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Abstract

The main objective of this work is to model the dynamics of cynegetic po-
pulations by means of a linear control system. We want to estimate the annual
corrective measures, which may be improvements or hunting, that must be
implemented to take and maintain the studied population around the carrying
capacity of certain area. Moreover, the model must be able to distinguish bet-
ween different age-sex classes and lead the population to a desired distribution
of individuals among these stage groups.
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1. Introduction

Demographic models are a powerful tool to guide decisions when managing
wildlife populations. Sometimes, when studying population growth, what is
especially interesting is to know the evolution of a concrete type of individuals
instead of the total population. That is to say, the population is structured in
different stage classes of individuals with similar characteristics and the growth
of each stage class is analyzed. Hence the individuals in the population at any
given time is described by a vector with as many components as the number of
stage classes into which the population has been divided. Thus, each component
will represent the number of individuals of a certain stage class.

Population evolution is represented by a matrix difference equation. In par-
ticular, if we assume that no migratory movement or external effect takes place,
the population growth dynamics will be given by an autonomous system whose
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state matrix only depends on the population attributes, i.e., natality and sur-
vival rates. Consequently, it is a nonnegative matrix [1, 2].

The equation solution and the stability study are achieved by means of the
eigenvalues and eigenvectors of this nonnegative matrix, which it is known to
have a dominant positive eigenvalue λ1 with a nonnegative eigenvector u1 =
[u11 u21 . . . un1]

T [3]. It is easy to prove that if this nonnegative matrix is
diagonalizable and λ1 is strictly dominant, the asymptotic population growth
only depends on λ1, whereas the distribution of individuals among the different
stage classes tends to stabilize independently of population growth. The stable
individual proportion of each stage class tends to a limit that is proportional to
the components of the eigenvector u1.

In this work we want to analyze the behaviour of a population that we have
structured in different stage classes according to age and sex. We suppose that
matrix A is diagonalizable, and we want to study under which conditions λ1 is
strictly dominant and consequently the stable distribution is given by u1. After
that, we will obtain the components of u1. Analogous results have been obtained
for simpler models, like the Leslie model, which distributes the population in age
classes of equal time interval and only considers the female individuals. Leslie
assumes that survival rates are always equal for both sexes, but this condition
is not actually satisfied in real conditions, particularly in cynegetic species.

We construct a sex-specific age-at-harvest mathematical model that can ana-
lyzes the dynamic evolution of a population as a result of its intrinsic attributes
and as well as external effects. The aim is to be able to estimate the annual
measures (improvements or hunting) that must be executed to take a population
around the carrying capacity of the studied area, guaranteeing the maximum
efficiency [4]. Besides that, the model must lead the population to a given
individual distribution among the different stage classes. This model could be
used in the developing of the cynegetic plan of a hunting natural reserve.

2. Autonomous model

From the Lefkovitch model [5], we develop a new model that takes into
account both age and sex of the individuals. Our model distinguishes between
the life cycle of females and the life cycle of males, except for the youngest ones,
which constitute the first stage class and where we assume the same percentage
of males and females. If we divide the life cycle of females into nf stages and
the life cycle of males into nm stages, the dynamic evolution of a population is
given by:

N(t+ 1) = AN(t), t ∈ Z (1)

where N(t) = [N1(t) N2(t) · · · Nn(t)]
T ∈ Rn

+ represents the number of
individuals in each stage class at instant t, with n = 1 + nf + nm.

To compute the stage-based matrix A, we must estimate, for each stage, the
natality rates bi, the probability of surviving and growing into the next stage
gi and the probability of surviving and remaining in the same stage pi. The
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transition probabilities gi and pi are obtained from the stage-specific survival
rates si and stage duration di by the following expressions [6]:

gi =
sdi
i (1− si)

1− sdi
i

pi = si − gi =
(1− s

di−1

i )si

1− sdi
i

Thus matrix A is given by:

A =



p0 + b0 b1 b2 · · · bnf
0 0 · · · 0

g0/2 p1 0 · · · 0 0 0 · · · 0
0 g1 p2 · · · 0 0 0 · · · 0
...

...
...

. . .
...

...
...

. . .
...

0 0 0 · · · pnf
0 0 · · · 0

g0/2 0 0 · · · 0 pnf+1 0 · · · 0
0 0 0 · · · 0 gnf+1 pnf+2 · · · 0
...

...
...

. . .
...

...
...

. . .
...

0 0 0 · · · 0 0 0 · · · pn−1


=

=

[
A11 O
A21 A22

]

(2)

with bi ≥ 0, 1 > pi ≥ 0 and 1 ≥ gi > 0. Actually, often b0 = 0, hence for
convenience, we take this value throughout this work.

As it is assumed that A is diagonalizable, we deduce from (1) that the
population behaviour depends on the eigenvalues λi and the eigenvectors ui of
A. If moreover λ1 is strictly dominant (λ1 > |λi|, i = 2, 3, . . . , n), then the long
term evolution of the population density is:

lim
k→∞

N(t) = lim
k→∞

c1(0)λ
k
1u1

where the coefficient c1(0) is obtained from the initial conditions, whereas the
percentage of individuals in each stage class is given by the vector:

lim
t→∞

1
n∑

i=1

Ni(t)
N(t) =

1
n∑

j=1

uj1

u1 = v = [v1 v2 . . . vn]
T

(3)

consequently, the population grows indefinitely, stabilizes or becomes extinct if
λ1 is greater, equal o less than 1, respectively, although the distribution always
tends to stabilize according to the eigenvector u1 (see [1] for details).

Thus, now our two main objectives are to find the conditions that guarantee
the eigenvalue λ1 is strictly dominant and consequently the stable distribution
will come to v, and to compute the expression of its components.

By (2) we have that σ(A) = σ(A11)∪σ(A22). The characteristic polynomial

of A22 is qA22(λ) =
∏n−1

i=nf+1(λ−pi), so σ(A22) = {pnf+1, pnf+2, . . . , pn−1}, with
0 ≤ pi < 1, i = nf + 1, nf + 2, . . . n− 1. With respect to A11, this submatrix is
characterized by the following results.
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Lemma 1. The submatrix A11 is primitive if the older female stage class is
fertile and the newborn individuals or some females always survive and remain in
the same stage, i.e., bnf

̸= 0 and there exists at least one pi ̸= 0, i = 0, 1, . . . , nf .

Proof. In [3] it is proved that a matrix is irreducible if and only if its direct graph
is strongly connected. This fact happens in matrix A11 if bnf

̸= 0. Moreover, an
irreducible matrix is primitive if its trace is positive, which is guaranteed with
one pi ̸= 0, i = 0, 1, . . . , nf .

Proposition 1. If A11 is primitive, then ρ(A11) > max{pi, i = 0, 1, . . . , nf}.

Proof. Consider the following function:

H(λ) =
1

2

nf∑
i=1

bi
∏i−1

j=0 gj∏i
s=0(λ− ps)

Hence, qA11(λ) = 0 if and only if H(λ) = 1 for λ ̸= pi, i = 0, 1, . . . , nf . Suppose
that piA11

= max{pi, i = 0, 1, . . . , nf}. H(λ) decrease for λ > piA11
> 0, it has

a vertical asymptote in λ = piA11
and tends to zero when λ −→ ∞. Therefore,

there exists only one λ1 > piA11
such that H(λ1) = 1. Consequently, there

exists only one λ1 > piA11
such that qA11(λ1) = 0. As A11 is nonnegative and

primitive then ρ(A11) = λ1.

The following result is a natural consequence of Proposition 1.

Lemma 2. If A11 is primitive and the condition max{pi, i = 0, 1, . . . , nf} ≥
max{pi, i = nf + 1, nf + 2, . . . , n− 1} is satisfied, then the spectral radius of A
is the spectral radius of A11, i.e., ρ(A) = ρ(A11).

Finally, next result is deduced directly from Lemma 1, Proposition 1 and
Lemma 2, which characterizes matrix A.

Proposition 2. Matrix A has a strictly dominant eigenvalue λ1 if the older
female stage class is fertile, the newborn individuals or some females always
survive and remain in the same stage and the maximum probability of surviv-
ing and remaining in the same state in females is greater than or equal to the
probability in males.

On the other hand, as A is a nonnegative matrix, by the Perron-Frobenius
theorem [3], it has a positive real eigenvalue λ1 ≥ |λi| with a nonnegative
eigenvector u1.
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Lemma 3. The eigenvector u1 of A associated with its strictly dominant eigen-
value λ1 is

u1 =



1
g0

2(λ1 − p1)
g0g1

2(λ1 − p1)(λ1 − p2)
...

g0g1 · · · gnf−1

2(λ1 − p1)(λ1 − p2) · · · (λ1 − pnf
)

g0
2(λ1 − pnf+1)

g0gnf+1

2(λ1 − pnf+1)(λ1 − pnf+2)
...

g0gnf+1 · · · gn−1

2(λ1 − pnf+1)(λ1 − pnf+2) · · · (λ1 − pn)


Proof. It comes directly from the relation Au1 = λ1u1.

3. Quasi-positive system

We have just seen in Section 2 that populations tend to a stable distribution
v given by the eigenvector u1. But sometimes, it is convenient to change this
distribution for economic reasons, think for instance in the case of a hunting
reserve. In this section we study the way to modify the population behaviour
with the aim to get a desired distribution such that the stable percentage of
individuals in each stage class is given by w = [w1 w2 · · · wn]

T and the
population density stands around an optimal value. For that, we use a quasi-
positive control system [7], where state and output variables remain nonnegative
independently of the applied control sequence. Hence, the population evolution
is given by:

N(t+ 1) = AN(t) +Bu(t), t ∈ Z (4)

where Bu(t) shows the annual measures that must be implemented to take the
population around the carrying capacity of the studied area.

3.1. Towards the desired distribution

To modify v given by (3), we apply to each stage class a control proportional
to the population in this class, i.e., Bu(t) = diag(ε1(t), ε2(t), . . . , εn(t))N(t).
Hence, equation (4) becomes

N(t+ 1) = AN(t) + diag(ε1(t), ε2(t), . . . , εn(t))N(t) =
= (A+Mε(t))N(t) = A(t)N(t)

(5)
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In consequence, the evolution of the population can be considered as an auto-
nomous system where the nonnegativity of the variables are guaranteed by the
nonnegativity of A(t).

These matrices are obtained by an iterative method from the initial matrix A
of the autonomous model (1), assuming in each step that the unitary eigenvector
v is equal to w. After the first iteration, the main diagonal elements of A(1)
are:

aii(1) = λ1(0)−
ai,i−1wi−1

wi
, i = 2, 3, . . . , nf + 1, nf + 3, nf + 4, . . . , n

anf+2,nf+2(1) = λ1(0)−
anf+2,1w1

wnf+2

Proceeding in that way, we successively obtain the following matrices, in
theory until computing the matrix A(t) the unitary eigenvector v of which is
w. Let Ak denote this matrix, and λ1k denote its strictly dominant eigenvalue,
hence

A(t) =

{
A(t) 0 < t < k
Ak t ≥ k

and since (λ1kI −Ak)w = 0, we have that

λ1k = p0 +
b1w2 + b2w3 + · · ·+ bnf

wnf+1

w1

Nevertheless, it is not actually necessary to achieve this matrix Ak. We
consider the matrix A(t) invariant from an instant t = k such that the relative
error |λ1(t)−λ1k |/λ1k is less than a given tolerance tol. This iterative method is
summarized in the following algorithm, where At denotes the successive matrices
A(t), D the corresponding strictly dominant eigenvalues λ1(t), t = 0, 1, . . . , k−1,
and Df the desired eigenvalue λ1k .

Algorithm 1. Introduce A, nf , n, w and tol.

1. Let Df = A(1, 1) +A(1, 2 : nf + 1)w(2 : nf + 1)/w(1, 1)

2. Obtain D

3. Let At = A

4. While |D −Df |/Df > tol

For i = 2 : nf + 1, At(i, i) = D −A(i, i− 1)w(i− 1)/w(i), end

At(nf + 2, nf + 2) = D −A(nf + 1, 1)w(1)/w(nf + 1)

For j = nf + 3 : n, At(j, j) = D −A(j, j − 1)w(j − 1)/w(j), end

Obtain D

end

From Algorithm 1, taking into account that At must be nonnegative, we
conclude the next result.
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Theorem 1. Given a population dynamic (1)-(2) with stable distribution v, it
is possible to modify its evolution and to reach another stable distribution w if
for all i = 2, 3, . . . , n this condition holds:

min{λ1(t)} ≥ max

{
anf+2,1w1

wnf+2
,
ai,i−1wi−1

wi

}
.

This relation means that the minimum growth rate of the population must
be greater than the maximum percentage of individuals that go from one group
to the following one.

In the end, the annual improvement measures can be estimated taking into
account equation (5) and Algorithm 1.

Remark 1. The annual improvement measures are given by the following ex-
pressions:

εi(1) = λ1 − pi −
gi−1wi−1

wi

εi(t) = λ1(t)− λ1(t− 1)

with wi−1 = w1 for i = n, such that for each stage class i, i = 2, . . . , n, at time
t, εi(t) > 0 means that new individuals must be introduced in the population or
the survival rates must be improved, whereas εi(t) < 0 means that it is necessary
to hunt, otherwise nothing must be done.

3.2. Towards the desired population density

Once the distribution w is achieved, the next objective is for the desired
population density that we denote by Pf not to rise. Suppose that this value
has been rising. In this case we must decrease the population growth applying
a negative control, hence the population evolution is given by the quasi-positive
system:

N(t+ 1) = A(t)N(t)−Bu(t) (6)

where u(t) is total hunting. Specifically, if we hunt in a proportional way to the
population density, we take

u(t) = α

n∑
i=1

Ni(t) = α[1 1 . . . 1]N(t) = αeTN(k)

The next result tells us how we must distribute this negative control among
the different stage classes.

Lemma 4. If B = w, then the desired stable distribution w is preserved, inde-
pendently of the applied control, that is, total hunting.

Proof. By equations (5) and (6), from t = k the population evolution is given
by

N(t+ 1) = AkN(t)−Bu(t) (7)
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Let N = [N1 N2 . . . Nn]
T be the population estimated at instant t by

equation (5), that is to say, without applying the negative control, i.e., u = 0.
At this moment, the individual distribution among the different stage classes is:

P =
1

n∑
i=1

Ni

N = w = [w1 w2 . . . wn]
T

Now, consider that the control is applied and u individuals are eliminated ac-
cording to the class distribution given by w, i.e., B = w. In this case, the
population estimated by (7) at instant t is:

N(t) =


N1 − w1u
N2 − w2u

...
Nn − wnu


But, note that for j = 1, 2, . . . , n,

Nj(t) =

Nj(
n∑

i=1

Ni − u)

n∑
i=1

Ni

(8)

whereas the total number of individuals is

n∑
i=1

Ni(t) =
n∑

i=1

Ni − u
n∑

i=1

wi =
n∑

i=1

Ni − u (9)

Consequently, by (8) and (9), the individual proportion in each stage class j,
j = 1, 2, . . . , n, at instant t is:

Pj(t) =
Nj(t)
n∑

i=1

Ni(t)
=

Nj

(
n∑

i=1

Ni − u

)
n∑

i=1

Ni

(
n∑

i=1

Ni − u

) = wj

Therefore,

N(t+ 1) = A(t)N(t)−Bu(t) = (A(t)− αweT )N(t) =
= AN(t) + (Mε(t)− αweT )N(t) = AN(t) + U(t)

(10)

with U(t) = (Mε(t) − αweT )N(t). We set the coefficient α in such a way that
both the desired distribution and density are reached at the same time.

Remark 2. For each stage class i, i = 1, 2, . . . , n, at time t, Ui(t) > 0 means
that new individuals must be introduced in the population or the survival rates
must be improved, whereas Ui(t) < 0 means that it is necessary to hunt.
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Finally, suppose that the population has reached the optimal stable distri-
bution w and the optimal density Pf , which correspond to a population density
less than the carrying capacity of the studied area, so that population growth
must stop. For that, we must hunt, that is, we must apply a negative control
u(t), which is estimated from the equation,

N(t+ 1) = AkN(t)− wu(t) (11)

solving by less squares approximation so that u(t) is given by:

u(t) = (wTw)−1w(AtN(t)− wPf ). (12)

4. Example

The population of Spanish wild goat (Capra pyrenaica) in the Valencian na-
tural reserve of “Muela de Cortes” has been selected to illustrate the usefulness
of the quasi-positive systems shown in the previous sections. In Table 1 we can
find the main attributes of this population.

Males Females
Age Initial Survival Initial Survival Natality

population rate population rate rate
0-1 133 0.79 132 0.79 0
2-3 90 0.90 152 0.97 0.65
4-6 105 1.00 156 0.91 0.85
7-9 49 0.90 80 1.00 0.75
10-14 14 0.90 58 0.85 0.50

Table 1: Attributes of the Spanish wild goal population from “Muela de Cortes”

From Table 1, we see the population is divided in nine stage classes: newborn
individuals (where we consider the same percentage of males and females), the
remainder four stage classes of females and the remainder four stage classes of
males. The population evolution can be represented by the autonomous model
(1), which has a state matrix A with a strictly dominant eigenvalue λ1 = 1.1102.
This value means that, without any external influence, the population tends to
grow in an indefinite manner, reaching the stable distribution

v = [0.3423 0.0966 0.0970 0.0602 0.0771 0.0938 0.0901 0.0627 0.0802]T .

Nevertheless, this situation can not be supported by the reserve [8], which
admits a carrying capacity of 1756 individuals with the optimal distribution

w = [0.2580 0.1196 0.1002 0.0849 0.0421 0.1344 0.1384 0.0712 0.0513]T .

Hence, the natural stable distribution v differs with the optimal distribution w
by 12%.
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To modify the stable population distribution we apply the quasi-positive
model (5), where matrices A(t) are obtained by Algorithm 1 with a tolerance of
5%. The relative errors and deviation of the corresponding dominant eigenvalues
λ1(t) and eigenvectors v(t) from λ1k and w, respectively, are shown in Table 2,
whereas the total population estimated at each time can be found in Table 3.

λ1(1) λ1(2) λ1(3) λ1(4) λ1(5) λ1(6)
0.2077 0.1648 0.1321 0.1067 0.0866 0.0706
v(1) v(2) v(3) v(4) v(5) v(6)
0.1199 0.0665 0.0514 0.0403 0.0321 0.0257

Table 2: Characteristics of the sequence of matrices A(t) obtained by Algorithm 1.

Year 0 Year 1 Year 2 Year 3 Year 4 Year 5 Year 6
969 1218 1508 1908 2473 3268 4059

Table 3: Population evolution estimated by the model (5).

Note that after six years we have achieved the desired distribution but the
population density is too high, more than twice the reserve carrying capacity.
Hence, we must decrease population growth. For that, we apply the quasi-
positive model (10), with A(t) obtained by Algorithm 1. Now, we get the desired
population density and distribution in six years if a hunting strain of 8% and
a tolerance of 5% are considered. From time t ≥ 6, we consider A(t) = A(6)
and apply equations (11) and (12) to keep the population in this conditions.
All these results are summarized in Figure 1. After 5, 10 and 15 years the
population distribution differs with the optimal w by less than 5%.

5. Conclusions

Quasi-positive linear control systems can be used to manage the big game
population of a natural reserve where environmentally sustainable development
must be guaranteed. These models allow us to estimate the measures that
must be implemented to take and maintain the studied population around the
carrying capacity of the reserve, with an individual distribution that leads to
maximum efficiency.
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