Si el depósito esta a su nivel máximo o mínimo, epanet impide la entrada o salida de agua cerrando las líneas que lo conectan a la red. Su símbolo en epanet se muestra en la *figura 16*.

Figura16

-Válvulas reductoras de presión (VRP): evitan que la presión aguas abajo supere el valor de consigna. Se encontrara activa cuando el valor aguas arriba se superior al valor de consigna, completamente abierta si el valor es inferior, y cerrada si aguas abajo la altura piezométrica es mayor que aguas arriba con el objetivo de evitar el flujo inverso. Su símbolo en epanet se muestra en la *figura 17*.

Figura 17

Algunas de las hipótesis simplificativas con las que epanet trabaja son:

- a. Hipótesis referentes al flujo:
 - flujo unidimensional en el sentido del eje de la conducción.
 - invariabilidad de las variables relacionadas con el flujo.
 - distribución uniforme de velocidad y presionen secciones transversales.
- b. Hipótesis referentes al fluido
 - fluido incompresible
 - fluido monofásico
 - fluido homogéneo
 - fluido newtoniano
- c. hipótesis referentes a las conducciones
 - homogeneidad y constancia en material, sección transversal y espesor

Para finalizar, los valores que hay que introducir como datos en epanet son:

- longitud de las tuberías
- diámetro de las tuberías
- rugosidad de las tuberías
- consumo de los nudos
- cota de los nudos
- consigna de válvulas

Y obtenemos como resultados:

- caudales circulantes por tuberías
- perdida unitaria por tubería
- presiones de los nudos

1.7.3-CAUDAL PUNTA

El caudal punta es el máximo caudal que la instalación requiere en algún determinado periodo. Para poder saber cuál es el caudal punta se tiene que saber cuál es el periodo del día de mayor demanda. Esto se deduce a través de la curva de modulación donde se observa que el periodo de mayor demanda será a las 16:00 h con un factor de modulación de 1.6. Por lo tanto el caudal punta en la instalación será de 29.2 l/s.

Véase el anexo de cálculo 2.

1.7.4-PROCESO PARA CÁLCULO DE DIAMETROS

Para dimensionar los diámetros de la red se han seguido una serie de criterios:

- Las arterias principales tendrán una distribución en forma de anillo alrededor del pueblo.
- El diámetro interior de la tubería más pequeña de la red no será menor de 100 mm.
- La presión mínima en cualquier punto de la red en condiciones normales en cualquier periodo del día no debe ser menor de 25 mca.
- La presión máxima en cualquier punto de la red en condiciones normales en cualquier periodo del día no debe ser mayor de 55 mca.
- Los hidrantes de incendio irán conectados al menos a una tubería de diámetro mayor o igual a 150 mm.

Para obtener la presión mínima necesaria en la red se partido de que la mayoría de los edificios de la población son de dos alturas, además de la planta baja. Teniendo en cuenta las pérdidas de carga producidas por la instalación interior obtenemos que con 25 mca sería suficiente, teniendo que utilizar bombas de agua los edificios con una altura superior.

Presiones superiores a 55 mca son perjudiciales para los elementos que forman la red.

Teniendo en cuenta estos criterios, al simular la red en epanet si la presión mínima no se ha cumplido, se ha cambiado el diámetro de la tubería que presentase mayor pérdida unitaria, por su diámetro inmediatamente superior. Y así sucesivamente hasta conseguir un nivel de presiones deseadas en el periodo más desfavorable.

En el caso de tratarse del diámetro de las válvulas de cierre, coincide con el diámetro de la tubería donde se vaya a instalar.

Por otro lado si la presión de una zona se ha excedido de la máxima permisible y esto ha sido debido a que el pueblo está situado en una zona de pendiente, se han instalado las válvulas reductoras de presión necesarias para cumplir con los criterios indicados.

1.7.5- PROCESO PARA EL CÁLCULO DEL DIAMETRO DE LAS VALVULAS REDUCTORAS

Para calcular el diámetro de las válvulas reductoras se necesita saber la presión de aguas arribas, que coincide con el nudo anterior de la válvula reductora, y la presión de aguas abajo, que coincide con la presión de consigna que se le aplique a la válvula reductora, en este caso será de 35 mca. También es necesario conocer el caudal que atraviesa la válvula reductora.

Los criterios usados para la elección de la válvula reductora son:

- La velocidad máxima será igual o inferior a 5 m/s.
- El grado de apertura mínimo de la válvula será igual o superior al 10%.
- Que no se produzca cavitación.

Con estos datos se puede obtener el diámetro necesario de las válvulas reductoras, *véase* el anexo de cálculo del diámetro de las válvulas reductoras.

1.7.6-COMPROBACION DE PUESTA FUERA DE SERVICIO DE CONDUCCIONES

Además de los criterios comentados en el apartado 1.7.4, también es necesario que la instalación cumpla una serie de condiciones al simular en ella una serie de anomalías que se pueden dar en la realidad. De eso trata el criterio de puesta fuera de servicio de conducciones, ya que consiste en realizar una serie de cerradas de válvulas que aíslan un determinado conjunto de tuberías (simulando una posible reparación a realizar en algún punto de la red) a fin de comprobar que el resto de la instalación tenga una presión mínima de 20 mca, para asegurarse así de que la instalación puede cubrir las necesidades mínimas al menos durante un tiempo.

Para simular en epanet este criterio se tienen que cerrar las tuberías que quedaran dentro de un polígono de cierre (conjunto de válvulas que una vez cerradas aíslan una zona de la red). Epanet permite colocar las válvulas de seccionamiento y cerrarlas, pero es más operativo construir el modelo sin válvulas de seccionamiento y simular su cierre mediante el cierre de la correspondiente tubería.

Se podrían haber hecho cerradas más pequeñas, pero analizar todas y cada una de las combinaciones sería muy aparatoso. Lo que se ha hecho es más desfavorable, ya que en el caso de que se hiciera una cerrada más pequeña y no todas las válvulas funcionaran correctamente, se podrían hacer reparaciones sobre las mismas.

Por lo tanto se han hecho las puestas fuera de servicio de conducciones oportunas para poder comprobar así el buen comportamiento de la red.

Véase el anexo de análisis de puesta fuera de servicio de conducciones.

1.7.7-COMPROBACION DE HIDRANTES

Para un correcto funcionamiento de la red en caso de incendios, los hidrantes deben de cumplir los siguientes requisitos:

- Una pareja de hidrantes deben proporcionar al menos 2000 litros por minuto durante dos horas.
- La presión mínima de cada y hidrante y de la red debe ser al menos de 10 mca.
- La separación máxima entre hidrantes por viales no será mayor de 200m.

En epanet para simular a hidrantes se tiene que poner la demanda en el nudo mas cercando donde se encuentre el hidrante correspondiente y ponerle el valor necesario. Así, en dos nudos debe añadirse un caudal de demanda adicional y constante de 1000 litros por minuto de 1000 litros por minuto en cada uno.

En la red se han simulado todos los hidrantes por parejas y se ha comprobado que la presión mínima es superior a 10 mca.

1.8-RESULTADOS

1.8.1-INVENTARIO

1.8.1.1-LONGITUDUDES DE TUBERIAS POR DIAMETROS

Las longitudes de las tuberías por diámetro nominal son:

Diámetro nominal (mm)	Longitud (m)
125	21236.03
180	11034.24
250	2282.61

Tabla 2

Las tuberías de 125 y 180 mm serán de polietileno, y la tubería de 250 mm será de fundición dúctil.

1.8.1.2-N° DE VALVULAS POR DIAMETROS

El número de las válvulas por diámetro nominal son:

Diámetro (mm)	N° de válvulas
125	245
180	80
250	2

Tabla 3

1.8.1.3-N° DE VALVULAS REDUCTORAS

El número de las válvulas reductoras en V por diámetro son:

Diámetro (mm)	N° de válvulas
150	2

Tabla 4

1.8.1.4-N° DE VENTOSAS POR DIAMETROS

El número de las ventosas por diámetro son:

Diámetro (mm)	N° de ventosas	
50	67	

Tabla 5

1.8.1.5-N° DE HIDRANTES

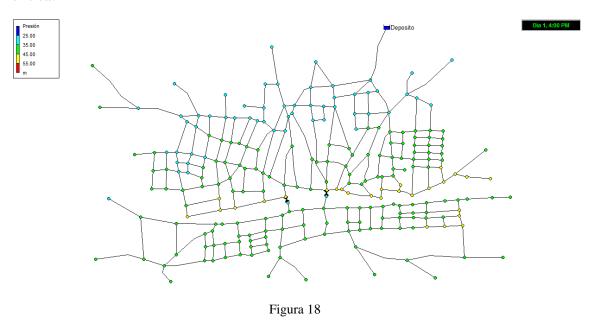
El número de las hidrantes por diámetro son:

Diámetro (mm)	N° de hidrantes
80	56

Tabla 6

1.8.1.6-N° DE DESAGÜES

Diámetro (mm)	Nº de desagües
60	34

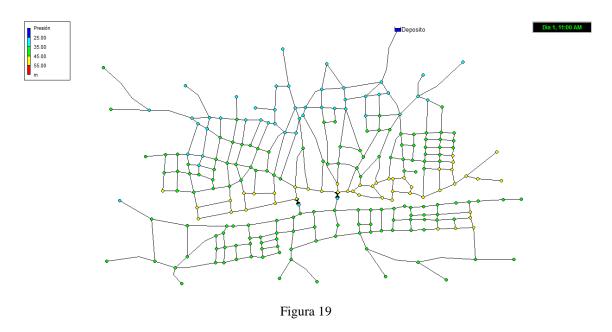

Tabla 7

1.8.2-OPERACIONES DE LA RED EN HORA PUNTA

En la instalación la hora punta se produce a las 16:00, y los resultados característicos son los siguientes:

- La mínima presión se produce en el nudo 88 y es de 25,45 mca.
- La máxima presión se produce en el nudo 40 y es de 50,56 mca.
- La presión media de los nudos es 39,21 mca.
- La tubería que presenta mayor pérdida de unitaria es la tubería 4 con una pérdida de 1,77 m/km.
- La tubería en la que mayor velocidad presenta el agua es la tubería 1 con una velocidad de 0.69 m/s.
- La media de velocidades de las tuberías es de 0,07 m/s.

En la *figura 18* se muestra por escala de colores las presiones de los nudos a la hora crítica.


El resto de resultados se muestran en el *anexo de análisis del funcionamiento de la red en hora punta*.

1.8.2.1-EN CONDICIONES DE CAUDAL MEDIO

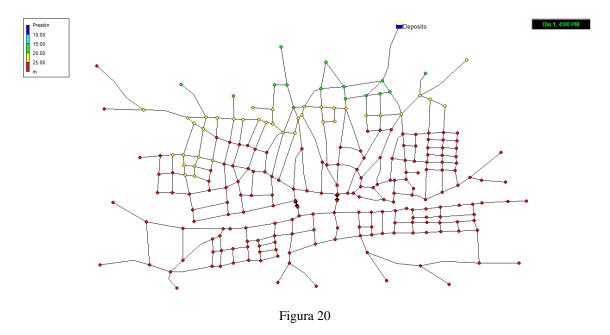
En la instalación condiciones normales se producen cuando el coeficiente de la curva de modulación es 1, y los resultados característicos son los siguientes:

- La mínima presión se produce en el nudo 88 y es de 27,52 mca.
- La máxima presión se produce en el nudo 40 y es de 52,57 mca.
- La presión media de los nudos es 40,55 mca.
- La tubería que presenta mayor pérdida de unitaria es la tubería 304 con una pérdida de 0,74 m/km.
- La tubería en la que mayor velocidad presenta el agua es la tubería 1 con una velocidad de 0.37 m/s.
- La media de velocidades de las tuberías es de 0,044 m/s.

En la *figura 19* se muestra por escala de colores las presiones de los nudos a la hora crítica.

El resto de resultados se muestra en el anexo de análisis de la red en condiciones de caudal medio.

1.8.2.2-EN CONDICIONES DE LA PUESTA FUERA DE SERVICIO DE CONDUCCIONES MÁS DESFAVORABLE

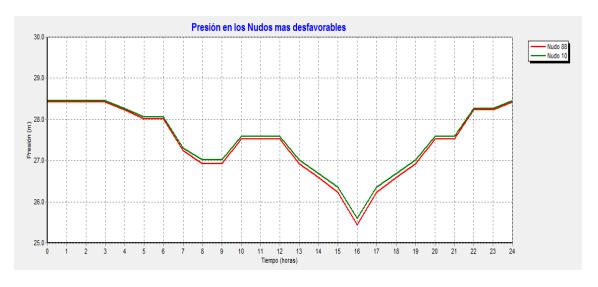

Las condiciones de rotura más desfavorable se producen en la puesta fuera de servicio de conducciones 3, siendo la presión mínima a la hora de mayor demanda (16:00 h) de 22,25 mca en el nudo 88. Y siendo la presión máxima a la hora de menor demanda (00:00 h) de 53,29 mca en el nudo 40.

El resto de resultados del periodo más desfavorable (16:00) su pueden observar en el anexo análisis de la red en la puesta fuera de servicio de conducciones más desfavorable.

1.8.2.3-EN CONDICIONES DE OPERACIÓN DEL HIDRANTE MÁS DESFAVORABLE

Las condiciones del hidrantes más desfavorable se produce en la pareja de hidrantes situados en los nudos 3 y 8 a la hora de mayor demanda (16:00), siendo la presión del nudo 3 de 16,65 mca, y la del nudo 8 de 20,87, produciéndose la presión mínima de la red en el nudo 10, siendo esta de 15,86 mca.

En la *figura 10* se muestra por escala de colores las presiones de los en condiciones de operación del hidrante más desfavorable.



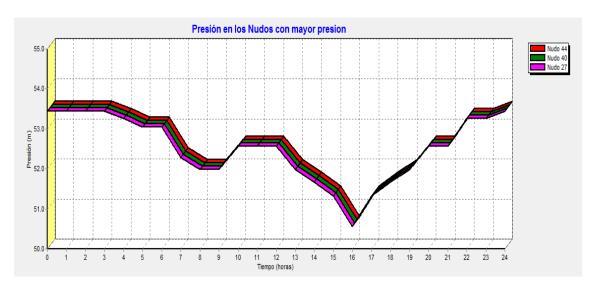
Para ver los resultados con mayor detalle véase el anexo de análisis de la red en condiciones del hidrante más desfavorable.

1.9-ANALISIS DINAMICO

El análisis dinámico consiste en analizar la red distribución a lo largo de un periodo. En esta instalación dicho periodo se trata de un día.

Los nudos con presiones más desfavorables son el nudo 88 y el nudo 10, por lo tanto la evolución temporal de estos nudos se puede ver en la *grafica* 2:

Grafica 2


Donde las presiones características se muestran en la tabla 8.

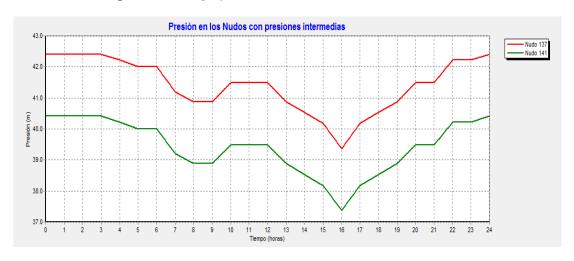
Nudo	88	10
Pmax	28,42	28,45
Pmin	25,45	25,6
Pmedia	27,42	27,49

Tabla 8

Estos nudos llegan en todo momento a la presión mínima exigida de 25 mca.

Los nudos que han alcanzado mayores presiones son el nudo 27, el nudo 40 y el nudo 44, por lo tanto la evolución temporal de estos nudos se puede ver la *grafica 3*:

Grafica 3

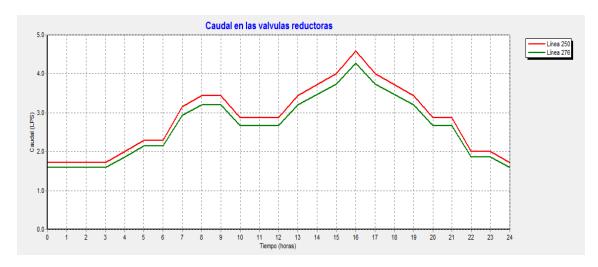

La grafica 3 muestra como la presión de dichos nudos es la misma en todos los instantes.

Donde las presiones características se muestran en la tabla 9.

Nudo	40	44	27
Pmax	53,44	53,44	53,44
Pmin	50,56	50,56	50,56
Pmedia	52,57	52,47	52,47

Tabla 9

Los nudos 137 y 141 presentan presiones intermedias de la red, la evolución temporal de estos nudos se puede ver la *grafica 4*:


Grafica 4

Donde las presiones características se muestran en la tabla 10.

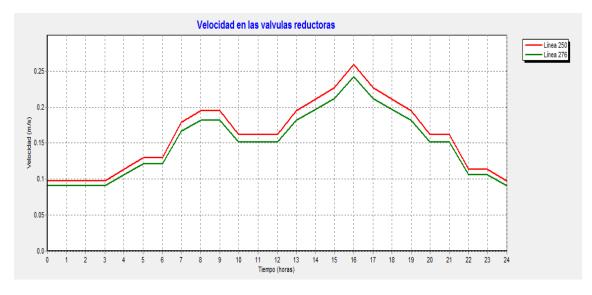
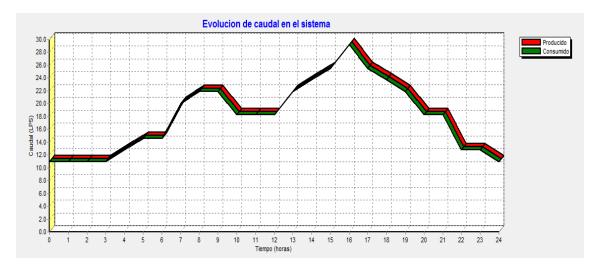

Nudo	137	141
Pmax	42,41	40,41
Pmin	39,37	37,37
Pmedia	41,38	39,4

Tabla 10

Por otro lado, se muestra el estado de las válvulas reductoras (línea 250 y línea 276), tanto de la evolución temporal del caudal, que se puede ver en la *grafica 5*, como de la evolución temporal de la velocidad, que se puede ver en la *grafica 6*:



Grafica 5

Grafica 6

También se muestra la evolución temporal de caudal que se produce en la red, véase la gráfica 7:

Grafica 7

Donde los caudales y velocidades más significativos se muestran en la tabla 11.

Linea	250	276
Qmax (LPS)	4,59	4,27
Qmin (LPS)	1,72	1,6
Qmedio (LPS)	2,87	2,67
Vmax (m/s)	0,26	0,24
Vmin (m/s)	0,1	0,09
Vmedia (m/s)	0,16	0,15

Tabla 11

Para ver estos resultados con mayor detalle véase el *anexo de análisis dinámico del funcionamiento de la red*.

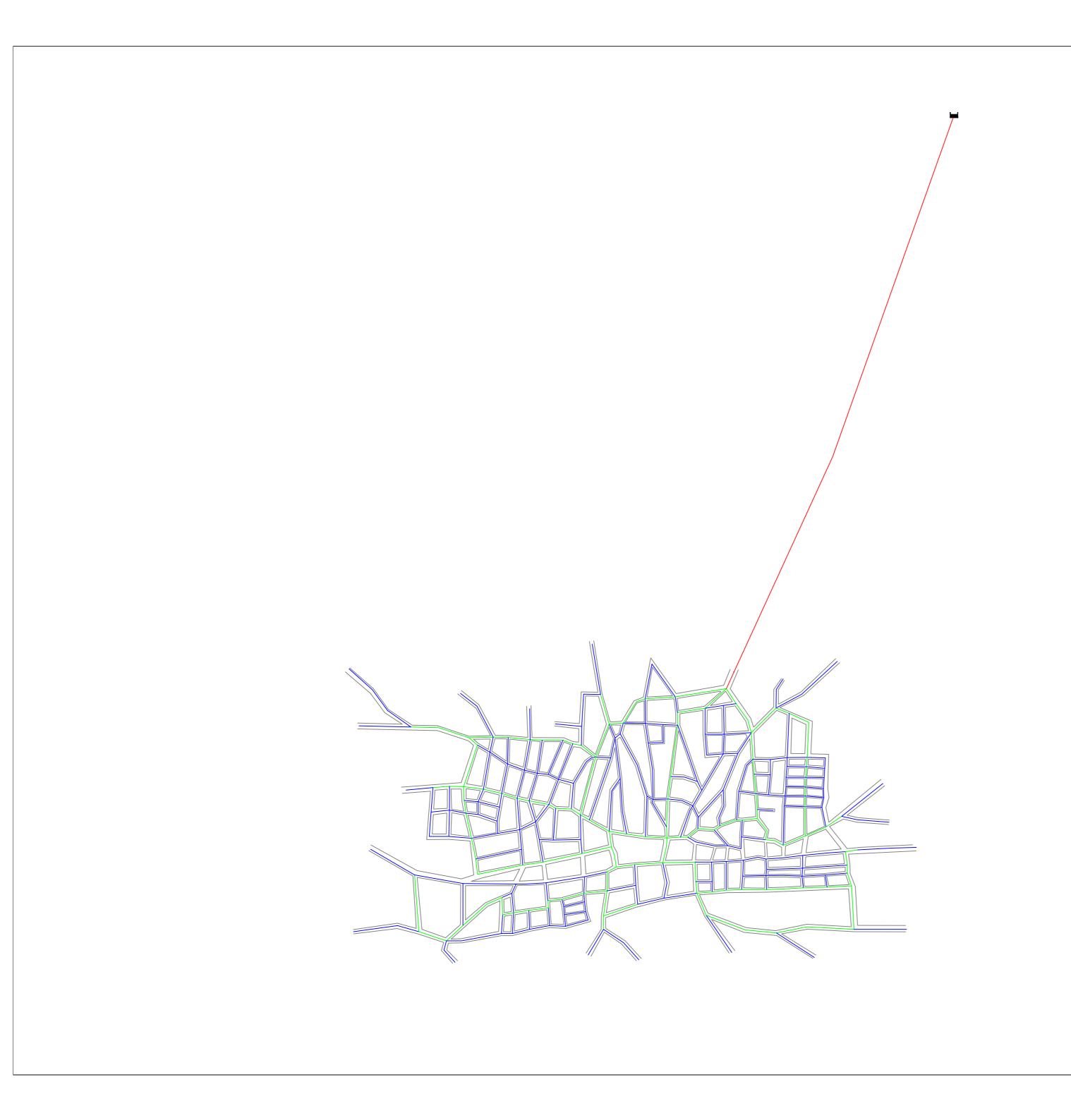
2-PLANOS

INDICE

- 1-LOCALIZACION GEOGRAFICA
- 2-TUBERIAS, VALVULAS E HIDRANTES
- **3-TUBERIA DEPOSITO**
- 4-IDENTIDADES DE LAS LINEAS
- 5-IDENTIDADES DE LOS NUDOS
- 6-COTAS DE LOS NUNDOS
- 7-ARQUETAS DE VALVULA DE MARIPOS Y DE VALVULA REDUCTORA
- 8-ARQUETAS DE DESAGUES Y VENTOSAS
- 9-ZANJAS
- 10-CODOS Y TOPES

DISEÑO DE LA RED DE SUMINISTRO DE AGUA A UNA POBLACION DE 8000 HABITANTES


David Mondéjar Saiz


Julio 2014

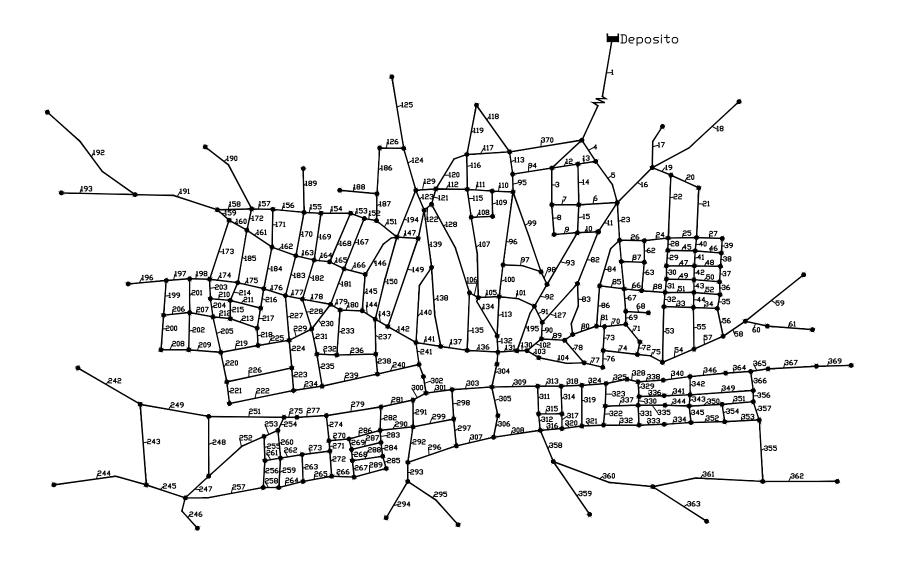
LOCALIZACION GEOGRAFICA

Nº Plano:

Escala:

TUBERIA 250 MM FUNDICION TUBERIA 180 MM POLIETILENO TUBERIA 125 MM POLIETILENO DEPOSITO

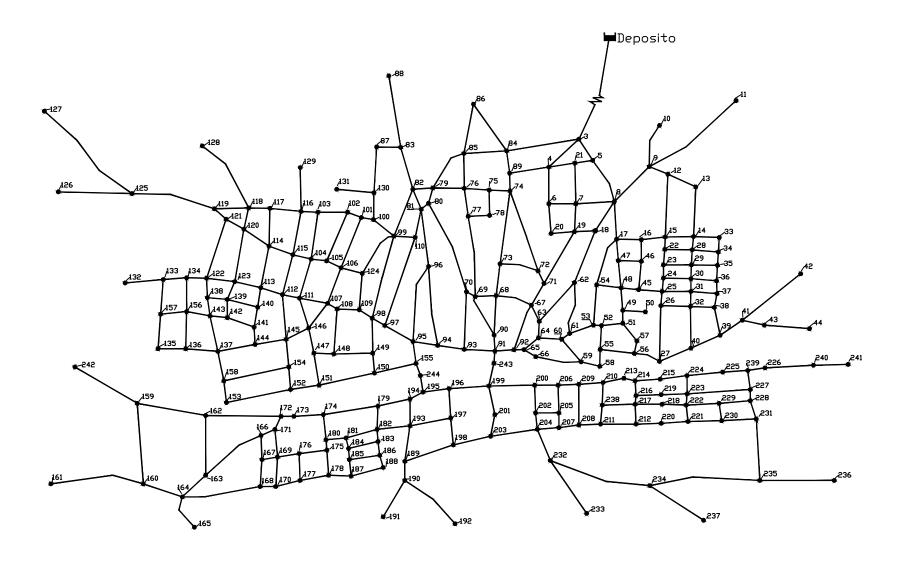
UNIVERSITAT POLITÈCNICA DE VALÈNCIA


TRABAJO FINAL DE GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

DISEÑO DE LA RED DE SUMINISTRO DE AGUA A UNA POBLACION DE 8000 HABITANTES

Autor: David Mondéjar Saiz Julio 2014 TUBERIA DEPOSITO Nº Plano:

3

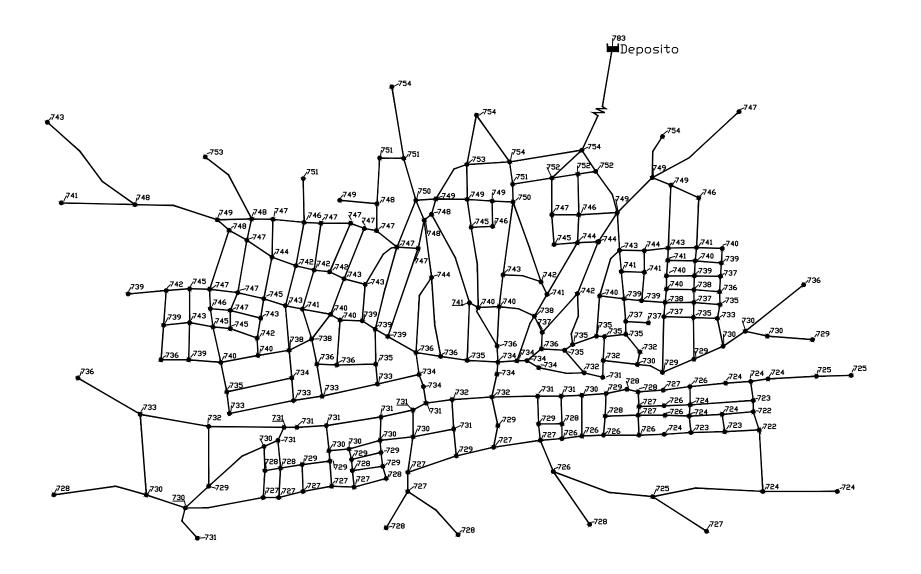


DISEÑO DE LA RED DE SUMINISTRO DE AGUA A UNA POBLACION DE 8000 HABITANTES

Dlana:		Feeder	
Autor: Da	avid Mondéjar Saiz	Fecha: Julio 2014	

IDENTIDADES DE LAS LINEAS

1:10000

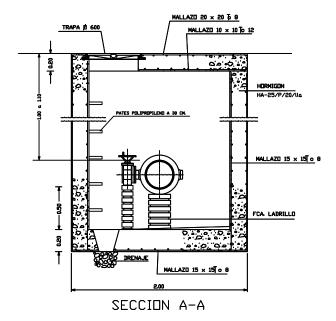

DISEÑO DE LA RED DE SUMINISTRO DE AGUA A UNA POBLACION DE 8000 HABITANTES

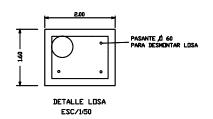
Diago	Faceler	
Autor: David Mondéjar Saiz	Fecha: Julio 2014	

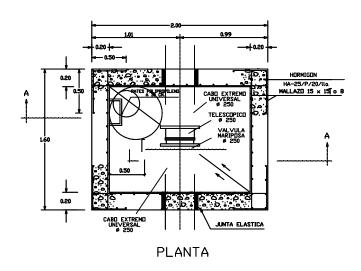
IDENTIDADES DE LOS NUDOS

1:10000

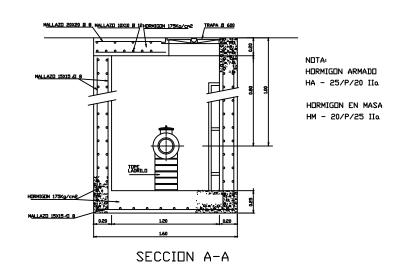
Į.

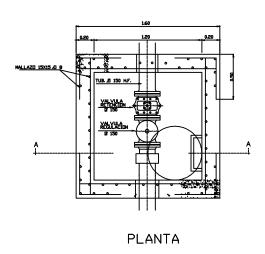

DISEÑO DE LA RED DE SUMINISTRO DE AGUA A UNA POBLACION DE 8000 HABITANTES


Autor:	David Mondéjar Saiz	Fecha: Julio 2014	
Dlano:		Facelo:	

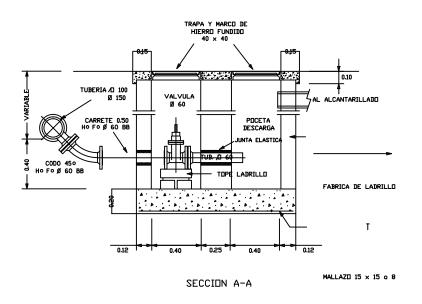

COTAS DE LOS NUDOS

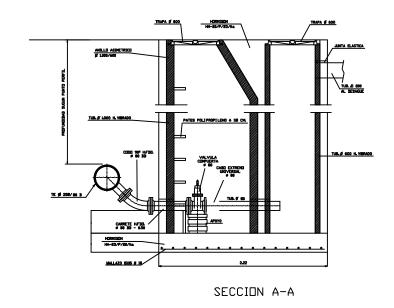
1:10000 N° Plano:

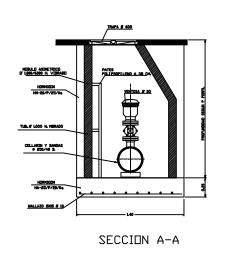

ARQUETA VALVULA MARIPOSA Ø 250 MM

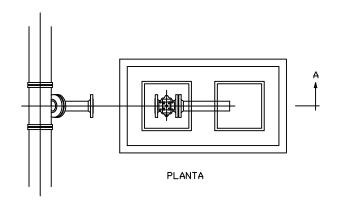


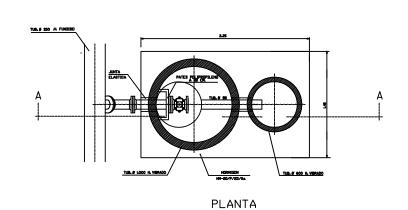
ARQUETA DE VALVULA REDUCTURA DE PRESION DE Ø 150

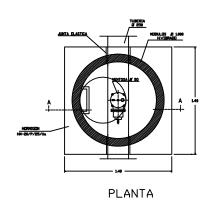



TRABAJO FINAL DE GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

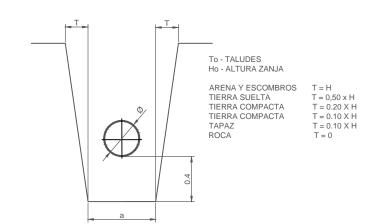



DISEÑO DE LA RED DE SUMINISTRO DE AGUA A UNA POBLACION DE 8000 HABITANTES


Autor:	David Mondéjar Saiz	Fecha: Julio 20)14
Plano:		Escala:	
	ARQUETAS DE VALVULA DE MARIPOSA Y		
	DE VALVULA REDUCTORA	Nº Plano: ■	7



Nº Plano:

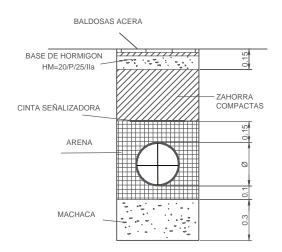

DISEÑO DE LA RED DE SUMINISTRO DE AGUA A UNA POBLACION DE 8000 HABITANTES

Autor: David Mondéjar Saiz	Fecha: Julio 2014
Plano:	Escala:

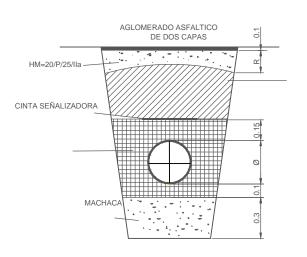
ARQUETAS DE DESAGUES Y VENTOSAS

8

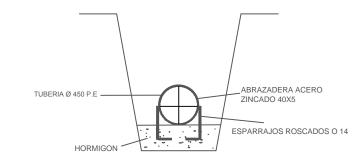
ZANJAS TIPO

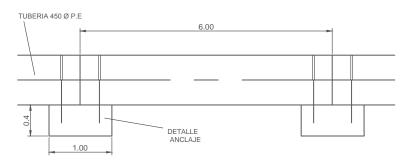

TUBERIA DE POLIETILENO Y HIERRO FUNDIDO

B.- ANCHO ZANJA

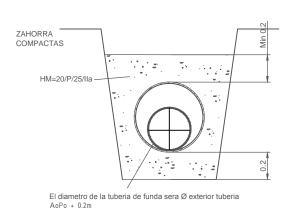

2. /	=		
DIAMETRO	B TIERRA	B TAPAZ	B ROCA
100	0.60	0.60	0.60
150	0.60	0.60	0.60
200	0.60	0.60	0.60
250	0.60	0.60	0.60
300	0.85	0.75	0.65
350	0.90	0.80	0.70
400	1.00	0.90	0.80
450	1.05	0.95	0.85
500	1.10	1.00	0.90
600	1.20	1.10	1.00

TAPADO DE ZANJAS


ACERAS

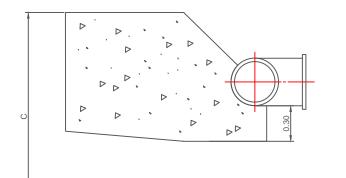


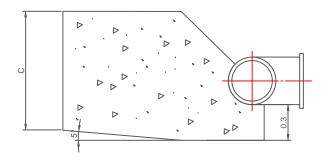
CALZADA

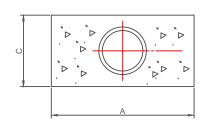


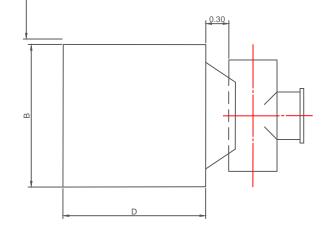
DETALLES DEL ANCLAJE TUBO DURMIENTES ANTIFLOTACION

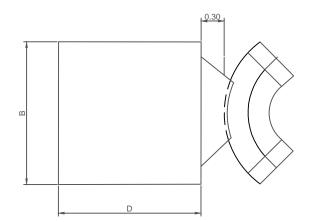
PROTECCION DE CRUCES

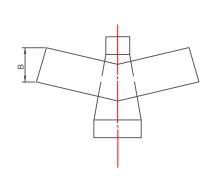



TRABAJO FINAL DE GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES




DISEÑO DE LA RED DE SUMINISTRO DE AGUA A UNA POBLACION DE 8000 HABITANTES


Autor: David Mondéjar Saiz	Fecha: Julio 2014
Plano:	Escala:
ZANJAS	N° Plano:



REDUCCION	а	b	С	M3
1600-1400	5.50	3.00	1.30	21.42
1600-1200	6.00	3.60	1.85	39.96
1600-1000	6.00	3.95	2.35	44.55
1400-1200	5.00	2.50	1.50	18.58
1400-1000	6.00	4.00	1.45	34.27
1400-800	6.00	4.50	1.75	47.12
1200-1000	5.00	2.50	1.25	15.70
1000-800	4.68	2.35	1.17	12.85
800-600	4.30	2.16	1.08	10.00
600-500	3.16	1.58	0.79	3.92
600-450	3.56	1.78	0.89	5.62
600-400	3.85	1.93	0.96	7.13
500-450	2.38	1.20	0.60	1.69
500-400	2.95	1.47	0.74	3.21
500-300	3.57	1.79	0.89	5.71
450-400	2.29	1.15	0.57	1.51
450-350	2.83	1.42	0.71	2.85
450-300	3.18	1.59	0.80	4.01
400-350	2.20	1.10	0.55	1.33
400-300	2.71	1.35	0.68	2.50
400-250	3.03	1.52	0.76	3.48
350-300	2.10	1.05	0.53	1.16
350-250	2.58	1.29	0.65	2.14
350-200	2.86	1.43	0.72	2.94
300-250	1.99	1.00	0.49	0.98
300-200	2.42	1.22	0.60	1.78
250-200	1.86	0.93	0.46	0.80
250-150	2.25	1.13	0.56	1.42
200-150	1.70	0.85	0.43	0.62
200-100	2.04	1.02	0.52	1.07
150-100	1.50	0.75	0.40	0.45
100-80	1.00	0.50	0.30	0.13

TOPES PARA CODOS HORMIGON HM-20/P/25/IIa

		TOPES PARA TE HORMIGON HM-20/P	
Ø TES	a	b	С
1600	4.50	4.50	4.50
1400	4.21	4.21	4.21
1200	3.72	3.72	3.72

Ø TES	a	b	С	M3
1600	4.50	4.50	4.50	91.39
1400	4.21	4.21	4.21	75.05
1200	3.72	3.72	3.72	51.41
1000	3.29	3.29	3.29	35.70
800	2.83	2.83	2.83	22.85
600	2.34	2.24	2.24	12.85
500	2.07	2.07	2.07	8.92
450	1.93	1.93	1.93	7.23
400	1.79	1.79	1.79	5.71
350	1.63	1.63	1.63	4.37
300	1.47	1.47	1.47	3.21
250	1.30	1.30	1.30	2.23
200	1.12	1.12	1.12	1.42
150	0.93	0.93	0.93	0.80
100	0.71	0.71	0.71	0.36
80	0.61	0.61	0.61	0.23

Ø CODOS	α	a	b	С	М3
1600	90°	5.05	5.05	5.05	129.24
1600	45°	4.12	4.12	4.12	69.94
1600	22°30′	3.29	3.29	3.29	35.65
1400	90°	4.73	4.73	4.73	106.14
1400	45°	3.85	3.85	3.85	57.44
1400	22°30′	3.08	3.08	3.08	29.28
1200	90°	4.17	4.17	4.17	72.70
1200	45°	3.40	3.40	3.40	39.34
1200	22°30′	2.72	2.72	2.72	20.06
1000	90°	3.69	3.69	3.69	50.48
1000	45°	3.01	3.01	3.01	27.32
1000	22°30′	2.40	2.40	2.40	13.93
800	90°	3.18	3.18	3.18	32.31
800	45°	2.59	2.59	2.59	17.49
800	22°30′	2.07	2.07	2.07	8.91
600	90°	2.63	2.63	2.63	18.17
600	45°	2.14	2.14	2.14	9.93
600	22°30′	1.71	1.71	1.71	5.01
500	90°	2.33	2.33	2.33	12.62
500	45°	1.89	1.89	1.89	6.83
500	22°30′	1.51	1.51	1.51	3.48

Ø CODOS	α	а	b	С	M3
450	90°	2.17	2.17	2.17	10.22
450	45°	1.76	1.76	1.76	5.53
450	22°30′	1.41	1.41	1.41	2.82
400	90°	2.00	2.00	2.00	8.00
400	45°	1.63	1.63	1.63	4.37
400	22°30′	1.30	1.30	1.30	2.23
350	90°	1.83	1.83	1.83	6.18
350	45°	1.49	1.49	1.49	3.34
350	22°30′	1.19	1.19	1.19	1.70
300	90°	1.65	1.65	1.65	4.54
300	45°	1.35	1.35	1.35	2.46
300	22°30′	1.07	1.07	1.07	1.25
250	90°	1.46	1.46	1.46	3.15
250	45°	1.19	1.19	1.19	1.70
250	22°30′	0.95	0.95	0.95	0.87
200	90°	1.26	1.26	1.26	2.01
200	45°	1.03	1.03	1.03	1.09
200	22°30′	0.82	0.82	0.82	0.55
150	90°	1.04	1.04	1.04	1.13
150	45°	0.85	0.85	0.85	0.61
150	22°30′	0.67	0.67	0.67	0.31

Ø CODOS	α	а	b	С	M3
100	90°	0.80	0.80	0.80	0.50
100	45°	0.65	0.65	0.65	0.27
100	22°30′	0.52	0.52	0.52	0.14
80	90°	0.69	0.69	0.69	0.32
80	45°	0.55	0.55	0.55	0.17
80	22°30′	0.45	0.45	0.45	0.09

Nº Plano:

DISEÑO DE LA RED DE SUMINISTRO DE AGUA A UNA POBLACION DE 8000 HABITANTES

Autor:	David Mondéja Saiz	Fecha: Julio 201
Plano:		Escala:
	000001/70000	

CODOS Y TOPES

3-PRESUPUESTO

INDICE

3.1- JUSTIFICACION DE MEDICIONES	1
3.2-DESCOMPUESTOS	5
3.3-MEDICIONES	18
3.4-PRESUPUESTO. RESUMEN POR CAPITULOS	27

3.1- JUSTIFICACION DE MEDICIONES

A continuación se justifican los resultados de las medidas utilizadas en el presupuesto:

ZANJA CALZADA

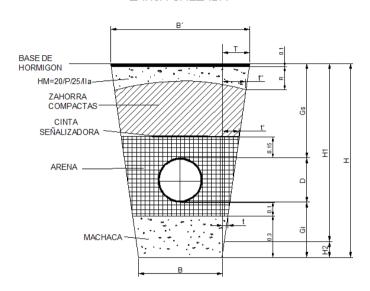


Figura 1

ZANJA ACERA

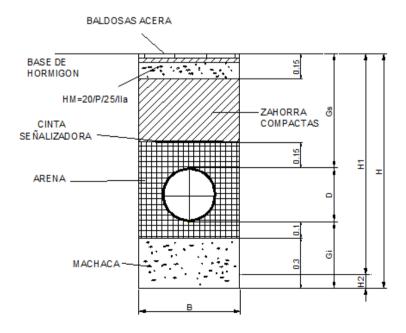
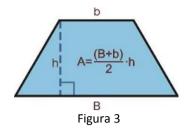



Figura 2

Área Trapecio (A)			
B= Base mayor			
b= Base menor			
h= Altura trapecio			

Tabla 1

	Diametro	Diametro (D)	Ancho Zanja Inferior (B)	Ancho Zanja Superior (B')
	mm	m	m	m
FORMULA ACERA	-	-	-	B'= B + 2 x T
ACERA	125	0,125	0,6	0,6
ACERA	180	0,18	0,6	0,6
FORMULA CALZADA	-	-	-	B'= B + 2 x T
CALZADA	274	0,274	0,6	0,6

	Ancho Talud Total (T)	Generatriz Superior (Gs)	Generatriz Inferior (Gi)	Altura Total Zanja (H)
	m	m	m	m
FORMULA ACERA	T=0.2 x H	-	-	H=Gs + D + Gi
ACERA	-	0,8	0,4	1,2
ACERA	-	0,8	0,4	1,2
FORMULA CALZADA	T=0.2 x H	-	-	H=Gs + D + Gi
CALZADA	0,32	1,2	0,4	1,6

	H1=H-H2	H2	Excavación Mecanica (EMec)	Excavación Manual (EMan)
	m	m	m2	m2
FORMULA ACERA	H1=H-H2	-	EMec=SF x H1	Eman=SF x H2
ACERA	1,225	0,1	0,735	0,06
ACERA	1,28	0,1	0,768	0,06
FORMULA CALZADA	H1=H-H2	-	Emec=SF-Eman	A
CALZADA	1,75	0,1	1,7325	0,062

	Seccion Frontal (SF)	T/H	Angulo Talud (α)	Ancho Talud Machaca (t)
	m2	-	rad	m
FORMULA ACERA	SF=H x B	T/H	α=arctg(T/H)	1
ACERA	0,795	-	-	1
ACERA	0,828	-	-	-
FORMULA CALZADA	А	T/H	α=arctg(T/H)	-
CALZADA	1,7945	0,2	0,19739556	0,06

	Machaca (M)	Altura Arena (AA)	Ancho Talud Arena (t´)	Area Total Arena + Tubería (AAT)
	m2	m	m	m2
FORMULA ACERA	Mach=0,4 x B	AA=0,25 x D	-	AAT = AA x B
ACERA	0,18	0,375	-	0,225
ACERA	0,18	0,43	-	0,258
FORMULA CALZADA	$M = (t \times 0.3) + (B \times 0.3)$	AA=0,25*D	-	A
CALZADA	0,198	0,5	0,16	0,41

	Area Tuberia (AT)	ARENA (AR)	Altura Zahorra (AZ)	Ancho Talud Zahorra (t´´)
	m2	m2	m	m
FORMULA ACERA	$AT=(D^2 \times \pi)/4$	AR=AAT - AT	AZ= 0,15 - 0,3 - AA - H	
ACERA	0,012271846	0,212728154	0,5	-
ACERA	0,0254469	0,2325531	0,5	-
FORMULA CALZADA	AT= $(D^2 x \pi)/4$	AR=AAT - AT	AZ= 0,15 - 0,3 - AA - H	$t'' = (0,3+AA+AZ) \times tan\alpha$
CALZADA	0,049087385	0,360912615	0,75	0,31

	Zahorra (Z)	R/C	Altura HM	НМ
	m2	-	m	m2
FORMULA ACERA	Z= AZ x B	-	-	HM=B'x AHM
ACERA	0,3	0,2	0,15	0,09
ACERA	0,3	0,2	0,15	0,09
FORMULA CALZADA	Α	-	AHM = H - AA -AZ -0,3	A
CALZADA	0,8025	0,2	0,3	0,384

Tabla 2

	Diámetro Tuberia ext. (DT)	Diámetro Tuberia ext. (DT) Longitud Tuberia (LT) Demolición Acera , DA020015		Demolición Bordillo, DA02075 (DBOR)
	mm	m	m2	m
FORULACION	-	-	DAC= B x LT	DBOR= LT
ACERA	125	21142,93	12685,758	21142,93
ACERA	180	10021,46	6012,876	10021,46
CALZADA	274	2282,61	-	-
TOTAL	-	33447	18698,634	31164,39

	Demolición Bordillo, DA02075 (DBOR)	Demolición Pavimento Asfaltico, DA02110 (DPA)	Demolicion Base Hormigon, DA02640 (DBH)
	m	m2	m2
FORULACION	DBOR= LT	DPA=LT x B'	DBH=LT x B'
ACERA	21142,93	-	-
ACERA	10021,46	-	-
CALZADA	-	3058,6974	3058,6974
TOTAL	31164,39	3058,6974	3058,6974

	Recomposición Bordillo, DA11075 (RBO)	Recomposición Pavimento, DA11110 (RPAV)	Excav. Maquin. Zanja, DA21025 (EME)
	m	m2	m3
FORULACION	RBO=LT	RPAV=LT x B'	EME=Emec x LT
ACERA	21142,93	-	15540,05355
ACERA	10021,46	-	7696,48128
CALZADA	-	3058,6974	3954,621825
TOTAL	31164,39	3058,6974	27191,15666

	Excav. Manual Zanja, DA21080 (EMA)	Tapado Zanja Machaca, DA21410 (TMA)	Tapado Zanja Arena, DA21420 (TA)	
	m3	m3	m3	
FORULACION	EMA=Eman x LT	TMA=M x LT	TA=AR x LT	
ACERA	1268,5758	3805,7274	4497,696463	
ACERA	601,2876	1803,8628	2330,521585	
CALZADA	141,52182	451,95678	823,8227436	
TOTAL	2011,38522	6061,54698	7652,040791	

	Tapado Zanja Zahorras, DA21450 (TZ)	Transporte Producto Exc., DA21620 (TP)	Hormigón, DA31165 (H)
	m3	m3	m3
FORULACION	TZ=Z x LT	TP=SF x LT	H=HM x LT
ACERA	6342,879	16808,62935	1902,8637
ACERA	3006,438	8297,76888	901,9314
CALZADA	1831,794525	4096,143645	876,52224
TOTAL	11181,11153	29202,54188	3681,31734

Tabla 3

3.2-DESCOMPUESTOS

RED DE SUMINISTRO DE AGUA POTABLE DE UNA POBLACION DE 8000 HABITANTES	
CUADRO DE PRECIOS	Ref.: procdp2a
	Fec.:

Nº Actividad	Código	Descripción de las unidades de obra	Rendimiento	Precio	Importe

01	1		OBRA CIVIL			
01.01	1.1		DEMOLICIONES Y RECOMPOSICIONES			
01.01.01	DA02015	m2	Demolición de aceras de baldosa hidráulica, con corte limpio y recto de los bordes de zanja, incluso base de hormigón de 10 cm. de espesor y retirada de escombros a vertedero.			
	MQPP002 MQPP003 MOPP002 MOPP003 PAPP001	h h h m3	Compresor diésel 4m3 Martillo picador neumático Peón especializado Peón ordinario Carga y transporte	0,200 0,200 0,100 0,353 0,300	5,26 1,11 20,58 20,07 2,07	1,05 0,22 2,06 7,08 0,62
			Clase: Material Coste Total			11,03 11,03
01.01.02	DA02075	ML	Arrancado de bordillo, incluso base de hormigón y retirada de escombros a vertedero.			
	MQPP002 MQPP003 MOPP002 MOPP003 PAPP001	h h h m3	Compresor diésel 4m3 Martillo picador neumático Peón especializado Peón ordinario Carga y transporte	0,080 0,080 0,080 0,111 0,100	5,26 1,11 20,58 20,07 2,07	0,42 0,09 1,65 2,23 0,21
			Clase: Material Coste Total			4,60 4,60
01.01.03	DA02110	m2	DEMOLICION DE PAVIMENTO ASFALTICO DE HASTA 10 CM. DE ESPESOR, CON CORTE LIMPIO Y RECTO DE LOS BORDES DE ZANJA, INCLUSO RETIRADA DE ESCOMBROS A VERTEDERO.			
	MMM660 MMM035 MMM615 MMM320 MO040	h h h h	CORTADORA ASFALTO/HORMIGON RETROEXC. S/NEUMAT. 90 CV. C/M. COMPRESOR PORTATIL 4000 L/M. CAMION BASCULANTE 15 TM. PEON ORDINARIO CONST.	0,095 0,050 0,120 0,052 0,212	7,17 50,16 5,36 41,73 16,07	0,68 2,51 0,64 2,17 3,41
			Clase: Material Coste Total			9,41 9,41
01.01.04	DA02640	m2	Demolición base de pavimento, de hormigón de 25 cm. de espesor, incluso retirada de escombros a vertedero.			
	MQPP002 MQPP003 MOPP002 MOPP003 PAPP001	h h h m3	Compresor diésel 4m3 Martillo picador neumático Peón especializado Peón ordinario Carga y transporte	0,220 0,220 0,300 0,461 0,300	5,26 1,11 20,58 20,07 2,07	1,16 0,24 6,17 9,25 0,62
			Clase: Material Coste Total			17,44 17,44

RED DE SUMINISTRO DE AGUA POTABLE DE UNA POBLACION DE 8000 HABITANTES	
CUADRO DE PRECIOS	Ref.: procdp2a
	Fec.:

					T	
Nº Actividad	Código		Descripción de las unidades de obra	Rendimiento	Precio	Importe
01.01.05	DA11015	m2	RECOMPOSICIÓN DE ACERA DE BALDOSA HIDRÁULICA, INCLUSO BASE DE HORMIGÓN DE 10 CM. DE ESPESOR Y MORTERO DE AGARRE.			
	MTPP1003_ A	m2	BALDOSA 25X25 CM.	1,000	9,57	9,57
	MO003	h	OFICIAL 1º CONSTRUCCION	0,073	18,00	1,31
	MO023 PAPP002_A	h m3	PEON ORDINARIO CONSTRUCCION MORTERO CEM. PORTLAND+ARENA 250KG/M3,1:6,HORM.165L	0,124 0,010	15,00 79,77	1,86 0,80
	MTPP1005_ A	m3	HORMIGON HM-20/B/20/I	0,100	66,94	6,69
			Clase: Material Coste Total			20,23 20,23
01.01.06	DA11075	ML	COLOCACIÓN DE BORDILLO, INCLUSO LECHO DE HORMIGÓN Y REJUNTADO CON MORTERO DE CEMENTO.			
	MTPP1009_	m	BORDILLO PREF HORM., 20X25 CM.	1,050	4,99	5,24
	A MO003	h	OFICIAL 1ª CONSTRUCCIÓN	0,117	18,00	2,11
	MO023 PAPP002_A	h m3	PEON ORDINARIO CONSTRUCCION MORTERO CEM. PORTLAND+ARENA 250KG/M3,1:6,HORM.165L	0,247 0,001	15,00 79,77	3,71 0,08
	MTPP1005_ A	m3	HORMIGON HM-20/B/20/I	0,100	66,94	6,69
			Clase: Material Coste Total			17,83 17,83
01.01.07	DA11110	m2	RECOMPOSICIÓN DE PAVIMENTO CON AGLOMERADO ASFÁLTICO DE 10 CM. DE ESPESOR, EXTENDIDO EN DOS CAPAS.			
	MTPP1008_ A	t	MEZCLA BITUM. CALIENTE D-12, ARIDO GRANITICO, BETUN ASF.	0,010	60,99	0,61
	MO003	h	OFICIAL 1ª CONSTRUCCION	0,260	18,00	4,68
	MO023 MMM053	h h	PEON ORDINARIO CONSTRUCCION RODILLO VIBRATORIO AUTOPROPULSADO NEUMATICO	0,549 0,100	15,00 65,76	8,24 6,58
	MMM026	h	EXTENDEDORA P/PAVIMENTO MEZCLA BITUM.	0,150	60,95	9,14
			Clase: Material Coste Total			29,25 29,25
01.02	1.2		MOVIMIENTO DE TIERRAS			
01.02.01	DA21025	m3	Excavación con medios mecánicos de zanja en tierra, con una tolerancia de rasanteo de +/- 5 cm.			
	MQPP007	h	Retro neumático 130cv 1m3	0,070	65,28	4,57
	MOPP001 MOPP003	h h	Oficial de 1 ^a . Peón ordinario	0,100 0,102	17,70 20,07	1,77 2,05
			Clase: Material			8,39
			Coste Total			8,39

RED DE SUMINISTRO DE AGUA POTABLE DE UNA POBLACION DE 8000 HABITANTES	
CUADRO DE PRECIOS	Ref.: procdp2a
	Fec.:

Nº Actividad	Código		Descripción de las unidades de obra	Rendimiento	Precio	Importe
01.02.02	DA21080	m3	Excavación manual de zanja en tierra, con una tolerancia de rasanteo de +/- 5 cm.			
	MOPP001 MOPP002	h h	Oficial de 1 ^a . Peón especializado	1,259 1,300	17,70 20,58	22,28 26,75
			·	,,,,,		,
			Clase: Material Coste Total			49,03 49,03
01.02.03	DA21410	m3	Tapado y compactado de zanja con aportación de material granular, en fondo de excavación, para mejora y consolidación del terreno, en capas de 25 cm. de espesor máximo, compactadas al 95% del proctor modificado.			
	MTPP1002	m3	Agua	0,050	1,12	0,06
	MTPP1028 MQPP007	t h	Grava caliza 25/40 s/lvd Retro neumático 130cv 1m3	0,200 0,100	5,53 65,28	1,11 6,53
	MQPP014	h	Motoniveladora 140cv	0,010	61,26	0,61
	MQPP022 MQPP023	h h	Rodillo vibratorio autpro 4tm Camión <10 tm 8 m3	0,020 0,020	55,41 15,79	1,11 0,32
	MOPP002 MOPP003	h h	Peón especializado Peón ordinario	0,090 0,093	20,58 20,07	1,85 1,87
	WOFFUUS	"	Feon ordinano	0,093	20,07	1,07
			Clase: Material Coste Total			13,46 13,46
01.02.04	DA21420	m3	Tapado y regado de zanja con aportación de arena o árido fino, en lecho, laterales y lomo de tubería (recubriendo ésta al menos 15 cm. por encima de la generatriz).			
	MTPP1041	t	Arena amarilla.	0,500	6,75	3,38
	MQPP007 MQPP022	h h	Retro neumático 130cv 1m3 Rodillo vibratorio autpro 4tm	0,100 0,020	65,28 55,41	6,53 1,11
	MOPP002	h	Peón especializado	0,100	20,58	2,06
	MOPP003	h	Peón ordinario	0,132	20,07	2,65
			Clase: Material Coste Total			15,73 15,73
01.02.05	DA21450	m3	Tapado y compactado de zanja con aportación de zahorras limpias, procedentes de machaqueo, extendidas en capas de 25 cm. de espesor máximo, compactadas al 95% del proctor modificado.			
	MTPP1034	t	Zahorra artificial 0/80	1,500	6,92	10,38
	MQPP007	h	Retro neumático 130cv 1m3	0,060	65,28	3,92
	MQPP022 MOPP002	h h	Rodillo vibratorio autpro 4tm Peón especializado	0,030 0,150	55,41 20,58	1,66 3,09
	MOPP003	h	Peón ordinario	0,150	20,07	3,01
			Clase: Material			22,06
			Coste Total			22,06
01.02.06	DA21620	m3	Transporte de productos procedentes de la excavación, a vertedero.			
	MQPP013 MQPP007	h h	Camión basculante de 12 Retro neumático 130cv 1m3	0,061 0,080	21,80 65,28	1,33 5,22
			<u> </u>			- - -
			Clase: Material Coste Total			6,55 6,55

RED DE SUMINISTRO DE AGUA POTABLE DE UNA POBLACION DE 8000 HABITANTES	
CUADRO DE PRECIOS	Ref.: procdp2a
	Fec.:

Nº Actividad	Código	Descripción de las unidades de obra	Rendimiento	Precio	Importe

01.03	1.3		HORMIGONES Y ALBAÑILERIA			
01.03.01	PSF430	UD	Arqueta para ventosa diámetro 50 mm., formada por anillo prefabricado de hormigón vibrado (diámetro 1000 mm.) rematado con cono excéntrico (diámetro 1000/600 mm.) del mismo material, para colocación de la trapa, apoyados sobre solera de hormigón armado HA-25/P/20/Ila de 25 cm. de espesor, y anclaje mediante relleno lateral con hormigón en masa HM-20/B/20/I, incluyendo trapa de fundición diámetro 600 mm., y pates de polipropileno para acceso a interior.			
	MTPP1074 MTPP1071 MTPP1052 MTPP1102 MTPP1101 MTPP1047 MOPP001 MOPP003	UD UD u m3 m3 kg h	Anillo horm. 1000 Marco y trapa de fundición diámetro 600 mm. Pate pref a galv 250x315 mm Hormigón HA-25/P/20/lla Hormigón HM-20/B/12/I Acero corru AEH-500NØ16 (1.580) Oficial de 1ª. Peón ordinario	1,000 1,000 5,000 0,010 2,500 3,100 1,422 1,500	69,71 99,82 3,93 70,51 67,99 0,72 17,70 20,07	69,71 99,82 19,65 0,71 169,98 2,23 25,17 30,11
			Clase: Material Coste Total			417,38 417,38
01.03.02	PSF450	UD	ARQUETA PARA DESAGÜE DIÁMETRO 200-150 MM., FORMADA POR ANILLOS PREFABRICADOS DE HORMIGÓN VIBRADO (DIÁMETRO 1.200 MM. PARA ALOJAMIENTO VÁLVULA Y DIÁMETRO 1.000 MM. PARA POCETA DE DESCARGA, REMATADOS CON CONOS EXCÉNTRICOS 1.200/600 MM.Y 1.000/600 MM. DEL MISMO MATERIAL, PARA COLOCACIÓN DE LA TRAPA), APOYADOS SOBRE SOLERA DE HORMIGÓN ARMADO HA-25/P/20/IIA DE 25 CM. DE ESPESOR, Y ANCLAJE MEDIANTE RELLENO LATERAL CON HORMIGÓN EN MASA HM-20/B/20/I, INCLUYENDO TRAPA DE FUNDICIÓN DIÁMETRO 600 MM., Y PATES DE POLIPROPILENO PARA ACCESO A INTERIOR.			
	MTPP1074_ A	UD	ANILLO HORM. 1000	1,000	70,00	70,00
	MTPP1072_ A	UD	ANILLO HORM. 1200	1,000	74,00	74,00
	MTPP1077 MTPP1079 MTPP1071_	_	CONO HORM. 1200/600 Cono horm. 1000/600 MARCO Y TRAPA DE FUNDICION DIAMETRO 600 MM.	1,000 1,000 1,000	106,00 83,84 100,00	106,00 83,84 100,00
	A MTPP1052_	u	PATE PREF A GALV 250X315 MM	5,000	4,00	20,00
	A MTPP1102 MTPP1101_ A	m3 m3	Hormigón HA-25/P/20/IIa HORMIGON HM-20/B/12/I	0,800 3,500	70,51 68,00	56,41 238,00
	MTPP1047 MO003 MO023	kg h h	Acero corru AEH-500NØ16 (1.580) OFICIAL 1ª CONSTRUCCION PEON ORDINARIO CONSTRUCCION	3,100 5,300 7,813	0,72 18,00 15,00	2,23 95,40 117,20
			Clase: Material Coste Total			963,08 963,08

RED DE SUMINISTRO DE AGUA POTABLE DE UNA POBLACION DE 8000 HABITANTES	
CUADRO DE PRECIOS	Ref.: procdp2a
	Fec.:

Nº Actividad	Código		Descripción de las unidades de obra	Rendimiento	Precio	Importe
01.03.03	PSF315	UD	ARQUETA PARA VÁLVULA DIÁMETRO 350-250 MM., DE UNAS DIMENSIONES INTERIORES DE 1.20X1.60 M. Y PROFUNDIDAD SEGÚN PERFIL (APROX. 2.00 M.); FORMADA POR SOLERA DE HORMIGÓN DE 25 CM. DE ESPESOR, MUROS DE 20 CM. DE ESPESOR, Y LOSA DE CUBRICIÓN DE 20 CM. DE ESPESOR, TODO EN HORMIGÓN ARMADO HA-25/P/20/IIA, INCLUYENDO TRAPA DE FUNDICIÓN DIÁMETRO 600 MM., Y PATES DE POLIPROPILENO PARA ACCESO A INTERIOR.			
	MTPP1071_ A	UD	MARCO Y TRAPA DE FUNDICION DIAMETRO 600 MM.	1,000	100,00	100,00
	MTPP1102 MTPP1047 MTPP1052_	m3 kg u	Hormigón HA-25/P/20/IIa Acero corru AEH-500NØ16 (1.580) PATE PREF A GALV 250X315 MM	5,650 9,800 4,000	70,51 0,72 4,00	398,38 7,06 16,00
	A MO003 MO023 DA31310	h h m2	OFICIAL 1ª CONSTRUCCIÓN PEÓN ORDINARIO CONSTRUCCIÓN ENCOFRADO MUROS Y LOSAS	3,000 5,573 19,600	18,00 15,00 31,03	54,00 83,60 608,19
			Clase: Material Resto de obra Coste Total			659,04 608,19 1.267,23
01.03.04	DA31165	m3	HORMIGON VIBRADO H-200, CONSISTENCIA PLASTICA, TAMAÑO MAXIMO DEL ARIDO 25 MM., COLOCADO PARA RELLENO Y SUJECCION DE ANILLOS PREFABRICADOS, PARA FORMACION DE ARQUETAS Y POCETAS.			
	A120 MO003 MO023 MMM056 %M.AUX	m3 h h h %	HORMIGON HM-20-P-25-IIA OFICIAL 1ª CONSTRUCCIÓN PEON ORDINARIO CONSTRUCCION VIBRADOR HORMIGON 30/50 MM. 4% (3% Medios Auxiliares + 1% Control Calidad)	1,000 0,385 1,070 0,320 0,040	60,48 18,00 15,00 2,31 84,20	60,48 6,93 16,05 0,74 3,37
			Clase: Material Clase: Medio auxiliar Coste Total			84,20 3,37 87,57
01.03.05	PSF525	UD	REGISTRO DE LADRILLO PARA VÁLVULAS DIÁMETRO 200 A 80 MM., O VENTOSAS DIÁMETRO 25 MM. (A SITUAR EN ACERAS), DE UNAS DIMENSIONES INTERIORES DE 40X40 CM. Y PROFUNDIDAD VARIABLE (HASTA 1.50 M.); FORMADA POR SOLERA DE HORMIGÓN HA-25/P/20/IIA DE 20 CM. DE ESPESOR (CON LIGERA ARMADURA) Y PAREDES DE LADRILLO DEL 12 ENLUCIDAS EN SU INTERIOR, INCLUYENDO TRAPA DE FUNDICIÓN DE 40X40 CM.			
	MTPP1080 MTPP1102 MTPP1046 MTPP1017 MOPP001 MOPP003 PAPP002 %M.AUX MTPP1046_ A	UD m3 kg u h m3 kg	Marco y trapa de fundición 40x40 cm. Hormigón HA-25/P/20/lla Acero corru B 400 S Ø10 (0.617) Ladrillo hueco 25x12x4 Oficial de 1ª. Peón ordinario Mortero cem. portland+arena 250Kg/m3,1:6,horm.165L 4% (3% Medios Auxiliares + 1% Control Calidad) ACERO CORRU B 400 S Ø10 (0.617)	1,000 0,400 2,500 45,000 2,600 2,675 0,600 0,040 2,500	23,10 70,51 0,66 0,13 17,70 20,07 80,31 206,70 0,66	23,10 28,20 1,65 5,85 46,02 53,69 48,19 8,27 1,65
	MTPP1017_ A	u	LADRILLO HUECO 25X12X4	45,000	0,13	5,85
	MO003 MO023	h h	OFICIAL 1ª CONSTRUCCIÓN PEÓN ORDINARIO CONSTRUCCIÓN	2,600 3,527	18,00 15,00	46,80 52,91

RED DE SUMINISTRO DE AGUA POTABLE DE UNA POBLACION DE 8000 HABITANTES	
CUADRO DE PRECIOS	Ref.: procdp2a
	Fec.:

Nº Actividad	Código	Descripción de las unidades de obra	Rendimiento	Precio	Importe

PAPP002_A m3 MORTERO CEM. PORTLAND+ARENA 250KG/M3,1:6,HORM.165L

0,600 79,77 47,86

 Clase: Material
 361,77

 Clase: Medio auxiliar
 8,27

 Coste Total
 370,04

RED DE SUMINISTRO DE AGUA POTABLE DE UNA POBLACION DE 8000 HABITANTES	
CUADRO DE PRECIOS	Ref.: procdp2a
	Fec.:

Nº Actividad	Código	Descripción de las unidades de obra	Rendimiento	Precio	Importe

02	2		TUBERIA, PIEZAS Y ACCESORIOS			
02.01	2.1		TUBERIA, VALVULAS Y MECANISMOS			
02.01.01	TU0046	m	Tubería de polietileno de 10 atm. de 160 mm.			
	MTPP246 %M.AUX6 %EL.AUX	m %	Tubería de polietileno de 10 atm. de 180 mm. 6% (5% Medios Auxiliares + 1% Control Calidad) Elementos auxiliares (codo, T, doble T)	1,000 0,060 0,030	26,00 26,00 27,56	26,00 1,56 0,83
			Clase: Material Clase: Medio auxiliar Coste Total			26,00 2,39 28,39
02.01.02	TU0045	m	Tubería de polietileno de 10 atm. de 110 mm.			
	MTPP245 %M.AUX6 %EL.AUX	m %	Tubería de polietileno de 10 atm. de 125 mm. 6% (5% Medios Auxiliares + 1% Control Calidad) Elementos auxiliares (codo, T, doble T)	1,000 0,060 0,030	16,00 16,00 16,96	16,00 0,96 0,51
			Clase: Material Clase: Medio auxiliar Coste Total			16,00 1,47 17,47
02.01.03	TU0033	m	Tubería de hierro fundido PAM de Ø250 mm.			
	MTPP233 %M.AUX6 %EL.AUX	m %	Tubería de hierro fundido PAM de Ø250 mm. 6% (5% Medios Auxiliares + 1% Control Calidad) Elementos auxiliares (codo, T, doble T)	1,000 0,060 0,030	87,00 87,00 92,22	87,00 5,22 2,77
			Clase: Material Clase: Medio auxiliar Coste Total			87,00 7,99 94,99
02.01.04	PZ0575	UD	Válvula de compuerta de cierre elástico de Ø125 mm.			
	MTPP720_D %M.AUX6	%	Válvula de compuerta de cierre elástico de Ø125 mm. 6% (5% Medios Auxiliares + 1% Control Calidad)	1,000 0,060	326,00 326,00	326,00 19,56
			Clase: Material Clase: Medio auxiliar Coste Total			326,00 19,56 345,56
02.01.05	PZ0576	UD	Válvula de compuerta de cierre elástico de Ø150 mm.			
	MTPP721_D %M.AUX6	%	Válvula de compuerta de cierre elástico de Ø180 mm. 6% (5% Medios Auxiliares + 1% Control Calidad)	1,000 0,060	448,00 448,00	448,00 26,88
			Clase: Material Clase: Medio auxiliar Coste Total			448,00 26,88 474,88

RED DE SUMINISTRO DE AGUA POTABLE DE UNA POBLACION DE 8000 HABITANTES	
CUADRO DE PRECIOS	Ref.: procdp2a
	Fec.:

Nº Actividad	Código		Descripción de las unidades de obra	Rendimiento	Precio	Importe
IN ACTIVIDAD	Codigo		Descripcion de las unidades de obla	Nendirilletito	1 1600	Importe
02.01.06	PZ0589	UD	Válvula de mariposa de Ø250 mm.			
	MTPP734_D		Válvula de mariposa de Ø250 mm.	1,000	1.699,00	1.699,00
	%M.AUX6	%	6% (5% Medios Auxiliares + 1% Control Calidad)	0,060	1.699,00	101,94
			Clase: Material Clase: Medio auxiliar Coste Total			1.699,00 101,94 1.800,94
02.01.07	PZ0600	UD	Válvula de retención de Ø150 mm.			
	MTPP745_D %M.AUX6	%	Válvula de retención de Ø150 mm. 6% (5% Medios Auxiliares + 1% Control Calidad)	1,000 0,060	6.200,00 6.200,00	6.200,00 372,00
			Clase: Material Clase: Medio auxiliar Coste Total			6.200,00 372,00 6.572,00
02.01.08	PZ0572	UD	Válvula de compuerta de cierre elástico de Ø60 mm.			
	MTPP717 %M.AUX6 MTPP241	% m	Válvula de compuerta de cierre elástico de Ø60 mm. 6% (5% Medios Auxiliares + 1% Control Calidad) Tubería de polietileno de 10 atm. de 60 mm.	1,000 0,060 1,500	131,02 131,02 4,17	131,02 7,86 6,26
			Clase: Material Clase: Medio auxiliar Coste Total			137,28 7,86 145,14
02.01.09	PZ0605	UD	Ventosa automática de Ø50 mm.			
	MTPP750 %M.AUX6	%	Ventosa automática de Ø50 mm. 6% (5% Medios Auxiliares + 1% Control Calidad)	1,000 0,060	588,00 588,00	588,00 35,28
			Clase: Material Clase: Medio auxiliar Coste Total			588,00 35,28 623,28
02.01.10	PZ0288	UD	Hidrante de Ø80 mm.			
	MTPP1126 %M.AUX6	%	Hidrante de Ø80 mm. 6% (5% Medios Auxiliares + 1% Control Calidad)	1,000 0,060	1.041,63 1.041,63	1.041,63 62,50
			Clase: Material Clase: Medio auxiliar Coste Total			1.041,63 62,50 1.104,13

Coste Total

0,06

RED DE SUMINISTRO DE AGUA POTABLE DE UNA POBLACION DE 8000 HABITANTES	
CUADRO DE PRECIOS	Ref.: procdp2a
	Fec.:

Nº Actividad	Código		Descripción de las unidades de obra	Rendimiento	Precio	Importe	
02.02	2.2		PIEZAS ESPECIALES Y ACCESORIOS				
02.02.01	AC0003	m	Cinta verde de señalización subterránea.				
	MTPP756 %M.AUX6	%	Cinta verde de señalización subterránea. 6% (5% Medios Auxiliares + 1% Control Calidad)	1,000 0,060	0,06 0,06	0,06	3
			Clase: Material			0,06	3

RED DE SUMINISTRO DE AGUA POTABLE DE UNA POBLACION DE 8000 HABITANTES	
CUADRO DE PRECIOS	Ref.: procdp2a
	Fec.:

Nº Actividad	Código	Descripción de las unidades de obra	Rendimiento	Precio	Importe

03	3		MONTAJE			
03.01	3.1		MONTAJE DE TUBERIA Y PIEZAS			
03.01.01	DE12480	UD	MONTAJE DE HIDRANTE, DIÁMETRO 80 MM.			
	MO003 MO023	h h	OFICIAL 1ª CONSTRUCCION PEON ORDINARIO CONSTRUCCION	1,469 2,058	18,00 15,00	26,44 30,87
			Clase: Material Coste Total			57,31 57,31
03.01.02	MJ0009	UD	Desagüe completo de Ø 60 mm.			
	MOPP045_D MOPP047_D	h h	Oficial Ayudante Peón.	3,951 3,990	45,00 40,00	177,80 159,60
	%M.AUX6	%	6% (5% Medios Auxiliares + 1% Control Calidad)	0,060	337,40	20,24
			Clase: Material Clase: Medio auxiliar			337,40
			Clase: Medio auxilial Coste Total			20,24 357,64
03.01.03	MJ0059	UD	Válvula de compuerta de cierre elástico de Ø100 mm.			
	MOPP045_D	h	Oficial Ayudante	0,948	45,00	42,66
	MOPP047_D %M.AUX6	h %	Peón. 6% (5% Medios Auxiliares + 1% Control Calidad)	0,980 0,060	40,00 81,86	39,20 4,91
			Clase: Material Clase: Medio auxiliar Coste Total			81,86 4,91 86,77
03.01.04	MJ0060	UD	Válvula de compuerta de cierre elástico de Ø150 mm.			
	MOPP045_D MOPP047_D	h h	Oficial Ayudante Peón.	1,560 1,600	45,00 40,00	70,20 64,00
	%M.AUX6	%	6% (5% Medios Auxiliares + 1% Control Calidad)	0,060	134,20	8,05
			Clase: Material Clase: Medio auxiliar Coste Total			134,20 8,05 142,25
03.01.05	DE11230	UD	MONTAJE DE VÁLVULA MARIPOSA, DIÁMETRO 250 MM.			
	MO003 MO023	h h	OFICIAL 1ª CONSTRUCCION PEON ORDINARIO CONSTRUCCION	4,897 6,860	18,00 15,00	88,15 102,90
			Clase: Material Coste Total			191,05 191,05

RED DE SUMINISTRO DE AGUA POTABLE DE UNA POBLACION DE 8000 HABITANTES	
CUADRO DE PRECIOS	Ref.: procdp2a
	Fec.:

NO. 4. (1.)	0/15		B	5		
Nº Actividad	Código		Descripción de las unidades de obra	Rendimiento	Precio	Importe
03.01.06	DE12450	UD	MONTAJE DE VENTOSA, DIÁMETRO 50 MM.			
	MO003	h	OFICIAL 1ª CONSTRUCCION	0,784	18,00	14,11
	MO023	h	PEON ORDINARIO CONSTRUCCION	1,098	15,00	16,47
			Clase: Material			30,58
			Coste Total			30,58
03.01.07	MJ0051	UD	Tuberia de polietileno entre Ø110 y Ø160 mm.			
	MOPP045_D	h	Oficial Ayudante	0,124	45,00	5,58
	MOPP047_D %M.AUX6	h %	Peón. 6% (5% Medios Auxiliares + 1% Control Calidad)	0,125 0,060	40,00 10,58	5,00 0,63
			,	,	,	•
			Clase: Material Clase: Medio auxiliar			10,58 0,63
			Clase, iviedio auxiliai Coste Total			11,21
03.01.08	MJ0052	UD	Tuberia de polietileno entre Ø160 y Ø200 mm.			
	MOPP045_D	h	Oficial Ayudante	0,165	45,00	7,43
	MOPP047_D %M.AUX6	h %	Peón. 6% (5% Medios Auxiliares + 1% Control Calidad)	0,168 0,060	40,00 14,15	6,72 0,85
	7011111110710	,,	676 (676 Inicates 7 taxinates 7 178 central canada)	0,000	. 1,10	0,00
			Clase: Material			14,15
			Clase: Medio auxiliar Coste Total			0,85 15,00
						,
03.01.09	MJ0044	UD	Tuberia de fundición dúctil de Ø250 mm.			
	MOPP045_D	h	Oficial Ayudante	0,273	45,00	12,29
	MOPP047_D %M.AUX6	h %	Peón. 6% (5% Medios Auxiliares + 1% Control Calidad)	0,330 0,060	40,00 25,49	13,20 1,53
			Clase: Material Clase: Medio auxiliar			25,49 1,53
			Coste Total			27,02
03.01.10	MJ0065	UD	Válvula de mariposa de Ø300 mm.			
	MOPP045_D	h	Oficial Ayudante	6,100	45,00	274,50
	MOPP047_D %M.AUX6	h %	Peón. 6% (5% Medios Auxiliares + 1% Control Calidad)	6,200 0,060	40,00 522,50	248,00 31,35
		,0		3,000	J,00	01,00
			Clase: Material			522,50
			Clase: Medio auxiliar Coste Total			31,35 553,85

RED DE SUMINISTRO DE AGUA POTABLE DE UNA POBLACION DE 8000 HABITANTES	
CUADRO DE PRECIOS	Ref.: procdp2a
	Fec.:

Nº Actividad	Código	Descripción de las unidades de obra	Rendimiento	Precio	Importe

04	4		VARIOS	
04.01	4.1		TRABAJOS VARIOS	
04.01.01	DA01750	PA	DESVIOS DE TRAFICO, SEÑALIZACION ADICIONAL Y MEDIOS AUXILIARES POR CONEXIONES Y CRUCES EN PUENTE PINEDO, ROTONDAS Y CARRETERA DEL SALER.	
			Coste Total	7.953,20
04.01.02	DO02110	PA	AVISO Y CERRADA DEL SERVICIO, MANIOBRANDO LAS VALVULAS NECESARIAS PARA AISLAR Y AFECTAR LA MENOR ZONA POSIBLE.	
			Coste Total	636,26
04.01.03	DO02120	PA	VACIADO DE LAS TUBERIAS DE LA ZONA CERRADA, MEDIANTE VERTIDO AL ALCANTARILLADO POR LOS MECANISMOS DE DESAGUE DE LA TUBERIA, O UTILIZANDO MEDIOS AUXILIARES DE BOMBEO.	
			Coste Total	397,67
04.01.04	DO02310	PA	DESINFECCION Y LIMPIEZA DE LA TUBERIA: LLENADO, CLORADO, ENJUAGADO Y ACHIQUE DEL AGUA DE LIMPIEZA.	
			Coste Total	4.358,36
04.01.05	DO02320	PA	PUESTA EN SERVICIO: LLENADO Y PUESTA EN CARGA DE LA TUBERIA, APERTURA DE VALVULAS, CORRECCION DE PRESIONES Y COMIENZO DEL SERVICIO.	
			Coste Total	596,50
04.01.06	DO03950	UD	SUMINISTRO Y COLOCACION DE CARTEL ANUCIADOR DE LAS OBRAS, NORMALIZADO POR EL AYUNTAMIENTO DE VALENCIA.	
			Coste Total	1.749,70

RED DE SUMINISTRO DE AGUA POTABLE DE UNA POBLACION DE 8000 HABITANTES		
CUADRO DE PRECIOS	Ref.: procdp2a	
	Fec.:	

Nº Actividad Código	Descripción de las unidades de obra	Rendimiento	Precio	Importe

05
 5
 SEGURIDAD Y SALUD
 05.01
 5.1
 PLAN DE SEGURIDAD Y SALUD
 05.01.01
 ESS
 PLAN DE SEGURIDAD Y SALUD, DESARROLLADO EN SEPARATA ADJUNTA.

Coste Total 48.528,47

3.3-MEDICIONES

RED DE SUMINISTRO DE AGUA POTABLE DE UNA POBLACION DE 8000 HABITANTES	
MEDICIONES Y PRESUPUESTO	Ref.: promyp1
	Fec.:

Nº Orden Descripción de las unidades de obra	Uds.	Longitud	Latitud	Altura	Subtotal	Medición	Precio	Importe
--	------	----------	---------	--------	----------	----------	--------	---------

RED DE SUMINISTRO DE AGUA POTABLE DE UNA **POBLACION DE 8000 HABITANTES**

OBRA CIVIL

01

01.01 **DEMOLICIONES Y RECOMPOSICIONES**

DEMOLIC. ACERA BALDOSA + B 10 01.01.01 m2 Demolición de aceras de baldosa hidráulica, con corte limpio y recto de los bordes de zanja, incluso base de hormigón de 10 cm. de espesor y retirada de escombros a vertedero. DA02015

ARRANCADO DE BORDILLO 01.01.02 ML Arrancado de bordillo, incluso base de hormigón y retirada de escombros a vertedero.

DA02075

DEMOLICION PAVT^o ASF. HASTA 10 01.01.03 m2 DEMOLICIÓN DE PAVIMENTO ASFALTICO DE HASTA 10 CM. DE ESPESOR, CON CORTE LIMPIO Y RECTO DE LOS BORDES DE ZANJA, INCLUSO RETIRADA DE ESCOMBROS A VERTEDERO. DA02110

DEMOLICION BASE HORM. 25 CM. 01.01.04 m2

RECOMP. PAVT^o AGLOM. ASF. 10

Demolición base de pavimento, de hormigón de 25 cm. de espesor, incluso retirada de escombros a vertedero. DA02640

RECOMP. ACERA BALDOSA + B 10 01.01.05 m2

RECOMPOSICIÓN DE ACERA DE BALDOSA HIDRÁULICA, INCLUSO BASE DE HORMIGÓN DE 10 CM. DE ESPESOR Y MORTERO DE AGARRE. DA11015

COLOCACION DE BORDILLO 01.01.06 ML

COLOCACIÓN DE BORDILLO, INCLUSO LECHO DE HORMIGÓN Y REJUNTADO CON MORTERO DE CEMENTO. DA11075

01.01.07 m2 RECOMPOSICIÓN DE PAVIMENTO CON AGLOMERADO ASFÁLTICO DE 10 CM. DE ESPESOR, EXTENDIDO EN DOS CAPAS. DA11110

		RED DE SUMINISTRO DE AGUA POTABLE DE UNA POBLACION DE 8000 HABITANTES	
		MEDICIONES Y PRESUPUESTO	Ref.: promyp1
			Fec.:
Nº Orden		Descripción de las unidades de obra Uds. Longitud Latitud Altura Subtotal Medición	Precio Importe
01.02		MOVIMIENTO DE TIERRAS	
01.02.01 DA21025	m3	EXCAV. MAQUINA ZANJA EN TIERRA Excavación con medios mecánicos de zanja en tierra, con una tolerancia de rasanteo de +/- 5 cm.	
		Total partida 01.02.0127.191,15	8,39228.133,75
01.02.02 DA21080	m3	EXCAV. MANUAL ZANJA EN TIERRA Excavación manual de zanja en tierra, con una tolerancia de rasanteo de +/- 5 cm.	
		Total partida 01.02.02	49,03 98.617,96
01.02.03 DA21410	m3	TAPADO ZANJA CONSOLID. TERRENO Tapado y compactado de zanja con aportación de material granular, en fondo de excavación, para mejora y consolidación del terreno, en capas de 25 cm. de espesor máximo, compactadas al 95% del proctor modificado.	
		Total partida 01.02.03	13,46 81.588,33
01.02.04 DA21420	m3	TAPADO ZANJA CON ARENA Tapado y regado de zanja con aportación de arena o árido fino, en lecho, laterales y lomo de tubería (recubriendo ésta al menos 15 cm. por encima de la generatriz).	
		Total partida 01.02.04	15,73120.366,59
01.02.05 DA21450	m3	TAPADO ZANJA CON ZAHORRAS Tapado y compactado de zanja con aportación de zahorras limpias, procedentes de machaqueo, extendidas en capas de 25 cm. de espesor máximo, compactadas al 95% del proctor modificado.	
		Total partida 01.02.0511.181,11	22,06246.655,29
01.02.06 DA21620	m3	TRANSPORTE PRODUCT. EXCAV. VERT. Transporte de productos procedentes de la excavación, a vertedero.	
		Total partida 01.02.06	6,55191.276,64
		Total capítulo 01.02	966.638,56
01.03		HORMIGONES Y ALBAÑILERIA	
01.03.01 PSF430	UD	ARQUETA VENTOSA Ø 50 Arqueta para ventosa diámetro 50 mm., formada por anillo prefabricado de hormigón vibrado (diámetro 1000 mm.) rematado con cono excéntrico (diámetro 1000/600 mm.) del mismo material, para colocación de la trapa, apoyados sobre solera de hormigón armado HA-25/P/20/Ila de 25 cm. de espesor, y anclaje mediante relleno lateral con hormigón en masa HM-20/B/20/I, incluyendo trapa de fundición diámetro 600 mm., y pates de polipropileno para acceso a interior.	

David Mondéjar Saiz Página 19

	MEDICIONES Y PRESUPUESTO									R	Ref.: promyp1	
											Fec.:	
Nº Orden		D	escripción de las unidades de obra	Uds.	Longitud	Latitud	Altura	Subtotal	Medición	Precio	Importe	
01.03.02 PSF450	ARQUETA DESESAGUE ARQUETA PARA DESAGÜE DIÁMETRO 200-150 MM., FORMADA POR ANILLOS PREFABRICADOS DE HORMIGÓN VIBRADO (DIÁMETRO 1.200 MM. PARA ALOJAMIENTO VÁLVULA Y DIÁMETRO 1.000 MM. PARA POCETA DE DESCARGA, REMATADOS CON CONOS EXCÉNTRICOS 1.200/600 MM.Y 1.000/600 MM. DEL MISMO MATERIAL, PARA COLOCACIÓN DE LA TRAPA), APOYADOS SOBRE SOLERA DE HORMIGÓN ARMADO HA-25/P/20/IIA DE 25 CM. DE ESPESOR, Y ANCLAJE MEDIANTE RELLENO LATERAL CON HORMIGÓN EN MASA HM-20/B/20/I, INCLUYENDO TRAPA DE FUNDICIÓN DIÁMETRO 600 MM., Y PATES DE POLIPROPILENO PARA ACCESO A INTERIOR.											
			Total partida 01.03.02						68,00	963,08	65.489,44	
01.03.03 PSF315	UD	ARQUE 1.20X1 HORMI DE 20	ETA VALVULA Ø 350-250 (1.20X1.60) ETA PARA VÁLVULA DIÁMETRO 350-250 MM., 60 M. Y PROFUNDIDAD SEGÚN PERFIL (APR GÓN DE 25 CM. DE ESPESOR, MUROS DE 20 CM. DE ESPESOR, TODO EN HORMIGÓN ARN NDICIÓN DIÁMETRO 600 MM., Y PATES DE POL	OX. 2.00 CM. DE MADO HA) M.); FORM. ESPESOR, Y A-25/P/20/IIA	ADA POR SI LOSA DE C , INCLUYENI	OLERA DE CUBRICIÓN DO TRAPA					

RED DE SUMINISTRO DE AGUA POTABLE DE UNA POBLACION DE 8000 HABITANTES

01.03.04 m3

DA31165

01.03.05 UD PSF525

HORMIGON HM-20-P-25-IIA

REGISTRO VALVALVULA 200 A 80 MM
REGISTRO DE LADRILLO PARA VÁLVULAS DIÁMETRO 200 A 80 MM., O VENTOSAS DIÁMETRO 25 MM. (A SITUAR EN ACERAS), DE UNAS DIMENSIONES INTERIORES DE 40X40 CM. Y PROFUNDIDAD VARIABLE (HASTÀ 1.50 M.); FORMADA POR SOLERA DE HORMIGÓN HA-25/P/20/IIA DE 20 CM. DE ESPESOR (CON LIGERA ARMADURA) Y PAREDES DE LADRILLO DEL 12 ENLUCIDAS EN SU INTERIOR, INCLUYENDO TRAPA DE FUNDICIÓN DE 40X40 CM.

HORMIGON VIBRADO H-200, CONSISTENCIA PLASTICA, TAMAÑO MAXIMO DEL ARIDO 25 MM., COLOCADO PARA RELLENO Y SUJECCION DE ANILLOS PREFABRICADOS, PARA FORMACION DE ARQUETAS Y POCETAS.

RED DE SUMINISTRO DE AGUA POTABLE DE UNA POBLACION DE 8000 HABITANTES	
MEDICIONES Y PRESUPUESTO	Ref.: promyp1
	Fec.:

Nº Orden Descripcion de las unidades de obra Dos. Longitud Latitud Altura Subtotal Medición Precio Importe	Nº Orden		Uds.	Longitud	Latitud	Altura	Subtotal	Medición	Precio	Importe
--	----------	--	------	----------	---------	--------	----------	----------	--------	---------

02 **TUBERIA, PIEZAS Y ACCESORIOS** 02.01 **TUBERIA, VALVULAS Y MECANISMOS** TUBERÍA DE P.E. 10 ATM.DE Ø180 MM. 02.01.01 m Tubería de polietileno de 10 atm. de 160 mm. TU0046 TUBERÍA DE P.E. 10 ATM.DE Ø125 MM. 02.01.02 m Tubería de polietileno de 10 atm. de 110 mm. TU0045 TUBERIA DE HIERRO FUNDIDO PAM DE Ø250 MM. 02.01.03 m Tubería de hierro fundido PAM de Ø250 mm. TU0033 VALVULA DE COMPUERTA DE C.E. Ø125 MM. UD 02.01.04 Válvula de compuerta de cierre elástico de Ø125 mm. PZ0575 VALVULA DE COMPUERTA DE C.E. Ø180 MM. 02.01.05 UD Válvula de compuerta de cierre elástico de Ø150 mm. PZ0576 VÁLVULA DE MARIPOSA DE Ø250 MM. 02.01.06 UD Válvula de mariposa de Ø250 mm. PZ0589 VÁLVULA REDUCTORA DE Ø150 MM. 02.01.07 UD Válvula de retención de Ø150 mm. PZ0600 DESAGÜE Ø60 MM. 02.01.08 UD Válvula de compuerta de cierre elástico de Ø60 mm. PZ0572 VENTOSA AUTOMATICA DE Ø50 MM. 02.01.09 UD Ventosa automática de Ø50 mm. PZ0605

			RED DE S	UMINISTRO DE A	GUA PC	TABLE DE L	JNA POBLAC	CION DE 800	00 HABITANTES	3		
					MEDICIO	ONES Y PRE	SUPUESTO				F	Ref.: promyp1
												Fec.:
Nº Orden		D	escripción de las unidades de ol	bra	Uds.	Longitud	Latitud	Altura	Subtotal	Medición	Precio	Importe
02.01.10 PZ0288	UD		NTE DE Ø80 MM. e de Ø80 mm.									
			Total par	tida 02.01.10						56,00	.1.104,13	61.831,28
02.02		PIEZ	Total ca	-								1.118.625,64
		CINITA	VEDDE DE OENALIZACIONI OL	IDTEDDANIEA								

02.02.01 m CINTA VERDE DE SENALIZACION SUBTERRANEA

Cinta verde de señalización subterránea.

RED DE SUMINISTRO DE AGUA POTABLE DE UNA POBLACION DE 8000 HABITANTES	
MEDICIONES Y PRESUPUESTO	Ref.: promyp1
	Fec.:

Nº Orden Descripción de las unidades de obra Uds. Longitud Latitud Altura Subtot	I Medición Preci) Importe

03 **MONTAJE** 03.01 MONTAJE DE TUBERIA Y PIEZAS MONTAJE HIDRANTE Ø 80 03.01.01 UD MONTAJE DE HIDRANTE, DIÁMETRO 80 MM. DE12480 MONTAJE DESAGÜE COMPLETO DE Ø 60 MM. 03.01.02 UD Desagüe completo de Ø 60 mm. MJ0009 MONTAJE VALVULA DE COMPUERTA DE Ø125 MM. 03.01.03 UD Válvula de compuerta de cierre elástico de Ø100 mm. MONTAJE VALVULA DE COMPUERTA DE Ø180 MM. UD 03.01.04 Válvula de compuerta de cierre elástico de Ø150 mm. MJ0060 MONTAJE VALV. MARIPOSA Ø 250 03.01.05 UD MONTAJE DE VÁLVULA MARIPOSA, DIÁMETRO 250 MM. DE11230 MONTAJE VENTOSA Ø 50 03.01.06 UD MONTAJE DE VENTOSA, DIÁMETRO 50 MM. DE12450 MONTAJE TUBERIA DE P.E. ENTRE Ø110 Y Ø160 MM. 03.01.07 UD Tuberia de polietileno entre Ø110 y Ø160 mm. MJ0051 MONTAJE TUBERIA DE P.E. ENTRE Ø160 Y Ø200 MM. 03.01.08 UD Tuberia de polietileno entre Ø160 y Ø200 mm. MJ0052 MONTAJE TUBERIA DE FUND.DÚCTIL DE Ø250 MM. 03.01.09 UD Tuberia de fundición dúctil de Ø250 mm. MJ0044

RED DE SUMINISTRO DE AGUA POTABLE DE UNA POBLACION DE 8000 HABITANTES	
MEDICIONES Y PRESUPUESTO	Ref.: promyp1
	Fec.:

Nº Orden Descripción de las unidade	es de obra Uds.	Longitud	Latitud	Altura	Subtotal	Medición	Precio	Importe
-------------------------------------	-----------------	----------	---------	--------	----------	----------	--------	---------

MONTAJE VALVULA REDUCTORA DE Ø150 MM. Válvula de mariposa de Ø300 mm. 03.01.10 UD

MJ0065

Total partida 03.01.102,00553,851.107,70

Total capítulo 03.01502.046,76 Total capítulo 03502.046,76

RED DE SUMINISTRO DE AGUA POTABLE DE UNA POBLACION DE 8000 HABITANTES	
MEDICIONES Y PRESUPUESTO	Ref.: promyp1
	Fec.:

Nº Orden	Descripción de las unidades de obra	Uds.	Longitud	Latitud	Altura	Subtotal	Medición	Precio	Importe

04	V	RIOS

04.04	TDADA	IOC VAD	100
04 01	IRAKA	JOS VAR	105

04.01.01 PA

DESVIOS TRAFICO

DESVIOS DE TRAFICO, SEÑALIZACION ADICIONAL Y MEDIOS AUXILIARES POR CONEXIONES Y CRUCES EN PUENTE PINEDO, ROTONDAS Y CARRETERA DEL SALER.

04.01.02 PA

AVISO Y CERRADA

DO02110

AVISO Y CERRADA DEL SERVICIO, MANIOBRANDO LAS VALVULAS NECESARIAS PARA AISLAR Y AFECTAR LA MENOR ZONA POSIBLE.

04.01.03 PA

VACIADO TUBERIAS

VACIADO DE LAS TUBERIAS DE LA ZONA CERRADA, MEDIANTE VERTIDO AL ALCANTARILLADO POR LOS MECANISMOS DE DESAGUE DE LA TUBERIA, O UTILIZANDO MEDIOS AUXILIARES DE BOMBEO.

04.01.04 PA DO02310

DESINFECCION Y LIMPIEZA

DESINFECCION Y LIMPIEZA DE LA TUBERIA: LLENADO, CLORADO, ENJUAGADO Y ACHIQUE DEL AGUA DE LIMPIEZA.

04.01.05 PA

DO02320

PUESTA EN SERVICIO

PUESTA EN SERVICIO: LLENADO Y PUESTA EN CARGA DE LA TUBERIA, APERTURA DE VALVULAS, CORRECCION DE PRESIONES Y COMIENZO DEL SERVICIO.

04.01.06 UD

CARTEL OBRAS

SUMINISTRO Y COLOCACION DE CARTEL ANUCIADOR DE LAS OBRAS, NORMALIZADO POR EL AYUNTAMIENTO DE VALENCIA.

DO03950

RED DE SUMINISTRO DE AGUA POTABLE DE UNA POBLACION DE 8000 HABITANTES	
MEDICIONES Y PRESUPUESTO	Ref.: promyp1
	Fec.:

Nº Orde	Descripción de las unidades de obra	Uds.	Longitud	Latitud	Altura	Subtotal	Medición	Precio	Importe

05 **SEGURIDAD Y SALUD**

05.01 **PLAN DE SEGURIDAD Y SALUD**

05.01.01

PLAN DE SEGURIDAD Y SALUD PLAN DE SEGURIDAD Y SALUD, DESARROLLADO EN SEPARATA ADJUNTA.

Total presupuesto 4.601.842,97

3.4-PRESUPUESTO. RESUMEN POR CAPITULOS

RED DE SUMINISTRO DE AGUA POTABLE DE UNA POBLACION DE 8000 HABITANTES	
RESUMEN DE CAPÍTULOS	Ref.: prores2
	Fec.:

110.0	0/ "	D	
Nº Orden	Código	Descripción de los capítulos	Importe
01	1	OBRA CIVIL	2.912.159,96
01.01	1.1	DEMOLICIONES Y RECOMPOSICIONES	1.406.897,72
01.02	1.2	MOVIMIENTO DE TIERRAS	966.638,56
01.03	1.3	HORMIGONES Y ALBAÑILERIA	538.623,68
02	2	TUBERIA, PIEZAS Y ACCESORIOS	1.120.632,46
02.01	2.1	TUBERIA, VALVULAS Y MECANISMOS	1.118.625,64
02.02	2.2	PIEZAS ESPECIALES Y ACCESORIOS	2.006,82
03	3	MONTAJE	502.046,76
03.01	3.1	MONTAJE DE TUBERIA Y PIEZAS	502.046,76
04	4	VARIOS	18.475,32
04.01	4.1	TRABAJOS VARIOS	18.475,32
05	5	SEGURIDAD Y SALUD	48.528,47
05.01	5.1	PLAN DE SEGURIDAD Y SALUD	48.528,47
			,
		PRESUPUESTO DE EJECUCIÓN MATERIAL	4.601.842,97
		13% Gastos Generales	598.239,59
		6% Beneficio Industrial	276.110,58
		070 Borronoio irradornali	270.110,00

PRESUPUESTO TOTAL

21% I.V.A.....

EJECUCION POR CONTRATA.....

Suma el presente presupuesto la candidad de:

SEIS MILLONES SEISCIENTOS VEINTISEIS MIL CIENTO NOVENTA Y TRES EUROS CON SETENTA CÉNTIMOS

5.476.193,14

1.150.000,56

6.626.193,70

4-ANEXO DE CÁLCULO

INDICE

4.1-CALCULO DEL CAUDAL
4.2-CALCULO DEL CAUDAL PUNTA
4.3- LONGITUDES Y DIAMETROS DE LAS TUBERIAS 2
4.4- CALCULO DEL DIAMETRO DE LAS VALVULAS REDUCTURAS
4.5- ANALISIS DEL FUNCIONAMIENTO DE LA RED EN HORA PUNTA
4.6- ANALISIS DE LA RED EN CONDICIONES DE CAUDAL MEDIO
4.7- ANALISIS DE LA RED DE PUESTA FUERA DE SERVICIO DE CONDUCCIONES
4.8- ANALISIS DE LA RED EN LA PUESTA FUERA DE SERVICIO DE CONDUCCIONES MÁS DESFAVORABLE49
4.9-ANALISIS DE LA RED EN CONDICIONES DEL HIDRANTE MÁS DESFAVORABLE
4.10-ANALISIS DINAMICO DEL FUNCIONAMIENTO DE LA RED

4.1-CALCULO DEL CAUDAL

$$Q = n^{\circ}hab \times D \quad (1/s)$$

Siendo:

Q= caudal

D= dotación =
$$200 \frac{l}{d} * \frac{1 d}{86400 s} = 2.315 \times 10^{-3} \text{ l/s}$$

n° hab= 7886 hab.

Por lo tanto:

$$Q = 18.2546 \text{ (l/s)}$$

4.2-CALCULO DEL CAUDAL PUNTA

$$Qp = Q \times Kp$$
 (1/s)

Siendo:

Q = caudal = 18.2546

Kp = coeficiente punta = 1.6

Por lo tanto:

$$Q = 29.2 (1/s)$$

4.3- LONGITUDES Y DIAMETROS DE LAS TUBERIAS

Longitudes, diámetros y material de las tuberías:

	Longitud	Diámetro int.	Diámetro ext.	Material
ID Línea	m	mm	mm	-
Tubería 1	2282.61	250	274	FD
Tubería 2	108.58	158.6	180	PE
Tubería 3	97.22	110.2	125	PE
Tubería 4	66.93	158.6	180	PE
Tubería 5	124.98	158.6	180	PE
Tubería 6	102.07	110.2	125	PE
Tubería 7	71.45	110.2	125	PE
Tubería 8	78.69	110.2	125	PE
Tubería 9	62.25	110.2	125	PE
Tubería 10	55.1	110.2	125	PE
Tubería 11	92.26	110.2	125	PE
Tubería 12	69.9	110.2	125	PE
Tubería 13	47.38	110.2	125	PE
Tubería 14	107.78	110.2	125	PE
Tubería 15	73.87	110.2	125	PE
Tubería 16	130.86	158.6	180	PE
Tubería 17	116.55	110.2	125	PE
Tubería 18	290.53	110.2	125	PE
Tubería 19	53.07	158.6	180	PE
Tubería 20	81.23	158.6	180	PE
Tubería 21	131.31	158.6	180	PE
Tubería 22	166.47	110.2	125	PE
Tubería 23	99.73	158.6	180	PE
Tubería 24	63.64	110.2	125	PE
Tubería 25	74.97	110.2	125	PE
Tubería 26	65.6	110.2	125	PE
Tubería 27	67.97	110.2	125	PE
Tubería 28	32.82	110.2	125	PE
Tubería 29	41.15	110.2	125	PE
Tubería 30	35.14	110.2	125	PE
Tubería 31	35.31	110.2	125	PE
Tubería 32	37.65	110.2	125	PE
Tubería 33	78.51	110.2	125	PE
Tubería 34	63.29	110.2	125	PE
Tubería 35	36.98	110.2	125	PE
Tubería 36	33.99	110.2	125	PE
Tubería 37	41.06	110.2	125	PE
Tubería 38	35.22	110.2	125	PE

- 1	20.72	110.0	425	55
Tubería 39	38.72	110.2	125	PE
Tubería 40	35.31	158.6	180	PE
Tubería 41	39.89	158.6	180	PE
Tubería 42	36.33	158.6	180	PE
Tubería 43	33.97	158.6	180	PE
Tubería 44	39.84	158.6	180	PE
Tubería 45	72.63	110.2	125	PE
Tubería 46	69.35	110.2	125	PE
Tubería 47	73.79	110.2	125	PE
Tubería 48	69.12	110.2	125	PE
Tubería 49	72.63	110.2	125	PE
Tubería 50	68.19	110.2	125	PE
Tubería 51	76.13	110.2	125	PE
Tubería 52	69.35	110.2	125	PE
Tubería 53	147.62	110.2	125	PE
Tubería 54	90.28	158.6	180	PE
Tubería 55	110.11	158.6	180	PE
Tubería 56	75.35	110.2	125	PE
Tubería 57	84.44	158.6	180	PE
Tubería 58	70.82	158.6	180	PE
Tubería 59	197.56	110.2	125	PE
Tubería 60	59.96	110.2	125	PE
Tubería 61	119.84	110.2	125	PE
Tubería 62	57.39	110.2 125		PE
Tubería 63	75.29	110.2 125		PE
Tubería 64	56.42	158.6	180	PE
Tubería 65	72.96	158.6	180	PE
Tubería 66	47.08	110.2	125	PE
Tubería 67	59.92	158.6	180	PE
Tubería 68	59.84	110.2	125	PE
Tubería 69	33.97	158.6	180	PE
Tubería 70	56.53	158.6	180	PE
Tubería 71	60	158.6	180	PE
Tubería 72	33.54	158.6	180	PE
Tubería 73	63.35	110.2	125	PE
Tubería 74	90.8	110.2	125	PE
Tubería 75	71.49	158.6	180	PE
Tubería 76	44.52	110.2	125	PE
Tubería 77	50.57	110.2	125	PE
Tubería 78	78.89	110.2	125	PE
Tubería 79	26.01	158.6	180	PE
Tubería 80	67.05	158.6	180	PE
Tubería 81	21.12	158.6	180	PE
Tubería 82	147.68	110.2	125	PE
Tubería 83	138.65	110.2	125	PE

	10100	1100	10-	5-
Tubería 84	134.96	110.2	125	PE
Tubería 85	64.94	110.2	125	PE
Tubería 86	106.9	110.2	125	PE
Tubería 87	60.95	110.2	125	PE
Tubería 88	62.25	110.2	125	PE
Tubería 89	61.63	158.6	180	PE
Tubería 90	43.89	110.2	125	PE
Tubería 91	47.45	110.2	125	PE
Tubería 92	66.66	110.2	125	PE
Tubería 93	158.78	110.2	125	PE
Tubería 94	104.91	158.6	180	PE
Tubería 95	47.3	158.6	180	PE
Tubería 96	194.42	158.6	180	PE
Tubería 97	103.01	110.2	125	PE
Tubería 98	37.14	110.2	125	PE
Tubería 99	223.6	110.2	125	PE
Tubería 100	84.83	158.6	180	PE
Tubería 101	98.13	110.2	125	PE
Tubería 102	49.18	158.6	180	PE
Tubería 103	36.2	110.2	125	PE
Tubería 104	121.53	110.2	125	PE
Tubería 105	55.41	110.2	125	PE
Tubería 106	26.33	110.2	125	PE
Tubería 107	213.54	110.2	125	PE
Tubería 108	56.56	110.2 125		PE
Tubería 109	66.9	110.2	125	PE
Tubería 110	55.41	110.2	125	PE
Tubería 111	65.9	110.2	125	PE
Tubería 112	83.05	110.2	125	PE
Tubería 113	59.37	110.2	125	PE
Tubería 114	83.05	110.2	125	PE
Tubería 115	74.54	110.2	125	PE
Tubería 116	92.27	110.2	125	PE
Tubería 117	113.24	158.6	180	PE
Tubería 118	151.37	110.2	125	PE
Tubería 119	132.77	110.2	125	PE
Tubería 120	128.54	158.6	180	PE
Tubería 121	41.98	110.2	125	PE
Tubería 122	25.4	110.2	125	PE
Tubería 123	57.4	110.2	125	PE
Tubería 124	115.33	158.6	180	PE
Tubería 125	191.69	110.2	125	PE
Tubería 126	63.44	110.2	125	PE
Tubería 127	138.53	110.2	125	PE
Tubería 128	255.93	110.2	125	PE

Tub ou/- 430	F2 47	150.6	100	DE
Tubería 129	53.17	158.6	180	PE
Tubería 130	26.4	158.6	180	PE
Tubería 131	50.61	158.6	180	PE
Tubería 132	42.52	158.6	180	PE
Tubería 133	104.33	158.6	180	PE
Tubería 134	117.3	110.2	125	PE
Tubería 135	152.56	110.2	125	PE
Tubería 136	81.6	158.6	180	PE
Tubería 137	70.75	158.6	180	PE
Tubería 138	210.6	110.2	125	PE
Tubería 139	152.54	110.2	125	PE
Tubería 140	208.71	110.2	125	PE
Tubería 141	66.22	158.6	180	PE
Tubería 142	85.82	158.6	180	PE
Tubería 143	38.57	158.6	180	PE
Tubería 144	40.75	158.6	180	PE
Tubería 145	96.72	110.2	125	PE
Tubería 146	134.93	110.2	125	PE
Tubería 147	56.33	110.2	125	PE
Tubería 148	76.04	110.2	125	PE
Tubería 149	246.39	110.2	125	PE
Tubería 150	224.37	158.6	180	PE
Tubería 151	69.35	158.6	180	PE
Tubería 152	32.64	158.6	180	PE
Tubería 153	39.22	158.6	180	PE
Tubería 154	78.03	158.6	180	PE
Tubería 155	44.81	158.6	180	PE
Tubería 156	83.01	158.6	180	PE
Tubería 157	56.24	158.6	158.6 180	
Tubería 158	90.68	158.6	180	PE
Tubería 159	41.45	158.6	180	PE
Tubería 160	53.94	110.2	125	PE
Tubería 161	80.2	110.2	125	PE
Tubería 162	67.15	110.2	125	PE
Tubería 163	49.54	110.2	125	PE
Tubería 164	41.56	110.2	125	PE
Tubería 165	42.08	110.2	125	PE
Tubería 166	58.17	110.2	125	PE
Tubería 167	143.62	110.2	125	PE
Tubería 168	139.82	110.2	125	PE
Tubería 169	125.28	110.2	125	PE
Tubería 170	116.8	110.2	125	PE
Tubería 171	99.86	110.2	125	PE
Tubería 172	57.62	110.2	125	PE
Tubería 173	164.38	158.6	180	PE

Tub ouf - 476	75.45	150.6	100	DE
Tubería 174	75.15	158.6	180	PE
Tubería 175	70.7	158.6	180	PE
Tubería 176	60.24	158.6	180	PE
Tubería 177	45.68	158.6	180	PE
Tubería 178	75.85	158.6	180	PE
Tubería 179	29.32	158.6	180	PE
Tubería 180	58.57	158.6	180	PE
Tubería 181	100.59	110.2	125	PE
Tubería 182	107.82	110.2	125	PE
Tubería 183	109.1	110.2	125	PE
Tubería 184	112.29	110.2	125	PE
Tubería 185	140.92	110.2	125	PE
Tubería 186	121.33	110.2	125	PE
Tubería 187	71.15	110.2	125	PE
Tubería 188	99.11	110.2	125	PE
Tubería 189	115.92	110.2	125	PE
Tubería 190	209.38	110.2	125	PE
Tubería 191	224.13	158.6	180	PE
Tubería 192	320.85	110.2	125	PE
Tubería 193	195.12	110.2	125	PE
Tubería 194	133.74	158.6	180	PE
Tubería 195	126.95	110.2	125	PE
Tubería 196	101.22	110.2	125	PE
Tubería 197	62.03	158.6	180	PE
Tubería 198	52.81	158.6 180		PE
Tubería 199	91.9	110.2	125	PE
Tubería 200	91.9	110.2	125	PE
Tubería 201	89.35	110.2	125	PE
Tubería 202	98.54	110.2 125		PE
Tubería 203	51.6	158.6	180	PE
Tubería 204	48.6	158.6	180	PE
Tubería 205	96.17	158.6	180	PE
Tubería 206	69.07	110.2	125	PE
Tubería 207	62.91	110.2	125	PE
Tubería 208	73.31	110.2	125	PE
Tubería 209	85.05	110.2	125	PE
Tubería 210	52.89	110.2	125	PE
Tubería 211	82.79	110.2	125	PE
Tubería 212	46.05	110.2	125	PE
Tubería 213	75.36	110.2	125	PE
Tubería 214	50.92	110.2	125	PE
Tubería 215	48.11	110.2	125	PE
Tubería 216	52.19	110.2	125	PE
Tubería 217	53.48	110.2	125	PE
Tubería 218	45.88	110.2	125	PE

Tubería 219	100.2	110.2	125	PE
Tubería 219	79.53	158.6	180	PE
Tubería 221	57.69	158.6	180	PE
Tubería 222	172.98	158.6	180	PE
Tubería 223	59.74	110.2	125	PE
Tubería 224	73.63	110.2	125	PE
Tubería 225	83.61	110.2	125	PE
Tubería 226	175.69	110.2	125	PE
Tubería 227	118.33	110.2	125	PE
Tubería 228	82.72	110.2	125	PE
Tubería 229	66.6	110.2	125	PE
Tubería 230	82.1	110.2	125	PE
Tubería 231	67.85	110.2	125	PE
Tubería 232	52.74	110.2	125	PE
Tuberia 232	119.32	110.2	125	PE
Tubería 234	76.47	158.6	180	PE
Tuberia 235	85.88	110.2	125	PE
Tubería 236	103.12	110.2	125	PE
Tubería 237	92.62	110.2	125	PE
Tubería 238	52.89	110.2	125	PE
Tubería 239	150.09	158.6	180	PE
Tubería 240	112.82	158.6	180	PE
Tubería 241	58.71	158.6	180	PE
Tubería 243	213.67	158.6	180	PE
Tubería 244	249.93	110.2	125	PE
Tubería 245	108.67	158.6	180	PE
Tubería 246	97.21	110.2	125	PE
Tubería 247	84.3	158.6 180		PE
Tubería 248	158.08	110.2 125		PE
Tubería 249	183.81		110.2 125	
Tubería 251	199.33	110.2	125	PE PE
Tubería 252	182.63	158.6	180	PE
Tubería 253	40.01	110.2	125	PE
Tubería 254	37.92	110.2	125	PE
Tubería 255	64.19	158.6	180	PE
Tubería 256	71.17	110.2	125	PE
Tubería 257	208.71	110.2	125	PE
Tubería 258	41.24	110.2	125	PE
Tubería 259	78.03	110.2	125	PE
Tubería 260	73.63	110.2	125	PE
Tubería 261	41.81	158.6	180	PE
Tubería 262	58	158.6	180	PE
Tubería 263	71.06	110.2	125	PE
Tubería 264	66.12	110.2	125	PE
Tubería 265	76.84	110.2	125	PE

- 1 / 266	FO 64	110.2	125	55
Tubería 266	59.61	110.2	125	PE
Tubería 267	43.77	110.2	125	PE
Tubería 268	29.87	110.2	125	PE
Tubería 269	28.34	110.2	125	PE
Tubería 270	52.89	158.6	180	PE
Tubería 271	27.59	158.6	180	PE
Tubería 272	66.6	110.2	125	PE
Tubería 273	73.88	158.6	180	PE
Tubería 274	66.79	110.2	125	PE
Tubería 275	34.37	110.2	125	PE
Tubería 277	78.03	110.2	125	PE
Tubería 279	146.14	110.2	125	PE
Tubería 281	86.73	110.2	125	PE
Tubería 282	61.9	110.2	125	PE
Tubería 283	32.16	110.2	125	PE
Tubería 284	36.94	110.2	125	PE
Tubería 285	33.36	110.2	125	PE
Tubería 286	85.6	158.6	180	PE
Tubería 287	80.02	110.2	125	PE
Tubería 288	81	110.2	125	PE
Tubería 289	87.81	110.2	125	PE
Tubería 290	87.54	158.6	180	PE
Tubería 291	71.02	158.6	180	PE
Tubería 292	94.93	158.6	180	PE
Tubería 293	50.4	158.6	180	PE
Tubería 294	111.98	110.2	125	PE
Tubería 295	176.86	110.2	125	PE
Tubería 296	135.48	158.6 180		PE
Tubería 297	71.35	110.2	125	PE
Tubería 298	78.03	110.2	125	PE
Tubería 299	109.63	110.2	125	PE
Tubería 300	38.95	158.6	180	PE
Tubería 301	69.34	158.6	180	PE
Tubería 303	105.61	158.6	180	PE
Tubería 305	77.29	110.2	125	PE
Tubería 306	58.41	110.2	125	PE
Tubería 307	101.14	110.2	125	PE
Tubería 308	125.07	110.2	125	PE
Tubería 309	121.45	158.6	180	PE
Tubería 311	73.35	158.6	180	PE
Tubería 312	43.77	158.6	180	PE
Tubería 313	61.86	110.2	125	PE
Tubería 314	73.35	110.2	125	PE
Tubería 315	61.86	110.2	125	PE
Tubería 316	57.46	158.6	180	PE

Tuborío 247	20.05	110.3	425	DE
Tubería 317	38.95	110.2	125	PE
Tubería 318	55.03	110.2	125	PE
Tubería 319	107.68	110.2	125	PE
Tubería 320	53.14	158.6	180	PE
Tubería 321	57.32	158.6	180	PE
Tubería 322	50.61	110.2	125	PE
Tubería 323	59.61	110.2	125	PE
Tubería 324	64.31	110.2	125	PE
Tubería 325	56.17	110.2	125	PE
Tubería 328	30.57	110.2	125	PE
Tubería 329	39.01	110.2	125	PE
Tubería 330	23.02	110.2	125	PE
Tubería 331	52.74	110.2	125	PE
Tubería 332	93.93	158.6	180	PE
Tubería 333	66.48	158.6	180	PE
Tubería 334	71.17	158.6	180	PE
Tubería 335	71.02	110.2	125	PE
Tubería 336	66.48	110.2	125	PE
Tubería 337	87.09	110.2	125	PE
Tubería 338	66.6	110.2	125	PE
Tubería 340	71.61	110.2	125	PE
Tubería 341	68.77	110.2	125	PE
Tubería 342	48.11	110.2	125	PE
Tubería 343	29.87	110.2	125	PE
Tubería 344	64.19	110.2	125	PE
Tubería 345	43.77	110.2	125	PE
Tubería 346	94.38	110.2	125	PE
Tubería 349	167.64	110.2	125	PE
Tubería 350	87.18	110.2		
Tubería 351	82.76	110.2	125	PE
Tubería 352	89.38	158.6	180	PE
Tubería 353	91.76	158.6	180	PE
Tubería 354	46.33	110.2	125	PE
Tubería 355	162.92	158.6	180	PE
Tubería 356	29.78	158.6	180	PE
Tubería 357	69.58	158.6	180	PE
Tubería 358	89.35	158.6	180	PE
Tubería 359	169.68	110.2	125	PE
Tubería 360	274	158.6	180	PE
Tubería 361	293.47	158.6	180	PE
Tubería 362	197.03	110.2	125	PE
Tubería 363	169.04	110.2	125	PE
Tubería 364	66.6	110.2	125	PE
Tubería 365	46.33	158.6	180	PE
Tubería 366	50.87	158.6	180	PE

Tubería 367	128.48	110.2	125	PE
Tubería 369	91.67	110.2	125	PE
Tubería 242	190.97	110.2	125	PE
Tubería 370	193.9	158.6	180	PE
Tubería 302	77.79	158.6	180	PE
Tubería 304	93.89	158.6	180	PE

Tabla 1

4.4- CALCULO DEL DIAMETRO DE LAS VALVULAS REDUCTURAS

Los criterios usados para la elección de la válvula reductora son:

- La velocidad máxima será igual o inferior a 5 m/s.
- El grado de apertura mínimo de la válvula será igual o superior al 10%.
- Que no se produzca cavitación.

Para calcular el diámetro de las válvulas reductoras se va a utilizar:

$$Q = K_{vo} x \sqrt{\Delta p}$$

Donde:

Q: Caudal en m^3/h

 Δp : Incremento de presión en mca K_{vo} : Coeficiente ente de caudal

Tabla de diámetros y coeficientes de caudal

Diámetro nominal	K _{vo} Disco estándar	K _{vo} Abertura en V
2"	50	33
3"	120	78
4"	205	137
6"	505	312
8"	830	546
10"	1280	855
12"	1960	1229
16"	3425	2184

Tabla 2

DIAGRAMA DE CARACTERÍSTICAS DE FLUJO

Figura 1

Kv/Kvo (%)

40

80

90

100

20

10

20

30

Diagrama de comprobación a cavitación

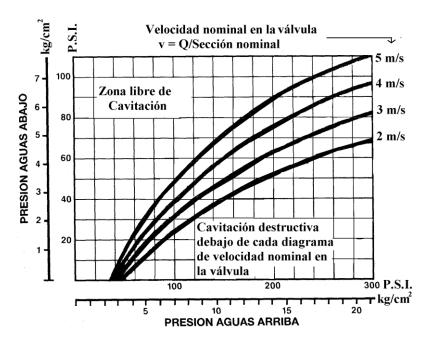


Figura 2

Calculo del diámetro de la línea 250 (válvula reductora):

Hora	P1	P2	Q(I/s)	Q(m3/h)	Kv
0:00	0:00 48.41 3		1.75	6.3	54.4034148
1:00	48.41	35	1.75	6.3	54.4034148
2:00	48.41	35	1.75	6.3	54.4034148
3:00	48.41	35	1.75	6.3	54.4034148
4:00	48.22	35	2.03	7.308	63.5598423
5:00	48	35	2.32	8.352	73.2518858
6:00	48	35	2.32	8.352	73.2518858
7:00	47.2	35	2.2	7.92	71.7043109
8:00	46.88	35	3.49	12.564	115.270906
9:00	46.88	35	3.49	12.564	115.270906
10:00	47.49	35	2.91	10.476	93.7376951
11:00	47.49 47.49	35	2.91	10.476	93.7376951
12:00		35	2.91	10.476	93.7376951
13:00	46.88	35	3.49	12.564	115.270906
14:00	46.54	35	3.78	13.608	126.675141
15:00	46.17	35	4.07	14.652	138.634182
16:00	45.37	35	4.65	16.74	164.386472
17:00	46.17	35	4.07	14.652	138.634182
18:00	46.54	35	3.78	13.608	126.675141
19:00	46.88	35	3.49	12.564	115.270906
20:00	47.49	35	2.91	10.476	93.7376951
21:00	47.49	35	2.91	10.476	93.7376951
22:00	48.22	35	2.03	7.308	63.5598423
23:00	48.22	35	2.03	7.308	63.5598423

Tabla 3

De donde se obtiene:

Kvmax	Qmax	Kvmin	Qmín
164.38	16.74	54.4	6.3

Tabla 4

Y con estos datos y los diagramas anteriores se obtiene:

D"	D(mm)	Tipo	Kv0	k0	Kvmax/Kv0	Vmax	Kvmin/Kv0	Vmin	GA max(%)	Gamin(%)
6	150	DE	505	3.11	0.32550495	0.947	0.10772277	0.357	18	5
6	150	V	312	8.16	0.52685897	0.947	0.17435897	0.357	72	46
8	200	DE	830	3.64	0.19804819	0.533	0.06554217	0.201	10	4
8	200	V	546	8.42	0.30106227	0.533	0.0996337	0.201	58	45

Tabla 5

Atendiendo a los criterios nombrados anteriormente, se descartan las válvulas cuyo grado de apertura mínimo es inferior al 10%, y entre las restantes se escoge la que tiene un grado de apertura lo más amplio y centrado posible para asegurar el buen funcionamiento de la válvula reductora.

Por lo tanto se escoge una válvula reductora en V de 150 mm de diámetro (serie 700 Bermad). Y se comprueba que no se produce cavitación:

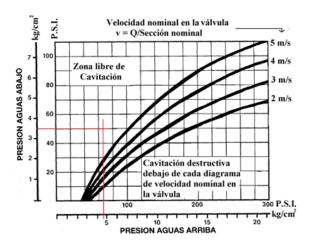


Figura 3

Calculo del diámetro de la línea 276 (válvula reductoras):

Hora	P1	P2	Q(I/s)	Q(m3/h)	Kv
0:00	48.43	35	1.57	5.652	48.7712792
1:00	48.43	35	1.57	5.652	48.7712792
2:00	48.43	35	1.57	5.652	48.7712792
3:00	48.43	35	1.57	5.652	48.7712792
4:00	48.24	35	1.84	6.624	57.5673624
5:00	48.03	35	2.11	7.596	66.5445892
6:00	48.03	35	2.11	7.596	66.5445892
7:00	47.25	35	2.9	10.44	94.3262251
8:00	46.95	35	3.16	11.376	104.065226
9:00	46.95	35	3.16	11.376	104.065226
10:00	47.54	35	2.63	9.468	84.5491958
11:00	47.54	35	2.63	9.468	84.5491958
12:00	47.54	35	2.63	9.468	84.5491958
13:00	46.95	35	3.16	11.376	104.065226
14:00	46.62	35	3.42	12.312	114.215631
15:00	46.26	35	3.68	13.248	124.847866
16:00	45.48	35	4.21	15.156	148.048481
17:00	46.26	35	3.68	13.248	124.847866
18:00	46.62	35	3.42	12.312	114.215631
19:00	46.95	35	3.16	11.376	104.065226
20:00	47.54	35	2.63	9.468	84.5491958

21:00	47.54	35	2.63	9.468	84.5491958
22:00	48.24	35	1.84	6.624	57.5673624
23:00	48.24	35	1.84	6.624	57.5673624

Tabla 6

De donde se obtiene:

Kvmax	Qmax	Kvmin	Qmín
148.05	15.156	48.771	5.652

Tabla 7

Y con estos datos y los diagramas anteriores se obtiene:

D"	D(mm)	Tipo	Kv0	k0	Kvmax/Kv0	Vmax	Kvmin/Kv0	Vmin	GA max(%)	Gamin(%)
6	150	DE	505	3.1136	0.29316436	0.858	0.09657624	0.32	16	5
6	150	٧	312	8.1572	0.47451282	0.858	0.15631731	0.32	68	44
8	200	DE	830	3.6429	0.17837108	0.482	0.05876024	0.18	8	2
8	200	V	546	8.4182	0.27115018	0.482	0.08932418	0.18	56	34

Tabla 8

Atendiendo a los criterios nombrados anteriormente, se descarta las válvulas cuyo grado de apertura mínimo es inferior al 10%, y entre las restantes se escoge la que tiene un grado de apertura lo más amplio y centrado posible para asegurar el buen funcionamiento de la válvula reductora.

Por lo tanto se escoge una válvula reductora en V de 150 mm de diámetro (serie 700 Bermad). Y se comprueba que no se produce cavitación (figura):

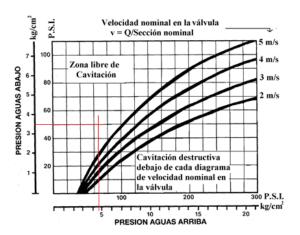


Figura 4

En caso de que una válvula reductora estuviera fuera de servicio (cerrada) con la otra abierta, su grado de apertura no llegaría al 100%, por lo que regularía y mantendría la presión a 35 mca aguas abajo para alimentar correctamente la zona baja.

4.5- ANALISIS DEL FUNCIONAMIENTO DE LA RED EN HORA PUNTA

Estado de los nudos de la red en hora punta:

	Cota	Demanda Base	Demanda	Altura	Presión
ID Nudo	m	LPS	LPS	m	m
Nudo 3	754	1.3468	2.15	779.87	25.87
Nudo 4	752	0.1039	0.17	779.72	27.72
Nudo 5	752	0.0653	0.1	779.75	27.75
Nudo 6	747	0.048	0.08	779.66	32.66
Nudo 7	746	0.0969	0.16	779.65	33.65
Nudo 8	749	0.1695	0.27	779.62	30.62
Nudo 9	749	0.1613	0.26	779.6	30.6
Nudo 10	754	0.0318	0.05	779.6	25.6
Nudo 11	747	0.0793	0.13	779.59	32.59
Nudo 12	749	0.0821	0.13	779.59	30.59
Nudo 13	746	0.058	0.09	779.58	33.58
Nudo 14	741	0.0844	0.14	779.57	38.57
Nudo 15	743	0.0922	0.15	779.57	36.57
Nudo 16	744	0.0509	0.08	779.57	35.57
Nudo 17	743	0.0973	0.16	779.58	36.58
Nudo 18	744	0.0805	0.13	779.61	35.61
Nudo 19	744	0.0955	0.15	779.62	35.62
Nudo 20	745	0.017	0.03	779.64	34.64
Nudo 21	752	0.083	0.13	779.72	27.72
Nudo 22	741	0.04	0.06	779.57	38.57
Nudo 23	740	0.041	0.07	779.57	39.57
Nudo 24	740	0.039	0.06	779.57	39.57
Nudo 25	738	0.0577	0.09	779.56	41.56
Nudo 26	737	0.072	0.12	779.56	42.56
Nudo 27	729	0.0844	0.14	779.56	50.56
Nudo 28	740	0.0593	0.09	779.57	39.57
Nudo 29	739	0.0598	0.1	779.57	40.57
Nudo 30	738	0.0576	0.09	779.57	41.57
Nudo 31	737	0.0598	0.1	779.56	42.56
Nudo 32	735	0.0796	0.13	779.56	44.56
Nudo 33	740	0.0291	0.05	779.57	39.57
Nudo 34	739	0.0391	0.06	779.57	40.57
Nudo 35	737	0.0397	0.06	779.57	42.57
Nudo 36	736	0.0391	0.06	779.57	43.57
Nudo 37	735	0.0383	0.06	779.56	44.56
Nudo 38	733	0.0479	0.08	779.56	46.56
Nudo 39	730	0.0629	0.1	779.56	49.56
Nudo 40	729	0.0777	0.12	779.56	50.56

Nudo 41 730 0.0896 0.14 779.56 49.56 Nudo 42 736 0.0539 0.09 779.56 49.56 Nudo 43 730 0.0491 0.08 779.56 49.56 Nudo 44 729 0.0327 0.05 779.57 50.56 Nudo 45 739 0.0504 0.08 779.57 38.57 Nudo 47 741 0.0519 0.08 779.57 38.57 Nudo 48 739 0.0668 0.11 779.57 40.57 Nudo 50 737 0.0419 0.07 779.56 42.56 Nudo 50 737 0.0419 0.07 779.56 42.56 Nudo 51 735 0.0411 0.07 779.56 42.56 Nudo 51 735 0.0411 0.07 779.56 42.56 Nudo 53 735 0.0705 0.11 779.55 44.55 Nudo 54 740 0.0837 0.13 779.55 47.55				I		
Nudo 43 730 0.0491 0.08 779.56 49.56 Nudo 44 729 0.0327 0.05 779.56 50.56 Nudo 45 739 0.0504 0.08 779.57 40.57 Nudo 46 741 0.0519 0.08 779.57 38.57 Nudo 48 739 0.0668 0.11 779.57 40.57 Nudo 49 737 0.0419 0.07 779.56 42.56 Nudo 50 737 0.0163 0.03 779.56 42.56 Nudo 51 735 0.0411 0.07 779.56 42.56 Nudo 51 735 0.0212 0.03 779.55 44.55 Nudo 53 735 0.0212 0.03 779.55 44.55 Nudo 54 740 0.0837 0.11 779.55 47.55 Nudo 55 732 0.0534 0.09 779.56 47.56 Nudo 57 732 0.0259 0.04 779.54 48.54	Nudo 41	730	0.0896	0.14	779.56	49.56
Nudo 44 729 0.0327 0.05 779.56 50.56 Nudo 45 739 0.0504 0.08 779.57 40.57 Nudo 46 741 0.0528 0.08 779.57 38.57 Nudo 47 741 0.0519 0.08 779.57 38.57 Nudo 48 739 0.0668 0.11 779.57 40.57 Nudo 50 737 0.0419 0.07 779.56 42.56 Nudo 50 737 0.0163 0.03 779.55 42.56 Nudo 51 735 0.0212 0.03 779.55 44.56 Nudo 52 735 0.0212 0.03 779.55 44.55 Nudo 53 735 0.0705 0.11 779.55 44.55 Nudo 54 740 0.0837 0.13 779.57 39.57 Nudo 55 732 0.0534 0.09 779.56 47.55 Nudo 57 732 0.0259 0.04 779.54 48.54	Nudo 42	736	0.0539	0.09	779.56	43.56
Nudo 45 739 0.0504 0.08 779.57 40.57 Nudo 46 741 0.0528 0.08 779.57 38.57 Nudo 47 741 0.0519 0.08 779.57 38.57 Nudo 48 739 0.0668 0.11 779.57 40.57 Nudo 50 737 0.0163 0.03 779.56 42.56 Nudo 51 735 0.0411 0.07 779.56 44.56 Nudo 52 735 0.0212 0.03 779.55 44.55 Nudo 53 735 0.0212 0.03 779.55 44.55 Nudo 54 740 0.0837 0.11 779.55 44.55 Nudo 54 740 0.0837 0.13 779.57 39.57 Nudo 55 732 0.0542 0.09 779.56 47.55 Nudo 55 732 0.0255 0.04 779.54 48.54 Nudo 57 732 0.0685 0.11 779.54 47.54	Nudo 43	730	0.0491	0.08	779.56	49.56
Nudo 46 741 0.0528 0.08 779.57 38.57 Nudo 47 741 0.0519 0.08 779.57 38.57 Nudo 48 739 0.0668 0.11 779.57 40.57 Nudo 49 737 0.0419 0.07 779.56 42.56 Nudo 50 737 0.0163 0.03 779.56 42.56 Nudo 51 735 0.0411 0.07 779.56 44.56 Nudo 53 735 0.0212 0.03 779.55 44.55 Nudo 54 740 0.0837 0.11 779.55 44.55 Nudo 54 740 0.0837 0.13 779.55 44.55 Nudo 55 732 0.0542 0.09 779.56 47.55 Nudo 56 730 0.0534 0.09 779.56 47.56 Nudo 57 732 0.0259 0.04 779.54 48.54 Nudo 59 732 0.0685 0.11 779.54 47.54	Nudo 44	729	0.0327	0.05	779.56	50.56
Nudo 47 741 0.0519 0.08 779.57 38.57 Nudo 48 739 0.0668 0.11 779.57 40.57 Nudo 49 737 0.0419 0.07 779.56 42.56 Nudo 50 737 0.0163 0.03 779.56 42.56 Nudo 51 735 0.0411 0.07 779.56 44.56 Nudo 52 735 0.0212 0.03 779.55 44.55 Nudo 53 735 0.0705 0.11 779.55 44.55 Nudo 54 740 0.0837 0.13 779.57 39.57 Nudo 55 732 0.0542 0.09 779.56 47.55 Nudo 57 732 0.0255 0.04 779.54 47.56 Nudo 57 732 0.0259 0.04 779.54 47.54 Nudo 58 731 0.0259 0.04 779.54 47.54 Nudo 60 735 0.0685 0.11 779.54 44.54	Nudo 45	739	0.0504	0.08	779.57	40.57
Nudo 48 739 0.0668 0.11 779.57 40.57 Nudo 49 737 0.0419 0.07 779.56 42.56 Nudo 50 737 0.0163 0.03 779.56 42.56 Nudo 51 735 0.0411 0.07 779.56 44.56 Nudo 52 735 0.0212 0.03 779.55 44.55 Nudo 53 735 0.0705 0.11 779.55 44.55 Nudo 54 740 0.0837 0.13 779.57 39.57 Nudo 56 730 0.0534 0.09 779.56 47.55 Nudo 57 732 0.0255 0.04 779.56 47.56 Nudo 58 731 0.0259 0.04 779.54 48.54 Nudo 60 735 0.0685 0.11 779.54 47.54 Nudo 61 735 0.0632 0.1 779.54 44.54 Nudo 61 735 0.0632 0.1 779.53 42.53	Nudo 46	741	0.0528	0.08	779.57	38.57
Nudo 49 737 0.0419 0.07 779.56 42.56 Nudo 50 737 0.0163 0.03 779.56 42.56 Nudo 51 735 0.0411 0.07 779.56 44.56 Nudo 52 735 0.0212 0.03 779.55 44.55 Nudo 53 735 0.0705 0.11 779.55 44.55 Nudo 54 740 0.0837 0.13 779.57 39.57 Nudo 55 732 0.0542 0.09 779.56 47.55 Nudo 56 730 0.0534 0.09 779.56 47.56 Nudo 57 732 0.0255 0.04 779.56 47.56 Nudo 58 731 0.0259 0.04 779.54 48.54 Nudo 60 735 0.0685 0.11 779.54 47.54 Nudo 61 735 0.0632 0.1 779.54 44.54 Nudo 62 742 0.1159 0.19 779.53 42.53	Nudo 47	741	0.0519	0.08	779.57	38.57
Nudo 50 737 0.0163 0.03 779.56 42.56 Nudo 51 735 0.0411 0.07 779.56 44.56 Nudo 52 735 0.0212 0.03 779.55 44.55 Nudo 53 735 0.0705 0.11 779.55 44.55 Nudo 54 740 0.0837 0.13 779.57 39.57 Nudo 55 732 0.0542 0.09 779.55 47.55 Nudo 56 730 0.0534 0.09 779.56 49.56 Nudo 57 732 0.0259 0.04 779.54 48.54 Nudo 58 731 0.0259 0.04 779.54 48.54 Nudo 60 735 0.0685 0.11 779.54 44.54 Nudo 61 735 0.0632 0.1 779.54 44.54 Nudo 62 742 0.1159 0.19 779.53 42.53 Nudo 63 737 0.0627 0.1 779.53 43.53	Nudo 48	739	0.0668	0.11	779.57	40.57
Nudo 51 735 0.0411 0.07 779.56 44.56 Nudo 52 735 0.0212 0.03 779.55 44.55 Nudo 53 735 0.0705 0.11 779.57 39.57 Nudo 54 740 0.0837 0.13 779.57 39.57 Nudo 55 732 0.0534 0.09 779.56 49.56 Nudo 56 730 0.0259 0.04 779.56 47.56 Nudo 57 732 0.0259 0.04 779.54 48.54 Nudo 59 732 0.0685 0.11 779.54 47.54 Nudo 60 735 0.0454 0.07 779.54 44.54 Nudo 61 735 0.0632 0.1 779.54 44.54 Nudo 62 742 0.1159 0.19 779.53 42.53 Nudo 63 737 0.0627 0.1 779.53 42.53 Nudo 64 736 0.0422 0.07 779.53 45.52	Nudo 49	737	0.0419	0.07	779.56	42.56
Nudo 52 735 0.0212 0.03 779.55 44.55 Nudo 53 735 0.0705 0.11 779.55 44.55 Nudo 54 740 0.0837 0.13 779.57 39.57 Nudo 55 732 0.0254 0.09 779.56 49.56 Nudo 56 730 0.0255 0.04 779.56 47.56 Nudo 57 732 0.0259 0.04 779.54 48.54 Nudo 59 732 0.0685 0.11 779.54 47.54 Nudo 60 735 0.0454 0.07 779.54 44.54 Nudo 61 735 0.0632 0.1 779.54 44.54 Nudo 62 742 0.1159 0.19 779.55 37.55 Nudo 63 737 0.0627 0.1 779.53 42.53 Nudo 64 736 0.0422 0.07 779.53 43.53 Nudo 65 734 0.0305 0.05 779.52 45.52	Nudo 50	737	0.0163	0.03	779.56	42.56
Nudo 53 735 0.0705 0.11 779.55 44.55 Nudo 54 740 0.0837 0.13 779.57 39.57 Nudo 55 732 0.0542 0.09 779.55 47.55 Nudo 56 730 0.0534 0.09 779.56 49.56 Nudo 57 732 0.0259 0.04 779.54 48.54 Nudo 58 731 0.0259 0.04 779.54 48.54 Nudo 60 735 0.0685 0.11 779.54 44.54 Nudo 61 735 0.0632 0.1 779.54 44.54 Nudo 62 742 0.1159 0.19 779.53 37.55 Nudo 63 737 0.0627 0.1 779.53 42.53 Nudo 64 736 0.0422 0.07 779.53 43.53 Nudo 65 734 0.0305 0.05 779.52 45.52 Nudo 67 738 0.0912 0.15 779.53 41.53	Nudo 51	735	0.0411	0.07	779.56	44.56
Nudo 54 740 0.0837 0.13 779.57 39.57 Nudo 55 732 0.0542 0.09 779.55 47.55 Nudo 56 730 0.0534 0.09 779.56 49.56 Nudo 57 732 0.0255 0.04 779.54 48.54 Nudo 58 731 0.0259 0.04 779.54 48.54 Nudo 60 735 0.0685 0.11 779.54 44.54 Nudo 61 735 0.0632 0.1 779.54 44.54 Nudo 62 742 0.1159 0.19 779.55 37.55 Nudo 63 737 0.0627 0.1 779.53 42.53 Nudo 64 736 0.0422 0.07 779.53 43.53 Nudo 65 734 0.0305 0.05 779.52 45.52 Nudo 67 738 0.0912 0.15 779.53 41.53 Nudo 67 741 0.1126 0.18 779.5 39.5	Nudo 52	735	0.0212	0.03	779.55	44.55
Nudo 55 732 0.0542 0.09 779.55 47.55 Nudo 56 730 0.0534 0.09 779.56 49.56 Nudo 57 732 0.0255 0.04 779.56 47.56 Nudo 58 731 0.0259 0.04 779.54 48.54 Nudo 59 732 0.0685 0.11 779.54 47.54 Nudo 60 735 0.0454 0.07 779.54 44.54 Nudo 61 735 0.0632 0.1 779.54 44.54 Nudo 62 742 0.1159 0.19 779.53 42.53 Nudo 63 737 0.0627 0.1 779.53 42.53 Nudo 64 736 0.0422 0.07 779.53 43.53 Nudo 65 734 0.0305 0.05 779.52 45.52 Nudo 67 738 0.0912 0.15 779.53 41.53 Nudo 68 740 0.0922 0.15 779.51 39.5	Nudo 53	735	0.0705	0.11	779.55	44.55
Nudo 56 730 0.0534 0.09 779.56 49.56 Nudo 57 732 0.0255 0.04 779.56 47.56 Nudo 58 731 0.0259 0.04 779.54 48.54 Nudo 59 732 0.0685 0.11 779.54 47.54 Nudo 60 735 0.0454 0.07 779.54 44.54 Nudo 61 735 0.0632 0.1 779.54 44.54 Nudo 62 742 0.1159 0.19 779.53 42.53 Nudo 63 737 0.0627 0.1 779.53 42.53 Nudo 64 736 0.0422 0.07 779.53 43.53 Nudo 65 734 0.0305 0.05 779.52 45.52 Nudo 67 738 0.0912 0.15 779.53 41.53 Nudo 68 740 0.0922 0.15 779.51 39.51 Nudo 70 741 0.1187 0.19 779.48 38.48	Nudo 54	740	0.0837	0.13	779.57	39.57
Nudo 57 732 0.0255 0.04 779.56 47.56 Nudo 58 731 0.0259 0.04 779.54 48.54 Nudo 59 732 0.0685 0.11 779.54 47.54 Nudo 60 735 0.0454 0.07 779.54 44.54 Nudo 61 735 0.0632 0.1 779.53 42.53 Nudo 62 742 0.1159 0.19 779.53 42.53 Nudo 63 737 0.0627 0.1 779.53 42.53 Nudo 64 736 0.0422 0.07 779.53 43.53 Nudo 65 734 0.0305 0.05 779.52 45.52 Nudo 66 734 0.0912 0.15 779.53 41.53 Nudo 67 738 0.0912 0.15 779.53 41.53 Nudo 68 740 0.0126 0.18 779.5 39.5 Nudo 70 741 0.1187 0.19 779.48 38.48	Nudo 55	732	0.0542	0.09	779.55	47.55
Nudo 58 731 0.0259 0.04 779.54 48.54 Nudo 59 732 0.0685 0.11 779.54 47.54 Nudo 60 735 0.0454 0.07 779.54 44.54 Nudo 61 735 0.0632 0.1 779.54 44.54 Nudo 62 742 0.1159 0.19 779.55 37.55 Nudo 63 737 0.0627 0.1 779.53 42.53 Nudo 64 736 0.0422 0.07 779.53 43.53 Nudo 65 734 0.0305 0.05 779.52 45.52 Nudo 66 734 0.043 0.07 779.52 45.52 Nudo 67 738 0.0912 0.15 779.53 41.53 Nudo 68 740 0.0126 0.18 779.5 39.5 Nudo 70 741 0.1187 0.19 779.48 38.48 Nudo 71 741 0.0716 0.11 779.55 37.55 <	Nudo 56	730	0.0534	0.09	779.56	49.56
Nudo 59 732 0.0685 0.11 779.54 47.54 Nudo 60 735 0.0454 0.07 779.54 44.54 Nudo 61 735 0.0632 0.1 779.54 44.54 Nudo 62 742 0.1159 0.19 779.55 37.55 Nudo 63 737 0.0627 0.1 779.53 42.53 Nudo 64 736 0.0422 0.07 779.53 43.53 Nudo 65 734 0.0305 0.05 779.52 45.52 Nudo 66 734 0.043 0.07 779.53 41.53 Nudo 67 738 0.0912 0.15 779.53 41.53 Nudo 68 740 0.0922 0.15 779.51 39.51 Nudo 69 740 0.1126 0.18 779.5 39.5 Nudo 70 741 0.0187 0.19 779.48 38.48 Nudo 71 741 0.0716 0.11 779.55 37.55 <	Nudo 57	732	0.0255	0.04	779.56	47.56
Nudo 60 735 0.0454 0.07 779.54 44.54 Nudo 61 735 0.0632 0.1 779.54 44.54 Nudo 62 742 0.1159 0.19 779.55 37.55 Nudo 63 737 0.0627 0.1 779.53 42.53 Nudo 64 736 0.0422 0.07 779.53 43.53 Nudo 65 734 0.0305 0.05 779.52 45.52 Nudo 66 734 0.043 0.07 779.52 45.52 Nudo 67 738 0.0912 0.15 779.53 41.53 Nudo 68 740 0.0922 0.15 779.51 39.51 Nudo 69 740 0.1126 0.18 779.5 39.5 Nudo 70 741 0.0716 0.11 779.55 38.55 Nudo 71 741 0.0716 0.11 779.55 37.55 Nudo 73 743 0.1043 0.17 779.54 36.54 <	Nudo 58	731	0.0259	0.04	779.54	48.54
Nudo 61 735 0.0632 0.1 779.54 44.54 Nudo 62 742 0.1159 0.19 779.55 37.55 Nudo 63 737 0.0627 0.1 779.53 42.53 Nudo 64 736 0.0422 0.07 779.53 43.53 Nudo 65 734 0.0305 0.05 779.52 45.52 Nudo 66 734 0.043 0.07 779.52 45.52 Nudo 67 738 0.0912 0.15 779.53 41.53 Nudo 68 740 0.0922 0.15 779.51 39.51 Nudo 69 740 0.1126 0.18 779.5 39.5 Nudo 70 741 0.1187 0.19 779.48 38.48 Nudo 71 741 0.0716 0.11 779.55 38.55 Nudo 72 742 0.0993 0.16 779.54 36.54 Nudo 73 743 0.1043 0.17 779.54 30.54 <	Nudo 59	732	0.0685	0.11	779.54	47.54
Nudo 62 742 0.1159 0.19 779.55 37.55 Nudo 63 737 0.0627 0.1 779.53 42.53 Nudo 64 736 0.0422 0.07 779.53 43.53 Nudo 65 734 0.0305 0.05 779.52 45.52 Nudo 66 734 0.043 0.07 779.52 45.52 Nudo 67 738 0.0912 0.15 779.53 41.53 Nudo 68 740 0.0922 0.15 779.51 39.51 Nudo 69 740 0.1126 0.18 779.5 39.5 Nudo 70 741 0.1187 0.19 779.48 38.48 Nudo 71 741 0.0716 0.11 779.55 37.55 Nudo 72 742 0.0993 0.16 779.55 37.55 Nudo 73 743 0.1043 0.17 779.54 36.54 Nudo 74 750 0.1421 0.23 779.59 29.59	Nudo 60	735	0.0454	0.07	779.54	44.54
Nudo 63 737 0.0627 0.1 779.53 42.53 Nudo 64 736 0.0422 0.07 779.53 43.53 Nudo 65 734 0.0305 0.05 779.52 45.52 Nudo 66 734 0.043 0.07 779.52 45.52 Nudo 67 738 0.0912 0.15 779.53 41.53 Nudo 68 740 0.0922 0.15 779.51 39.51 Nudo 69 740 0.1126 0.18 779.5 39.5 Nudo 70 741 0.1187 0.19 779.48 38.48 Nudo 71 741 0.0716 0.11 779.55 38.55 Nudo 72 742 0.0993 0.16 779.55 37.55 Nudo 73 743 0.1043 0.17 779.54 36.54 Nudo 74 750 0.1421 0.23 779.59 29.59 Nudo 75 749 0.0514 0.08 779.52 30.52	Nudo 61	735	0.0632	0.1	779.54	44.54
Nudo 64 736 0.0422 0.07 779.53 43.53 Nudo 65 734 0.0305 0.05 779.52 45.52 Nudo 66 734 0.043 0.07 779.52 45.52 Nudo 67 738 0.0912 0.15 779.53 41.53 Nudo 68 740 0.0922 0.15 779.51 39.51 Nudo 69 740 0.1126 0.18 779.5 39.5 Nudo 70 741 0.1187 0.19 779.48 38.48 Nudo 71 741 0.0716 0.11 779.55 38.55 Nudo 72 742 0.0993 0.16 779.55 37.55 Nudo 73 743 0.1043 0.17 779.54 36.54 Nudo 74 750 0.1421 0.23 779.59 29.59 Nudo 75 749 0.0514 0.08 779.52 30.52 Nudo 77 745 0.0941 0.15 779.52 34.52	Nudo 62	742	0.1159	0.19	779.55	37.55
Nudo 65 734 0.0305 0.05 779.52 45.52 Nudo 66 734 0.043 0.07 779.52 45.52 Nudo 67 738 0.0912 0.15 779.53 41.53 Nudo 68 740 0.0922 0.15 779.51 39.51 Nudo 69 740 0.1126 0.18 779.5 39.5 Nudo 70 741 0.1187 0.19 779.48 38.48 Nudo 71 741 0.0716 0.11 779.55 38.55 Nudo 72 742 0.0993 0.16 779.55 37.55 Nudo 73 743 0.1043 0.17 779.54 36.54 Nudo 74 750 0.1421 0.23 779.59 29.59 Nudo 75 749 0.0514 0.08 779.54 30.54 Nudo 76 749 0.1088 0.17 779.52 34.52 Nudo 78 746 0.0337 0.05 779.53 33.53	Nudo 63	737	0.0627	0.1	779.53	42.53
Nudo 66 734 0.043 0.07 779.52 45.52 Nudo 67 738 0.0912 0.15 779.53 41.53 Nudo 68 740 0.0922 0.15 779.51 39.51 Nudo 69 740 0.1126 0.18 779.5 39.5 Nudo 70 741 0.1187 0.19 779.48 38.48 Nudo 71 741 0.0716 0.11 779.55 38.55 Nudo 72 742 0.0993 0.16 779.55 37.55 Nudo 73 743 0.1043 0.17 779.54 36.54 Nudo 74 750 0.1421 0.23 779.59 29.59 Nudo 75 749 0.0514 0.08 779.54 30.54 Nudo 76 749 0.1088 0.17 779.52 34.52 Nudo 77 745 0.0941 0.15 779.52 34.52 Nudo 79 749 0.1064 0.17 779.49 30.49	Nudo 64	736	0.0422	0.07	779.53	43.53
Nudo 67 738 0.0912 0.15 779.53 41.53 Nudo 68 740 0.0922 0.15 779.51 39.51 Nudo 69 740 0.1126 0.18 779.5 39.5 Nudo 70 741 0.1187 0.19 779.48 38.48 Nudo 71 741 0.0716 0.11 779.55 38.55 Nudo 72 742 0.0993 0.16 779.55 37.55 Nudo 73 743 0.1043 0.17 779.54 36.54 Nudo 74 750 0.1421 0.23 779.59 29.59 Nudo 75 749 0.0514 0.08 779.54 30.54 Nudo 76 749 0.1088 0.17 779.52 34.52 Nudo 77 745 0.0941 0.15 779.52 34.52 Nudo 78 746 0.0337 0.05 779.53 33.53 Nudo 80 748 0.0882 0.14 779.49 30.49	Nudo 65	734	0.0305	0.05	779.52	45.52
Nudo 68 740 0.0922 0.15 779.51 39.51 Nudo 69 740 0.1126 0.18 779.5 39.5 Nudo 70 741 0.1187 0.19 779.48 38.48 Nudo 71 741 0.0716 0.11 779.55 38.55 Nudo 72 742 0.0993 0.16 779.55 37.55 Nudo 73 743 0.1043 0.17 779.54 36.54 Nudo 74 750 0.1421 0.23 779.59 29.59 Nudo 75 749 0.0514 0.08 779.54 30.54 Nudo 76 749 0.1088 0.17 779.52 34.52 Nudo 77 745 0.0941 0.15 779.52 34.52 Nudo 78 746 0.0337 0.05 779.53 33.53 Nudo 79 749 0.1064 0.17 779.49 30.49 Nudo 80 748 0.085 0.14 779.45 31.45	Nudo 66	734	0.043	0.07	779.52	45.52
Nudo 69 740 0.1126 0.18 779.5 39.5 Nudo 70 741 0.1187 0.19 779.48 38.48 Nudo 71 741 0.0716 0.11 779.55 38.55 Nudo 72 742 0.0993 0.16 779.55 37.55 Nudo 73 743 0.1043 0.17 779.54 36.54 Nudo 74 750 0.1421 0.23 779.59 29.59 Nudo 75 749 0.0514 0.08 779.54 30.54 Nudo 76 749 0.1088 0.17 779.52 30.52 Nudo 77 745 0.0941 0.15 779.52 34.52 Nudo 78 746 0.0337 0.05 779.53 33.53 Nudo 79 749 0.1064 0.17 779.49 30.49 Nudo 80 748 0.085 0.14 779.45 31.45 Nudo 82 750 0.0981 0.16 779.45 28.45	Nudo 67	738	0.0912	0.15	779.53	41.53
Nudo 70 741 0.1187 0.19 779.48 38.48 Nudo 71 741 0.0716 0.11 779.55 38.55 Nudo 72 742 0.0993 0.16 779.55 37.55 Nudo 73 743 0.1043 0.17 779.54 36.54 Nudo 74 750 0.1421 0.23 779.59 29.59 Nudo 75 749 0.0514 0.08 779.54 30.54 Nudo 76 749 0.1088 0.17 779.52 30.52 Nudo 77 745 0.0941 0.15 779.52 34.52 Nudo 78 746 0.0337 0.05 779.53 33.53 Nudo 79 749 0.1064 0.17 779.49 30.49 Nudo 80 748 0.0882 0.14 779.45 31.45 Nudo 81 748 0.0981 0.16 779.45 29.45 Nudo 83 751 0.1011 0.16 779.45 28.45	Nudo 68	740	0.0922	0.15	779.51	39.51
Nudo 71 741 0.0716 0.11 779.55 38.55 Nudo 72 742 0.0993 0.16 779.55 37.55 Nudo 73 743 0.1043 0.17 779.54 36.54 Nudo 74 750 0.1421 0.23 779.59 29.59 Nudo 75 749 0.0514 0.08 779.54 30.54 Nudo 76 749 0.1088 0.17 779.52 30.52 Nudo 77 745 0.0941 0.15 779.52 34.52 Nudo 78 746 0.0337 0.05 779.53 33.53 Nudo 79 749 0.1064 0.17 779.49 30.49 Nudo 80 748 0.0882 0.14 779.47 31.47 Nudo 81 748 0.085 0.14 779.45 29.45 Nudo 83 751 0.1011 0.16 779.45 28.45 Nudo 84 754 0.1413 0.23 779.64 25.64	Nudo 69	740	0.1126	0.18	779.5	39.5
Nudo 72 742 0.0993 0.16 779.55 37.55 Nudo 73 743 0.1043 0.17 779.54 36.54 Nudo 74 750 0.1421 0.23 779.59 29.59 Nudo 75 749 0.0514 0.08 779.54 30.54 Nudo 76 749 0.1088 0.17 779.52 30.52 Nudo 77 745 0.0941 0.15 779.52 34.52 Nudo 78 746 0.0337 0.05 779.53 33.53 Nudo 79 749 0.1064 0.17 779.49 30.49 Nudo 80 748 0.0882 0.14 779.47 31.47 Nudo 81 748 0.085 0.14 779.45 29.45 Nudo 83 751 0.1011 0.16 779.45 28.45 Nudo 84 754 0.1413 0.23 779.64 25.64	Nudo 70	741	0.1187	0.19	779.48	38.48
Nudo 73 743 0.1043 0.17 779.54 36.54 Nudo 74 750 0.1421 0.23 779.59 29.59 Nudo 75 749 0.0514 0.08 779.54 30.54 Nudo 76 749 0.1088 0.17 779.52 30.52 Nudo 77 745 0.0941 0.15 779.52 34.52 Nudo 78 746 0.0337 0.05 779.53 33.53 Nudo 79 749 0.1064 0.17 779.49 30.49 Nudo 80 748 0.0882 0.14 779.47 31.47 Nudo 81 748 0.085 0.14 779.45 31.45 Nudo 82 750 0.0981 0.16 779.45 29.45 Nudo 83 751 0.1011 0.16 779.45 28.45 Nudo 84 754 0.1413 0.23 779.64 25.64	Nudo 71	741	0.0716	0.11	779.55	38.55
Nudo 74 750 0.1421 0.23 779.59 29.59 Nudo 75 749 0.0514 0.08 779.54 30.54 Nudo 76 749 0.1088 0.17 779.52 30.52 Nudo 77 745 0.0941 0.15 779.52 34.52 Nudo 78 746 0.0337 0.05 779.53 33.53 Nudo 79 749 0.1064 0.17 779.49 30.49 Nudo 80 748 0.0882 0.14 779.47 31.47 Nudo 81 748 0.085 0.14 779.45 31.45 Nudo 82 750 0.0981 0.16 779.45 29.45 Nudo 83 751 0.1011 0.16 779.45 28.45 Nudo 84 754 0.1413 0.23 779.64 25.64	Nudo 72	742	0.0993	0.16	779.55	37.55
Nudo 75 749 0.0514 0.08 779.54 30.54 Nudo 76 749 0.1088 0.17 779.52 30.52 Nudo 77 745 0.0941 0.15 779.52 34.52 Nudo 78 746 0.0337 0.05 779.53 33.53 Nudo 79 749 0.1064 0.17 779.49 30.49 Nudo 80 748 0.0882 0.14 779.47 31.47 Nudo 81 748 0.085 0.14 779.45 31.45 Nudo 82 750 0.0981 0.16 779.45 29.45 Nudo 83 751 0.1011 0.16 779.45 28.45 Nudo 84 754 0.1413 0.23 779.64 25.64	Nudo 73	743	0.1043	0.17	779.54	36.54
Nudo 76 749 0.1088 0.17 779.52 30.52 Nudo 77 745 0.0941 0.15 779.52 34.52 Nudo 78 746 0.0337 0.05 779.53 33.53 Nudo 79 749 0.1064 0.17 779.49 30.49 Nudo 80 748 0.0882 0.14 779.47 31.47 Nudo 81 748 0.085 0.14 779.45 31.45 Nudo 82 750 0.0981 0.16 779.45 29.45 Nudo 83 751 0.1011 0.16 779.45 28.45 Nudo 84 754 0.1413 0.23 779.64 25.64	Nudo 74	750	0.1421	0.23	779.59	29.59
Nudo 77 745 0.0941 0.15 779.52 34.52 Nudo 78 746 0.0337 0.05 779.53 33.53 Nudo 79 749 0.1064 0.17 779.49 30.49 Nudo 80 748 0.0882 0.14 779.47 31.47 Nudo 81 748 0.085 0.14 779.45 31.45 Nudo 82 750 0.0981 0.16 779.45 29.45 Nudo 83 751 0.1011 0.16 779.45 28.45 Nudo 84 754 0.1413 0.23 779.64 25.64	Nudo 75	749	0.0514	0.08	779.54	30.54
Nudo 78 746 0.0337 0.05 779.53 33.53 Nudo 79 749 0.1064 0.17 779.49 30.49 Nudo 80 748 0.0882 0.14 779.47 31.47 Nudo 81 748 0.085 0.14 779.45 31.45 Nudo 82 750 0.0981 0.16 779.45 29.45 Nudo 83 751 0.1011 0.16 779.45 28.45 Nudo 84 754 0.1413 0.23 779.64 25.64	Nudo 76	749	0.1088	0.17	779.52	30.52
Nudo 79 749 0.1064 0.17 779.49 30.49 Nudo 80 748 0.0882 0.14 779.47 31.47 Nudo 81 748 0.085 0.14 779.45 31.45 Nudo 82 750 0.0981 0.16 779.45 29.45 Nudo 83 751 0.1011 0.16 779.45 28.45 Nudo 84 754 0.1413 0.23 779.64 25.64	Nudo 77	745	0.0941	0.15	779.52	34.52
Nudo 80 748 0.0882 0.14 779.47 31.47 Nudo 81 748 0.085 0.14 779.45 31.45 Nudo 82 750 0.0981 0.16 779.45 29.45 Nudo 83 751 0.1011 0.16 779.45 28.45 Nudo 84 754 0.1413 0.23 779.64 25.64	Nudo 78	746	0.0337	0.05	779.53	33.53
Nudo 81 748 0.085 0.14 779.45 31.45 Nudo 82 750 0.0981 0.16 779.45 29.45 Nudo 83 751 0.1011 0.16 779.45 28.45 Nudo 84 754 0.1413 0.23 779.64 25.64	Nudo 79	749	0.1064	0.17	779.49	30.49
Nudo 82 750 0.0981 0.16 779.45 29.45 Nudo 83 751 0.1011 0.16 779.45 28.45 Nudo 84 754 0.1413 0.23 779.64 25.64	Nudo 80	748	0.0882	0.14	779.47	31.47
Nudo 83 751 0.1011 0.16 779.45 28.45 Nudo 84 754 0.1413 0.23 779.64 25.64	Nudo 81	748	0.085	0.14	779.45	31.45
Nudo 84 754 0.1413 0.23 779.64 25.64	Nudo 82	750	0.0981	0.16	779.45	29.45
	Nudo 83	751	0.1011	0.16	779.45	28.45
Nudo 85 753 0.1274 0.2 779.56 26.56	Nudo 84	754	0.1413	0.23	779.64	25.64
	Nudo 85	753	0.1274	0.2	779.56	26.56

		0.0===	0.10		00
Nudo 86	754	0.0775	0.12	779.59	25.59
Nudo 87	751	0.0504	0.08	779.43	28.43
Nudo 88	754	0.0523	0.08	779.45	25.45
Nudo 89	751	0.0577	0.09	779.63	28.63
Nudo 90	736	0.0721	0.12	779.49	43.49
Nudo 91	734	0.0477	0.08	779.48	45.48
Nudo 92	734	0.0557	0.09	779.51	45.51
Nudo 93	735	0.0832	0.13	779.46	44.46
Nudo 94	736	0.0948	0.15	779.42	43.42
Nudo 95	736	0.1145	0.18	779.4	43.4
Nudo 96	744	0.1561	0.25	779.42	35.42
Nudo 97	739	0.1012	0.16	779.39	40.39
Nudo 98	739	0.1082	0.17	779.39	40.39
Nudo 99	747	0.1689	0.27	779.41	32.41
Nudo 100	747	0.0472	0.08	779.4	32.4
Nudo 101	747	0.0588	0.09	779.39	32.39
Nudo 102	747	0.0702	0.11	779.39	32.39
Nudo 103	747	0.0677	0.11	779.38	32.38
Nudo 104	742	0.0885	0.14	779.38	37.38
Nudo 105	742	0.061	0.1	779.38	37.38
Nudo 106	743	0.094	0.15	779.39	36.39
Nudo 107	740	0.0786	0.13	779.38	39.38
Nudo 108	740	0.0565	0.09	779.38	39.38
Nudo 109	739	0.0535	0.09	779.39	40.39
Nudo 110	747	0.1034	0.17	779.41	32.41
Nudo 111	741	0.0852	0.14	779.38	38.38
Nudo 112	743	0.091	0.15	779.38	36.38
Nudo 113	745	0.0806	0.13	779.37	34.37
Nudo 114	744	0.0981	0.16	779.37	35.37
Nudo 115	742	0.0935	0.15	779.38	37.38
Nudo 116	746	0.0984	0.16	779.38	33.38
Nudo 117	747	0.0653	0.1	779.37	32.37
Nudo 118	748	0.113	0.18	779.37	31.37
Nudo 119	749	0.0972	0.16	779.37	30.37
Nudo 120	747	0.0908	0.15	779.37	32.37
Nudo 121	748	0.0709	0.11	779.37	31.37
Nudo 122	747	0.0939	0.15	779.37	32.37
Nudo 123	747	0.0791	0.13	779.37	32.37
Nudo 124	743	0.0791	0.13	779.39	36.39
Nudo 125	748	0.202	0.32	779.37	31.37
Nudo 126	741	0.0532	0.09	779.37	38.37
Nudo 127	743	0.0876	0.14	779.37	36.37
Nudo 128	753	0.0571	0.09	779.37	26.37
Nudo 129	751	0.0316	0.05	779.38	28.38
Nudo 130	748	0.0796	0.13	779.41	31.41

				T 	
Nudo 131	749	0.027	0.04	779.41	30.41
Nudo 132	739	0.0276	0.04	779.37	40.37
Nudo 133	742	0.0696	0.11	779.37	37.37
Nudo 134	745	0.0557	0.09	779.37	34.37
Nudo 135	736	0.0451	0.07	779.37	43.37
Nudo 136	739	0.0701	0.11	779.37	40.37
Nudo 137	740	0.0985	0.16	779.37	39.37
Nudo 138	746	0.0418	0.07	779.37	33.37
Nudo 139	747	0.064	0.1	779.37	32.37
Nudo 140	743	0.0514	0.08	779.37	36.37
Nudo 141	742	0.0477	0.08	779.37	37.37
Nudo 142	745	0.0257	0.04	779.37	34.37
Nudo 143	745	0.0898	0.14	779.37	34.37
Nudo 144	740	0.0627	0.1	779.37	39.37
Nudo 145	738	0.0933	0.15	779.37	41.37
Nudo 146	738	0.0817	0.13	779.38	41.38
Nudo 147	736	0.0563	0.09	779.38	43.38
Nudo 148	736	0.0751	0.12	779.38	43.38
Nudo 149	735	0.0678	0.11	779.38	44.38
Nudo 150	733	0.0862	0.14	779.37	46.37
Nudo 151	733	0.0853	0.14	779.37	46.37
Nudo 152	733	0.0844	0.14	779.37	46.37
Nudo 153	733	0.0629	0.1	779.37	46.37
Nudo 154	734	0.0843	0.13	779.37	45.37
Nudo 155	734	0.0468	0.07	779.37	45.37
Nudo 156	743	0.0873	0.14	779.37	36.37
Nudo 157	739	0.069	0.11	779.37	40.37
Nudo 158	735	0.0854	0.14	779.37	44.37
Nudo 159	733	0.1606	0.26	768.92	35.92
Nudo 160	730	0.1562	0.25	768.92	38.92
Nudo 161	728	0.0682	0.11	768.92	40.92
Nudo 162	732	0.1477	0.24	768.92	36.92
Nudo 163	729	0.116	0.19	768.92	39.92
Nudo 164	730	0.1362	0.22	768.92	38.92
Nudo 165	731	0.0265	0.04	768.92	37.92
Nudo 166	730	0.0783	0.13	768.92	38.92
Nudo 167	728	0.0483	0.08	768.92	40.92
Nudo 168	727	0.0876	0.14	768.92	41.92
Nudo 169	728	0.0686	0.11	768.92	40.92
Nudo 170	727	0.0506	0.08	768.92	41.92
Nudo 171	731	0.0414	0.07	768.92	37.92
Nudo 172	731	0.0741	0.12	768.92	37.92
Nudo 173	731	0.0307	0.05	768.92	37.92
Nudo 174	731	0.0794	0.13	768.93	37.93
Nudo 175	729	0.0459	0.07	768.93	39.93
			•		

			,		
Nudo 176	729	0.0554	0.09	768.93	39.93
Nudo 177	727	0.0584	0.09	768.93	41.93
Nudo 178	727	0.0554	0.09	768.93	41.93
Nudo 179	731	0.0804	0.13	768.94	37.94
Nudo 180	730	0.0402	0.06	768.93	38.93
Nudo 181	730	0.0455	0.07	768.93	38.93
Nudo 182	730	0.0729	0.12	768.94	38.94
Nudo 183	729	0.0407	0.07	768.93	39.93
Nudo 184	729	0.0377	0.06	768.93	39.93
Nudo 185	728	0.0422	0.07	768.93	40.93
Nudo 186	729	0.0413	0.07	768.93	39.93
Nudo 187	727	0.0523	0.08	768.93	41.93
Nudo 188	728	0.0331	0.05	768.93	40.93
Nudo 189	727	0.0766	0.12	768.95	41.95
Nudo 190	727	0.0926	0.15	768.95	41.95
Nudo 191	728	0.0306	0.05	768.95	40.95
Nudo 192	728	0.0483	0.08	768.95	40.95
Nudo 193	730	0.0991	0.16	768.95	38.95
Nudo 194	731	0.0537	0.09	768.96	37.96
Nudo 195	731	0.0508	0.08	768.97	37.97
Nudo 196	732	0.069	0.11	768.97	36.97
Nudo 197	731	0.0707	0.11	768.95	37.95
Nudo 198	729	0.084	0.13	768.95	39.95
Nudo 199	732	0.1087	0.17	768.97	36.97
Nudo 200	731	0.07	0.11	768.94	37.94
Nudo 201	729	0.037	0.06	768.96	39.96
Nudo 202	729	0.0488	0.08	768.93	39.93
Nudo 203	727	0.0777	0.12	768.95	41.95
Nudo 204	727	0.0861	0.14	768.93	41.93
Nudo 205	728	0.0475	0.08	768.93	40.93
Nudo 206	731	0.0519	0.08	768.93	37.93
Nudo 207	726	0.0408	0.07	768.93	42.93
Nudo 208	726	0.0595	0.1	768.93	42.93
Nudo 209	730	0.062	0.1	768.93	38.93
Nudo 210	729	0.0491	0.08	768.92	39.92
Nudo 211	726	0.0551	0.09	768.92	42.92
Nudo 212	726	0.0551	0.09	768.92	42.92
Nudo 213	728	0.0237	0.04	768.92	40.92
Nudo 214	728	0.0372	0.06	768.92	40.92
Nudo 215	727	0.0377	0.06	768.92	41.92
Nudo 216	727	0.0351	0.06	768.92	41.92
Nudo 217	727	0.0638	0.1	768.92	41.92
Nudo 218	726	0.0369	0.06	768.92	42.92
Nudo 219	726	0.0369	0.06	768.92	42.92
Nudo 220	724	0.0376	0.06	768.92	44.92

Nudo 221	723	0.0558	0.09	768.92	45.92
Nudo 222	724	0.0614	0.1	768.92	44.92
Nudo 223	724	0.0858	0.14	768.92	44.92
Nudo 224	726	0.0584	0.09	768.92	42.92
Nudo 225	724	0.0439	0.07	768.92	44.92
Nudo 226	724	0.0477	0.08	768.92	44.92
Nudo 227	723	0.0677	0.11	768.92	45.92
Nudo 228	722	0.0497	0.08	768.92	46.92
Nudo 229	724	0.059	0.09	768.92	44.92
Nudo 230	723	0.0608	0.1	768.92	45.92
Nudo 231	722	0.0885	0.14	768.92	46.92
Nudo 232	726	0.1455	0.23	768.93	42.93
Nudo 233	728	0.0463	0.07	768.93	40.93
Nudo 234	725	0.201	0.32	768.92	43.92
Nudo 235	724	0.1783	0.29	768.92	44.92
Nudo 236	724	0.0537	0.09	768.92	44.92
Nudo 237	727	0.0461	0.07	768.92	41.92
Nudo 238	728	0.0538	0.09	768.92	40.92
Nudo 239	724	0.0447	0.07	768.92	44.92
Nudo 240	725	0.0601	0.1	768.92	43.92
Nudo 241	725	0.025	0.04	768.92	43.92
Nudo 242	736	0.0521	0.08	768.92	32.92
Nudo 243	734	0.0256	0.04	769	35
Nudo 244	734	0.0212	0.03	769	35

Tabla 9

Estado de las líneas de la red en hora punta:

	Caudal	Velocidad	Pérdida Unit.
ID Línea	LPS	m/s	m/km
Tubería 1	29.18	0.59	1.37
Tubería 2	8.87	0.45	1.42
Tubería 3	2.17	0.23	0.64
Tubería 4	9.98	0.51	1.77
Tubería 5	7.51	0.38	1.04
Tubería 6	-1.25	0.13	0.24
Tubería 7	-0.8	0.08	0.11
Tubería 8	1.29	0.14	0.25
Tubería 9	1.26	0.13	0.24
Tubería 10	0.98	0.1	0.16
Tubería 11	-0.87	0.09	0.13
Tubería 12	-0.05	0	0
Tubería 13	-2.37	0.25	0.75
Tubería 14	2.19	0.23	0.65

Tubería 15	1.59	0.17	0.37
Tubería 16	3.12	0.16	0.37
Tuberia 17			
	0.05	0.01	0
Tubería 18	0.13	0.01	0
Tubería 19	2.68	0.14	0.16
Tubería 20	1.83	0.09	0.08
Tubería 21	1.73	0.09	0.07
Tubería 22	0.72	0.08	0.09
Tubería 23	4.5	0.23	0.41
Tubería 24	0.41	0.04	0.03
Tubería 25	0.28	0.03	0.01
Tubería 26	0.88	0.09	0.13
Tubería 27	0.35	0.04	0.03
Tubería 28	0.71	0.07	0.09
Tubería 29	-0.52	0.05	0.05
Tubería 30	0.45	0.05	0.04
Tubería 31	0.35	0.04	0.03
Tubería 32	0.47	0.05	0.04
Tubería 33	0	0	0
Tubería 34	0.06	0.01	0
Tubería 35	-0.42	0.04	0.03
Tubería 36	-0.41	0.04	0.04
Tubería 37	-0.42	0.04	0.04
Tubería 38	-0.46	0.05	0.04
Tubería 39	-0.31	0.03	0.02
Tubería 40	1.52	0.08	0.06
Tubería 41	1.34	0.07	0.05
Tubería 42	1.22	0.06	0.04
Tubería 43	1.11	0.06	0.04
Tubería 44	1.1	0.06	0.03
Tubería 45	0.12	0.01	0
Tubería 46	0.21	0.02	0.01
Tubería 47	0.01	0	0
Tubería 48	0.03	0	0
Tubería 49	0.04	0	0
Tubería 50	0.05	0.01	0
Tubería 51	0.15	0.02	0
Tubería 52	0.07	0.01	0
Tubería 53	0.36	0.04	0.03
Tubería 54	-0.72	0.04	0.02
Tubería 55	-0.9	0.05	0.02
Tubería 56	0.41	0.04	0.03
Tubería 57	0.06	0	0
Tubería 58	0.36	0.02	0
Tubería 59	0.09	0.01	0
145011455	0.05	0.01	

Tub outs CO	0.13	0.01	
Tubería 60	0.13	0.01	0
Tubería 61	0.05	0.01	0
Tubería 62	0.39	0.04	0.03
Tubería 63	0.66	0.07	0.08
Tubería 64	2.6	0.13	0.15
Tubería 65	2.15	0.11	0.11
Tubería 66	-0.22	0.02	0.01
Tubería 67	2.05	0.1	0.1
Tubería 68	0.03	0	0
Tubería 69	1.96	0.1	0.09
Tubería 70	2.03	0.1	0.1
Tubería 71	-0.14	0.01	0
Tubería 72	-0.18	0.01	0
Tubería 73	0.37	0.04	0.03
Tubería 74	-0.68	0.07	0.08
Tubería 75	-0.95	0.05	0.03
Tubería 76	0.97	0.1	0.15
Tubería 77	0.93	0.1	0.14
Tubería 78	-0.1	0.01	0
Tubería 79	-2.92	0.15	0.19
Tubería 80	-2.46	0.12	0.14
Tubería 81	-1.63	0.08	0.07
Tubería 82	1.72	0.18	0.42
Tubería 83	0.56	0.06	0.06
Tubería 84	0.87	0.09	0.12
Tubería 85	-0.21	0.02	0.01
Tubería 86	0.94	0.1	0.15
Tubería 87	0.36	0.04	0.03
Tubería 88	0.37	0.04	0.03
Tubería 89	2.75	0.14	0.17
Tubería 90	-0.51	0.05	0.05
Tubería 91	0.36	0.04	0.03
Tubería 92	-1.64	0.17	0.39
Tubería 93	-1.73	0.18	0.42
Tubería 94	6.58	0.33	0.82
Tubería 95	7.1	0.36	0.94
Tubería 96	3.32	0.17	0.24
Tubería 97	-0.79	0.08	0.11
Tubería 98	0.03	0	0
Tubería 99	-0.98	0.1	0.16
Tubería 100	3.95	0.2	0.32
Tubería 101	-0.86	0.09	0.12
Tubería 102	3.2	0.16	0.22
Tubería 103	-0.84	0.09	0.12
Tubería 104	-0.91	0.1	0.14

Tubería 105 1.53 0.16 Tubería 106 1.81 0.19 Tubería 107 -0.8 0.08 Tubería 108 -0.98 0.1 Tubería 109 -1.04 0.11 Tubería 110 -2.57 0.27 Tubería 111 1.45 0.15 Tubería 112 1.53 0.16 Tubería 113 -0.61 0.06 Tubería 114 1.53 0.16 Tubería 115 0.03 0	0.34 0.46 0.11
Tubería 107 -0.8 0.08 Tubería 108 -0.98 0.1 Tubería 109 -1.04 0.11 Tubería 110 -2.57 0.27 Tubería 111 1.45 0.15 Tubería 112 1.53 0.16 Tubería 113 -0.61 0.06 Tubería 114 1.53 0.16	
Tubería 108 -0.98 0.1 Tubería 109 -1.04 0.11 Tubería 110 -2.57 0.27 Tubería 111 1.45 0.15 Tubería 112 1.53 0.16 Tubería 113 -0.61 0.06 Tubería 114 1.53 0.16	0.11
Tubería 109 -1.04 0.11 Tubería 110 -2.57 0.27 Tubería 111 1.45 0.15 Tubería 112 1.53 0.16 Tubería 113 -0.61 0.06 Tubería 114 1.53 0.16	
Tubería 110 -2.57 0.27 Tubería 111 1.45 0.15 Tubería 112 1.53 0.16 Tubería 113 -0.61 0.06 Tubería 114 1.53 0.16	0.16
Tubería 111 1.45 0.15 Tubería 112 1.53 0.16 Tubería 113 -0.61 0.06 Tubería 114 1.53 0.16	0.17
Tubería 112 1.53 0.16 Tubería 113 -0.61 0.06 Tubería 114 1.53 0.16	0.87
Tubería 113 -0.61 0.06 Tubería 114 1.53 0.16	0.31
Tubería 114 1.53 0.16	0.34
	0.07
Tubería 115 0.03 0	0.34
	0
Tubería 116 -1.76 0.18	0.44
Tubería 117 5.93 0.3	0.68
Tubería 118 1.39 0.15	0.29
Tubería 119 -1.27 0.13	0.25
Tubería 120 5.24 0.27	0.54
Tubería 121 1.96 0.21	0.53
Tubería 122 2.39 0.25	0.76
Tubería 123 -0.54 0.06	0.05
Tubería 124 1.42 0.07	0.05
Tubería 125 0.08 0.01	0
Tubería 126 1.18 0.12	0.22
Tubería 127 0.97 0.1	0.15
Tubería 128 0.57 0.06	0.06
Tubería 129 6.17 0.31	0.73
Tubería 130 3.99 0.2	0.33
Tubería 131 4.9 0.25	0.47
Tubería 132 -3.36 0.17	0.24
Tubería 133 -3.13 0.16	0.21
Tubería 134 -0.35 0.04	0.03
Tubería 135 1.05 0.11	0.18
Tubería 136 -3.91 0.2	0.32
Tubería 137 4.83 0.24	0.46
Tubería 138 0.11 0.01	0
Tubería 139 -1.02 0.11	0.17
Tubería 140 0.88 0.09	0.13
Tubería 141 -4.56 0.23	0.42
Tubería 142 0.91 0.05	0.02
Tubería 143 1.44 0.07	0.05
Tubería 144 1.94 0.1	0.09
Tubería 145 -0.18 0.02	0.01
Tubería 146 -0.89 0.09	0.13
Tubería 147 -0.92 0.1	0.14
Tubería 148 -1.77 0.19	0.45
Tubería 149 0.69 0.07	0.08

Tuborío 150	1.62	0.00	0.07
Tubería 150	1.62	0.08	0.07
Tubería 151	2.19	0.11	0.11
Tubería 152	3.04	0.15	0.2
Tubería 153	2.43	0.12	0.13
Tubería 154	1.95	0.1	0.09
Tubería 155	1.62	0.08	0.07
Tubería 156	1.18	0.06	0.04
Tubería 157	0.96	0.05	0.03
Tubería 158	0.55	0.03	0.01
Tubería 159	-0.16	0.01	0
Tubería 160	-0.26	0.03	0.01
Tubería 161	-0.3	0.03	0.02
Tubería 162	-0.43	0.04	0.04
Tubería 163	-0.56	0.06	0.06
Tubería 164	-0.76	0.08	0.1
Tubería 165	-0.49	0.05	0.05
Tubería 166	-0.59	0.06	0.06
Tubería 167	0.51	0.05	0.05
Tubería 168	0.37	0.04	0.03
Tubería 169	0.23	0.02	0.01
Tubería 170	0.23	0.02	0.01
Tubería 171	0.11	0.01	0
Tubería 172	0.14	0.01	0
Tubería 173	-0.01	0	0
Tubería 174	-0.46	0.02	0.01
Tubería 175	-0.74	0.04	0.02
Tubería 176	-1.1	0.06	0.03
Tubería 177	-1.3	0.07	0.04
Tubería 178	-1.35	0.07	0.05
Tubería 179	-1.52	0.08	0.06
Tubería 180	-2.03	0.1	0.1
Tubería 181	0.46	0.05	0.04
Tubería 182	0.29	0.03	0.02
Tubería 183	0.22	0.02	0.01
Tubería 184	0.09	0.01	0
Tubería 185	0.03	0	0
Tubería 186	1.1	0.12	0.19
Tubería 187	0.93	0.1	0.14
Tubería 188	0.04	0	0
Tubería 189	0.05	0.01	0
Tubería 190	0.09	0.01	0
Tubería 191	0.55	0.03	0.01
Tubería 192	0.14	0.01	0
Tubería 193	0.09	0.01	0
Tubería 194	4.05	0.2	0.34

Tubería 195	1	0.1	0.16
Tubería 196	-0.04	0	0
Tubería 197	-0.21	0.01	0
Tubería 198	-0.35	0.02	0
Tubería 199	0.06	0.01	0
Tubería 200	0.01	0	0
Tubería 201	0.05	0.01	0
Tubería 202	0.01	0.01	0
Tubería 202	-0.05	0	0
Tubería 204	0.04	0	0
Tubería 205	-0.15	0.01	0
Tubería 206	-0.06	0.01	0
Tubería 207	-0.16	0.02	0
Tubería 208	-0.06	0.01	0
Tubería 209	-0.17	0.02	0
Tubería 210	-0.15	0.02	0
Tubería 211	-0.13	0.01	0
Tubería 212	-0.12	0.01	0
Tubería 213	-0.11	0.01	0
Tubería 214	0.18	0.02	0.01
Tubería 215	0.06	0.01	0
Tubería 216	0.32	0.03	0.02
Tubería 217	0.11	0.01	0
Tubería 218	-0.08	0.01	0
Tubería 219	-0.14	0.01	0
Tubería 220	-0.33	0.02	0
Tubería 221	-0.3	0.01	0
Tubería 222	-0.4	0.02	0
Tubería 223	0.02	0	0
Tubería 224	-0.28	0.03	0.02
Tubería 225	-0.32	0.03	0.02
Tubería 226	-0.17	0.02	0
Tubería 227	0.27	0.03	0.01
Tubería 228	0.2	0.02	0.01
Tubería 229	-0.48	0.05	0.04
Tubería 230	-0.51	0.05	0.05
Tubería 231	0.1	0.01	0
Tubería 232	-0.41	0.04	0.03
Tubería 233	-0.42	0.04	0.03
Tubería 234	-0.55	0.03	0.01
Tubería 235	-0.42	0.04	0.04
Tubería 236	-0.11	0.01	0
Tubería 237	0.94	0.1	0.14
Tubería 238	0.72	0.08	0.09
Tubería 239	-0.27	0.01	0

Tubería 240	0.31	0.02	0
			_
Tubería 241	-4.35 -0.14	0.22	0.38
Tubería 243		0.01	0
Tubería 244	0.11	0.01	0
Tubería 245	-0.5	0.03	0.01
Tubería 246	0.04	0	0
Tubería 247	-0.45	0.02	0.01
Tubería 248	0.11	0.01	0
Tubería 249	-0.2	0.02	0.01
Tubería 251	-0.33	0.03	0.02
Tubería 252	-0.74	0.04	0.02
Tubería 253	-0.3	0.03	0.02
Tubería 254	-0.11	0.01	0
Tubería 255	-0.57	0.03	0.01
Tubería 256	0.12	0.01	0
Tubería 257	0.31	0.03	0.02
Tubería 258	-0.33	0.03	0.02
Tubería 259	-0.02	0	0
Tubería 260	0.25	0.03	0.01
Tubería 261	-0.77	0.04	0.02
Tubería 262	-1.16	0.06	0.04
Tubería 263	0.03	0	0
Tubería 264	-0.39	0.04	0.03
Tubería 265	-0.46	0.05	0.04
Tubería 266	-0.51	0.05	0.05
Tubería 267	-0.35	0.04	0.03
Tubería 268	-0.28	0.03	0.01
Tubería 269	-0.03	0	0
Tubería 270	1.53	0.08	0.06
Tubería 271	1.38	0.07	0.05
Tubería 272	0.03	0	0
Tubería 273	-1.27	0.06	0.04
Tubería 274	0.09	0.01	0
Tubería 275	-0.55	0.06	0.06
Tubería 277	-0.6	0.06	0.07
Tubería 279	-0.64	0.07	0.07
Tubería 281	-1.12	0.12	0.2
Tubería 282	0.36	0.04	0.03
Tubería 283	0.88	0.09	0.13
Tubería 284	0.5	0.05	0.05
Tubería 285	0.3	0.03	0.02
Tubería 286	-1.64	0.08	0.07
Tubería 287	-0.31	0.03	0.02
Tubería 288	-0.13	0.01	0
Tubería 289	-0.25	0.03	0.01
. 450114 203	5.25	5.05	0.01

Tubería 200	2 27	0.12	0.12
Tubería 290	-2.27	0.12	0.12
Tubería 291	-2.26	0.11	0.12
Tubería 292	0.22	0.01	0
Tubería 293	0.27	0.01	0
Tubería 294	0.05	0.01	0
Tubería 295	0.08	0.01	0
Tubería 296	-0.18	0.01	0
Tubería 297	-0.51	0.05	0.05
Tubería 298	-1.01	0.11	0.16
Tubería 299	-0.39	0.04	0.03
Tubería 300	-3.47	0.18	0.25
Tubería 301	1	0.05	0.03
Tubería 303	-0.12	0.01	0
Tubería 305	0.89	0.09	0.13
Tubería 306	0.83	0.09	0.12
Tubería 307	0.19	0.02	0.01
Tubería 308	0.9	0.09	0.13
Tubería 309	3.05	0.15	0.2
Tubería 311	1.99	0.1	0.09
Tubería 312	1.48	0.07	0.06
Tubería 313	0.94	0.1	0.14
Tubería 314	0.14	0.01	0
Tubería 315	0.43	0.05	0.04
Tubería 316	1.04	0.05	0.03
Tubería 317	-0.5	0.05	0.05
Tubería 318	0.72	0.08	0.09
Tubería 319	0.04	0	0
Tubería 320	1.47	0.07	0.06
Tubería 321	1.42	0.07	0.05
Tubería 322	0.32	0.03	0.02
Tubería 323	-0.11	0.01	0
Tubería 324	0.58	0.06	0.06
Tubería 325	0.39	0.04	0.03
Tubería 328	0.36	0.04	0.03
Tubería 329	0.04	0	0
Tubería 330	-0.26	0.03	0.01
Tubería 331	-0.27	0.03	0.01
Tubería 332	1	0.05	0.03
Tubería 333	0.65	0.03	0.01
Tubería 334	0.59	0.03	0.01
Tubería 335	0.26	0.03	0.01
Tubería 336	0.24	0.03	0.01
Tubería 337	0.35	0.04	0.03
Tubería 338	0.25	0.03	0.01
Tubería 340	0.19	0.02	0.01
1 420114 340	5.15	5.02	0.01

Tubería 341	0.18	0.02	0.01
Tubería 342	-0.04	0	0
Tubería 343	-0.09	0.01	0
Tubería 344	0.2	0.02	0.01
Tubería 345	-0.11	0.01	0
Tubería 346	0.14	0.01	0
Tubería 349	0.1	0.01	0
Tubería 350	0.12	0.01	0
Tubería 351	0.08	0.01	0
Tubería 352	0.39	0.02	0
Tubería 353	0.24	0.01	0
Tubería 354	-0.05	0.01	0
Tubería 355	-0.13	0.01	0
Tubería 356	-0.23	0.01	0
Tubería 357	-0.23	0.01	0
Tubería 358	1.2	0.06	0.04
Tubería 359	0.07	0.01	0
Tubería 360	0.9	0.05	0.02
Tubería 361	0.5	0.03	0.01
Tubería 362	0.09	0.01	0
Tubería 363	0.07	0.01	0
Tubería 364	0.07	0.01	0
Tubería 365	0.21	0.01	0
Tubería 366	-0.22	0.01	0
Tubería 367	0.14	0.01	0
Tubería 369	0.04	0	0
Tubería 242	0.08	0.01	0
Tubería 370	8.16	0.41	1.22
Tubería 302	4.55	0.23	0.42
Tubería 304	4.23	0.21	0.36
Válvula 250	4.59	0.26	10.37
Válvula 276	4.27	0.24	10.48

Tabla 10

4.6- ANALISIS DE LA RED EN CONDICIONES DE CAUDAL MEDIO

Estado de los nudos de la red en condiciones caudal medio:

	Cota	Demanda Base	Demanda	Altura	Presión
ID Nudo	m	LPS	LPS	m	m
Nudo 3	754	1.3468	1.35	781.7	27.7
Nudo 4	752	0.1039	0.1	781.64	29.64
Nudo 5	752	0.0653	0.07	781.65	29.65
Nudo 6	747	0.048	0.05	781.61	34.61
Nudo 7	746	0.0969	0.1	781.61	35.61
Nudo 8	749	0.1695	0.17	781.6	32.6
Nudo 9	749	0.1613	0.16	781.58	32.58
Nudo 10	754	0.0318	0.03	781.58	27.58
Nudo 11	747	0.0793	0.08	781.58	34.58
Nudo 12	749	0.0821	0.08	781.58	32.58
Nudo 13	746	0.058	0.06	781.58	35.58
Nudo 14	741	0.0844	0.08	781.57	40.57
Nudo 15	743	0.0922	0.09	781.57	38.57
Nudo 16	744	0.0509	0.05	781.57	37.57
Nudo 17	743	0.0973	0.1	781.58	38.58
Nudo 18	744	0.0805	0.08	781.59	37.59
Nudo 19	744	0.0955	0.1	781.59	37.59
Nudo 20	745	0.017	0.02	781.6	36.6
Nudo 21	752	0.083	0.08	781.64	29.64
Nudo 22	741	0.04	0.04	781.57	40.57
Nudo 23	740	0.041	0.04	781.57	41.57
Nudo 24	740	0.039	0.04	781.57	41.57
Nudo 25	738	0.0577	0.06	781.57	43.57
Nudo 26	737	0.072	0.07	781.57	44.57
Nudo 27	729	0.0844	0.08	781.57	52.57
Nudo 28	740	0.0593	0.06	781.57	41.57
Nudo 29	739	0.0598	0.06	781.57	42.57
Nudo 30	738	0.0576	0.06	781.57	43.57
Nudo 31	737	0.0598	0.06	781.57	44.57
Nudo 32	735	0.0796	0.08	781.57	46.57
Nudo 33	740	0.0291	0.03	781.57	41.57
Nudo 34	739	0.0391	0.04	781.57	42.57
Nudo 35	737	0.0397	0.04	781.57	44.57
Nudo 36	736	0.0391	0.04	781.57	45.57
Nudo 37	735	0.0383	0.04	781.57	46.57
Nudo 38	733	0.0479	0.05	781.57	48.57
Nudo 39	730	0.0629	0.06	781.57	51.57
Nudo 40	729	0.0777	0.08	781.57	52.57

		0.000			
Nudo 41	730	0.0896	0.09	781.57	51.57
Nudo 42	736	0.0539	0.05	781.57	45.57
Nudo 43	730	0.0491	0.05	781.57	51.57
Nudo 44	729	0.0327	0.03	781.57	52.57
Nudo 45	739	0.0504	0.05	781.57	42.57
Nudo 46	741	0.0528	0.05	781.57	40.57
Nudo 47	741	0.0519	0.05	781.57	40.57
Nudo 48	739	0.0668	0.07	781.57	42.57
Nudo 49	737	0.0419	0.04	781.57	44.57
Nudo 50	737	0.0163	0.02	781.57	44.57
Nudo 51	735	0.0411	0.04	781.57	46.57
Nudo 52	735	0.0212	0.02	781.57	46.57
Nudo 53	735	0.0705	0.07	781.56	46.56
Nudo 54	740	0.0837	0.08	781.57	41.57
Nudo 55	732	0.0542	0.05	781.56	49.56
Nudo 56	730	0.0534	0.05	781.57	51.57
Nudo 57	732	0.0255	0.03	781.57	49.57
Nudo 58	731	0.0259	0.03	781.56	50.56
Nudo 59	732	0.0685	0.07	781.56	49.56
Nudo 60	735	0.0454	0.05	781.56	46.56
Nudo 61	735	0.0632	0.06	781.56	46.56
Nudo 62	742	0.1159	0.12	781.56	39.56
Nudo 63	737	0.0627	0.06	781.55	44.55
Nudo 64	736	0.0422	0.04	781.55	45.55
Nudo 65	734	0.0305	0.03	781.55	47.55
Nudo 66	734	0.043	0.04	781.55	47.55
Nudo 67	738	0.0912	0.09	781.55	43.55
Nudo 68	740	0.0922	0.09	781.55	41.55
Nudo 69	740	0.1126	0.11	781.54	41.54
Nudo 70	741	0.1187	0.12	781.54	40.54
Nudo 71	741	0.0716	0.07	781.57	40.57
Nudo 72	742	0.0993	0.1	781.57	39.57
Nudo 73	743	0.1043	0.1	781.56	38.56
Nudo 74	750	0.1421	0.14	781.58	31.58
Nudo 75	749	0.0514	0.05	781.56	32.56
Nudo 76	749	0.1088	0.11	781.55	32.55
Nudo 77	745	0.0941	0.09	781.55	36.55
Nudo 78	746	0.0337	0.03	781.56	35.56
Nudo 79	749	0.1064	0.11	781.54	32.54
Nudo 80	748	0.0882	0.09	781.53	33.53
Nudo 81	748	0.085	0.09	781.52	33.52
Nudo 82	750	0.0981	0.1	781.52	31.52
Nudo 83	751	0.1011	0.1	781.52	30.52
Nudo 84	754	0.1413	0.14	781.6	27.6
Nudo 85	753	0.1274	0.13	781.57	28.57

Nudo 86	754	0.0775	0.08	781.58	27.58
Nudo 87	751 754	0.0504	0.05	781.51	30.51
Nudo 88	754	0.0523	0.05	781.52	27.52
Nudo 89	751 736	0.0577	0.06	781.6	30.6
Nudo 90	736	0.0721	0.07	781.54	45.54
Nudo 91	734	0.0477	0.05	781.54	47.54
Nudo 92	734	0.0557	0.06	781.55	47.55
Nudo 93	735	0.0832	0.08	781.52	46.52
Nudo 94	736	0.0948	0.09	781.51	45.51
Nudo 95	736	0.1145	0.11	781.5	45.5
Nudo 96	744	0.1561	0.16	781.51	37.51
Nudo 97	739	0.1012	0.1	781.5	42.5
Nudo 98	739	0.1082	0.11	781.5	42.5
Nudo 99	747	0.1689	0.17	781.5	34.5
Nudo 100	747	0.0472	0.05	781.5	34.5
Nudo 101	747	0.0588	0.06	781.5	34.5
Nudo 102	747	0.0702	0.07	781.49	34.49
Nudo 103	747	0.0677	0.07	781.49	34.49
Nudo 104	742	0.0885	0.09	781.49	39.49
Nudo 105	742	0.061	0.06	781.49	39.49
Nudo 106	743	0.094	0.09	781.49	38.49
Nudo 107	740	0.0786	0.08	781.49	41.49
Nudo 108	740	0.0565	0.06	781.49	41.49
Nudo 109	739	0.0535	0.05	781.5	42.5
Nudo 110	747	0.1034	0.1	781.51	34.51
Nudo 111	741	0.0852	0.09	781.49	40.49
Nudo 112	743	0.091	0.09	781.49	38.49
Nudo 113	745	0.0806	0.08	781.49	36.49
Nudo 114	744	0.0981	0.1	781.49	37.49
Nudo 115	742	0.0935	0.09	781.49	39.49
Nudo 116	746	0.0984	0.1	781.49	35.49
Nudo 117	747	0.0653	0.07	781.49	34.49
Nudo 118	748	0.113	0.11	781.49	33.49
Nudo 119	749	0.0972	0.1	781.49	32.49
Nudo 120	747	0.0908	0.09	781.49	34.49
Nudo 121	748	0.0709	0.07	781.49	33.49
Nudo 122	747	0.0939	0.09	781.49	34.49
Nudo 123	747	0.0791	0.08	781.49	34.49
Nudo 124	743	0.0791	0.08	781.5	38.5
Nudo 125	748	0.202	0.2	781.49	33.49
Nudo 126	741	0.0532	0.05	781.49	40.49
Nudo 127	743	0.0876	0.09	781.49	38.49
Nudo 128	753	0.0571	0.06	781.49	28.49
Nudo 129	751	0.0316	0.03	781.49	30.49
Nudo 130	748	0.0796	0.08	781.5	33.5

Nudo 131	749	0.027	0.03	781.5	32.5
Nudo 131 Nudo 132	739				42.49
Nudo 132 Nudo 133	739	0.0276	0.03	781.49	39.49
Nudo 133 Nudo 134	742	0.0696	0.07	781.49 781.49	36.49
		0.0557	0.06		
Nudo 135	736	0.0451	0.05	781.49	45.49
Nudo 136	739	0.0701	0.07	781.49	42.49
Nudo 137	740	0.0985	0.1	781.49	41.49
Nudo 138	746	0.0418	0.04	781.49	35.49
Nudo 139	747	0.064	0.06	781.49	34.49
Nudo 140	743	0.0514	0.05	781.49	38.49
Nudo 141	742	0.0477	0.05	781.49	39.49
Nudo 142	745	0.0257	0.03	781.49	36.49
Nudo 143	745	0.0898	0.09	781.49	36.49
Nudo 144	740	0.0627	0.06	781.49	41.49
Nudo 145	738	0.0933	0.09	781.49	43.49
Nudo 146	738	0.0817	0.08	781.49	43.49
Nudo 147	736	0.0563	0.06	781.49	45.49
Nudo 148	736	0.0751	0.08	781.49	45.49
Nudo 149	735	0.0678	0.07	781.49	46.49
Nudo 150	733	0.0862	0.09	781.49	48.49
Nudo 151	733	0.0853	0.09	781.49	48.49
Nudo 152	733	0.0844	0.08	781.49	48.49
Nudo 153	733	0.0629	0.06	781.49	48.49
Nudo 154	734	0.0843	0.08	781.49	47.49
Nudo 155	734	0.0468	0.05	781.49	47.49
Nudo 156	743	0.0873	0.09	781.49	38.49
Nudo 157	739	0.069	0.07	781.49	42.49
Nudo 158	735	0.0854	0.09	781.49	46.49
Nudo 159	733	0.1606	0.16	768.96	35.96
Nudo 160	730	0.1562	0.16	768.97	38.96
Nudo 161	728	0.0682	0.07	768.96	40.96
Nudo 162	732	0.1477	0.15	768.97	36.97
Nudo 163	729	0.116	0.12	768.97	39.97
Nudo 164	730	0.1362	0.14	768.97	38.97
Nudo 165	731	0.0265	0.03	768.97	37.97
Nudo 166	730	0.0783	0.08	768.97	38.97
Nudo 167	728	0.0483	0.05	768.97	40.97
Nudo 168	727	0.0876	0.09	768.97	41.97
Nudo 169	728	0.0686	0.07	768.97	40.97
Nudo 170	727	0.0506	0.05	768.97	41.97
Nudo 171	731	0.0414	0.04	768.97	37.97
Nudo 172	731	0.0741	0.07	768.97	37.97
Nudo 173	731	0.0307	0.03	768.97	37.97
Nudo 174	731	0.0794	0.08	768.97	37.97
Nudo 175	729	0.0459	0.05	768.97	39.97

Nuda 170	720	0.0554	0.00	769.07	20.07
Nudo 176	729	0.0554	0.06	768.97	39.97
Nudo 177	727	0.0584	0.06	768.97	41.97
Nudo 178	727	0.0554	0.06	768.97	41.97
Nudo 179	731	0.0804	0.08	768.97	37.97
Nudo 180	730	0.0402	0.04	768.97	38.97
Nudo 181	730	0.0455	0.05	768.97	38.97
Nudo 182	730	0.0729	0.07	768.97	38.97
Nudo 183	729	0.0407	0.04	768.97	39.97
Nudo 184	729	0.0377	0.04	768.97	39.97
Nudo 185	728	0.0422	0.04	768.97	40.97
Nudo 186	729	0.0413	0.04	768.97	39.97
Nudo 187	727	0.0523	0.05	768.97	41.97
Nudo 188	728	0.0331	0.03	768.97	40.97
Nudo 189	727	0.0766	0.08	768.98	41.98
Nudo 190	727	0.0926	0.09	768.98	41.98
Nudo 191	728	0.0306	0.03	768.98	40.98
Nudo 192	728	0.0483	0.05	768.98	40.98
Nudo 193	730	0.0991	0.1	768.98	38.98
Nudo 194	731	0.0537	0.05	768.98	37.98
Nudo 195	731	0.0508	0.05	768.99	37.99
Nudo 196	732	0.069	0.07	768.99	36.99
Nudo 197	731	0.0707	0.07	768.98	37.98
Nudo 198	729	0.084	0.08	768.98	39.98
Nudo 199	732	0.1087	0.11	768.99	36.99
Nudo 200	731	0.07	0.07	768.97	37.97
Nudo 201	729	0.037	0.04	768.98	39.98
Nudo 202	729	0.0488	0.05	768.97	39.97
Nudo 203	727	0.0777	0.08	768.98	41.98
Nudo 204	727	0.0861	0.09	768.97	41.97
Nudo 205	728	0.0475	0.05	768.97	40.97
Nudo 206	731	0.0519	0.05	768.97	37.97
Nudo 207	726	0.0408	0.04	768.97	42.97
Nudo 208	726	0.0595	0.06	768.97	42.97
Nudo 209	730	0.062	0.06	768.97	38.97
Nudo 210	729	0.0491	0.05	768.97	39.97
Nudo 211	726	0.0551	0.06	768.97	42.97
Nudo 212	726	0.0551	0.06	768.97	42.97
Nudo 213	728	0.0237	0.02	768.97	40.97
Nudo 214	728	0.0372	0.04	768.97	40.97
Nudo 215	727	0.0377	0.04	768.97	41.97
Nudo 216	727	0.0351	0.04	768.97	41.97
Nudo 217	727	0.0638	0.06	768.97	41.97
Nudo 218	726	0.0369	0.04	768.97	42.97
Nudo 219	726	0.0369	0.04	768.97	42.97
Nudo 220	724	0.0376	0.04	768.97	44.97

Nudo 222 724 0.0614 0.06 768.97 44 Nudo 223 724 0.0858 0.09 768.97 44 Nudo 224 726 0.0584 0.06 768.97 42	5.97 4.97 4.97 2.97 4.97
Nudo 223 724 0.0858 0.09 768.97 44 Nudo 224 726 0.0584 0.06 768.97 42	4.97 2.97 4.97
Nudo 224 726 0.0584 0.06 768.97 42	2.97 4.97
	4.97
Nudo 225 724 0.0439 0.04 768.97 44	
Nudo 226 724 0.0477 0.05 768.97 44	4.97
Nudo 227 723 0.0677 0.07 768.97 45	5.97
Nudo 228 722 0.0497 0.05 768.97 46	5.97
Nudo 229 724 0.059 0.06 768.97 44	1.97
Nudo 230 723 0.0608 0.06 768.97 45	5.97
Nudo 231 722 0.0885 0.09 768.97 46	5.97
Nudo 232 726 0.1455 0.15 768.97 42	2.97
Nudo 233 728 0.0463 0.05 768.97 40	0.97
Nudo 234 725 0.201 0.2 768.97 43	3.97
Nudo 235 724 0.1783 0.18 768.97 44	1.97
Nudo 236 724 0.0537 0.05 768.97 44	4.97
Nudo 237 727 0.0461 0.05 768.97 43	1.97
Nudo 238 728 0.0538 0.05 768.97 40	0.97
Nudo 239 724 0.0447 0.04 768.97 44	1.97
Nudo 240 725 0.0601 0.06 768.96 43	3.96
Nudo 241 725 0.025 0.03 768.96 43	3.96
Nudo 242 736 0.0521 0.05 768.96 32	2.96
Nudo 243 734 0.0256 0.03 769	35
Nudo 244 734 0.0212 0.02 769	35

Tabla 11

Estado de tuberías de la red en condiciones de caudal medio:

	Caudal	Velocidad	Pérdida Unit.
ID Línea	LPS	m/s	m/km
Tubería 1	18.23	0.37	0.57
Tubería 2	5.54	0.28	0.6
Tubería 3	1.34	0.14	0.27
Tubería 4	6.24	0.32	0.74
Tubería 5	4.7	0.24	0.44
Tubería 6	-0.77	0.08	0.1
Tubería 7	-0.5	0.05	0.05
Tubería 8	0.8	0.08	0.11
Tubería 9	0.78	0.08	0.1
Tubería 10	0.61	0.06	0.07
Tubería 11	-0.54	0.06	0.06
Tubería 12	-0.03	0	0

Tubería 13	-1.47	0.15	0.32
Tuberia 13	1.36	0.13	0.32
Tuberia 14	0.99	0.14	0.28
Tuberia 15	1.94	0.1	0.10
Tuberia 17	0.03	0.1	0.03
Tuberia 17	0.03	0.01	0
Tuberia 18	1.67	0.01	0.07
Tubería 20	1.14	0.06	0.03
Tubería 21		0.05	0.03
Tubería 22	0.45	0.05	0.04
Tubería 23	2.82	0.14	0.17
Tubería 24	0.27	0.03	0.01
Tubería 25	0.2	0.02	0.01
Tubería 26	0.56	0.06	0.06
Tubería 27	0.26	0.03	0.01
Tubería 28	0.43	0.04	0.04
Tubería 29	-0.33	0.03	0.02
Tubería 30	0.29	0.03	0.02
Tubería 31	0.23	0.02	0.01
Tubería 32	0.32	0.03	0.02
Tubería 33	-0.01	0	0
Tubería 34	0.04	0	0
Tubería 35	-0.28	0.03	0.01
Tubería 36	-0.28	0.03	0.02
Tubería 37 Tubería 38	-0.29 -0.3	0.03	0.01
Tuberia 39	-0.3	0.03	0.02 0.01
Tuberia 40	0.93	0.02	0.01
Tubería 40			
Tubería 42	0.82	0.04	0.02
Tuberia 42	0.66	0.04	0.02
Tubería 44	0.67	0.03	0.02
Tubería 45	0.06	0.01	0
Tubería 46	0.11	0.01	0
Tubería 47	0	0	0
Tubería 48	0.02	0	0
Tubería 49	0.02	0	0
Tubería 50	0.03	0	0
Tubería 51	0.1	0.01	0
Tubería 52	0.04	0	0
Tubería 53	0.26	0.03	0.01
Tubería 54	-0.45	0.02	0.01
Tubería 55	-0.54	0.03	0.01
Tubería 56	0.27	0.03	0.01
Tubería 57	0.01	0	0

Tubería 58	0.23	0.01	0
Tubería 59	0.05	0.01	0
Tubería 60	0.03	0.01	0
Tubería 61	0.03	0.01	0
Tubería 62	0.03	0.02	0.01
Tubería 63	0.42	0.02	0.04
Tuberia 63	1.63	0.04	0.04
	1.33		
Tubería 65		0.07	0.05
Tubería 66	-0.12	0.01	0
Tubería 67	1.26	0.06	0.04
Tubería 68	0.02	0	0
Tubería 69	1.2	0.06	0.04
Tubería 70	1.29	0.07	0.04
Tubería 71	-0.13	0.01	0
Tubería 72	-0.15	0.01	0
Tubería 73	0.25	0.03	0.01
Tubería 74	-0.42	0.04	0.04
Tubería 75	-0.62	0.03	0.01
Tubería 76	0.61	0.06	0.07
Tubería 77	0.58	0.06	0.06
Tubería 78	-0.05	0.01	0
Tubería 79	-1.82	0.09	0.08
Tubería 80	-1.53	0.08	0.06
Tubería 81	-1.02	0.05	0.03
Tubería 82	1.07	0.11	0.18
Tubería 83 Tubería 84	0.35 0.54	0.04 0.06	0.03 0.05
Tubería 85	-0.13	0.00	
Tubería 86			0 06
Tubería 87	0.58	0.06	0.06
Tuberia 88			0.01
Tuberia 89	0.25 1.72	0.03	0.01
Tuberia 89	-0.32	0.03	0.07
Tubería 90	0.23	0.03	0.02
Tubería 92	-1.02	0.02	0.01
Tuberia 92	-1.02	0.11	0.17
Tuberia 93	4.12	0.11	0.35
Tubería 95	4.12	0.21	0.4
Tubería 96	2.08	0.22	0.4
Tubería 97	-0.49	0.05	0.05
Tubería 98	0.02	0.03	0.03
Tubería 99	-0.61	0.06	0.07
Tubería 100	2.47	0.12	0.14
Tubería 101	-0.53	0.06	0.05
Tubería 102	2	0.1	0.1

Tubería 103	-0.52	0.05	0.05
Tubería 104	-0.56	0.05	0.06
Tubería 105	0.96	0.00	0.15
Tubería 106	1.11	0.12	0.13
Tubería 107	-0.5	0.05	0.05
Tubería 108	-0.61	0.06	0.07
Tubería 109	-0.65	0.07	0.07
Tubería 110	-1.61	0.17	0.37
Tubería 111	0.91	0.1	0.13
Tubería 112	0.95	0.1	0.15
Tubería 113	-0.38	0.04	0.03
Tubería 114	0.95	0.1	0.15
Tubería 115	0.02	0	0
Tubería 116	-1.09	0.11	0.19
Tubería 117	3.72	0.19	0.29
Tubería 118	0.86	0.09	0.12
Tubería 119	-0.79	0.08	0.11
Tubería 120	3.29	0.17	0.23
Tubería 121	1.22	0.13	0.23
Tubería 122	1.48	0.16	0.33
Tubería 123	-0.34	0.04	0.03
Tubería 124	0.89	0.04	0.02
Tubería 125	0.05	0.01	0
Tubería 126	0.73	0.08	0.09
Tubería 127	0.61	0.06	0.07
Tubería 128	0.35	0.04	0.03
Tubería 129	3.87	0.2	0.31
Tubería 130	2.49	0.13	0.14
Tubería 131	3.06	0.15	0.2
Tubería 132	-2.11	0.11	0.11
Tubería 133	-1.94	0.1	0.09
Tubería 134	-0.24	0.03	0.01
Tubería 135	0.65	0.07	0.08
Tubería 136	-2.45	0.12	0.14
Tubería 137	3.02	0.15	0.2
Tubería 138	0.06	0.01	0
Tubería 139	-0.64	0.07	0.07
Tubería 140	0.54	0.06	0.05
Tubería 141	-2.86	0.14	0.18
Tubería 142	0.56	0.03	0.01
Tubería 143	0.89	0.05	0.02
Tubería 144	1.21	0.06	0.04
Tubería 145	-0.1	0.01	0
Tubería 146	-0.55	0.06	0.06
Tubería 147	-0.57	0.06	0.06

Tubería 148	-1.1	0.12	0.19
Tubería 149		0.12	0.19
Tuberia 149	0.43 1.01		
		0.05	0.03 0.05
Tubería 151	1.38	0.07	
Tubería 152	1.91	0.1	0.09
Tubería 153	1.53	0.08	0.06
Tubería 154	1.2	0.06	0.04
Tubería 155	0.99	0.05	0.03
Tubería 156	0.72	0.04	0.02
Tubería 157	0.59	0.03	0.01
Tubería 158	0.37	0.02	0
Tubería 159	-0.07	0	0
Tubería 160	-0.15	0.02	0
Tubería 161	-0.21	0.02	0.01
Tubería 162	-0.29	0.03	0.02
Tubería 163	-0.34	0.04	0.03
Tubería 164	-0.5	0.05	0.05
Tubería 165	-0.3	0.03	0.02
Tubería 166	-0.37	0.04	0.03
Tubería 167	0.32	0.03	0.02
Tubería 168	0.26	0.03	0.01
Tubería 169	0.14	0.01	0
Tubería 170	0.14	0.02	0
Tubería 171	0.07	0.01	0
Tubería 172	0.05	0	0
Tubería 173	0.01	0	0
Tubería 174	-0.32	0.02	0
Tubería 175	-0.44	0.02	0.01
Tubería 176	-0.67	0.03	0.01
Tubería 177	-0.82	0.04	0.02
Tubería 178	-0.82	0.04	0.02
Tubería 179	-0.92	0.05	0.03
Tubería 180	-1.26	0.06	0.04
Tubería 181	0.3	0.03	0.02
Tubería 182	0.2	0.02	0.01
Tubería 183	0.11	0.01	0
Tubería 184	0.05	0	0
Tubería 185	0.02	0	0
Tubería 186	0.68	0.07	0.08
Tubería 187	0.58	0.06	0.06
Tubería 188	0.03	0	0
Tubería 189	0.03	0	0
Tubería 190	0.06	0.01	0
Tubería 191	0.34	0.02	0
Tubería 192	0.09	0.01	0

Tubería 193	0.05	0.01	0
Tubería 194	2.54	0.13	0.15
Tubería 195	0.62	0.13	0.13
Tubería 196	-0.03	0	0
Tubería 197	-0.14	0.01	0
Tubería 198	-0.23	0.01	0
Tubería 199	0.04	0	0
Tubería 200	0.01	0	0
Tubería 201	0.04	0	0
Tubería 202	0.01	0	0
Tubería 203	0	0	0
Tubería 204	0.03	0	0
Tubería 205	-0.09	0	0
Tubería 206	-0.04	0	0
Tubería 207	-0.09	0.01	0
Tubería 208	-0.04	0	0
Tubería 209	-0.1	0.01	0
Tubería 210	-0.07	0.01	0
Tubería 211	-0.09	0.01	0
Tubería 212	-0.06	0.01	0
Tubería 213	-0.07	0.01	0
Tubería 214	0.06	0.01	0
Tubería 215	0.02	0	0
Tubería 216	0.2	0.02	0.01
Tubería 217	0.06	0.01	0
Tubería 218	-0.06	0.01	0
Tubería 219	-0.09	0.01	0
Tubería 220	-0.2	0.01	0
Tubería 221	-0.21	0.01	0
Tubería 222	-0.27	0.01	0
Tubería 223	0	0	0
Tubería 224	-0.16	0.02	0.01
Tubería 225	-0.22	0.02	0.01
Tubería 226	-0.08	0.01	0
Tubería 227	0.17	0.02	0.01
Tubería 228	0.11	0.01	0
Tubería 229	-0.3	0.03	0.02
Tubería 230	-0.32	0.03	0.02
Tubería 231	0.05	0.01	0
Tubería 232	-0.28	0.03	0.01
Tubería 233	-0.29	0.03	0.02
Tubería 234	-0.36	0.02	0
Tubería 235	-0.28	0.03	0.01
Tubería 236	-0.07	0.01	0
Tubería 237	0.58	0.06	0.06

Tubería 238	0.44	0.05	0.04
Tubería 239	-0.16	0.01	0
Tubería 240	0.19	0.01	0
Tubería 241	-2.72	0.14	0.16
Tubería 243	-0.11	0.01	0
Tubería 244	0.07	0.01	0
Tubería 245	-0.34	0.02	0
Tubería 246	0.03	0	0
Tubería 247	-0.29	0.01	0
Tubería 248	0.03	0	0
Tubería 249	-0.1	0.01	0
Tubería 251	-0.22	0.02	0.01
Tubería 252	-0.43	0.02	0.01
Tubería 253	-0.16	0.02	0.01
Tubería 254	-0.04	0	0
Tubería 255	-0.36	0.02	0
Tubería 256	0.06	0.01	0
Tubería 257	0.21	0.02	0.01
Tubería 258	-0.24	0.03	0.01
Tubería 259	-0.02	0	0
Tubería 260	0.15	0.02	0
Tubería 261	-0.46	0.02	0.01
Tubería 262	-0.7	0.04	0.02
Tubería 263	0.03	0	0
Tubería 264	-0.27	0.03	0.01
Tubería 265	-0.3	0.03	0.02
Tubería 266	-0.34	0.04	0.02
Tubería 267	-0.24	0.02	0.01
Tubería 268	-0.21	0.02	0
Tubería 269	-0.02	0	0
Tubería 270	0.95	0.05	0.03
Tubería 271	0.86	0.04	0.02
Tubería 272	0.02	0	0
Tubería 273	-0.79	0.04	0.02
Tubería 274	0.06	0.01	0
Tubería 275	-0.34	0.04	0.02
Tubería 277	-0.37	0.04	0.03
Tubería 279	-0.39	0.04	0.03
Tubería 281	-0.71	0.07	0.09
Tubería 282	0.24	0.03	0.01
Tubería 283	0.56	0.06	0.06
Tubería 284	0.3	0.03	0.02
Tubería 285	0.18	0.02	0
Tubería 286	-1.02	0.05	0.03
Tubería 287	-0.23	0.02	0.01

Tubería 288	-0.07	0.01	0
Tubería 289	-0.07	0.01	0
Tubería 290	-1.42	0.02	0.05
Tubería 291	-1.42	0.07	0.05
Tubería 292	0.15	0.01	0.03
Tubería 293	0.17	0.01	0
Tubería 294	0.17	0.01	0
Tubería 295	0.05	0.01	0
Tubería 296	-0.1	0.01	0
Tubería 297	-0.1	0.03	0.02
Tubería 298	-0.64	0.07	0.07
Tubería 299	-0.26	0.03	0.01
Tubería 300	-2.16	0.11	0.11
Tubería 301	0.63	0.03	0.01
Tubería 303	-0.08	0.03	0.01
Tubería 305	0.55	0.06	0.06
Tubería 306	0.52	0.05	0.05
Tubería 307	0.12	0.01	0
Tubería 308	0.56	0.06	0.06
Tubería 309	1.91	0.1	0.09
Tubería 311	1.25	0.06	0.04
Tubería 312	0.92	0.05	0.02
Tubería 313	0.58	0.06	0.06
Tubería 314	0.08	0.01	0
Tubería 315	0.29	0.03	0.02
Tubería 316	0.63	0.03	0.01
Tubería 317	-0.32	0.03	0.02
Tubería 318	0.45	0.05	0.04
Tubería 319	0.03	0	0
Tubería 320	0.92	0.05	0.02
Tubería 321	0.88	0.04	0.02
Tubería 322	0.24	0.03	0.01
Tubería 323	-0.05	0.01	0
Tubería 324	0.36	0.04	0.03
Tubería 325	0.26	0.03	0.01
Tubería 328	0.24	0.02	0.01
Tubería 329	0.04	0	0
Tubería 330	-0.14	0.01	0.01
Tubería 331	-0.11	0.01	0
Tubería 332	0.59	0.03	0.01
Tubería 333	0.42	0.02	0.01
Tubería 334	0.38	0.02	0
Tubería 335	0.15	0.02	0.01
Tubería 336	0.14	0.01	0
Tubería 337	0.24	0.03	0.01

Tubería 338	0.16	0.02	0
Tubería 340	0.12	0.01	0
Tubería 341	0.11	0.01	0
Tubería 342	-0.02	0	0
Tubería 343	-0.05	0.01	0
Tubería 344	0.12	0.01	0
Tubería 345	-0.06	0.01	0
Tubería 346	80.0	0.01	0
Tubería 349	0.05	0.01	0
Tubería 350	0.06	0.01	0
Tubería 351	0.05	0	0
Tubería 352	0.27	0.01	0
Tubería 353	0.16	0.01	0
Tubería 354	-0.05	0	0
Tubería 355	-0.09	0	0
Tubería 356	-0.16	0.01	0
Tubería 357	-0.16	0.01	0
Tubería 358	0.76	0.04	0.02
Tubería 359	0.05	0	0
Tubería 360	0.57	0.03	0.01
Tubería 361	0.32	0.02	0
Tubería 362	0.05	0.01	0
Tubería 363	0.05	0	0
Tubería 364	0.03	0	0
Tubería 365	0.13	0.01	0
Tubería 366	-0.14	0.01	0
Tubería 367	0.09	0.01	0
Tubería 369	0.03	0	0
Tubería 242	0.05	0.01	0
Tubería 370	5.11	0.26	0.51
Tubería 302	2.84	0.14	0.18
Tubería 304	2.65	0.13	0.16
Válvula 250	2.87	0.16	12.49
Válvula 276	2.67	0.15	12.54
	TT 1		

Tabla 12

ANALISIS DE LA RED DE PUESTA 4.7-FUERA DE SERVICIO DE CONDUCCIONES

En esta instalación, para comprobar su correcto funcionamiento, se han realizado las siguientes puestas fuera de servicio de conducciones:

Puesta fuera de servicio de conducciones 1

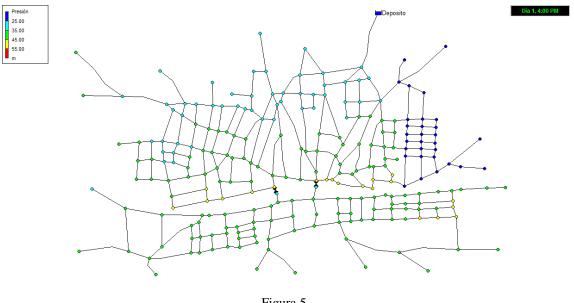
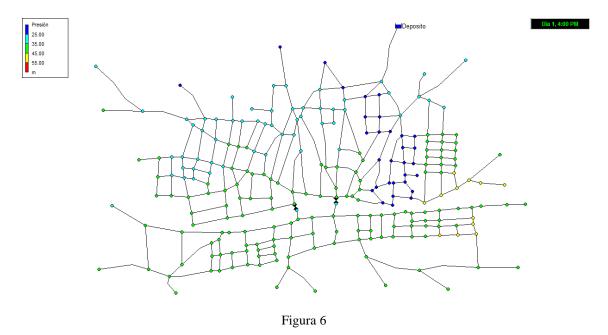


Figura 5

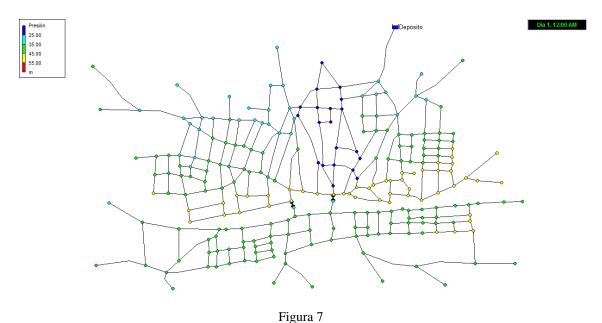

Presión mínima a la hora de mayor demanda (16:00 h):

Nudo 88 25.43 mca

Presión máxima a la hora de menos demanda (00:00 h)

Nudo 56 52,43 mca

Puesta fuera de servicio de conducciones 2

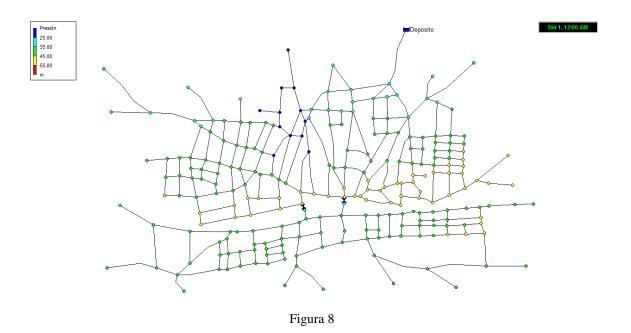

Presión mínima a la hora de mayor demanda (16:00 h):

Nudo 88 23,77 mca

Presión máxima a la hora de menos demanda (00:00 h)

Nudo 40; 27; 44; 53,47 mca

Puesta fuera de servicio de conducciones 3

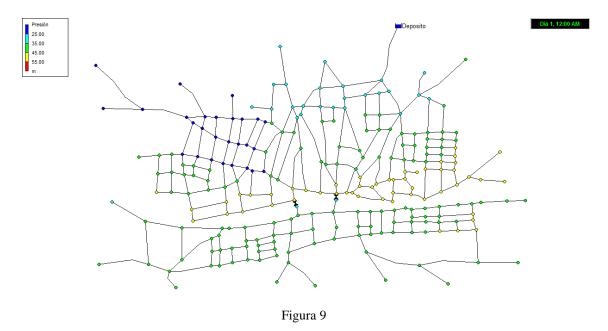

Presión mínima a la hora de mayor demanda (16:00 h):

Nudo 88 22,55 mca

Presión máxima a la hora de menos demanda (00:00 h)

Nudo 40; 44; 27; 53,29 mca

Puesta fuera de servicio de conducciones 4

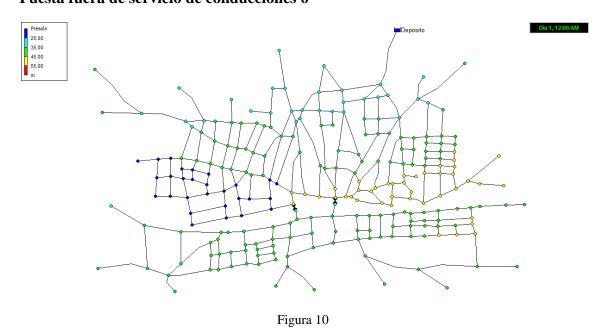

Presión mínima a la hora de mayor demanda (16:00 h):

Nudo 10 25,55 mca

Presión máxima a la hora de menos demanda (00:00 h)

Nudo 40; 44; 27; 53,43 m

Puesta fuera de servicio de conducciones 5

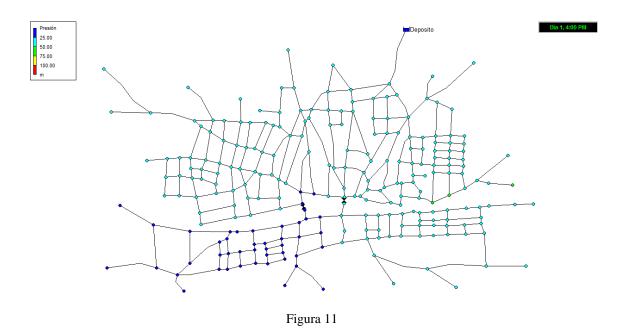

Presión mínima a la hora de mayor demanda (16:00 h):

Nudo 88 25.46 mca

Presión máxima a la hora de menos demanda (00:00 h)

Nudo 40; 27; 44; 53,44 mca

Puesta fuera de servicio de conducciones 6


Presión mínima a la hora de mayor demanda (16:00 h):

Nudo 88 25,44 mca

Presión máxima a la hora de menos demanda (00:00 h)

Nudo 40; 44; 27; 53,44 mca

Puesta fuera de servicio de conducciones 7


Presión mínima a la hora de mayor demanda (16:00 h):

Nudo 88 25,38 mca

Presión máxima a la hora de menos demanda (00:00 h)

Nudo 40; 27; 44; 53,44 mca

Puesta fuera de servicio de conducciones 8

Presión mínima a la hora de mayor demanda (16:00 h):

Nudo 88 25,23 mca

Presión máxima a la hora de menos demanda (00:00 h)

Nudo 40; 27; 44 53,45 mca

Puesta fuera de servicio de conducciones 9

Cerramos válvula reductora 250

Presión mínima a la hora de mayor demanda (16:00 h):

Nudo 88 25,48 mca

Presión máxima a la hora de menos demanda (00:00 h)

Nudo 40; 44; 27; 53,44 mca

Puesta fuera de servicio de conducciones 10

Cerramos válvula 276

Presión mínima a la hora de mayor demanda (16:00 h):

Nudo 88 25,40 mca

Presión máxima a la hora de menos demanda (00:00 h)

Nudo 40; 27; 44; 53,44 mca

4.8- ANALISIS DE LA RED EN LA PUESTA FUERA DE SERVICIO DE CONDUCCIONES MÁS DESFAVORABLE

Estado de los nudos de la red en condiciones de la puesta fuera de servicio de conducciones más desfavorable (puesta fuera de servicio de conducciones 3):

	Demanda Base	Demanda	Presión
ID Nudo	LPS	LPS	m
Nudo 3	1.3468	2.15	25.87
Nudo 4	0.1039	0.17	27.68
Nudo 5	0.0653	0.1	27.56
Nudo 6	0.048	0.08	32.33
Nudo 7	0.0969	0.16	33.27
Nudo 8	0.1695	0.27	30.03
Nudo 9	0.1613	0.26	29.88
Nudo 10	0.0318	0.05	24.88
Nudo 11	0.0793	0.13	31.88
Nudo 12	0.0821	0.13	29.83
Nudo 13	0.058	0.09	32.78
Nudo 14	0.0844	0.14	37.72
Nudo 15	0.0922	0.15	35.72
Nudo 16	0.0509	0.08	34.73
Nudo 17	0.0973	0.16	35.77
Nudo 18	0.0805	0.13	35.03
Nudo 19	0.0955	0.15	35.19
Nudo 20	0.017	0.03	34.26
Nudo 21	0.083	0.13	27.55
Nudo 22	0.04	0.06	37.71
Nudo 23	0.041	0.07	38.69
Nudo 24	0.039	0.06	38.68
Nudo 25	0.0577	0.09	40.67
Nudo 26	0.072	0.12	41.66
Nudo 27	0.0844	0.14	49.6
Nudo 28	0.0593	0.09	38.7

Nudo 29	0.0598	0.1	39.69
	0.0576	0.1	
Nudo 30			40.68
Nudo 31	0.0598	0.1	41.67
Nudo 32	0.0796	0.13	43.66
Nudo 33	0.0291	0.05	38.71
Nudo 34	0.0391	0.06	39.7
Nudo 35	0.0397	0.06	41.69
Nudo 36	0.0391	0.06	42.68
Nudo 37	0.0383	0.06	43.67
Nudo 38	0.0479	0.08	45.66
Nudo 39	0.0629	0.1	48.64
Nudo 40	0.0777	0.12	49.63
Nudo 41	0.0896	0.14	48.64
Nudo 42	0.0539	0.09	42.64
Nudo 43	0.0491	0.08	48.64
Nudo 44	0.0327	0.05	49.64
Nudo 45	0.0504	0.08	39.67
Nudo 46	0.0528	0.08	37.71
Nudo 47	0.0519	0.08	37.71
Nudo 48	0.0668	0.11	39.65
Nudo 49	0.0419	0.07	41.59
Nudo 50	0.0163	0.03	41.59
Nudo 51	0.0411	0.07	43.55
Nudo 52	0.0212	0.03	43.47
Nudo 53	0.0705	0.11	43.45
Nudo 54	0.0837	0.13	38.63
Nudo 55	0.0542	0.09	46.45
Nudo 56	0.0534	0.09	48.56
Nudo 57	0.0255	0.04	46.56
Nudo 58	0.0259	0.04	47.33
Nudo 59	0.0685	0.11	46.19
Nudo 60	0.0454	0.07	43.19
Nudo 61	0.0632	0.1	43.3
Nudo 62	0.1159	0.19	36.62
Nudo 63	0.0627	0.1	-319137
Nudo 64	0.0422	0.07	41.95
Nudo 65	0.0305	0.05	43.77
Nudo 66	0.043	0.07	43.87
Nudo 67	0.0912	0.15	-319138
Nudo 68	0.0922	0.15	-319140
Nudo 69	0.1126	0.18	-319140
Nudo 70	0.1187	0.19	-319141
Nudo 71	0.0716	0.11	-319141
Nudo 72	0.0993	0.16	-319142
Nudo 73	0.1043	0.17	-319143

Nuda 74	0.1.121	0.22	210150
Nudo 74	0.1421	0.23	-319150
Nudo 75	0.0514	0.08	-319149
Nudo 76	0.1088	0.17	-319149
Nudo 77	0.0941	0.15	-319145
Nudo 78	0.0337	0.05	-319146
Nudo 79	0.1064	0.17	-319149
Nudo 80	0.0882	0.14	-319148
Nudo 81	0.085	0.14	28.56
Nudo 82	0.0981	0.16	26.55
Nudo 83	0.1011	0.16	25.55
Nudo 84	0.1413	0.23	-319154
Nudo 85	0.1274	0.2	-319153
Nudo 86	0.0775	0.12	-319154
Nudo 87	0.0504	0.08	25.55
Nudo 88	0.0523	0.08	22.55
Nudo 89	0.0577	0.09	-319151
Nudo 90	0.0721	0.12	-319136
Nudo 91	0.0477	0.08	43.3
Nudo 92	0.0557	0.09	43.61
Nudo 93	0.0832	0.13	42.01
Nudo 94	0.0948	0.15	40.77
Nudo 95	0.1145	0.18	40.62
Nudo 96	0.1561	0.25	32.62
Nudo 97	0.1012	0.16	37.58
Nudo 98	0.1082	0.17	37.56
Nudo 99	0.1689	0.27	29.55
Nudo 100	0.0472	0.08	29.55
Nudo 101	0.0588	0.09	29.55
Nudo 102	0.0702	0.11	29.55
Nudo 103	0.0677	0.11	29.54
Nudo 104	0.0885	0.14	34.54
Nudo 105	0.061	0.1	34.55
Nudo 106	0.094	0.15	33.55
Nudo 107	0.0786	0.13	36.55
Nudo 108	0.0565	0.09	36.55
Nudo 109	0.0535	0.09	37.56
Nudo 110	0.1034	0.17	29.56
Nudo 111	0.0852	0.14	35.54
Nudo 112	0.091	0.15	33.54
Nudo 113	0.0806	0.13	31.54
Nudo 114	0.0981	0.16	32.54
Nudo 115	0.0935	0.15	34.54
Nudo 116	0.0984	0.16	30.54
Nudo 117	0.0653	0.1	29.54
Nudo 118	0.113	0.18	28.54

Nudo 119 0.0972 0.16 27.54 Nudo 120 0.0908 0.15 29.54 Nudo 121 0.0709 0.11 28.54 Nudo 122 0.0939 0.15 29.54 Nudo 123 0.0791 0.13 29.54 Nudo 124 0.0791 0.13 33.55 Nudo 125 0.202 0.32 28.54 Nudo 126 0.0532 0.09 35.54 Nudo 127 0.0876 0.14 33.54 Nudo 128 0.0571 0.09 23.54 Nudo 129 0.0316 0.05 25.54 Nudo 130 0.0796 0.13 28.55 Nudo 131 0.027 0.04 27.55 Nudo 132 0.0276 0.04 37.54 Nudo 133 0.0696 0.11 34.54 Nudo 134 0.0557 0.09 31.54 Nudo 136 0.0701 0.11 37.54 Nudo 137 0.0985 0.16 36.54	ļ
Nudo 121 0.0709 0.11 28.54 Nudo 122 0.0939 0.15 29.54 Nudo 123 0.0791 0.13 29.54 Nudo 124 0.0791 0.13 33.55 Nudo 125 0.202 0.32 28.54 Nudo 126 0.0532 0.09 35.54 Nudo 127 0.0876 0.14 33.54 Nudo 128 0.0571 0.09 23.54 Nudo 130 0.0796 0.13 28.55 Nudo 131 0.027 0.04 27.55 Nudo 132 0.0276 0.04 37.54 Nudo 133 0.0696 0.11 34.54 Nudo 134 0.0557 0.09 31.54 Nudo 135 0.0451 0.07 40.54 Nudo 137 0.0985 0.16 36.54 Nudo 138 0.0418 0.07 30.54 Nudo 139 0.064 0.1 29.54 Nudo 140 0.0514 0.08 33.54 </th <th></th>	
Nudo 122 0.0939 0.15 29.54 Nudo 123 0.0791 0.13 29.54 Nudo 124 0.0791 0.13 33.55 Nudo 125 0.202 0.32 28.54 Nudo 126 0.0532 0.09 35.54 Nudo 127 0.0876 0.14 33.54 Nudo 128 0.0571 0.09 23.54 Nudo 129 0.0316 0.05 25.54 Nudo 130 0.0796 0.13 28.55 Nudo 131 0.027 0.04 27.55 Nudo 132 0.0276 0.04 37.54 Nudo 133 0.0696 0.11 34.54 Nudo 134 0.0557 0.09 31.54 Nudo 135 0.0451 0.07 40.54 Nudo 137 0.0985 0.16 36.54 Nudo 138 0.0418 0.07 30.54 Nudo 140 0.0514 0.08 33.54	
Nudo 123 0.0791 0.13 29.54 Nudo 124 0.0791 0.13 33.55 Nudo 125 0.202 0.32 28.54 Nudo 126 0.0532 0.09 35.54 Nudo 127 0.0876 0.14 33.54 Nudo 128 0.0571 0.09 23.54 Nudo 129 0.0316 0.05 25.54 Nudo 130 0.0796 0.13 28.55 Nudo 131 0.027 0.04 27.55 Nudo 132 0.0276 0.04 37.54 Nudo 133 0.0696 0.11 34.54 Nudo 134 0.0557 0.09 31.54 Nudo 135 0.0451 0.07 40.54 Nudo 136 0.0701 0.11 37.54 Nudo 137 0.0985 0.16 36.54 Nudo 138 0.0418 0.07 30.54 Nudo 139 0.064 0.1 29.54 Nudo 140 0.0514 0.08 33.54 </th <th></th>	
Nudo 124 0.0791 0.13 33.55 Nudo 125 0.202 0.32 28.54 Nudo 126 0.0532 0.09 35.54 Nudo 127 0.0876 0.14 33.54 Nudo 128 0.0571 0.09 23.54 Nudo 129 0.0316 0.05 25.54 Nudo 130 0.0796 0.13 28.55 Nudo 131 0.027 0.04 27.55 Nudo 132 0.0276 0.04 37.54 Nudo 133 0.0696 0.11 34.54 Nudo 134 0.0557 0.09 31.54 Nudo 135 0.0451 0.07 40.54 Nudo 136 0.0701 0.11 37.54 Nudo 137 0.0985 0.16 36.54 Nudo 139 0.064 0.1 29.54 Nudo 140 0.0514 0.08 33.54	
Nudo 125 0.202 0.32 28.54 Nudo 126 0.0532 0.09 35.54 Nudo 127 0.0876 0.14 33.54 Nudo 128 0.0571 0.09 23.54 Nudo 129 0.0316 0.05 25.54 Nudo 130 0.0796 0.13 28.55 Nudo 131 0.027 0.04 27.55 Nudo 132 0.0276 0.04 37.54 Nudo 133 0.0696 0.11 34.54 Nudo 134 0.0557 0.09 31.54 Nudo 135 0.0451 0.07 40.54 Nudo 136 0.0701 0.11 37.54 Nudo 137 0.0985 0.16 36.54 Nudo 138 0.0418 0.07 30.54 Nudo 139 0.064 0.1 29.54 Nudo 140 0.0514 0.08 33.54	ļ
Nudo 126 0.0532 0.09 35.54 Nudo 127 0.0876 0.14 33.54 Nudo 128 0.0571 0.09 23.54 Nudo 129 0.0316 0.05 25.54 Nudo 130 0.0796 0.13 28.55 Nudo 131 0.027 0.04 27.55 Nudo 132 0.0276 0.04 37.54 Nudo 133 0.0696 0.11 34.54 Nudo 134 0.0557 0.09 31.54 Nudo 135 0.0451 0.07 40.54 Nudo 136 0.0701 0.11 37.54 Nudo 137 0.0985 0.16 36.54 Nudo 139 0.064 0.1 29.54 Nudo 140 0.0514 0.08 33.54	
Nudo 127 0.0876 0.14 33.54 Nudo 128 0.0571 0.09 23.54 Nudo 129 0.0316 0.05 25.54 Nudo 130 0.0796 0.13 28.55 Nudo 131 0.027 0.04 27.55 Nudo 132 0.0276 0.04 37.54 Nudo 133 0.0696 0.11 34.54 Nudo 134 0.0557 0.09 31.54 Nudo 135 0.0451 0.07 40.54 Nudo 136 0.0701 0.11 37.54 Nudo 137 0.0985 0.16 36.54 Nudo 138 0.0418 0.07 30.54 Nudo 139 0.064 0.1 29.54 Nudo 140 0.0514 0.08 33.54	
Nudo 128 0.0571 0.09 23.54 Nudo 129 0.0316 0.05 25.54 Nudo 130 0.0796 0.13 28.55 Nudo 131 0.027 0.04 27.55 Nudo 132 0.0276 0.04 37.54 Nudo 133 0.0696 0.11 34.54 Nudo 134 0.0557 0.09 31.54 Nudo 135 0.0451 0.07 40.54 Nudo 136 0.0701 0.11 37.54 Nudo 137 0.0985 0.16 36.54 Nudo 138 0.0418 0.07 30.54 Nudo 139 0.064 0.1 29.54 Nudo 140 0.0514 0.08 33.54	ļ.
Nudo 129 0.0316 0.05 25.54 Nudo 130 0.0796 0.13 28.55 Nudo 131 0.027 0.04 27.55 Nudo 132 0.0276 0.04 37.54 Nudo 133 0.0696 0.11 34.54 Nudo 134 0.0557 0.09 31.54 Nudo 135 0.0451 0.07 40.54 Nudo 136 0.0701 0.11 37.54 Nudo 137 0.0985 0.16 36.54 Nudo 138 0.0418 0.07 30.54 Nudo 139 0.064 0.1 29.54 Nudo 140 0.0514 0.08 33.54	1
Nudo 130 0.0796 0.13 28.55 Nudo 131 0.027 0.04 27.55 Nudo 132 0.0276 0.04 37.54 Nudo 133 0.0696 0.11 34.54 Nudo 134 0.0557 0.09 31.54 Nudo 135 0.0451 0.07 40.54 Nudo 136 0.0701 0.11 37.54 Nudo 137 0.0985 0.16 36.54 Nudo 138 0.0418 0.07 30.54 Nudo 139 0.064 0.1 29.54 Nudo 140 0.0514 0.08 33.54	ļ
Nudo 131 0.027 0.04 27.55 Nudo 132 0.0276 0.04 37.54 Nudo 133 0.0696 0.11 34.54 Nudo 134 0.0557 0.09 31.54 Nudo 135 0.0451 0.07 40.54 Nudo 136 0.0701 0.11 37.54 Nudo 137 0.0985 0.16 36.54 Nudo 138 0.0418 0.07 30.54 Nudo 139 0.064 0.1 29.54 Nudo 140 0.0514 0.08 33.54	1
Nudo 132 0.0276 0.04 37.54 Nudo 133 0.0696 0.11 34.54 Nudo 134 0.0557 0.09 31.54 Nudo 135 0.0451 0.07 40.54 Nudo 136 0.0701 0.11 37.54 Nudo 137 0.0985 0.16 36.54 Nudo 138 0.0418 0.07 30.54 Nudo 139 0.064 0.1 29.54 Nudo 140 0.0514 0.08 33.54	5
Nudo 133 0.0696 0.11 34.54 Nudo 134 0.0557 0.09 31.54 Nudo 135 0.0451 0.07 40.54 Nudo 136 0.0701 0.11 37.54 Nudo 137 0.0985 0.16 36.54 Nudo 138 0.0418 0.07 30.54 Nudo 139 0.064 0.1 29.54 Nudo 140 0.0514 0.08 33.54	5
Nudo 134 0.0557 0.09 31.54 Nudo 135 0.0451 0.07 40.54 Nudo 136 0.0701 0.11 37.54 Nudo 137 0.0985 0.16 36.54 Nudo 138 0.0418 0.07 30.54 Nudo 139 0.064 0.1 29.54 Nudo 140 0.0514 0.08 33.54	ļ.
Nudo 135 0.0451 0.07 40.54 Nudo 136 0.0701 0.11 37.54 Nudo 137 0.0985 0.16 36.54 Nudo 138 0.0418 0.07 30.54 Nudo 139 0.064 0.1 29.54 Nudo 140 0.0514 0.08 33.54	ļ
Nudo 136 0.0701 0.11 37.54 Nudo 137 0.0985 0.16 36.54 Nudo 138 0.0418 0.07 30.54 Nudo 139 0.064 0.1 29.54 Nudo 140 0.0514 0.08 33.54	ļ.
Nudo 137 0.0985 0.16 36.54 Nudo 138 0.0418 0.07 30.54 Nudo 139 0.064 0.1 29.54 Nudo 140 0.0514 0.08 33.54	1
Nudo 138 0.0418 0.07 30.54 Nudo 139 0.064 0.1 29.54 Nudo 140 0.0514 0.08 33.54	ļ.
Nudo 139 0.064 0.1 29.54 Nudo 140 0.0514 0.08 33.54	ļ
Nudo 140 0.0514 0.08 33.54	ļ
	ļ
No. do 444 0.0477 0.00 24.54	ļ
Nudo 141 0.0477 0.08 34.54	ļ
Nudo 142 0.0257 0.04 31.54	ļ
Nudo 143 0.0898 0.14 31.54	ļ
Nudo 144 0.0627 0.1 36.54	ļ
Nudo 145 0.0933 0.15 38.54	ļ
Nudo 146 0.0817 0.13 38.55	5
Nudo 147 0.0563 0.09 40.55	5
Nudo 148 0.0751 0.12 40.55	5
Nudo 149 0.0678 0.11 41.56	5
Nudo 150 0.0862 0.14 43.56	5
Nudo 151 0.0853 0.14 43.55	5
Nudo 152 0.0844 0.14 43.54	ļ
Nudo 153 0.0629 0.1 43.54	ļ
Nudo 154 0.0843 0.13 42.54	ļ
Nudo 155 0.0468 0.07 42.57	7
Nudo 156 0.0873 0.14 33.54	1
Nudo 157 0.069 0.11 37.54	1
Nudo 158 0.0854 0.14 41.54	ļ
Nudo 159 0.1606 0.26 35.92	
Nudo 160 0.1562 0.25 38.92	
Nudo 161 0.0682 0.11 40.92	
Nudo 162 0.1477 0.24 36.92	
Nudo 163 0.116 0.19 39.92	2

Nudo 164	0.1362	0.22	38.92
Nudo 164 Nudo 165		0.22	
	0.0265		37.92
Nudo 166	0.0783	0.13	38.92
Nudo 167	0.0483	0.08	40.92
Nudo 168	0.0876	0.14	41.92
Nudo 169	0.0686	0.11	40.92
Nudo 170	0.0506	0.08	41.92
Nudo 171	0.0414	0.07	37.92
Nudo 172	0.0741	0.12	37.92
Nudo 173	0.0307	0.05	37.92
Nudo 174	0.0794	0.13	37.93
Nudo 175	0.0459	0.07	39.93
Nudo 176	0.0554	0.09	39.92
Nudo 177	0.0584	0.09	41.92
Nudo 178	0.0554	0.09	41.93
Nudo 179	0.0804	0.13	37.94
Nudo 180	0.0402	0.06	38.93
Nudo 181	0.0455	0.07	38.93
Nudo 182	0.0729	0.12	38.94
Nudo 183	0.0407	0.07	39.93
Nudo 184	0.0377	0.06	39.93
Nudo 185	0.0422	0.07	40.93
Nudo 186	0.0413	0.07	39.93
Nudo 187	0.0523	0.08	41.93
Nudo 188	0.0331	0.05	40.93
Nudo 189	0.0766	0.12	41.95
Nudo 190	0.0926	0.15	41.95
Nudo 191	0.0306	0.05	40.95
Nudo 192	0.0483	0.08	40.95
Nudo 193	0.0991	0.16	38.95
Nudo 194	0.0537	0.09	37.96
Nudo 195	0.0508	0.08	37.97
Nudo 196	0.069	0.11	36.96
Nudo 197	0.0707	0.11	37.95
Nudo 198	0.084	0.13	39.95
Nudo 199	0.1087	0.17	36.96
Nudo 200	0.07	0.11	37.94
Nudo 201	0.037	0.06	39.95
Nudo 202	0.0488	0.08	39.93
Nudo 203	0.0777	0.12	41.95
Nudo 204	0.0861	0.14	41.93
Nudo 205	0.0475	0.08	40.93
Nudo 206	0.0519	0.08	37.93
Nudo 207	0.0408	0.07	42.93
Nudo 208	0.0595	0.1	42.93
14440 200	0.0333	0.1	74.33

Nudo 209	0.062	0.1	38.93
Nudo 210	0.0491	0.08	39.92
Nudo 211	0.0551	0.09	42.92
Nudo 212	0.0551	0.09	42.92
Nudo 213	0.0237	0.04	40.92
Nudo 214	0.0372	0.06	40.92
Nudo 215	0.0377	0.06	41.92
Nudo 216	0.0351	0.06	41.92
Nudo 217	0.0638	0.1	41.92
Nudo 218	0.0369	0.06	42.92
Nudo 219	0.0369	0.06	42.92
Nudo 220	0.0376	0.06	44.92
Nudo 221	0.0558	0.09	45.92
Nudo 222	0.0614	0.1	44.92
Nudo 223	0.0858	0.14	44.92
Nudo 224	0.0584	0.09	42.92
Nudo 225	0.0439	0.07	44.92
Nudo 226	0.0477	0.08	44.92
Nudo 227	0.0677	0.11	45.92
Nudo 228	0.0497	0.08	46.92
Nudo 229	0.059	0.09	44.92
Nudo 230	ido 230 0.0608		45.92
Nudo 231	ludo 231 0.0885		46.92
Nudo 232	0.1455	0.23	42.93
Nudo 233	0.0463	0.07	40.93
Nudo 234	0.201	0.32	43.92
Nudo 235	0.1783	0.29	44.92
Nudo 236	0.0537	0.09	44.92
Nudo 237	0.0461	0.07	41.92
Nudo 238	0.0538	0.09	40.92
Nudo 239	0.0447	0.07	44.92
Nudo 240	0.0601	0.1	43.92
Nudo 241	0.025	0.04	43.92
Nudo 242	0.0521	0.08	32.92
Nudo 243	0.0256	0.04	35
Nudo 244	0.0212	0.03	35

Tabla 13

Estado de las líneas de la red en condiciones de la puesta fuera de servicio de conducciones más desfavorable:

	Caudal	Velocidad	Pérdida Unit.
ID Línea	LPS	m/s	m/km
Tubería 1	29.18	0.59	1.37
Tubería 2	9.9	0.5	1.74
Tubería 3	5.51	0.58	3.58
Tubería 4	16.82	0.85	4.74
Tubería 5	15.86	0.8	4.23
Tubería 6	-4.41	0.46	2.36
Tubería 7	-2.67	0.28	0.93
Tubería 8	2.77	0.29	1
Tubería 9	2.74	0.29	0.99
Tubería 10	5.05	0.53	3.04
Tubería 11	0.11	0.01	0
Tubería 12	3.93	0.41	1.91
Tubería 13	-0.86	0.09	0.12
Tubería 14	4.66	0.49	2.62
Tubería 15	2.76	0.29	0.99
Tubería 16	7.81	0.4	1.12
Tubería 17	0.05	0.01	0
Tubería 18	0.13	0.01	0
Tubería 19	7.38	0.37	1.01
Tubería 20	5.12	0.26	0.52
Tubería 21	5.03	0.25	0.5
Tubería 22	2.13	0.22	0.62
Tubería 23	12.29	0.62	2.62
Tubería 24	0.5	0.05	0.05
Tubería 25	0.55	0.06	0.06
Tubería 26	2.09	0.22	0.6
Tubería 27	1.02	0.11	0.17
Tubería 28	1.93	0.2	0.52
Tubería 29	-1.58	0.17	0.36
Tubería 30	1.51	0.16	0.33
Tubería 31	1.42	0.15	0.3
Tubería 32	1.43	0.15	0.3
Tubería 33	-0.25	0.03	0.01
Tubería 34	0.06	0.01	0
Tubería 35	-1.41	0.15	0.29
Tubería 36	-1.42	0.15	0.3
Tubería 37	-1.4	0.15	0.29
Tubería 38	-1.42	0.15	0.3
Tubería 39	-0.98	0.1	0.15
Tubería 40	4.42	0.22	0.4

-			2 2=
Tubería 41	4.11	0.21	0.35
Tubería 42	3.98	0.2	0.33
Tubería 43	3.82	0.19	0.3
Tubería 44	3.61	0.18	0.27
Tubería 45	0.29	0.03	0.02
Tubería 46	0.5	0.05	0.05
Tubería 47	0	0	0
Tubería 48	0.04	0	0
Tubería 49	0.03	0	0
Tubería 50	0.09	0.01	0
Tubería 51	-0.08	0.01	0
Tubería 52	0.04	0	0
Tubería 53	1.56	0.16	0.36
Tubería 54	-3.98	0.2	0.33
Tubería 55	-3.17	0.16	0.22
Tubería 56	1.39	0.15	0.29
Tubería 57	-0.93	0.05	0.02
Tubería 58	0.36	0.02	0
Tubería 59	0.09	0.01	0
Tubería 60	0.13	0.01	0
Tubería 61	0.05	0.01	0
Tubería 62	1.51	0.16	0.33
Tubería 63	1.9	0.2	0.51
Tubería 64	7.31	0.37	0.99
Tubería 65	6.74	0.34	0.85
Tubería 66	-1.8	0.19	0.46
Tubería 67	7.28	0.37	1
Tubería 68	0.03	0	0
Tubería 69	7.18	0.36	0.96
Tubería 70	9.19	0.47	1.52
Tubería 71	-2.08	0.11	0.1
Tubería 72	-2.12	0.11	0.11
Tubería 73	1.59	0.17	0.37
Tubería 74	-3.2	0.34	1.31
Tubería 75	-5.4	0.27	0.57
Tubería 76	4.71	0.49	2.67
Tubería 77	4.67	0.49	2.63
Tubería 78	-0.18	0.02	0
Tubería 79	-15.44	0.78	4.03
Tubería 80	-11.21	0.57	2.2
Tubería 81	-7.57	0.38	1.06
Tubería 82	4.81	0.5	2.78
Tubería 83	4.33	0.45	2.29
Tubería 84	2.73	0.29	0.98
Tubería 85	-1.16	0.12	0.21
	0		J

Tubería 86	3.75	0.39	1.75
Tubería 87	0.48	0.05	0.05
Tubería 88	0.48	0.03	0.03
Tubería 89	15.19	0.77	3.9
Tubería 90	0	0.77	0
Tubería 91	0.49	0.05	0
Tuberia 91 Tuberia 92	0.49	0.03	0
Tuberia 92	0.27	0.03	0
Tuberia 93	0	0	0
Tubería 95	0.08	0	0
Tubería 96	-0.21	0.01	0
Tubería 97	-0.21	0.01	0
Tubería 98	-0.17	0.02	0.51
Tubería 98			
Tuberia 99	-0.2	0.01	0
Tubería 100	-0.2	0.01	0.19
Tubería 101	14.82	0.04	3.73
Tuberia 102	-4.67	0.73	2.63
Tubería 103	-4.74	0.49	2.03
Tuberia 104	0.12	0.01	0
Tubería 105	-0.08	0.01	0
Tubería 107	0.1	0.01	0
Tubería 108	-0.01	0.01	0
Tubería 109	-0.07	0.01	0
Tubería 110	-0.18	0.02	0
Tubería 111	0.03	0.02	0
Tubería 112	-0.08	0.01	0
Tubería 113	0.13	0.01	0
Tubería 114	-0.08	0.01	0
Tubería 115	-0.04	0	0
Tubería 116	-0.02	0	0
Tubería 117	0.13	0.01	0
Tubería 118	0.07	0.01	0
Tubería 119	0.05	0.01	0
Tubería 120	-0.15	0.01	0
Tubería 121	-0.18	0.02	0
Tubería 122	0	0	0
Tubería 123	0.92	0.1	0.14
Tubería 124	0.55	0.03	0.01
Tubería 125	0.08	0.01	0
Tubería 126	0.3	0.03	0.02
Tubería 127	0	0	0
Tubería 128	0.03	0	0
Tubería 129	0	0	0
Tubería 130	19.44	0.98	6.24

Tuborío 131	10.06	0.06	6
Tubería 131	19.06	0.96	6
Tubería 132	0	0	0
Tubería 133	0.1	0.01	0
Tubería 134	0.08	0.01	0
Tubería 135	0	0	0
Tubería 136	-14.47	0.73	3.56
Tubería 137	14.04	0.71	3.36
Tubería 138	2.3	0.24	0.71
Tubería 139	1.7	0.18	0.41
Tubería 140	0.35	0.04	0.03
Tubería 141	-11.59	0.59	2.34
Tubería 142	5.04	0.26	0.5
Tubería 143	4.27	0.22	0.37
Tubería 144	2.47	0.12	0.14
Tubería 145	0.47	0.05	0.04
Tubería 146	-0.25	0.03	0.01
Tubería 147	-0.79	0.08	0.11
Tubería 148	-0.35	0.04	0.03
Tubería 149	-0.61	0.06	0.07
Tubería 150	-1.18	0.06	0.04
Tubería 151	1.38	0.07	0.05
Tubería 152	1.35	0.07	0.05
Tubería 153	1.26	0.06	0.04
Tubería 154	1.07	0.05	0.03
Tubería 155	1.05	0.05	0.03
Tubería 156	0.84	0.04	0.02
Tubería 157	0.72	0.04	0.02
Tubería 158	0.42	0.02	0.01
Tubería 159	-0.29	0.01	0
Tubería 160	-0.2	0.02	0.01
Tubería 161	-0.26	0.03	0.01
Tubería 162	-0.35	0.04	0.03
Tubería 163	-0.41	0.04	0.03
Tubería 164	-0.47	0.05	0.04
Tubería 165	-0.49	0.05	0.05
Tubería 166	-0.59	0.06	0.06
Tubería 167	0	0	0
Tubería 168	0.08	0.01	0
Tubería 169	-0.09	0.01	0
Tubería 170	0	0	0
Tubería 171	0.01	0	0
Tubería 172	0.03	0	0
Tubería 173	-0.2	0.01	0
Tubería 174	-0.39	0.02	0
Tubería 175	-0.62	0.03	0.01

Tubería 176	-1.06	0.05	0.03
Tubería 177	-1.26		0.03
		0.06	
Tubería 178	-1.31	0.07	0.04
Tubería 179	-1.87	0.09	0.08
Tubería 180	-1.92	0.1	0.09
Tubería 181	-0.06	0.01	0
Tubería 182	-0.17	0.02	0
Tubería 183	-0.09	0.01	0
Tubería 184	-0.05	0.01	0
Tubería 185	-0.05	0.01	0
Tubería 186	0.22	0.02	0.01
Tubería 187	0.05	0.01	0
Tubería 188	0.04	0	0
Tubería 189	0.05	0.01	0
Tubería 190	0.09	0.01	0
Tubería 191	0.55	0.03	0.01
Tubería 192	0.14	0.01	0
Tubería 193	0.09	0.01	0
Tubería 194	-0.08	0	0
Tubería 195	0	0	0
Tubería 196	-0.04	0	0
Tubería 197	-0.19	0.01	0
Tubería 198	-0.29	0.01	0
Tubería 199	0.03	0	0
Tubería 200	-0.01	0	0
Tubería 201	0.01	0	0
Tubería 202	-0.03	0	0
Tubería 203	-0.24	0.01	0
Tubería 204	-0.2	0.01	0
Tubería 205	-0.42	0.02	0.01
Tubería 206	-0.06	0.01	0
Tubería 207	-0.16	0.02	0
Tubería 208	-0.09	0.01	0
Tubería 209	-0.23	0.02	0.01
Tubería 210	-0.11	0.01	0
Tubería 211	-0.15	0.02	0
Tubería 212	-0.09	0.01	0
Tubería 213	-0.14	0.01	0
Tubería 214	0.05	0	0
Tubería 215	-0.01	0	0
Tubería 216	0.26	0.03	0.01
Tubería 217	0.02	0	0
Tubería 218	-0.2	0.02	0.01
Tubería 219	-0.07	0.01	0
Tubería 220	-0.74	0.04	0.02

Tubería 221	-0.65	0.03	0.01
Tuberia 221	-0.03	0.03	0.01
	0.44		
Tubería 223		0.05	0.04
Tubería 224	0.08	0.01	0
Tubería 225	-0.36	0.04	0.03
Tubería 226	-0.23	0.02	0.01
Tubería 227	-0.03	0	0
Tubería 228	-0.26	0.03	0.01
Tubería 229	-0.46	0.05	0.04
Tubería 230	-0.38	0.04	0.03
Tubería 231	-0.47	0.05	0.04
Tubería 232	-0.45	0.05	0.04
Tubería 233	0.04	0	0
Tubería 234	-1.33	0.07	0.05
Tubería 235	0.12	0.01	0
Tubería 236	-0.61	0.06	0.07
Tubería 237	0.45	0.05	0.04
Tubería 238	-0.27	0.03	0.01
Tubería 239	-1.58	0.08	0.06
Tubería 240	-1.99	0.1	0.09
Tubería 241	-6.71	0.34	0.85
Tubería 243	-0.14	0.01	0
Tubería 244	0.11	0.01	0
Tubería 245	-0.5	0.03	0.01
Tubería 246	0.04	0	0
Tubería 247	-0.45	0.02	0.01
Tubería 248	0.11	0.01	0
Tubería 249	-0.2	0.02	0.01
Tubería 251	-0.33	0.03	0.02
Tubería 252	-0.74	0.04	0.02
Tubería 253	-0.3	0.03	0.02
Tubería 254	-0.11	0.01	0
Tubería 255	-0.57	0.03	0.01
Tubería 256	0.12	0.01	0
Tubería 257	0.31	0.03	0.02
Tubería 258	-0.33	0.03	0.02
Tubería 259	-0.02	0	0
Tubería 260	0.25	0.03	0.01
Tubería 261	-0.77	0.04	0.02
Tubería 262	-1.16	0.06	0.04
Tubería 263	0.03	0	0
Tubería 264	-0.39	0.04	0.03
Tubería 265	-0.46	0.05	0.04
Tubería 266	-0.51	0.05	0.05
Tubería 267	-0.35	0.04	0.03

T 1	0.20	0.02	0.04
Tubería 268	-0.28	0.03	0.01
Tubería 269	-0.03	0	0
Tubería 270	1.53	0.08	0.06
Tubería 271	1.38	0.07	0.05
Tubería 272	0.03	0	0
Tubería 273	-1.27	0.06	0.04
Tubería 274	0.09	0.01	0
Tubería 275	-0.55	0.06	0.06
Tubería 277	-0.6	0.06	0.07
Tubería 279	-0.64	0.07	0.07
Tubería 281	-1.13	0.12	0.2
Tubería 282	0.36	0.04	0.03
Tubería 283	0.88	0.09	0.13
Tubería 284	0.5	0.05	0.05
Tubería 285	0.3	0.03	0.02
Tubería 286	-1.64	0.08	0.07
Tubería 287	-0.32	0.03	0.02
Tubería 288	-0.13	0.01	0
Tubería 289	-0.25	0.03	0.01
Tubería 290	-2.27	0.12	0.12
Tubería 291	-2.27	0.11	0.12
Tubería 292	0.23	0.01	0
Tubería 293	0.27	0.01	0
Tubería 294	0.05	0.01	0
Tubería 295	0.08	0.01	0
Tubería 296	-0.17	0.01	0
Tubería 297	-0.5	0.05	0.05
Tubería 298	-1.01	0.11	0.16
Tubería 299	-0.39	0.04	0.03
Tubería 300	-3.48	0.18	0.26
Tubería 301	1.05	0.05	0.03
Tubería 303	-0.07	0	0
Tubería 305	0.89	0.09	0.13
Tubería 306	0.83	0.09	0.12
Tubería 307	0.2	0.02	0.01
Tubería 308	0.91	0.09	0.13
Tubería 309	3.04	0.15	0.2
Tubería 311	1.99	0.1	0.09
Tubería 312	1.48	0.07	0.05
Tubería 313	0.94	0.1	0.14
Tubería 314	0.14	0.01	0
Tubería 315	0.43	0.05	0.04
Tubería 316	1.04	0.05	0.03
Tubería 317	-0.5	0.05	0.05
Tubería 318	0.72	0.08	0.09

Tuborío 240	0.04	0	0
Tubería 319	0.04	0 07	0 05
Tubería 320 Tubería 321	1.47	0.07	0.05
	1.42	0.07	0.05
Tubería 322	0.32	0.03	0.02
Tubería 323	-0.11	0.01	0
Tubería 324	0.58	0.06	0.06
Tubería 325	0.39	0.04	0.03
Tubería 328	0.36	0.04	0.03
Tubería 329	0.04	0	0
Tubería 330	-0.26	0.03	0.01
Tubería 331	-0.27	0.03	0.01
Tubería 332	1 0.65	0.05	0.03
Tubería 333	0.65	0.03	0.01
Tubería 334	0.59	0.03	0.01
Tubería 335	0.26	0.03	0.01
Tubería 336	0.24	0.03	0.01
Tubería 337	0.35	0.04	0.02
Tubería 338	0.25	0.03	0.01
Tubería 340	0.19	0.02	0.01
Tubería 341	0.18	0.02	0.01
Tubería 342	-0.04	0 01	0
Tubería 343	-0.09	0.01	0 01
Tubería 344	0.2	0.02	0.01
Tubería 345 Tubería 346	-0.11 0.14	0.01	0
Tubería 346	0.14	0.01	0
Tuberia 349	0.12	0.01	0
Tubería 350	0.12	0.01	0
Tubería 351	0.08	0.01	0
Tubería 353	0.39	0.02	0
Tubería 354	-0.05	0.01	0
Tubería 355	-0.03	0.01	0
Tubería 356	-0.13	0.01	0
Tubería 357	-0.23	0.01	0
Tubería 358	1.2	0.06	0.04
Tubería 359	0.07	0.01	0.01
Tubería 360	0.9	0.05	0.02
Tubería 361	0.5	0.03	0.01
Tubería 362	0.09	0.01	0
Tubería 363	0.07	0.01	0
Tubería 364	0.07	0.01	0
Tubería 365	0.21	0.01	0
Tubería 366	-0.22	0.01	0
Tubería 367	0.14	0.01	0
Tubería 369	0.04	0	0
Tuberiu 303	0.01	ŭ	

Tubería 242	0.08	0.01	0
Tubería 370	0	0	0
Tubería 302	4.61	0.23	0.43
Tubería 304	4.17	0.22	0.37
Válvula 250	4.65	0.26	7.57
Válvula 276	4.21	0.24	8.3

Tabla 14

4.9-ANALISIS DE LA RED EN CONDICIONES DEL HIDRANTE MÁS DESFAVORABLE

Estado de los nudos de la red en condiciones del hidrante más desfavorable:

	Demanda Base	Demanda	Presión
ID Nudo	LPS	LPS	m
Nudo 3	16.66	16.66	16.65
Nudo 4	0.1039	0.17	18.28
Nudo 5	0.0653	0.1	18.31
Nudo 6	0.048	0.08	23.07
Nudo 7	0.0969	0.16	24.03
Nudo 8	16.66	16.66	20.87
Nudo 9	0.1613	0.26	20.86
Nudo 10	0.0318	0.05	15.86
Nudo 11	0.0793	0.13	22.86
Nudo 12	0.0821	0.13	20.86
Nudo 13	0.058	0.09	23.86
Nudo 14	0.0844	0.14	28.86
Nudo 15	0.0922	0.15	26.86
Nudo 16	0.0509	0.08	25.86
Nudo 17	0.0973	0.16	26.86
Nudo 18	0.0805	0.13	25.91
Nudo 19	0.0955	0.15	25.98
Nudo 20	0.017	0.03	25.02
Nudo 21	0.083	0.13	18.26
Nudo 22	0.04	0.06	28.86
Nudo 23	0.041	0.07	29.86
Nudo 24	0.039	0.06	29.86
Nudo 25	0.0577	0.09	31.86
Nudo 26	0.072	0.12	32.86
Nudo 27	0.0844	0.14	40.86
Nudo 28	0.0593	0.09	29.86
Nudo 29	0.0598	0.1	30.86
Nudo 30	0.0576	0.09	31.86
Nudo 31	0.0598	0.1	32.86

Nudo 32	0.0796	0.13	34.86
110.0.0			
Nudo 33	0.0291	0.05	29.86
Nudo 34	0.0391	0.06	30.86
Nudo 35	0.0397	0.06	32.86
Nudo 36	0.0391	0.06	33.86
Nudo 37	0.0383	0.06	34.86
Nudo 38	0.0479	0.08	36.86
Nudo 39	0.0629	0.1	39.86
Nudo 40	0.0777	0.12	40.86
Nudo 41	0.0896	0.14	39.86
Nudo 42	0.0539	0.09	33.86
Nudo 43	0.0491	0.08	39.86
Nudo 44	0.0327	0.05	40.86
Nudo 45	0.0504	0.08	30.86
Nudo 46	0.0528	0.08	28.86
Nudo 47	0.0519	0.08	28.86
Nudo 48	0.0668	0.11	30.86
Nudo 49	0.0419	0.07	32.86
Nudo 50	0.0163	0.03	32.86
Nudo 51	0.0411	0.07	34.86
Nudo 52	0.0212	0.03	34.86
Nudo 53	0.0705	0.11	34.86
Nudo 54	0.0837	0.13	29.86
Nudo 55	0.0542	0.09	37.86
Nudo 56	0.0534	0.09	39.86
Nudo 57	0.0255	0.04	37.86
Nudo 58	0.0259	0.04	38.86
Nudo 59	0.0685	0.11	37.86
Nudo 60	0.0454	0.07	34.86
Nudo 61	0.0632	0.1	34.86
Nudo 62	0.1159	0.19	27.88
Nudo 63	0.0627	0.1	32.88
Nudo 64	0.0422	0.07	33.86
Nudo 65	0.0305	0.05	35.86
Nudo 66	0.043	0.07	35.86
Nudo 67	0.0912	0.15	31.9
Nudo 68	0.0922	0.15	29.9
Nudo 69	0.1126	0.18	29.89
Nudo 70	0.1187	0.19	28.89
Nudo 71	0.0716	0.11	28.95
Nudo 72	0.0993	0.16	27.96
Nudo 73	0.1043	0.17	26.95
Nudo 74	0.1421	0.23	20.06
Nudo 75	0.0514	0.08	21
Nudo 76	0.1088	0.17	20.97

Nuda 77	0.0041	0.15	24.07
Nudo 77	0.0941	0.15	24.97
Nudo 78	0.0337	0.05	23.98
Nudo 79	0.1064	0.17	20.93
Nudo 80	0.0882	0.14	21.89
Nudo 81	0.085	0.14	21.87
Nudo 82	0.0981	0.16	19.88
Nudo 83	0.1011	0.16	18.87
Nudo 84	0.1413	0.23	16.18
Nudo 85	0.1274	0.2	17.05
Nudo 86	0.0775	0.12	16.1
Nudo 87	0.0504	0.08	18.86
Nudo 88	0.0523	0.08	15.87
Nudo 89	0.0577	0.09	19.15
Nudo 90	0.0721	0.12	33.87
Nudo 91	0.0477	0.08	35.86
Nudo 92	0.0557	0.09	35.86
Nudo 93	0.0832	0.13	34.84
Nudo 94	0.0948	0.15	33.82
Nudo 95	0.1145	0.18	33.8
Nudo 96	0.1561	0.25	25.83
Nudo 97	0.1012	0.16	30.8
Nudo 98	0.1082	0.17	30.8
Nudo 99	0.1689	0.27	22.82
Nudo 100	0.0472	0.08	22.82
Nudo 101	0.0588	0.09	22.81
Nudo 102	0.0702	0.11	22.8
Nudo 103	0.0677	0.11	22.79
Nudo 104	0.0885	0.14	27.79
Nudo 105	0.061	0.1	27.8
Nudo 106	0.094	0.15	26.8
Nudo 107	0.0786	0.13	29.79
Nudo 108	0.0565	0.09	29.79
Nudo 109	0.0535	0.09	30.8
Nudo 110	0.1034	0.17	22.83
Nudo 111	0.0852	0.14	28.79
Nudo 112	0.091	0.15	26.79
Nudo 113	0.0806	0.13	24.79
Nudo 114	0.0981	0.16	25.79
Nudo 115	0.0935	0.15	27.79
Nudo 116	0.0984	0.16	23.79
Nudo 117	0.0653	0.1	22.79
Nudo 118	0.113	0.18	21.79
Nudo 119	0.0972	0.16	20.78
Nudo 120	0.0908	0.15	22.78
Nudo 121	0.0709	0.11	21.78

Nudo 122	0.0020	0.15	22.70
	0.0939		22.78
Nudo 123	0.0791	0.13	22.78
Nudo 124	0.0791	0.13	26.8
Nudo 125	0.202	0.32	21.78
Nudo 126	0.0532	0.09	28.78
Nudo 127	0.0876	0.14	26.78
Nudo 128	0.0571	0.09	16.78
Nudo 129	0.0316	0.05	18.79
Nudo 130	0.0796	0.13	21.83
Nudo 131	0.027	0.04	20.83
Nudo 132	0.0276	0.04	30.78
Nudo 133	0.0696	0.11	27.78
Nudo 134	0.0557	0.09	24.78
Nudo 135	0.0451	0.07	33.78
Nudo 136	0.0701	0.11	30.78
Nudo 137	0.0985	0.16	29.78
Nudo 138	0.0418	0.07	23.78
Nudo 139	0.064	0.1	22.78
Nudo 140	0.0514	0.08	26.78
Nudo 141	0.0477	0.08	27.78
Nudo 142	0.0257	0.04	24.78
Nudo 143	0.0898	0.14	24.78
Nudo 144	0.0627	0.1	29.78
Nudo 145	0.0933	0.15	31.79
Nudo 146	0.0817	0.13	31.79
Nudo 147	0.0563	0.09	33.79
Nudo 148	0.0751	0.12	33.79
Nudo 149	0.0678	0.11	34.79
Nudo 150	0.0862	0.14	36.79
Nudo 151	0.0853	0.14	36.78
Nudo 152	0.0844	0.14	36.78
Nudo 153	0.0629	0.1	36.78
Nudo 154	0.0843	0.13	35.78
Nudo 155	0.0468	0.07	35.78
Nudo 156	0.0873	0.14	26.78
Nudo 157	0.069	0.11	30.78
Nudo 158	0.0854	0.14	34.78
Nudo 159	0.1606	0.26	35.92
Nudo 160	0.1562	0.25	38.92
Nudo 161	0.0682	0.11	40.92
Nudo 162	0.1477	0.24	36.92
Nudo 163	0.116	0.19	39.92
Nudo 164	0.1362	0.22	38.92
Nudo 165	0.0265	0.04	37.92
Nudo 166	0.0783	0.13	38.92

Nudo 167	0.0483	0.08	40.92
Nudo 167	0.0483	0.08	41.92
Nudo 168		0.14	40.92
Nudo 169	0.0686 0.0506	0.08	
			41.92
Nudo 171	0.0414	0.07	37.92
Nudo 172	0.0741	0.12	37.92
Nudo 173	0.0307	0.05	37.92
Nudo 174	0.0794	0.13	37.93
Nudo 175	0.0459	0.07	39.93
Nudo 176	0.0554	0.09	39.92
Nudo 177	0.0584	0.09	41.92
Nudo 178	0.0554	0.09	41.93
Nudo 179	0.0804	0.13	37.94
Nudo 180	0.0402	0.06	38.93
Nudo 181	0.0455	0.07	38.93
Nudo 182	0.0729	0.12	38.94
Nudo 183	0.0407	0.07	39.93
Nudo 184	0.0377	0.06	39.93
Nudo 185	0.0422	0.07	40.93
Nudo 186	0.0413	0.07	39.93
Nudo 187	0.0523	0.08	41.93
Nudo 188	0.0331	0.05	40.93
Nudo 189	0.0766	0.12	41.95
Nudo 190	0.0926	0.15	41.95
Nudo 191	0.0306	0.05	40.95
Nudo 192	0.0483	0.08	40.95
Nudo 193	0.0991	0.16	38.95
Nudo 194	0.0537	0.09	37.96
Nudo 195	0.0508	0.08	37.97
Nudo 196	0.069	0.11	36.96
Nudo 197	0.0707	0.11	37.95
Nudo 198	0.084	0.13	39.95
Nudo 199	0.1087	0.17	36.96
Nudo 200	0.07	0.11	37.94
Nudo 201	0.037	0.06	39.95
Nudo 202	0.0488	0.08	39.93
Nudo 203	0.0777	0.12	41.95
Nudo 204	0.0861	0.14	41.93
Nudo 205	0.0475	0.08	40.93
Nudo 206	0.0519	0.08	37.93
Nudo 207	0.0408	0.07	42.93
Nudo 208	0.0595	0.1	42.93
Nudo 209	0.062	0.1	38.93
Nudo 210	0.0491	0.08	39.92
Nudo 211	0.0551	0.09	42.92

Nudo 212	0.0551	0.09	42.92
Nudo 213	0.0237	0.04	40.92
Nudo 214	0.0372	0.06	40.92
Nudo 215	0.0377	0.06	41.92
Nudo 216	0.0351	0.06	41.92
Nudo 217	0.0638	0.1	41.92
Nudo 218	0.0369	0.06	42.92
Nudo 219	0.0369	0.06	42.92
Nudo 220	0.0376	0.06	44.92
Nudo 221	0.0558	0.09	45.92
Nudo 222	0.0614	0.1	44.92
Nudo 223	0.0858	0.14	44.92
Nudo 224	0.0584	0.09	42.92
Nudo 225	0.0439	0.07	44.92
Nudo 226	0.0477	0.08	44.92
Nudo 227	0.0677	0.11	45.92
Nudo 228	0.0497	0.08	46.92
Nudo 229	0.059	0.09	44.92
Nudo 230	0.0608	0.1	45.92
Nudo 231	0.0885	0.14	46.92
Nudo 232	0.1455	0.23	42.93
Nudo 233	0.0463	0.07	40.93
Nudo 234	0.201	0.32	43.92
Nudo 235	0.1783	0.29	44.92
Nudo 236	0.0537	0.09	44.92
Nudo 237	0.0461	0.07	41.92
Nudo 238	0.0538	0.09	40.92
Nudo 239	0.0447	0.07	44.92
Nudo 240	0.0601	0.1	43.92
Nudo 241	0.025	0.04	43.92
Nudo 242	0.0521	0.08	32.92
Nudo 243	0.0256	0.04	35
Nudo 244	0.0212	0.03	35

Tabla 15

Estado de las líneas de la red en condiciones del hidrante más desfavorable:

	Caudal	Velocidad	Pérdida Unit.
ID Línea	LPS	m/s	m/km
Tubería 1	60.07	1.22	5.41
Tubería 2	14.14	0.72	3.41
Tubería 3	4.19	0.44	2.15
Tubería 4	17.41	0.88	5.06
Tubería 5	14.42	0.73	3.54
Tubería 6	-3.59	0.38	1.61
Tubería 7	-1.93	0.2	0.52
Tubería 8	2.18	0.23	0.65
Tubería 9	2.16	0.23	0.63
Tubería 10	3.12	0.33	1.25
Tubería 11	1.8	0.19	0.46
Tubería 12	1.38	0.14	0.28
Tubería 13	-2.89	0.3	1.08
Tubería 14	4.13	0.43	2.1
Tubería 15	2.32	0.24	0.72
Tubería 16	1.47	0.07	0.06
Tubería 17	0.05	0.01	0
Tubería 18	0.13	0.01	0
Tubería 19	1.04	0.05	0.03
Tubería 20	0.64	0.03	0.01
Tubería 21	0.55	0.03	0.01
Tubería 22	0.27	0.03	0.01
Tubería 23	1.68	0.08	0.07
Tubería 24	0.35	0.04	0.03
Tubería 25	0.18	0.02	0
Tubería 26	0.41	0.04	0.03
Tubería 27	0.14	0.01	0
Tubería 28	0.29	0.03	0.02
Tubería 29	-0.15	0.02	0
Tubería 30	0.04	0	0
Tubería 31	-0.09	0.01	0
Tubería 32	0.09	0.01	0
Tubería 33	0.09	0.01	0
Tubería 34	0.09	0.01	0
Tubería 35	-0.07	0.01	0
Tubería 36	-0.07	0.01	0
Tubería 37	-0.07	0.01	0
Tubería 38	-0.09	0.01	0
Tubería 39	-0.09	0.01	0
Tubería 40	0.46	0.02	0.01
Tubería 41	0.37	0.02	0

Tula aufa 42	0.20	0.01	
Tubería 42	0.28	0.01	0
Tubería 43	0.19	0.01	0
Tubería 44	0.15	0.01	0
Tubería 45	0.07	0.01	0
Tubería 46	0.07	0.01	0
Tubería 47	0.05	0.01	0
Tubería 48	0.04	0	0
Tubería 49	0.06	0.01	0
Tubería 50	0.06	0.01	0
Tubería 51	0.12	0.01	0
Tubería 52	0.06	0.01	0
Tubería 53	-0.11	0.01	0
Tubería 54	0.48	0.02	0.01
Tubería 55	-0.02	0	0
Tubería 56	0.08	0.01	0
Tubería 57	0.38	0.02	0
Tubería 58	0.36	0.02	0
Tubería 59	0.09	0.01	0
Tubería 60	0.13	0.01	0
Tubería 61	0.05	0.01	0
Tubería 62	-0.02	0	0
Tubería 63	0.18	0.02	0.01
Tubería 64	0.86	0.04	0.02
Tubería 65	0.49	0.02	0.01
Tubería 66	0.29	0.03	0.02
Tubería 67	0.28	0.01	0
Tubería 68	0.03	0	0
Tubería 69	0.19	0.01	0
Tubería 70	-0.47	0.02	0.01
Tubería 71	0.59	0.03	0.01
Tubería 72	0.55	0.03	0.01
Tubería 73	0.16	0.02	0
Tubería 74	0.27	0.03	0.01
Tubería 75	0.73	0.04	0.02
Tubería 76	-0.19	0.02	0.01
Tubería 77	-0.23	0.02	0.01
Tubería 78	-0.3	0.03	0.02
Tubería 79	0.09	0	0
Tubería 80	0.84	0.04	0.02
Tubería 81	0.67	0.03	0.01
Tubería 82	1.19	0.12	0.22
Tubería 83	0.86	0.09	0.12
Tubería 84	0.25	0.03	0.01
Tubería 85	0.19	0.02	0.01
Tubería 86	-0.07	0.01	0
1 450114 00	0.07	0.01	

- · · · -	0.00	0.00	0.04
Tubería 87	0.29	0.03	0.01
Tubería 88	0.39	0.04	0.03
Tubería 89	-0.46	0.02	0.01
Tubería 90	-1.58	0.17	0.36
Tubería 91	-1.53	0.16	0.34
Tubería 92	-2.37	0.25	0.75
Tubería 93	-1.2	0.13	0.22
Tubería 94	8.41	0.43	1.29
Tubería 95	10.24	0.52	1.86
Tubería 96	5.26	0.27	0.54
Tubería 97	-0.36	0.04	0.03
Tubería 98	1.28	0.13	0.25
Tubería 99	-1.8	0.19	0.46
Tubería 100	5.45	0.28	0.58
Tubería 101	0.65	0.07	0.08
Tubería 102	1.05	0.05	0.03
Tubería 103	0.11	0.01	0
Tubería 104	0.04	0	0
Tubería 105	0.99	0.1	0.16
Tubería 106	1.29	0.14	0.25
Tubería 107	-1.52	0.16	0.34
Tubería 108	-1.19	0.13	0.22
Tubería 109	-1.25	0.13	0.24
Tubería 110	-2.95	0.31	1.13
Tubería 111	1.62	0.17	0.38
Tubería 112	1.74	0.18	0.43
Tubería 113	-1.93	0.2	0.52
Tubería 114	1.74	0.18	0.43
Tubería 115	-0.48	0.05	0.04
Tubería 116	-2.52	0.26	0.84
Tubería 117	7.86	0.4	1.13
Tubería 118	1.84	0.19	0.48
Tubería 119	-1.72	0.18	0.42
Tubería 120	6.86	0.35	0.88
Tubería 121	2.81	0.3	1.03
Tubería 122	2.4	0.25	0.77
Tubería 123	-1.02	0.11	0.17
Tubería 124	1.57	0.08	0.06
Tubería 125	0.08	0.01	0
Tubería 126	1.32	0.14	0.26
Tubería 127	0.15	0.02	0
Tubería 128	-0.27	0.03	0.01
Tubería 129	7.36	0.37	1
Tubería 130	0.89	0.05	0.02
Tubería 131	2.14	0.11	0.11

Tub (- 422	4.50	0.22	0.42
Tubería 132	-4.59	0.23	0.42
Tubería 133	-3.66	0.19	0.28
Tubería 134	-1.05	0.11	0.17
Tubería 135	1.37	0.14	0.28
Tubería 136	-2.45	0.12	0.14
Tubería 137	3.68	0.19	0.28
Tubería 138	-0.3	0.03	0.02
Tubería 139	-1.37	0.14	0.28
Tubería 140	0.82	0.09	0.11
Tubería 141	-3.83	0.19	0.3
Tubería 142	0.29	0.01	0
Tubería 143	0.95	0.05	0.03
Tubería 144	1.79	0.09	0.08
Tubería 145	-0.3	0.03	0.02
Tubería 146	-1	0.11	0.16
Tubería 147	-0.94	0.1	0.14
Tubería 148	-1.92	0.2	0.52
Tubería 149	0.81	0.09	0.11
Tubería 150	1.95	0.1	0.09
Tubería 151	2.33	0.12	0.12
Tubería 152	3.32	0.17	0.23
Tubería 153	2.64	0.13	0.16
Tubería 154	2.11	0.11	0.1
Tubería 155	1.74	0.09	0.07
Tubería 156	1.28	0.06	0.04
Tubería 157	1.03	0.05	0.03
Tubería 158	0.59	0.03	0.01
Tubería 159	-0.11	0.01	0
Tubería 160	-0.28	0.03	0.01
Tubería 161	-0.31	0.03	0.02
Tubería 162	-0.45	0.05	0.04
Tubería 163	-0.6	0.06	0.07
Tubería 164	-0.81	0.08	0.11
Tubería 165	-0.49	0.05	0.05
Tubería 166	-0.58	0.06	0.06
Tubería 167	0.59	0.06	0.06
Tubería 168	0.42	0.04	0.04
Tubería 169	0.26	0.03	0.01
Tubería 170	0.26	0.03	0.01
Tubería 171	0.15	0.02	0
Tubería 172	0.16	0.02	0.01
Tubería 173	0.05	0	0
Tubería 174	-0.48	0.02	0.01
Tubería 175	-0.77	0.04	0.02
Tubería 176	-1.1	0.06	0.03

Tubasía 477	1.20	0.00	0.04
Tubería 177	-1.28	0.06	0.04
Tubería 178	-1.34	0.07	0.05
Tubería 179	-1.47	0.07	0.06
Tubería 180	-2	0.1	0.1
Tubería 181	0.53	0.06	0.05
Tubería 182	0.33	0.03	0.02
Tubería 183	0.25	0.03	0.01
Tubería 184	0.13	0.01	0
Tubería 185	0.05	0.01	0
Tubería 186	1.24	0.13	0.24
Tubería 187	1.07	0.11	0.18
Tubería 188	0.04	0	0
Tubería 189	0.05	0.01	0
Tubería 190	0.09	0.01	0
Tubería 191	0.55	0.03	0.01
Tubería 192	0.14	0.01	0
Tubería 193	0.09	0.01	0
Tubería 194	4.61	0.23	0.43
Tubería 195	1.34	0.14	0.27
Tubería 196	-0.04	0	0
Tubería 197	-0.22	0.01	0
Tubería 198	-0.37	0.02	0
Tubería 199	0.07	0.01	0
Tubería 200	0.02	0	0
Tubería 201	0.06	0.01	0
Tubería 202	0.02	0	0
Tubería 203	0.01	0	0
Tubería 204	0.11	0.01	0
Tubería 205	-0.06	0	0
Tubería 206	-0.06	0.01	0
Tubería 207	-0.16	0.02	0
Tubería 208	-0.06	0.01	0
Tubería 209	-0.15	0.02	0
Tubería 210	-0.17	0.02	0.01
Tubería 211	-0.13	0.01	0
Tubería 212	-0.14	0.01	0
Tubería 213	-0.1	0.01	0
Tubería 214	0.21	0.02	0.01
Tubería 215	0.08	0.01	0
Tubería 216	0.34	0.04	0.02
Tubería 217	0.13	0.01	0
Tubería 218	-0.06	0.01	0
Tubería 219	-0.15	0.02	0
Tubería 220	-0.21	0.01	0
Tubería 221	-0.22	0.01	0

		I	1
Tubería 222	-0.33	0.02	0
Tubería 223	-0.05	0	0
Tubería 224	-0.3	0.03	0.02
Tubería 225	-0.31	0.03	0.02
Tubería 226	-0.12	0.01	0
Tubería 227	0.29	0.03	0.02
Tubería 228	0.25	0.03	0.01
Tubería 229	-0.48	0.05	0.04
Tubería 230	-0.53	0.06	0.05
Tubería 231	0.17	0.02	0.01
Tubería 232	-0.39	0.04	0.03
Tubería 233	-0.45	0.05	0.04
Tubería 234	-0.41	0.02	0
Tubería 235	-0.47	0.05	0.04
Tubería 236	-0.06	0.01	0
Tubería 237	0.94	0.1	0.14
Tubería 238	0.77	0.08	0.1
Tubería 239	-0.08	0	0
Tubería 240	0.55	0.03	0.01
Tubería 241	-4.18	0.21	0.36
Tubería 243	-0.14	0.01	0
Tubería 244	0.11	0.01	0
Tubería 245	-0.5	0.03	0.01
Tubería 246	0.04	0	0
Tubería 247	-0.44	0.02	0.01
Tubería 248	0.11	0.01	0
Tubería 249	-0.2	0.02	0.01
Tubería 251	-0.33	0.03	0.02
Tubería 252	-0.74	0.04	0.02
Tubería 253	-0.3	0.03	0.02
Tubería 254	-0.11	0.01	0
Tubería 255	-0.57	0.03	0.01
Tubería 256	0.12	0.01	0
Tubería 257	0.31	0.03	0.02
Tubería 258	-0.33	0.03	0.02
Tubería 259	-0.02	0	0
Tubería 260	0.25	0.03	0.01
Tubería 261	-0.77	0.04	0.02
Tubería 262	-1.16	0.06	0.04
Tubería 263	0.03	0	0
Tubería 264	-0.39	0.04	0.03
Tubería 265	-0.46	0.05	0.04
Tubería 266	-0.51	0.05	0.05
Tubería 267	-0.35	0.04	0.03
Tubería 268	-0.28	0.03	0.01

Tubería 269	-0.03	0	0
Tubería 270	1.53	0.08	0.06
Tubería 271	1.38	0.03	0.05
Tubería 272	0.03	0.07	0.05
Tubería 273	-1.27	0.06	0.04
Tubería 274		0.00	0.04
	0.09		
Tubería 275	-0.55	0.06	0.06
Tubería 277	-0.6	0.06	0.07
Tubería 279	-0.64	0.07	0.07
Tubería 281	-1.13	0.12	0.2
Tubería 282	0.36	0.04	0.03
Tubería 283	0.88	0.09	0.13
Tubería 284	0.5	0.05	0.05
Tubería 285	0.3	0.03	0.02
Tubería 286	-1.64	0.08	0.07
Tubería 287	-0.31	0.03	0.02
Tubería 288	-0.13	0.01	0
Tubería 289	-0.25	0.03	0.01
Tubería 290	-2.27	0.12	0.12
Tubería 291	-2.27	0.11	0.12
Tubería 292	0.23	0.01	0
Tubería 293	0.27	0.01	0
Tubería 294	0.05	0.01	0
Tubería 295	0.08	0.01	0
Tubería 296	-0.17	0.01	0
Tubería 297	-0.5	0.05	0.05
Tubería 298	-1.01	0.11	0.16
Tubería 299	-0.39	0.04	0.03
Tubería 300	-3.48	0.18	0.26
Tubería 301	1.05	0.05	0.03
Tubería 303	-0.07	0	0
Tubería 305	0.89	0.09	0.13
Tubería 306	0.83	0.09	0.12
Tubería 307	0.2	0.02	0.01
Tubería 308	0.91	0.09	0.13
Tubería 309	3.04	0.15	0.2
Tubería 311	1.99	0.1	0.09
Tubería 312	1.48	0.07	0.05
Tubería 313	0.94	0.1	0.14
Tubería 314	0.14	0.01	0
Tubería 315	0.43	0.05	0.04
Tubería 316	1.04	0.05	0.03
Tubería 317	-0.5	0.05	0.05
Tubería 318	0.72	0.08	0.09
Tubería 319	0.04	0	0

Tubería 320	1.47	0.07	0.05
Tubería 321	1.42	0.07	0.05
Tubería 322	0.32	0.03	0.02
Tubería 323	-0.11	0.01	0
Tubería 324	0.58	0.06	0.06
Tubería 325	0.39	0.04	0.03
Tubería 328	0.36	0.04	0.03
Tubería 329	0.04	0	0
Tubería 330	-0.26	0.03	0.01
Tubería 331	-0.27	0.03	0.01
Tubería 332	1	0.05	0.03
Tubería 333	0.65	0.03	0.01
Tubería 334	0.59	0.03	0.01
Tubería 335	0.26	0.03	0.01
Tubería 336	0.24	0.03	0.01
Tubería 337	0.35	0.04	0.02
Tubería 338	0.25	0.03	0.01
Tubería 340	0.19	0.02	0.01
Tubería 341	0.18	0.02	0.01
Tubería 342	-0.04	0	0
Tubería 343	-0.09	0.01	0
Tubería 344	0.2	0.02	0.01
Tubería 345	-0.11	0.01	0
Tubería 346	0.14	0.01	0
Tubería 349	0.1	0.01	0
Tubería 350	0.12	0.01	0
Tubería 351	0.08	0.01	0
Tubería 352	0.39	0.02	0
Tubería 353	0.24	0.01	0
Tubería 354	-0.05	0.01	0
Tubería 355	-0.13	0.01	0
Tubería 356	-0.23	0.01	0
Tubería 357	-0.23	0.01	0
Tubería 358	1.2	0.06	0.04
Tubería 359	0.07	0.01	0
Tubería 360	0.9	0.05	0.02
Tubería 361	0.5	0.03	0.01
Tubería 362	0.09	0.01	0
Tubería 363	0.07	0.01	0
Tubería 364	0.07	0.01	0
Tubería 365	0.21	0.01	0
Tubería 366	-0.22	0.01	0
Tubería 367	0.14	0.01	0
Tubería 369	0.04	0	0
Tubería 242	0.08	0.01	0

Tubería 370	11.86	0.6	2.45
Tubería 302	4.61	0.23	0.43
Tubería 304	4.17	0.22	0.37
Válvula 250	4.65	0.26	0.78
Válvula 276	4.21	0.24	0.86

Tabla 16

4.10-ANALISIS DINAMICO DEL FUNCIONAMIENTO DE LA RED

Evolución temporal del nudo 88 (nudo más desfavorable):

	Demanda Base	Demanda	Presión
Hora	LPS	LPS	m
0:00	0.0523	0.03	28.42
1:00	0.0523	0.03	28.42
2:00	0.0523	0.03	28.42
3:00	0.0523	0.03	28.42
4:00	0.0523	0.04	28.23
5:00	0.0523	0.04	28.02
6:00	0.0523	0.04	28.02
7:00	0.0523	0.06	27.23
8:00	0.0523	0.06	26.92
9:00	0.0523	0.06	26.92
10:00	0.0523	0.05	27.52
11:00	0.0523	0.05	27.52
12:00	0.0523	0.05	27.52
13:00	0.0523	0.06	26.92
14:00	0.0523	0.07	26.59
15:00	0.0523	0.07	26.23
16:00	0.0523	0.08	25.45
17:00	0.0523	0.07	26.23
18:00	0.0523	0.07	26.59
19:00	0.0523	0.06	26.92
20:00	0.0523	0.05	27.52
21:00	0.0523	0.05	27.52
22:00	0.0523	0.04	28.23
23:00	0.0523	0.04	28.23

Tabla 17

Evolución temporal del nudo 10:

	Demanda Base	Demanda	Presión
Horas	LPS	LPS	m
0:00	0.0318	0.02	28.45
1:00	0.0318	0.02	28.45
2:00	0.0318	0.02	28.45
3:00	0.0318	0.02	28.45
4:00	0.0318	0.02	28.27
5:00	0.0318	0.03	28.06
6:00	0.0318	0.03	28.06
7:00	0.0318	0.03	27.31
8:00	0.0318	0.04	27.01
9:00	0.0318	0.04	27.01
10:00	0.0318	0.03	27.58
11:00	0.0318	0.03	27.58
12:00	0.0318	0.03	27.58
13:00	0.0318	0.04	27.01
14:00	0.0318	0.04	26.69
15:00	0.0318	0.04	26.35
16:00	0.0318	0.05	25.6
17:00	0.0318	0.04	26.35
18:00	0.0318	0.04	26.69
19:00	0.0318	0.04	27.01
20:00	0.0318	0.03	27.58
21:00	0.0318	0.03	27.58
22:00	0.0318	0.02	28.27
23:00	0.0318	0.02	28.27

Tabla 18

Evolución temporal del nudo 40:

	Demanda Base	Demanda	Presión
Horas	LPS	LPS	m
0:00	0.0327	0.02	53.44
1:00	0.0327	0.02	53.44
2:00	0.0327	0.02	53.44
3:00	0.0327	0.02	53.44
4:00	0.0327	0.02	53.26
5:00	0.0327	0.03	53.05
6:00	0.0327	0.03	53.05
7:00	0.0327	0.04	52.29

8:00	0.0327	0.04	51.99
9:00	0.0327	0.04	51.99
10:00	0.0327	0.03	52.57
11:00	0.0327	0.03	52.57
12:00	0.0327	0.03	52.57
13:00	0.0327	0.04	51.99
14:00	0.0327	0.04	51.67
15:00	0.0327	0.05	51.32
16:00	0.0327	0.05	50.56
17:00	0.0327	0.05	51.32
18:00	0.0327	0.04	51.67
19:00	0.0327	0.04	51.99
20:00	0.0327	0.03	52.57
21:00	0.0327	0.03	52.57
22:00	0.0327	0.02	53.26
23:00	0.0327	0.02	53.26

Tabla 19

Evolución temporal del nudo 137:

	Demanda Base	Demanda	Presión
Horas	LPS	LPS	m
0:00	0.0985	0.06	42.41
1:00	0.0985	0.06	42.41
2:00	0.0985	0.06	42.41
3:00	0.0985	0.06	42.41
4:00	0.0985	0.07	42.22
5:00	0.0985	0.08	42
6:00	0.0985	0.08	42
7:00	0.0985	0.11	41.2
8:00	0.0985	0.12	40.88
9:00	0.0985	0.12	40.88
10:00	0.0985	0.1	41.49
11:00	0.0985	0.1	41.49
12:00	0.0985	0.1	41.49
13:00	0.0985	0.12	40.88
14:00	0.0985	0.13	40.54
15:00	0.0985	0.14	40.17
16:00	0.0985	0.16	39.37
17:00	0.0985	0.14	40.17
18:00	0.0985	0.13	40.54

19:00	0.0985	0.12	40.88
20:00	0.0985	0.1	41.49
21:00	0.0985	0.1	41.49
22:00	0.0985	0.07	42.22
23:00	0.0985	0.07	42.22

Tabla 20

Evolución temporal del nudo 141:

	Demanda Base	Demanda	Presión
Horas	LPS	LPS	m
0:00	0.0477	0.03	40.41
1:00	0.0477	0.03	40.41
2:00	0.0477	0.03	40.41
3:00	0.0477	0.03	40.41
4:00	0.0477	0.03	40.22
5:00	0.0477	0.04	40
6:00	0.0477	0.04	40
7:00	0.0477	0.05	39.2
8:00	0.0477	0.06	38.88
9:00	0.0477	0.06	38.88
10:00	0.0477	0.05	39.49
11:00	0.0477	0.05	39.49
12:00	0.0477	0.05	39.49
13:00	0.0477	0.06	38.88
14:00	0.0477	0.06	38.54
15:00	0.0477	0.07	38.17
16:00	0.0477	0.08	37.37
17:00	0.0477	0.07	38.17
18:00	0.0477	0.06	38.54
19:00	0.0477	0.06	38.88
20:00	0.0477	0.05	39.49
21:00	0.0477	0.05	39.49
22:00	0.0477	0.03	40.22
23:00	0.0477	0.03	40.22

Tabla 21

Evolución temporal de la línea 250 (válvula reductora):

	Caudal	Velocidad	Pérdida
Horas	LPS	m/s	m
0:00	1.72	0.1	13.41
1:00	1.72	0.1	13.41
2:00	1.72	0.1	13.41
3:00	1.72	0.1	13.41
4:00	2.01	0.11	13.22
5:00	2.29	0.13	13
6:00	2.29	0.13	13
7:00	3.15	0.18	12.2
8:00	3.44	0.19	11.88
9:00	3.44	0.19	11.88
10:00	2.87	0.16	12.49
11:00	2.87	0.16	12.49
12:00	2.87	0.16	12.49
13:00	3.44	0.19	11.88
14:00	3.73	0.21	11.54
15:00	4.01	0.23	11.18
16:00	4.59	0.26	10.37
17:00	4.01	0.23	11.18
18:00	3.73	0.21	11.54
19:00	3.44	0.19	11.88
20:00	2.87	0.16	12.49
21:00	2.87	0.16	12.49
22:00	2.01	0.11	13.22
23:00	2.01	0.11	13.22

Tabla 22

Evolución temporal de la línea 276 (válvula reductora):

	Caudal	Velocidad	Pérdida
Horas	LPS	m/s	m
0:00	1.6	0.09	13.43
1:00	1.6	0.09	13.43
2:00	1.6	0.09	13.43
3:00	1.6	0.09	13.43
4:00	1.87	0.11	13.24
5:00	2.14	0.12	13.03
6:00	2.14	0.12	13.03
7:00	2.94	0.17	12.25

8:00	3.21	0.18	11.95
9:00	3.21	0.18	11.95
10:00	2.67	0.15	12.54
11:00	2.67	0.15	12.54
12:00	2.67	0.15	12.54
13:00	3.21	0.18	11.95
14:00	3.47	0.2	11.62
15:00	3.74	0.21	11.26
16:00	4.27	0.24	10.48
17:00	3.74	0.21	11.26
18:00	3.47	0.2	11.62
19:00	3.21	0.18	11.95
20:00	2.67	0.15	12.54
21:00	2.67	0.15	12.54
22:00	1.87	0.11	13.24
23:00	1.87	0.11	13.24

Tabla 22