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Resumen

La presente memoria “Descomposiciones atómicas y frames en espacios de Fréchet
y sus duales” trata diferentes áreas del análisis funcional con aplicaciones.

Los frames de Schauder se utilizan para representar un elemento arbitrario x de
un espacio de funciones E mediante una serie a partir de un conjunto numerable
fijado {xj}j de elementos de este espacio de manera que los coeficientes de la re-
construcción de x dependen de forma lineal y continua de x. A diferencia de las
bases de Schauder, la expresión de un elemento x en términos de la sucesión {xj}j ,
i.e. la fórmula de reconstrucción para x, no es necesariamente única. Las descom-
posiciones atómicas o los frames de Schauder son un estructura menos restrictiva
que las bases, porque un subespacio complementado de un espacio de Banach con
base tiene siempre un frame de Schauder natural, que se obtiene a partir de una
base del superespacio. Incluso cuando el subespacio complementado tiene una
base, no hay una forma sistemática de encontrarla. Las descomposiciones atómi-
cas aparecen en aplicaciones al procesamiento de señales y la teoría de muestreo,
entre otras áreas. Feichtinger caracterizó las descomposiciones atómicas de Gabor
para espacios de modulación [24] que más tarde desarrolló en la teoría general pre-
sentada en el trabajo conjunto con Gröchenig [25] y [26]. Recientemente, Pilipovic
y Stoeva [55] (véase también [54]) han estudiado el desarrollo en serie en límites
inductivos y proyectivos (numerables) de espacios de Banach. En esta tesis em-
pezamos un estudio sistemático de los frames de Schauder en espacios localmente
convexos aunque nuestro interés principal son los espacios de Fréchet y sus duales.
La diferencia principal respecto del concepto considerado en [55] es que nuestra
aproximación no depende de una representación fijada del espacio de Fréchet como
límite proyectivo de espacios de Banach.

El texto queda dividido en dos partes y un apéndice que incluye la notación, las
definiciones y los resultados básicos que usaremos a lo largo de la tesis. La primera
parte se centra en la relación entre las propiedades de un frame de Schauder en
un espacio de Fréchet E y la estructura del espacio. En el segundo capítulo se
definen y estudian los frames y las sucesiones de Bessel en espacios de Fréchet y
sus duales. A continuación, presentamos una breve descripción de los capítulos:
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En el Capítulo 1, estudiamos los frames de Schauder en los espacios de Fréchet
y sus duales así como los resultados de perturbación. Definimos los frames de
Schauder contractivos y acotadamente completos en espacios localmente convexos,
estudiamos la dualidad de estos dos conceptos y su relación con la reflexividad del
espacio. Caracterizamos cuándo un frame de Schauder incondicional es contractivo
o acotadamente completo en términos de las propiedades del espacio. También se
presentan varios ejemplos de frames de Schauder en espacios de funciones concre-
tos. Nuestro interés principal en este capítulo es investigar la relación entre las
propiedades de un frame de Schauder en un espacio de Fréchet E y la estructura
del espacio, por ejemplo, si E es reflexivo o si contiene copias de c0 o `1. La
mayoría de los resultados incluidos en este capítulo están publicados por Bonet,
Fernández, Galbis y Ribera en [13].

El segundo capítulo de la tesis está centrado en el estudio de las sucesiones de
Λ-Bessel ( {gi}i ⊂ E′ ), Λ-frames y frames respecto de Λ en el dual de un espacio
localmente convexo de Hausdorff E, en particular, para espacios de Fréchet y
espacios (LB) completos E, con Λ un espacio de sucesiones. Investigamos la
relación de estos dos conceptos con los sistemas representantes en el sentido de
Kadets y Korobeinik [34] y con los frames de Schauder, considerados en el Capítulo
1. Los resultados abstractos presentados aquí, cuando los aplicamos a espacios de
funciones analíticas concretos, nos dan muchos ejemplos y consecuencias sobre los
conjuntos de muestreo y los desarrollos en serie de Dirichlet. Presentamos varios
resultados abstractos sobre Λ-frames en espacios (LB) completos. Finalmente,
recogemos muchas aplicaciones, resultados y ejemplos alrededor de los conjuntos
suficientes para espacios de Fréchet de funciones holomorfas y conjuntos débilmente
suficientes para espacios pesados (LB) de funciones holomorfas. La mayoría de los
resultados incluidos en este capítulo están enviados para publicar en un trabajo
de Bonet, Fernández, Galbis y Ribera en [12].

En el apéndice introducimos algunos conceptos sobre espacios localmente convexos
y sus duales con especial atención a los límites inductivos. Además, también intro-
ducimos algunos resultados relacionados con las bases topológicas. Establecemos
las definiciones y las propiedades fundamentales que se pueden necesitar a lo largo
de la tesis.



Resum

La tesi “Descomposicions atòmiques i frames en espais de Fréchet i els seus duals”
presentada ací tracta diferents àrees de l’anàlisi funcional amb aplicacions.

Els frames de Schauder s’utilitzen per tal de representar un element arbitrari x d’un
espai de funcions E com una reconstrucció en sèrie a partir d’un conjunt numerable
fixat {xj}j d’elements en aquest espai tal que els coeficients de la reconstrucció de
x depenen de forma lineal i continua de x. A diferència de les bases de Schauder,
l’expressió d’un element x en termes d’una successió {xj}j , i.e. la fórmula de
reconstrucció per a x, no és necessàriament única. Les descomposicions atòmiques
o els frames de Schauder són una estructura menys restrictiva que les bases, donat
que un subespai complementat d’un espai de Banach amb base sempre té un
frame de Schauder natural, el qual és obtingut a partir d’una base del superespai.
Inclòs quan el subespai complementat disposa de una base, no hi ha una forma
sistemàtica per tal de trobar-la. Les descomposicions atòmiques apareixen en
aplicacions a processat de senyals i teoria de mostreig entre altres àrees. Feichtinger
va caracteritzar les descomposicions atòmiques per a espais de modulació [24]
que més tart va desenvolupar en el seu treball conjunt amb Gröchenig en [25]
i [26]. Recentment, Pilipovic i Stoeva [55] (veure també [54]) han estudiat els
desenvolupaments en sèrie en límits inductius o projectius (numerables) en espais
de Banach. En aquesta tesi comencem un estudi sistemàtic dels frames de Schauder
en espais localment convexos, tot i que el nostre interès està en els espais de Fréchet
i els seus duals. La diferència més important amb el concepte estudiat en [55] és
que el nostre estudi no depèn de una representació fixada del espai de Fréchet com
a límit projectiu de espais de Banach.

El text està dividit en dos capítols i un apèndix que ens aporta la notació, defini-
cions i els resultats bàsics que utilitzarem al llarg de la tesi. El primer dels capítols
està centrat en la relació entre les propietats de un frame de Schauder en un espai
de Fréchet E i la estructura del espai. En el segon capítol es defineixen i estudien
els frames i les successions de Bessel en espais de Fréchet i els seus duals. En el
que segueix, donem una breu descripció dels diferents capítols:
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En el Capítol 1, estudiem els frames de Schauder en els espais de Fréchet i els seus
duals, així com els resultats de pertorbació. Definim els frames de Schauder con-
tractius i fitadament complets en espais localment convexos, estudiem la dualitat
d’aquests dos conceptes i la seua relació amb la reflexivitat del espai. Caracte-
ritzem, en quines situacions, un frame de Schauder incondicional és contractiu o
fitadament complet en termes de les propietats del espai. També presentem alguns
exemples de frames de Schauder concrets en espais de funcions. El nostre principal
interès en aquest capítol és investigar la relació entre les propietats d’un frame de
Schauder d’un espai de Fréchet E i la estructura del espai, per exemple, si E és
reflexiu o si E conté còpies dels espais c0 o `1. La majoria dels resultats inclosos
en aquest capítol estan publicats per Bonet, Fernández, Galbis i Ribera en [13].

El segon capítol de la tesi està centrat en el estudi de les successions Λ-Bessel (
{gi}i ⊂ E′ ), Λ-frames i frames respecte de Λ en el dual d’un espai localment con-
vex de Hausdorff E, en particular, per a espais de Fréchet i espais (LB) complets
E, amb Λ un espai de successions. Investiguem la relació d’aquests dos conceptes
amb sistemes representants en el sentit de Kadets i Korobeinik [34] i amb els frames
de Schauder, que han sigut investigats en el Capítol 1. Els resultats abstractes
presentats ací, quan els apliquem a espais de funcions analítiques concrets, ens
donen molts exemples i conseqüències sobre els conjunts de mostreig i els desen-
volupaments en sèrie de Dirichlet. Presentem diversos resultats abstractes sobre
Λ-frames en espais (LB) complets. Finalment, recollim moltes aplicacions, re-
sultats i exemples al voltant dels conjunts suficients per a espais de Fréchet de
funcions holomorfes i conjunts dèbilment suficients per a espais pesats (LB) de
funcions holomorfes. La majoria dels resultats inclosos en aquest capítol estan
sotmesos a publicació per Bonet, Fernández, Galbis i Ribera en [12].

En l’apèndix són introduïts alguns conceptes sobre espais localment convexos i
els seus duals, amb especial atenció als límits inductius. A més a més, també
introduïm alguns resultats sobre bases topològiques. Establim les definicions i les
propietats fonamentals que necessitarem al llarg de la tesi.



Summary

The Ph.D. Thesis “Atomic decompositions and frames in Fréchet spaces and their
duals” presented here treats different areas of functional analysis with applications.

Schauder frames are used to represent an arbitrary element x of a function space
E as a series expansion involving a fixed countable set {xj}j of elements in that
space such that the coefficients of the expansion of x depend in a linear and
continuous way on x. Unlike Schauder bases, the expression of an element x in
terms of the sequence {xj}j , i.e. the reconstruction formula for x, is not necessarily
unique. Atomic decompositions or Schauder frames are a less restrictive structure
than bases, because a complemented subspace of a Banach space with basis has
always a natural Schauder frame, that is obtained from the basis of the superspace.
Even when the complemented subspace has a basis, there is not a systematic way
to find it. Atomic decompositions appeared in applications to signal processing
and sampling theory among other areas. Feichtinger characterized Gabor atomic
decompositions for modulation spaces [24] and the general theory was developed
in his joint work with Gröchenig [25] and [26]. Very recently, Pilipovic and Stoeva
[55] (see also [54]) studied series expansions in (countable) projective or inductive
limits of Banach spaces. In this thesis we begin a systematic study of Schauder
frames in locally convex spaces, but our main interest lies in Fréchet spaces and
their duals. The main difference with respect to the concept considered in [55] is
that our approach does not depend on a fixed representation of the Fréchet space
as a projective limit of Banach spaces.

The text is divided into two chapters and appendix that gives the notation, def-
initions and the basic results we will use throughout the thesis. The first one
focuses on the relation between the properties of an existing Schauder frame in
a Fréchet space E and the structure of the space. In the second chapter frames
and Bessel sequences in Fréchet spaces and their duals are defined and studied. In
what follows, we give a brief description of the different chapters:

In Chapter 1, we study Schauder frames in Fréchet spaces and their duals, as well
as perturbation results. We define shrinking and boundedly complete Schauder
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frames on a locally convex space, study the duality of these two concepts and their
relation with the reflexivity of the space. We characterize when an unconditional
Schauder frame is shrinking or boundedly complete in terms of properties of the
space. Several examples of concrete Schauder frames in function spaces are also
presented. Our main purpose in this chapter is to investigate the relation between
the properties of an existing Schauder frame in a Fréchet space E and the structure
of the space, for example if E is reflexive or if it contains copies of c0 or `1. Most
of the results included in this chapter are published by Bonet, Fernández, Galbis
and Ribera in [13].

The second chapter of the thesis is devoted to study Λ-Bessel sequences {gi}i ⊂ E′,
Λ-frames and frames with respect to Λ in the dual of a Hausdorff locally convex
space E, in particular for Fréchet spaces and complete (LB)-spaces E, with Λ a
sequence space. We investigate the relation of these concepts with representing
systems in the sense of Kadets and Korobeinik [34] and with the Schauder frames,
that were investigated in Chapter 1. The abstract results presented here, when
applied to concrete spaces of analytic functions, give many examples and conse-
quences about sampling sets and Dirichlet series expansions. We present several
abstract results about Λ-frames in complete (LB)-spaces. Finally, many applica-
tions, results and examples concerning sufficient sets for weighted Fréchet spaces of
holomorphic functions and weakly sufficient sets for weighted (LB)-spaces of holo-
morphic functions are collected. Most of the results are submitted for publication
in a preprint of Bonet, Fernández, Galbis and Ribera in [12].

In the appendix, some concepts about locally convex spaces and their duals are
introduced with special attention to inductive limits. In addition, we also introduce
some results concerning topological bases. We establish the definitions and the
fundamental properties that we shall need through the thesis.
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Introduction

Schauder frames are used to represent an arbitrary element x of a function space E
as a series expansion involving a fixed countable set {xj}j of elements in that space
such that the coefficients of the expansion of x depend in a linear and continuous
way on x; that is

x =
∞∑
j=1

x′j (x)xj , for all x ∈ E.

Unlike Schauder bases, the expression of an element x in terms of the sequence
{xj}j , i.e. the reconstruction formula for x, is not necessarily unique. In the clas-
sical literature of function spaces the Schauder frames are usually referred to as
atomic decompositions. In abstract theory of Banach spaces the concept of atomic
decomposition is often associated with a certain sequence space selected a priori
while the notion of Schauder frame makes no reference to any sequence space.
However, the two concepts are closely related and some papers in the area ([20],
[16], [17]) are written in terms of atomic decompositions whereas others ([19], [3],
[43]) are stated in terms of Schauder frames. Atomic decompositions appeared
in applications to signal processing and sampling theory among other areas. Fe-
ichtinger characterized Gabor atomic decompositions for modulation spaces [24]
and the general theory was developed in his joint work with Gröchenig [25] and
[26]. In these papers, the authors show that reconstruction through atomic de-
compositions is not limited to Hilbert spaces. Indeed, they obtain atomic decom-
positions for a large class of Banach spaces, namely the coorbit spaces. Atomic
decompositions or Schauder frames are a less restrictive structure than bases, be-
cause a complemented subspace of a Banach space with basis has always a natural
Schauder frame, that is obtained from the basis of the superspace. Even when the
complemented subspace has a basis, there is not a systematic way to find it. There
is a vast literature dedicated to the subject. The related topic of frame expansions
in Banach spaces was considered for example in [18] and [20].

Carando and Lasalle [16] and [17] studied atomic decompositions and their rela-
tionship with duality and reflexivity of Banach spaces. They extended the concepts
of shrinking and boundedly complete Schauder bases to the atomic decomposition
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2 Introduction

framework. They considered when an atomic decomposition for a Banach space
generates, by duality, an atomic decomposition for its dual space and characterized
the reflexivity of a Banach space in terms of properties of its atomic decomposi-
tions. Unconditional atomic decompositions allowed them to prove James-type
results characterizing shrinking and boundedly complete unconditional atomic de-
compositions in terms of the containment in the Banach space of copies of `1 and
c0 respectively.

Very recently, Pilipovic and Stoeva [55] (see also [54]) studied series expansions
in (countable) projective or inductive limits of Banach spaces. In this thesis we
begin a systematic study of Schauder frames in locally convex spaces, but our main
interest lies in Fréchet spaces and their duals. The main difference with respect
to the concept considered in [55] is that our approach does not depend on a fixed
representation of the Fréchet space as a projective limit of Banach spaces. We
mention the following preliminary example as a motivation for our work: Leontiev
proved that for each bounded convex domain G of the complex plane C there
is a sequence of complex numbers {λj}j such that every holomorphic function
f ∈ H(G) can be expanded as a series of the form f(z) =

∑∞
j=1 aje

λjz, converging
absolutely and uniformly on the compact subsets of G. It is well-known that this
expansion is not unique. We refer the reader e.g. to Korobeinik’s survey [37]. A
priori it is not clear whether the coefficients aj in the expansion can be selected
depending continuously on the function f . However, Korobeinik and Melikhov [40,
Th. 4.3 and Remark 4.4(b)] showed that this is the case when the boundary of
the open set G is of class C2; thus obtaining what we call below an unconditional
Schauder frame for the Fréchet space H(G). These are the type of phenomena
and reproducing formulas that we try to understand in our thesis.

The starting point of the first chapter has been the article [17] by Carando, Lasalle
and Schmidberg about the reconstruction formula for Banach frames and duality.
We show that a similar situation holds in our context of locally convex spaces. Our
main purpose in this chapter is to investigate the relation between the properties
of an existing Schauder frame in a Fréchet space E and the structure of the space,
for example if E is reflexive or if it contains copies of c0 or `1. Other precise
references to work in this direction in the Banach space setting can be seen in [18].

In Section 1.1 we introduce Schauder frames and for complete barrelled spaces we
show in 1.1.4 that having a Schauder frame is equivalent to being complemented
in a locally convex space with a Schauder basis.

In Section 1.2 we start by giving some perturbation results for Schauder frames as
in Theorem 1.2.1. We also show an equivalence between a Schauder frame being
bounded below and equicontinuity of the coefficient functionals.
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In Section 1.3 we introduce shrinking and boundedly complete Schauder frames on
a locally convex space, study the duality of these two concepts and their relation
with the reflexivity of the space; see Theorem 1.3.14.

Unconditional Schauder frames are studied in Section 1.4. We completely charac-
terize, for a given unconditional Schauder frame, when it is shrinking or boundedly
complete in terms of properties of the space in Theorems 1.4.11 and 1.4.14. As a
tool, that could be of independent interest, we show Rosenthal’s `1 theorem for
boundedly retractive inductive limits of Fréchet spaces.

In the last section of Chapter 1 we include some examples of concrete Schauder
frames in function spaces. Our Theorem 1.5.2 shows a remarkable relation between
the existence of a continuous linear extension operator for C∞ functions defined on
a compact subset K of Rn and the existence of an unconditional Schauder frame
in C∞(K) using exponentials.

Most of the results included in this chapter are published by Bonet, Fernández,
Galbis and Ribera in [13].

The purpose of chapter 2 is twofold. On the one hand we study Λ-Bessel sequences
{gi}i ⊂ E′, Λ-frames and frames with respect to Λ in the dual of a Hausdorff
locally convex space E, in particular for Fréchet spaces and complete (LB)-spaces
E, with Λ a sequence space. We investigate the relation of these concepts with
representing systems in the sense of Kadets and Korobeinik [34] and with the
Schauder frames, that were investigated in Chapter 1. On the other hand Chapter
2 emphasizes the deep connection of frames for Fréchet and (LB)-spaces with
the sufficient and weakly sufficient sets for weighted Fréchet and (LB)-spaces of
holomorphic functions. These concepts correspond to sampling sets in the case
of Banach spaces of holomorphic functions. Our general results in Sections 2.2
and 2.3 permit us to obtain as a consequence many examples and results in the
literature in a unified way in Section 2.4.

Section 2.2 is inspired by the work of Casazza, Christensen and Stoeva [18] in the
context of Banach spaces. Their characterizations of Banach frames and frames
with respect to a BK-sequence space gave us the proper hint to present here the
right definitions in our more general setting. A point of view different from ours
concerning frames in Fréchet spaces was presented by Pilipovic and Stoeva [55]
and [56].

Motivated by the applications to weakly sufficient sets for weighted (LB)-spaces
of holomorphic functions we present several abstract results about Λ-frames in
complete (LB)-spaces, that require a delicate analysis, in Section 2.3. Our main
result is Theorem 2.3.4.



4 Introduction

Finally, many applications, results and examples are collected in Section 2.4 con-
cerning sufficient sets for weighted Fréchet spaces of holomorphic functions and
weakly sufficient sets for weighted (LB)-spaces of holomorphic functions. We in-
clude here consequences related to the work of many authors; see [1], [2], [11], [36],
[38], [49], [50], [60] and [65].

The results in Chapter 2 are included in a preprint of Bonet, Fernández, Galbis
and Ribera in [12].

Our notation for functional analysis and operator theory is standard. We refer the
reader e.g. to [23], [58], [48], [53], [9] and [59]. More details are presented in the
appendix.



Chapter 1

Schauder frames in locally convex
spaces

In this chapter we study Schauder frames in Fréchet spaces and their duals, as well
as perturbation results. We define shrinking and boundedly complete Schauder
frames on a locally convex space, study the duality of these two concepts and their
relation with the reflexivity of the space. We characterize when an unconditional
Schauder frame is shrinking or boundedly complete in terms of properties of the
space. Several examples of concrete Schauder frames in function spaces are also
presented. Most of the results included in this chapter are published by Bonet,
Fernández, Galbis and Ribera in [13].

Throughout this chapter, E denotes a locally convex Hausdorff linear topological
space (briefly, a lcs) with additional hypotheses added as needed and cs(E) is the
system of continuous seminorms describing the topology of E.

1.1 Schauder frames

In this section, we introduce Schauder frames and we show that having a Schauder
frame is equivalent to being complemented in a locally convex space with a Schauder
basis.

5



6 Schauder frames in locally convex spaces

Definition 1.1.1 Let E be a lcs, {xj}∞j=1 ⊂ E and {x′j}∞j=1 ⊂ E′. We say that(
{x′j}, {xj}

)
is a Schauder frame of E if

x =
∞∑
j=1

x′j (x)xj , for all x ∈ E,

the series converging in E.

A lcs E which admits a Schauder frame is separable. Let E be a lcs with a Schauder
basis {ej}∞j=1 ⊂ E and let {e′j}∞j=1 ⊂ E′ denote the coefficient functionals (more
precisely defined in Appendix 3). Clearly,

(
{e′j}, {ej}

)
is a Schauder frame for

E. The main difference with Schauder basis is that, in general, one may have a
sequence {xj}∞j=1 ⊂ E and two different sequences {x′j}∞j=1 ⊂ E′ and {y′j}∞j=1 ⊂ E′

so that both
(
{x′j}, {xj}

)
and

(
{y′j}, {xj}

)
are Schauder frames. See the comments

after Corollary 1.2.4.

Proposition 1.1.2 Let E be a lcs and let P : E → E be a continuous linear
projection. If

(
{x′j}, {xj}

)
is a Schauder frame for E, then

(
{P ′(x′j)}, {P (xj)}

)
is a Schauder frame for P (E).

In particular, if E is isomorphic to a complemented subspace of a lcs with a
Schauder basis, then E admits a Schauder frame.

Proof. Since P ′(x′j) (y) = x′j(P (y)) = x′j (y) for all y ∈ P (E) and j ∈ N, we
obtain a Schauder frame:

y = P (y) = P

 ∞∑
j=1

x′j (y)xj

 =
∞∑
j=1

P ′
(
x′j
)

(y)P (xj) .

2

Lemma 1.1.3 Let {xj} be a fixed sequence of non-zero elements in a lcs E and
let us denote by

∧
the vector space

∧
:=

α = {αj}j ∈ ω :
∞∑
j=1

αjxj is convergent in E

 . (1.1.1)

Endowed with the system of seminorms

Q :=

qp ({αj}j) := sup
n
p

 n∑
j=1

αjxj

 , for all p ∈ cs(E)

 , (1.1.2)
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∧
is a sequence space and the canonical unit vectors form a Schauder basis. If E

is complete, then
∧

is complete. In particular, if E is a Fréchet (resp. Banach)
space, so is

∧
.

Proof. The fact that Q is a fundamental system of seminorms follows easily from
the fact that the topology of E is determined by the elements of cs(E).

To see that
∧
⊂ ω is continuous, for every j ∈ N, choose pj ≤ pj+1 ∈ cs(E) such

that pj (xj) > 0. For α ∈
∧

and l ∈ N:

|αl| = 1
pl (xl)

pl (αlxl) ≤
1

pl (xl)

pl
 l∑
j=1

αjxj

+ pl

 l−1∑
j=1

αjxj


≤ 2

pl (xl)
qpl (α) .

To show that the canonical unit vectors are a Schauder basis of
∧

observe that,
by definition of the space and of its topology,

∧
= span {ej : j ∈ N} and clearly

q

(
n∑
i=1

αiei

)
≤ q

(
n+m∑
i=1

αiei

)

for every q ∈ Q and for all m,n ∈ N and α1, . . . , αn+m ∈ K we can apply [33,
14.3.6] to conclude that the unit vectors are also a Schauder basis.

Assume that E is complete. To prove that
∧

is complete, let {{αγj }j}γ∈Γ be a
Cauchy net in

∧
. Denote by yγ :=

∑∞
j=1 α

γ
j xj . As p (yγ) ≤ qp (αγ), {yγ}γ∈Γ

is a Cauchy net in E, hence convergent to some y ∈ E. As
∧

is continu-
ously included in ω, {{αγj }j}γ∈Γ converges to α ∈ ω which implies that for ev-
ery n, the net {

∑n
j=1 α

γ
j xj}γ∈Γ converges

∑n
j=1 αjxj . Given ε > 0 and p ∈

cs(E) we can take γ0 ∈ Γ such that for γ, γ′ ≥ γ0 we have p(y − yγ) < ε

and supn p(
∑n
j=1 α

γ
j xj −

∑n
j=1 α

γ′

j xj) < ε, and therefore taking limits we have
supn p(

∑n
j=1 α

γ
j xj −

∑n
j=1 αjxj) ≤ ε. From here it is immediate that the series∑∞

j=1 αjxj converges to y in E, thus α ∈
∧

and qp(αγ − α) ≤ ε whenever γ ≥ γ0.
2

Theorem 1.1.4 Let E be a complete barrelled lcs. The following conditions are
equivalent:

(1) E admits a Schauder frame.
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(2) E is isomorphic to a complemented subspace of a complete sequence space
with the canonical unit vectors as Schauder basis.

(3) E is isomorphic to a complemented subspace of a complete lcs with a Schauder
basis.

In particular, a Fréchet space E admits a Schauder frame if and only if it is
isomorphic to a complemented subspace of a Fréchet space with a Schauder basis.

Proof. (1) ⇒ (2) Let
(
{x′j}, {xj}

)
be a Schauder frame of E. We may assume

that xj 6= 0 for all j ∈ N. Let
∧

be the complete lcs of sequences defined as in
Lemma 1.1.3. We define Fn : E −→ E as Fn (x) :=

∑n
j=1 x

′
j (x)xj . Since E is

barrelled the sequence {Fn}n is equicontinuous, that is, for every p ∈ cs(E) there
exists p′ ∈ cs(E) such that p (Fn (x)) ≤ p′ (x) for every x ∈ E and for every n ∈ N.
Consequently the map

U : E −→
∧

x −→ U (x) :=
{
x′j (x)

}
j

is injective and continuous. Moreover, the map

S :
∧
−→ E

{αj}j −→ S
(
{αj}j

)
:=
∑∞
j=1 αjxj ∈ E.

is linear and continuous, since

p
(
S
(
{αj}j

))
= p

 ∞∑
j=1

αjxj

 ≤ sup
n
p

 n∑
j=1

αjxj

 = qp

(
{αj}j

)
.

As S ◦ U = IE we conclude that U is an isomorphism into its range U (E) and
U ◦ S is a projection of

∧
onto U (E) .

The proof ends if we show that the canonical unit vectors form a Schauder basis.
We give now an argument different from Lemma 1.1.3. Note that the canonical
unit vectors form a topological basis in

∧
since there exists, for each {αj}j ∈

∧
,

a unique sequence {yn}n ∈ ω such that there is a unique {αj}j =
∑∞
n=1 ynen due

to:

lim
n→∞

qp

α− n∑
j=1

αjej

 = lim
n→∞

sup
m>n

p

 m∑
j=n+1

αjxj

 = 0,
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since
∑∞
j=1 αjej is convergent in E. Now, since ej 6∈ span {ei : i 6= j}, by Propo-

sition 3 in [33, p. 292] we obtain that {ej} form a Schauder basis.

(2)⇒ (3) is trivial, while (3)⇒ (1) is consequence of Proposition 1.1.2. 2

The following Corollary is a consequence of an important result of Pełczyński. A
locally convex space is said to satisfy the bounded approximation property if the
identity of E is the pointwise limit of an equicontinuous net of finite rank operators.
If the locally convex space is separable, then the net can be replaced by a sequence.
Pełczyński [52] (see also [44, Theorem 2.11] ) proved that a separable Fréchet
space has the bounded approximation property if and only if it is isomorphic to
a complemented subspace of a Fréchet space with a Schauder basis. For more
information about the bounded approximation property for Fréchet spaces see J.
Bonet’s seminar [10].

Corollary 1.1.5 A separable Fréchet space E admits a Schauder frame if and
only if E has the bounded approximation property.

Proof. It follows from Theorem 1.1.4 and the aforementioned result of Pełczyński
[52]. 2

Taskinen [62] gave examples of a complemented subspace F of a Fréchet Schwartz
space E with a Schauder basis, such that F is nuclear and does not have a basis.
By Theorem 1.1.4, F has a Schauder frame. Vogt [66] gave examples of nuclear
(hence separable) Fréchet spaces E which do not have the bounded approximation
property. These separable Fréchet spaces E do not admit a Schauder frame, al-
though by Kōmura-Kōmura’s Theorem [48, Theorem 29.8] they are isomorphic to
a subspace of the countable product sN of copies of the space of rapidly decreasing
sequence, that has a Schauder basis.

Remark 1.1.6 Let
(
{x′j}, {xj}

)
be a Schauder frame of a sequentially retractive

(LF )-space E = indn→En. Let Fn :=
∑n
j=1 x

′
j(·)xj . We know that the sequence

{Fn}n is equicontinuous, hence if B is a bounded set,

B̃ := ∪nFn(B)

is bounded, therefore there is k such that B̃ is contained and bounded in Ek.
Moreover, as the sequence {Fn(x)}n converges to x in E, there is m such that
Fn(x) ∈ Em and x =

∑∞
j=1 x

′
j(x)xj with convergence in Em.
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Define

Λk :=

α ∈ ω :
n∑
j=1

αjxj ∈ Ek for eachn and
∞∑
j=1

αjxj converges in Ek


with the seminorms defined as usual. Then Λk is a Fréchet sequence space. Let
Λ = ∪kΛk with the topology of the inductive limit of the Λ′ks. The map

U : E −→
∧

x −→ U (x) :=
{
x′j (x)

}
j

is continuous as it maps bounded sets into bounded sets and E, being an (LF )-
space, is bornological. The map Φ : Λ→ E, α→

∑
j αjxj is continuous, since by

the definition of the space, Λk is sent continuously into Ek. Clearly Φ ◦ U = IE .
Moreover given α ∈ Λ take k such that α ∈ Λk, the α −

∑n
j=1 αjej converges to

zero in Λk which implies that α =
∑∞
j=1 αjej in Λ, the representation is unique

and the coefficients depend continuously on α as Λ is a sequence space, then {ej}j
is a Schauder basis. This implies that E is complemented in a sequence (LF )-space
with a Schauder basis.

Proposition 1.1.7 Let E and F be Hausdorff locally convex spaces such that({
x′j
}
, {xj}

)
is a Schauder frame for E and

({
y′j
}
, {yj}

)
is a Schauder frame for

F . Then, there exists
{
z′j
}
⊂ (E × F )′ and {zj} ⊂ (E × F ) such that

({
z′j
}
, {zj}

)
is a Schauder frame for E × F where E × F is the product space.

Proof. Define {zj} ⊂ (E × F ) by z2j−1 = (xj , 0) and z2j = (0, yj) for every
n ∈ N. Define now

{
z′j
}
⊂ (E × F )′ by z′2j−1 (x, y) = x′j (x) and z′2j = y′j (y) for

every n ∈ N and for every (x, y) ∈ E × F . Thus, for every (x, y) ∈ E × F

∞∑
n=1

z′j (x, y) zj =
∞∑
n=1

z′2j (x, y) z2j +
∞∑
n=1

z′2j−1 (x, y) z2j−1 =

=
( ∞∑
n=1

x′j (x)xj ,
∞∑
n=1

y′j (y) yj

)
= (x, y) .

2
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1.2 Perturbation results

The following result, that is needed below, can be found in [29, page 436]: Let E be
a complete lcs and let T : E → E be an operator with the property that there exists
p0 ∈ cs(E) such that for all p ∈ cs(E) there is Cp > 0 such that p(Tx) ≤ Cpp0(x)
for all x ∈ E (that is, T maps a neighborhood into a bounded set) and moreover
Cp0 can be chosen strictly smaller than 1. Then I−T is invertible (with continuous
inverse on E).

Theorem 1.2.1 Let ({x′j}, {xj}) be a Schauder frame of a complete lcs E.

(1) If {yj}j is a sequence in E satisfying that there is p0 ∈ cs(E) such that for all
p ∈ cs(E) there is Cp > 0 with

(i)
∑∞
j=1 |x′j(x)|p(xj − yj) ≤ p0(x)Cp for each x ∈ E and

(ii) Cp0 can be chosen strictly smaller than 1

then, there exists a sequence {y′j}j in E′ such that ({y′j}, {yj}) is a Schauder
frame for E.

(2) If {y′j}j is a sequence in E′ satisfying that there is p0 ∈ cs(E) such that for
all p ∈ cs(E) there is Cp > 0 with

(i)
∑∞
j=1 |(x′j − y′j)(x)|p(xj) ≤ p0(x)Cp for each x ∈ E and

(ii) Cp0 can be chosen strictly smaller than 1

then, there exists {yj}j a sequence in E such that ({y′j}, {yj}) is a Schauder
frame for E.

Proof. In case (1) we consider the operator T (x) =
∑∞
j=1 x

′
j(x)(xj − yj). It is

well defined as the series is absolutely convergent in E, hence convergent, and T
is continuous as

p (Tx) ≤
∞∑
j=1

∣∣x′j(x)
∣∣ p (xj − yj) ≤ p0 (x)Cp

and the hypothesis imply the invertibility of I + T . Now, as (I + T )(xj) = yj we
have that

x = (I + T )(I + T )−1(x) = (I + T )
(∑

x′j
(
(I + T )−1(x)

)
(xj)

)
=
∑

y′j(x)yj

where y′j = x′j ◦ (I + T )−1.



12 Schauder frames in locally convex spaces

In case (2) we argue in the same way with the operator T (x) =
∑∞
j=1(x′j−y′j)(x)xj ,

and the sequence {yj}j is given by S−1(xj), j ∈ N.

2

Our next result should be compared with [21, Proposition 2].

Corollary 1.2.2 Let ({x′j}, {xj}) be a Schauder frame of a complete lcs E. Sup-
pose that there exists p0 ∈ cs(E) such that |x′j(x)| ≤ p0(x) for every x ∈ E, j ∈
N. Let {yj}j ⊂ E such that

∑∞
j=1 p(yj − xj) < ∞ for every p ∈ cs(E) and∑∞

j=1 p0(yj − xj) < 1. Then there exists {y′j}j ⊂ E′ such that ({y′j}, {yj}) is a
Schauder frame for E.

Proof. It is enough to check that the hypothesis of Theorem 1.2.1 hold. In fact,
given p ∈ cs(E), ∑

j

∣∣x′j(x)
∣∣ p(xj − yj) ≤ p0(x)Cp

with Cp =
∑
j p(xj − yj) for each x ∈ E. Hence, Cp0 < 1. 2

We present now an equivalence between a Schauder frame being bounded below (i.e.
there exists p ∈ cs (E) such that p (xj) ≥ 1 for every j ∈ N) and equicontinuity of
the coefficient functionals.

Proposition 1.2.3 Let
(
{x′j}, {xj}

)
be a Schauder frame for a barrelled lcs E.

(i) Assume that {xj}j is bounded below. Then, {x′j}j is equicontinuous in E′.

(ii) Assume now {x′j}j ⊂ E′ is equicontinuous in E′ and λ := infj∈N
∣∣x′j (xj)

∣∣ >
0. Then {xj}j is bounded below.

Proof. In case (i), given p ∈ cs (E) there is p′ ∈ cs (E) such that p
(
x′j (x)xj

)
≤

p′ (x) for every x ∈ E and for every j ∈ N. Then, p
(
x′j (x)xj

)
=
∣∣x′j (x)

∣∣ p (xj) ≤
p′ (x) for every x ∈ E and for every j ∈ N. Since {xj}j is bounded below, this
implies that

∣∣x′j (x)
∣∣ ≤ p′ (x) for every x ∈ E and for every j ∈ N. We conclude

that {x′j}j ⊂ E′ is equicontinuous.

By assumption, in case (ii), there exists p ∈ cs (E) such that
∣∣x′j (x)

∣∣ ≤ p (x) for
every j ∈ N and for every x ∈ E. Then, for every j ∈ N, λ ≤

∣∣x′j (xj)
∣∣ ≤ p (xj).

Therefore, the seminorm 1
λp ∈ cs (E) satisfies 1

λp (xj) ≥ 1 for every j ∈ N. 2
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Observe that, in case (ii), {x′j}j ⊂ E′ being equicontinuous in E′ and λ :=
infj∈N

∣∣x′j (xj)
∣∣ > 0 happens if {xj}j is a basis and {x′j}j are the coefficient func-

tionals, since x′j (xj) = 1 for every j ∈ N.

Corollary 1.2.4 Let E be a Fréchet space with fundamental system of seminorms
{pk}k and let ({x′j}, {xj}) be a Schauder frame of E. Suppose that {y′j}j ⊂ E′

satisfies

p∗1(x′j − y′j) <
1

1 + j2pj(xj) + 3jp1(xj)
where p∗1(x′) = sup{|x′(x)| : p1(x) ≤ 1}.

Then there exists {yj}j ⊂ E such that ({y′j}, {yj}) is a Schauder frame for E.

Given a Schauder frame ({x′j}, {xj}) on a complete lcs E, if x′1(x1) 6= 1 the map
x 7→

∑∞
j=2 x

′
j(x)xj is invertible as 1 is not an eigenvalue of the rank one oper-

ator x 7→ x′1(x)x1; see [35, p. 207]. Hence there exists {y′j}j ⊂ E′ such that
({y′j}j , {xj+1}j) is a Schauder frame and similarly there exists {yj}j ⊂ E such
that ({x′j+1}j , {yj}j) is a Schauder frame. That is, we can remove an element
and still obtain Schauder frames. We recall that for a Schauder basis {xj}j with
coefficient functionals {x′j}j one has x′1(x1) = 1.

1.3 Duality of Schauder frames

Given a Schauder frame
(
{x′j}, {xj}

)
of E it is rather natural to ask whether(

{xj}, {x′j}
)
is a Schauder frame of E′. This is always the case when E′ is endowed

with the weak* topology σ(E′, E).

Lemma 1.3.1 If
(
{x′j}, {xj}

)
is a Schauder frame of E, then

(
{xj}, {x′j}

)
is a

Schauder frame of (E′, σ (E′, E)).

Proof. For every x′ ∈ E′ and x ∈ E we have

x′ (x) = x′

 ∞∑
j=1

x′j (x)xj

 =
∞∑
j=1

x′j (x)x′ (xj) =

 ∞∑
j=1

x′ (xj)x′j

 (x) ,

and x′ =
∑∞
j=1 x

′ (xj)x′j with convergence in (E′, σ (E′, E)). 2

We study conditions to ensure that
(
{xj}, {x′j}

)
is a Schauder frame of the strong

dual (E′, β (E′, E)) of E. Moreover we investigate the relation between the ex-
istence of certain Schauder frames and reflexivity. We recall that in the case of
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bases this questions lead to the concept of shrinking basis and boundedly complete
basis defined in the appendix in 3 ; see [33].

Definition 1.3.2 Let
(
{x′j}, {xj}

)
be a Schauder frame of a lcs E, we consider

the finite rank continuous linear operator defined as

Fn : E −→ E
x −→ Fn (x) :=

∑n
j=1 x

′
j (x)xj .

Also, we consider the linear operator defined as

Tn : E −→ E
x −→ Tn (x) :=

∑∞
j=n+1 x

′
j (x)xj .

Observe that Tn := I − Fn ∈ L (E) , n ∈ N. If we assume that E is a barrelled
lcs, then {Fn}n is an equicontinuous subset of L (E) as we proved in the proof of
Theorem 1.1.4.

Definition 1.3.3 1. A Schauder frame
(
{x′j}, {xj}

)
of a lcs E is said to be

shrinking if, for all x′ ∈ E′,

lim
n→∞

x′ ◦ Tn = 0

uniformly on the bounded subsets of E.

2. A Schauder frame
(
{x′j}, {xj}

)
of a lcs E is said to be boundedly complete

if the series
∑∞
j=1 x

′
j (x′′)xj converges in E for every x′′ ∈ E′′.

Proposition 1.3.4 Let E be a lcs and let
(
{x′j}, {xj}

)
be a Schauder frame of

E. The following are equivalent:

(1)
(
{xj}, {x′j}

)
is a Schauder frame for E′β.

(2) For all x′ ∈ E′,
∑∞
j=1 x

′ (xj)x′j is convergent in E′β.

(3)
(
{x′j}, {xj}

)
is shrinking.

Proof. (1)⇒ (2) is clear by the definition of Schauder frame.

(2) ⇒ (3) if we suppose that for all x′ ∈ E′,
∑∞
j=1 x

′ (xj)x′j is convergent in E′β ,
then there exists limn→∞

∑n
j=1 x

′ (xj)x′j in E′β . This means that

lim
n→∞

 ∞∑
j=1

x′ (xj)x′j −
n∑
j=1

x′ (xj)x′j

 = lim
n→∞

∞∑
j=n+1

x′ (xj)x′j = 0, in E′β .
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Fixing x′ ∈ E′ we want to see that limn→∞ (x′ ◦ Tn) = 0 in E′β . Note that

(x′ ◦ Tn) (x) = x′

 ∞∑
j=n+1

x′j (x)xj

 =
∞∑

j=n+1
x′j (x)x′ (xj)

=

 ∞∑
j=n+1

x′ (xj)x′j

 (x) .

Then

x′ ◦ Tn =
∞∑

j=n+1
x′ (xj)x′j −→ 0, in E′β .

Finally, we prove (3)⇒ (1). Every x′ ∈ E′ can be written as x′ =
∑∞
j=1 x

′ (xj)x′j
with convergence in the weak* topology σ (E′, E) . Given a bounded set B in E,

supx∈B

∣∣∣∣∣∣
x′ − n∑

j=1
x′ (xj)x′j

 (x)

∣∣∣∣∣∣ = supx∈B |x′ ◦ Tn(x)|

which tends to zero, hence x′ =
∑∞
j=1 x

′ (xj)x′j in the topology β (E′, E) .

2

A space E is called Montel if it is barrelled and every bounded subset of E is
relatively compact. Since the pointwise convergence of an equicontinuous sequence
of operators implies the uniform convergence on the compact sets, every Schauder
frame of a Montel space E is shrinking. Beanland, Freeman and Liu [3] have shown
that every infinite dimensional Banach space which admits a Schauder frame has
also a Schauder frame which is not shrinking. The main tool in their proof is the
existence of weak∗ null sequences in the unit sphere of E′. This result inspired
the following characterization of Fréchet spaces with a Schauder frame that are
Montel. In fact, since a Fréchet space E is Montel if and only if every weak∗ null
sequence in E′ is also strongly convergent [15], an adaptation of the proof of [3,
Theorem 2.3] gives the following result.

Theorem 1.3.5 Let E be a separable Fréchet space with the bounded approxima-
tion property. Then E is Montel if and only if every Schauder frame of E is
shrinking.

Proof. If E is Montel, then every Schauder frame is shrinking, according to our
comments above. We prove the converse. By assumption E has a Schauder frame
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(
{x′j}, {xj}

)
. If it is not shrinking, we are done. Thus, we assume that

(
{x′j}, {xj}

)
is shrinking. Fix x0 ∈ E, x0 6= 0, and let x′0 ∈ E′ such that x′0(x0) = 1. Since
E is not Montel, we can apply [15] to find (u′j)j ⊂ E′ such that u′j(x) → 0 as
j →∞ for each x ∈ E, but there are a bounded set B in E and ε0 > 0 such that
supb∈B |u′j(b)| > ε0 for each j ∈ N and each b ∈ B. We now define

y3j−2 := xj , y3j−1 := x0, y3j := x0

y′3j−2 := x′j , y′3j−1 := −u′j , y′3j := uj .

We first show that
(
{y′j}, {yj}

)
is a frame in E. To do this, fix x ∈ E, a con-

tinuous seminorm p on E and δ > 0. There is n0 ∈ N such that, for n ≥ n0,
we have p(x −

∑n
j=1 x

′
j(x)xj) < δ

2 and |u′n(x)| < δ
2(p(x0)+1) . For m > 3n0,

x−
∑m
j=1 y

′
j(x)yj coincides with x−

∑n
j=1 x

′
j(x)xj (if m = 3n or m = 3n− 2) and

with x−
∑n
j=1 x

′
j(x)xj + u′j(x)x0 (if m = 3n− 1). In the first case

p(x−
m∑
j=1

y′j(x)yj) = p(x−
n∑
j=1

x′j(x)xj) <
δ

2 < δ,

and in the second case

p(x−
m∑
j=1

y′j(x)yj) ≤ p(x−
n∑
j=1

x′j(x)xj) + |u′j(x)|p(x0) < δ.

This shows that x =
∑∞
j=1 y

′
j(x)yj in E for each x ∈ E. It remains to prove

that
(
{y′j}, {yj}

)
is not shrinking. As

(
{x′j}, {xj}

)
is shrinking and B ⊂ E

is bounded, there is N0 ∈ N such that, for each b ∈ B and each M ≥ N0,
|x′0(

∑∞
j=M+1 x

′
j(b)xj)| < ε0

2 . For each M ≥ N0 there is bM ∈ B with |u′M (bM )| >
ε0. Then

sup
b∈B

∣∣∣∣∣x′0(
∞∑

i=3M
y′i(b)yi)

∣∣∣∣∣ ≥
∣∣∣∣∣x′0(

∞∑
i=3M

y′i(bM )yi)

∣∣∣∣∣
≥ |x′0(u′M (bM )x0)| −

∣∣∣∣∣∣x′0(
∞∑

j=M+1
x′j(bM )xj)

∣∣∣∣∣∣
> |u′M (bM )| −

∣∣∣∣∣∣x′0(
∞∑

j=M+1
x′j(bM )xj)

∣∣∣∣∣∣ > ε0 −
ε0

2 = ε0

2 .

Hence we have that (x′0◦T3M )∞M=1 does not converge to 0 uniformly on the bounded
subsets of E. Thus

(
{y′j}, {yj}

)
is not shrinking. 2
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Proposition 1.3.6 Let E be a lcs and let
(
{x′j}, {xj}

)
be a shrinking Schauder

frame of E. Then
(
{xj}, {x′j}

)
is a boundedly complete Schauder frame of E′β.

Proof. Since
(
{x′j}, {xj}

)
is a shrinking Schauder frame of E, then

(
{xj}, {x′j}

)
is a Schauder frame of E′β . Moreover, given x′′′ ∈ E′′′ set x′ := x′′′|E to obtain

∞∑
j=1

x′′′ (xj)x′j =
∞∑
j=1

(x′′′|E) (xj)x′j =
∞∑
j=1

x′ (xj)x′j = x′.

2

Recall that a boundedly complete Schauder basis {ej}j in a lcs E is a basis such
that if {αj}j ∈ ω and {

∑k
j=1 αjej}k is bounded, then

∑∞
j=1 αjej is convergent.

We refer to the appendix in Chapter 3 for the definition.

In [16] it is shown that a basis {ej}j in a Banach space X is boundedly complete if
and only if the Schauder frame

(
{e′j}, {ej}

)
is boundedly complete. This extends

to arbitrary barrelled spaces.

Proposition 1.3.7 Let E be a barrelled lcs with a Schauder basis {ej}j. Then
the following are equivalent:

(1) The basis is boundedly complete.

(2) The Schauder frame
(
{e′j}, {ej}

)
is boundedly complete.

Proof. To prove (1) ⇒ (2) we fix x′′ ∈ E′′ and we prove that
∑∞
j=1 e

′
j (x′′) ej

converges in E. For every x′ ∈ E′ and x ∈ E we have

lim
k→∞

 k∑
j=1

x′ (ej) e′j

 (x) = lim
k→∞

x′

 k∑
j=1

e′j (x) ej

 = x′(x).

Since E is barrelled we conclude that
{∑k

j=1 x
′ (ej) e′j , k ∈ N

}
is β(E′, E)-bounded.

Consequently
{∑k

j=1 x
′′ (e′j)x′(ej), k ∈ N

}
is a bounded set of scalars for every

x′ ∈ E′, which means that
{∑k

j=1 x
′′ (e′j) ej , k ∈ N

}
is σ(E,E′)-bounded. As all

topologies of the same dual pair have the same bounded sets ([33, 8.3.4]) we finally
obtain that

{∑k
j=1 x

′′ (e′j) ej , k ∈ N
}
is a bounded subset of E and the conclusion

follows.
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To prove (2) ⇒ (1) we fix {αj}j ⊂ K such that {
∑k
j=1 αjej}k is bounded and

we show that
∑∞
j=1 αjej is convergent in E. Since {

∑k
j=1 αjej}k is σ (E′′, E′)-

relatively compact it has a σ (E′′, E′)-cluster point x′′ ∈ E′′. By hypothesis,∑∞
j=1 x

′′ (e′j) ej is convergent in E, so to conclude it suffices to check that x′′
(
e′j
)

=
αj . To this end we fix j ∈ N and k > j and observe that

e′j

(
k∑
i=1

αiei

)
=

k∑
i=1

αie
′
j (ei) = αj .

As x′′(e′j) is a cluster point of
{
e′j

(∑k
i=1 αiei

)}∞
k=1

we finally deduce x′′
(
e′j
)

= αj .
2

Proposition 1.3.8 Let E be a lcs. The following holds:

(1) Let P : E → E be a continuous linear projection. If
(
{x′j}, {xj}

)
is a

shrinking Schauder frame for E, then
(
{P ′

(
x′j
)
}, {P (xj)}

)
is a shrinking

Schauder frame for P (E).

(2) Let P : E → E be a continuous linear projection. If
(
{x′j}, {xj}

)
is a

boundedly complete Schauder frame for E, then
(
{P ′

(
x′j
)
}, {P (xj)}

)
is a

boundedly complete Schauder frame for P (E).

Theorem 1.3.9 Let
(
{x′j}, {xj}

)
be a Schauder frame of a lcs E. If

(
{x′j}, {xj}

)
is boundedly complete Schauder frame, E is a barrelled and complete lcs E with
E′′β barrelled, then E is complemented in its bidual E′′β .

Proof. We define the canonical inclusion
j : E −→ E′′β

x −→ j (x) (x′) := x′ (x) , for every x′ ∈ E′;

since E is barrelled, j is continuous. On the other hand, we define

g : E′′β −→ E

x′′ −→ g (x′′) :=
∑∞
j=1 x

′′ (x′j)xj ;
a well-defined map since

(
{x′j}, {xj}

)
is a boundedly complete Schauder frame.

Note that g is linear. Since g (x′′) = limk→∞
∑k
j=1 x

′′ (x′j)xj with∑k
j=1 x

′′ (x′j)xj
continuous for every k ∈ N and since E′′β is barrelled, by Banach-Steinhaus theo-
rem, g is continuous. Now, by [32, Proposition 2.7.3], we only have to show that
g ◦ j = IE . Let x ∈ E, then:

g ◦ j (x) =
∞∑
j=1

j (x)
(
x′j
)
xj =

∞∑
j=1

x′j (x)xj = x.
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2

For a Fréchet space E, the bidual E′′β is again a Fréchet space, therefore barrelled.
For (LB)-spaces, this is not always the case. In fact, if λ1(A) is the Grothendieck
example of a non-distinguished Fréchet space, λ1(A) is the strong dual of an (LB)-
space E. The bidual of E, being the strong dual of λ1(A), is not barrelled. See
[41, Chapter 31, Sections 6 and 7] and [48, Example 27.19].

Theorem 1.3.10 Let
(
{x′j}, {xj}

)
be a Schauder frame of a lcs E. If

(
{x′j}, {xj}

)
is shrinking and boundedly complete, then E is semi-reflexive. If, in addition, E
is barrelled then it is reflexive.

Proof. Fix x′′ ∈ E′′. Since the Schauder frame is boundedly complete then∑∞
j=1 x

′
j (x′′)xj converges to an element x ∈ E. We claim that x′′ = x. In

fact, since the Schauder frame is shrinking, for every x′ ∈ E′ we have x′ =∑∞
j=1 x

′ (xj)x′j with convergence in E′β . Thus

〈x′′, x′〉 = 〈x′′,
∞∑
j=1

x′ (xj)x′j〉 =
∞∑
j=1

x′ (xj)x′′
(
x′j
)

=

 ∞∑
j=1

x′′
(
x′j
)
xj

 (x′) = 〈x, x′〉.

It follows x′′ = x. 2

We recall that if E is barrelled, then {Fn}n ⊂ L (E) is equicontinuous.

Lemma 1.3.11 Let E be a barrelled lcs and let Fn be as Definition 1.3.2, then
{F ′n}n ⊂ L

(
E′β

)
is equicontinuous.

Proof. Given B ∈ B (E), we show that C :=
⋃
n∈N Fn (B) is bounded in E.

Indeed, fix U ∈ U0 (E) there is V ∈ U0 (E) such that Fn (V ) ⊂ U for each n ∈ N.
Select λ > 0 such that B ⊂ λV . This implies Fn (B) ⊂ λFn (V ) ⊂ λU for each
n ∈ N. Hence C ⊂ λU and C is bounded. We conclude that for every B ∈ B (E),
there exists C ∈ B (E) such that F ′n (C◦) ⊂ B◦. 2

Lemma 1.3.12 Suppose that
(
{x′j}, {xj}

)
is a Schauder frame of a barrelled lcs

E such that for all k ∈ N

lim
n→∞

x′k − n∑
j=1

x′k (xj)x′j

 = 0 in E′β . (1.3.1)



20 Schauder frames in locally convex spaces

Then
(
{xj}, {x′j}

)
is a Schauder frame of the closed linear span H = span

{
x′j
}E′β .

Proof. We fix x′ ∈ H and show that x′ =
∑∞
j=1 x

′ (xj)x′j with convergence in
E′β . To this end we fix U a neighborhood of zero in E′β and consider Fn(x) =∑n
j=1 x

′
j(x)xj , n ∈ N, x ∈ E. Since {F ′n}n ⊂ L (E′) is equicontinuous, there is

another β (E′, E)-neighborhood V, V ⊂ U , such that F ′n (V ) ⊂ 1
3U for each n ∈ N.

Find u =
∑s
k=1 αkx

′
k, αk ∈ K, s ∈ N, with x′ − u ∈ 1

3V . By condition (1.3.1) we
can find n0 ∈ N such that u− F ′n (u) ∈ 1

3V for each n ≥ n0. Finally,

x′ − F ′n (x′) = x′ − u− F ′n (x′ − u) + u− F ′n (u) ∈ 1
3V + 1

3U + 1
3V ⊂ U if n ≥ n0.

Thus E′β- lim
n→∞

F ′n (x′) = x′ and the conclusion follows. 2

Remark 1.3.13 (a) Observe that if
(
{xj}, {x′j}

)
is a Schauder frame of the

closed linear span H = span
{
x′j
}E′β then (1.3.1) holds since x′k ∈ H for

each k ∈ N.

(b) If {xj} is a Schauder basis in E with coefficient functionals {x′j} then (1.3.1)
also holds, since x′k −

∑n
j=1 x

′
k (xj)x′j = 0 for every n ≥ k.

(c) If E is a Montel space, (1.3.1) holds since every weakly convergent sequence in
a Montel space is also strongly convergent to the same limit, by [33, 11.6.2].

Theorem 1.3.14 Let
(
{x′j}, {xj}

)
be a Schauder frame of a lcs E. If E is reflex-

ive and (1.3.1) in Lemma 1.3.12 holds, then
(
{x′j}, {xj}

)
is shrinking.

Proof. As E is reflexive then it is barrelled and Lemmas 1.3.1 and 1.3.12 hold.
In particular, for each x′ ∈ H = span{x′j}

E′β we have x′ =
∑∞
j=1 x

′ (xj)x′j with
convergence in E′β . Since E is semi-reflexive, β (E′, E) and σ (E′, E) are topologies

of the same dual pair. Hence, by Lemma 1.3.1 we obtain H = span{x′j}
E′β =

span{x′j}
(E′,σ(E′,E)) = E′. The result follows by Proposition 1.3.4. 2
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1.4 Unconditional Schauder frames

In this section we assume that E is a complete lcs and we denote by U0(E) the set
of absolutely convex and closed 0-neighborhoods. We refer the reader to [33] for
unconditional convergence of series in locally convex spaces.

Definition 1.4.1 A Schauder frame
(
{x′j}, {xj}

)
for a lcs E is said to be un-

conditional if for every x ∈ E we have x =
∑∞
j=1 x

′
j (x)xj with unconditional

convergence.

Remark 1.4.2 By [45, p.116] a series
∑∞
j=1 xj in a (sequentially) complete lcs

converges unconditionally if and only if the limits lim
n→∞

n∑
j=1

ajxj exist uniformly

for {aj}j in the unit ball of `∞, and the operator

`∞ −→ E
{aj}j −→

∑∞
j=1 ajxj ;

is continuous.

Lemma 1.4.3 Let X be a normed space, E a barrelled space and G any lcs. Then
every separately continuous bilinear map B : X × E → G is continuous.

Proof. Let W ∈ U0(G) and let UX be the closed unit ball of X. We take
T := {y ∈ E : B (x, y) ∈W for every x ∈ UX} =

⋂
x∈UX B

−1
x (W ) , where Bx =

B(x, ·). Note that T is an absolutely convex closed subset since each Bx : E → G
is continuous. Fixing y ∈ E, since By : X → G is continuous then B−1

y (W ) ∈
U0 (X) , which means that there exists λ > 0 such that λUX ⊂ B−1

y (W ). Therefore
B (x, λy) ∈ W for every x ∈ UX and thus λy ∈ T , that is, T is absorbent. Since
E is barrelled, T ∈ U0 (E) and from B (UX × T ) ⊂ W we conclude that B is
continuous. 2

Corollary 1.4.4 Let
(
{x′j}, {xj}

)
be an unconditional Schauder frame for a com-

plete barrelled lcs E. Then, the bilinear map

B : E × `∞ −→ E
(x, a) −→ B (x, a) :=

∑∞
j=1 ajx

′
j (x)xj ;

is continuous.

The property of having an unconditional Schauder frame is also inherited by com-
plemented subspaces.
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Proposition 1.4.5 Let E be a lcs and let P : E → E be a continuous lin-
ear projection. If

(
{x′j}, {xj}

)
is an unconditional Schauder frame for E, then(

{P ′(x′j)}, {P (xj)}
)
is an unconditional Schauder frame for P (E).

Proof. By Proposition 1.1.2 we obtain that it is a Schauder frame and it is an
unconditional Schauder frame since P is linear; then, for every b ∈ B`∞ , we obtain:

P

 ∞∑
j=1

bjx
′
j (y)xj

 =
∞∑
j=1

bj〈P ′
(
x′j
)
, y〉P (xj) .

2

Corollary 1.4.6 If E is isomorphic to a complemented subspace of a lcs with an
unconditional Schauder basis, then E admits an unconditional Schauder frame.

Similarly to Lemma 1.1.3 we have the following.

Lemma 1.4.7 Let {xj}j be a fixed sequence of non-zero elements in a lcs E and
let us denote by

∧̃
the space

∧̃
:=

α = {αj}j ∈ ω :
∞∑
j=1

αjxj is unconditionally convergent in E

 . (1.4.1)

Endowed with the system of seminorms

Q̃ :=

q̃p ({αj}j) := sup
b∈B`∞

p

 ∞∑
j=1

bjαjxj

 , for all p ∈ cs(E)

 , (1.4.2)

∧̃
is a complete lcs of sequences and the canonical unit vectors are an unconditional

basis.

Proof. The fact that Q̃ is a fundamental system of seminorms for the space
∧̃

is
clear as cs(E) is a fundamental system of seminorms of E. Moreover, K(N) ⊂

∧̃
and

∧̃
⊂
∧

(
∧

as in Lemma 1.1.3) continuously, hence
∧̃

is a lcs of sequences.

From the definition of
∧̃

and 1.4.2, we have
∧̃

= span{ei : i ∈ N}, to conclude
that the canonical unit vectors are a basis we argue as in Lemma 1.1.3.
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To see the completeness, let {{αγj }j}γ∈Γ be a Cauchy net in
∧̃
. As

∧̃
⊂
∧

continuously and
∧

is complete, we have that the net converges to α ∈
∧
, even

more, for each b ∈ B`∞ , {{bjαγj }j}γ∈Γ converges to {bjαj}j ∈
∧
, which shows

that α ∈
∧̃
. Given ε > 0 and p ∈ cs(E) we find γ0 such that for γ, γ′ ≥ γ0

p

 n∑
j=1

bjα
γ
j xj −

n∑
j=1

bjα
γ′

j xj

 < ε

for all n ∈ N and all b ∈ B`∞ , hence taking limits p(
∑n
j=1 bjα

γ
j xj−

∑n
j=1 bjαjxj) ≤

ε for all n ∈ N and all b ∈ B`∞ , which implies that

p

 ∞∑
j=1

bjα
γ
j xj −

∞∑
j=1

bjαjxj

 ≤ ε
for all n ∈ N and all b ∈ B`∞ , thus the net converges to α in

∧̃
. 2

Theorem 1.4.8 Let E be a complete, barrelled lcs. The following conditions are
equivalent:

(1) E admits an unconditional Schauder frame.

(2) E is isomorphic to a complemented subspace of a complete sequence space
with the canonical unit vectors as unconditional Schauder basis.

(3) E is isomorphic to a complemented subspace of a complete sequence space
with unconditional Schauder basis.

Proof. The proof follows the steps of Theorem 1.1.4 but the continuity of the
map

U : E −→
∧̃
, x→ {x′j(x)}j ,

now follows from Corollary 1.4.4. 2

In our next two results, bipolars are taken in E′′ that is U◦◦ = {x′′ ∈ E′′ :
|x′′(x′)| ≤ 1 for all x′ ∈ U◦}.

Lemma 1.4.9 Let E be a lcs and let U be an absolutely convex and closed 0-
neighborhood. For every z ∈ E′′ such that pU◦◦ (z) > 0 there exists {xα}α ⊂ E
with pU (xα) ≤ pU◦◦ (z) and xα → z in σ (E′′, E′).
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Proof. First, we take x := z
pU◦◦ (z) ; note that pU◦◦ (x) = 1. Since U◦◦ is σ (E′′, E′)-

closed, then is closed for the natural topology in E′′ [41, p. 300] with U◦◦ =
{y ∈ E′′ : pU◦◦ (y) ≤ 1}. Thus x ∈ U◦◦ = U

σ(E′′,E′) (by Theorem 4 in [58, p. 35]);
this means that there exists {yα}α ⊂ U such that yα → x in σ (E′′, E′). Now,
pU◦◦ (z) yα → z and xα := pU◦◦ (z) yα satisfy pU (xα) = pU◦◦ (z) pU (yα) ≤ pU◦◦ (z)
as pU (yα) ≤ 1. 2

The following result is well-known. A proof for Banach spaces can be seen e.g. in
[33, 8.5.9]. We give an idea of the proof in the general case for the convenience of
the reader.

Lemma 1.4.10 (Sobzcyk’s theorem for lcs). Let E be a separable lcs. Let H be
a subspace isomorphic to c0. Then H is complemented in E.

Proof. Let T : H → c0 be a topological isomorphism. Denote by e′j ∈ (c0)′
the continuous linear form mapping each x ∈ c0 to its n-th coordinate. Define
vj : H → K by vj(x) := e′j(T (x)), x ∈ H. The continuity of T implies that the
sequence {vj}j ⊂ H ′ is equicontinuous. Moreover, since T (x) ∈ c0 for each x ∈ H,
it follows that {vj}j converges to 0 in σ(H ′, H). We apply [42, 33.5 (2)] to find an
equicontinuous sequence uj : E → K, j ∈ N, such that the restriction of uj to H
coincides with vj for each j and {uj}j converges to 0 for the topology σ(E′, E).
Define S : E → c0 by S(z) := {uj(z)}j , z ∈ E. The map S is well defined,
linear, continuous and S(x) = T (x) for each x ∈ H. Now it is easy to show that
P := T−1 ◦ S is a continuous projection from E to H. 2

Theorem 1.4.11 Let E be a complete, barrelled lcs which admits an uncondi-
tional Schauder frame

(
{x′j}, {xj}

)
. Then,

(
{x′j}, {xj}

)
is boundedly complete if

and only if E does not contain a copy of c0.

Proof. Suppose that E contains a copy of c0. Since E is separable, there ex-
ists a projection P : E → E such that P (E) is isomorphic to c0 ([33, 8.5.9]). If(
{x′j}, {xj}

)
is boundedly complete, then

(
{P ′(x′j)}, {P (xj)}

)
is a boundedly com-

plete Schauder frame in P (E) ' c0. By Proposition 1.3.14, c0 is complemented
in its bidual, a contradiction.

In order to show the converse, suppose that E does not contain a copy of c0 and(
{x′j}, {xj}

)
is not boundedly complete. Then there exists x′′ ∈ E′′, x′′ 6= 0,

such that
∑∞
j=1 x

′′ (x′j)xj is not convergent in E. We can find an absolutely
convex 0-neighborhood U1 and two sequences (pi), (qi) of natural numbers such
that p1 < q1 < p2 < q2 < . . . and pU1

(∑qj
i=pj x

′′ (x′i)xi
)
≥ 1 for each j ∈ N.

We set yj :=
∑qj
i=pj x

′′ (x′i)xi and define T : ϕ → E by T ({aj}j) :=
∑∞
j=1 ajyj .
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We first prove that T is continuous when ϕ is endowed with the ‖·‖∞- norm.
To this end, take U an absolutely convex neighborhood of the origin in E. Since
x′′ 6= 0, x′′ ∈ E′′, there is an absolutely convex 0-neighborhood U2 in E such that
pU◦◦2

(x′′) > 0. Put V := U1 ∩ U2 ∩ U . Clearly pV ◦◦ (x′′) ≥ pU◦◦2
(x′′) > 0. We can

apply Corollary 1.4.4 to find an absolutely convex closed 0-neighborhood W in E
such that W ⊂ V and

pV

( ∞∑
i=1

dix
′
i (z)xi

)
≤ pW (z) ‖d‖∞ (1.4.3)

for each n ∈ N, each d ∈ `∞ and z ∈ E. For a = {aj}j ∈ ϕ, a 6= 0, and
s := max(supp a), the support of a being the set of non-zero coordinates of a, we
define bi = aj for pj ≤ i ≤ qj , and bi = 0 otherwise. We have

∞∑
j=1

ajyj =
s∑
j=1

ajyj =
qs∑
i=p1

bix
′′ (x′i)xi.

Given ε > 0, we can apply Lemma 1.4.9 to find y ∈ E, pW (y) ≤ pW◦◦ (x′′) and

max
p1≤i≤qs

|(x′′ − y) (x′i)| ≤
ε

2qs ‖a‖∞max (pV (xi) , 1) .

This implies

pV

 qs∑
i=p1

bix
′′ (x′i)xi

 ≤ pV

 qs∑
i=p1

bix
′
i (y)xi

+
qs∑
i=p1

|bi| |(x′′ − y) (x′i)| pV (xi)

≤ pV

 qs∑
i=p1

bix
′
i (y)xi

+ ε

2 .

Now, by the estimate (1.4.9), we obtain

pV

 qs∑
i=p1

bix
′
i (y)xi

 ≤ ( max
p1≤i≤qs

|bi|
)
pW (y) ≤

(
max

1≤j≤s
|aj |
)
pW◦◦ (x′′) .

Then,

pV

 s∑
j=1

ajyj

 ≤ ‖a‖∞ pW◦◦ (x′′) + ε

2 .
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Since this holds for each ε > 0 , we get

pU

 ∞∑
j=1

ajyj

 ≤ pV
 ∞∑
j=1

ajyj

 ≤ ‖a‖∞ pW◦◦ (x′′) .

Thus the operator T : (ϕ, ‖·‖∞)→ E is continuous. Since E is complete, T admits
a unique continuous extension T̃ : c0 → E. As by assumption E does not contain
c0, we can apply Theorem 4 in [57, p.208] to conclude that {T̃ (ej)}j has a con-
vergent subsequence {T̃ (ejk)}k. That is, {yj}j admits a convergent subsequence
{yjk}k. Moreover, since T̃ : (c0, σ (c0, l1))→ (E, σ (E,E′)) is also continuous then
{T̃ (ej)}j = {yj}j is σ (E,E′)-convergent to 0, hence {yjk}k must converge to 0 in
E. This is a contradiction, since pU1 (yj) ≥ 1 for each j ∈ N. 2

Now, we give the definition of boundedly retractive inductive limits in the case of
(LF )-spaces. We define in the appendix in 3 the general case.

Definition 1.4.12 [53] An (LF )-space E = indn→En is called boundedly retrac-
tive if for every bounded set B in E there existsm = m(B) such that B is contained
and bounded in Em and Em and E induce the same topology on B.

By [27] an (LF )-space E is boundedly retractive if and only if each bounded subset
in E is in fact bounded in some step En and for each n there is m > n such that
Em and E induce the same topology on the bounded sets of En.

For (LB)-spaces, this is equivalent to the a priori weaker condition that for all
n ∈ N, there exists m > n such that for all k > m, Em and Ek induce the same
topology in the unit ball Bn of En ([51]). In particular (LB)-spaces with compact
linking maps En ↪→ En+1 are boundedly retractive. More information about these
and related concepts can be seen in [67].

Obviously, each Fréchet space F can be seen as a boundedly retractive (LF )-
space, just take Fn = F for all n ∈ N. In particular Theorem 1.4.14 below holds
for Fréchet spaces. Every strict (LF )-space is boundedly retractive. In particular,
for an open subset Ω in Rd, the space D(Ω) is a boundedly retractive (LF )-space.
The space E ′(Ω) and the space V H in Example 1 of Section 1.5 are boundedly
retractive (LB)-spaces.
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Rosenthal’s `1 theorem was extended to Fréchet spaces by Díaz in [21], showing
that every bounded sequence in a Fréchet space has a subsequence that is either
weakly Cauchy or equivalent to the unit vectors in `1.

Proposition 1.4.13 (Rosenthal’s `1 theorem for (LF )-spaces). Let E = indn→En
be a boundedly retractive (LF )-space. Every bounded sequence in E has a subse-
quence which is σ (E,E′)-Cauchy or equivalent to the unit vector basis of `1. In
particular, E does not contain a copy of `1 if and only if every bounded sequence
in E has a σ (E,E′)-Cauchy subsequence.

Proof. Let {xj}j be a bounded sequence in E and assume that it has no σ (E,E′)-
Cauchy subsequence. There is n0 ∈ N such that {xj}j is a bounded sequence in
En0 . Now select m ≥ n0 such that Em and E induce the same topology on the
bounded sets of En0 . Since {xj}j is bounded in Em and it has no σ (Em, E′m)-
Cauchy subsequence, we can apply Rosenthal’s `1 theorem in the Fréchet space
Em to conclude that there is a subsequence {xjk}k which is equivalent to the unit
vector basis of `1. That is, there exist c1 and a continuous seminorm p in Em such
that

c1

∞∑
k=1
|αk| ≤ p

( ∞∑
k=1

αkxjk

)
≤ sup

k
p(xjk)

∞∑
k=1
|αk| ,

for every α = {αk}k ∈ `1.

As the inclusion En0 ↪→ Em is continuous, we find a continuous seminorm q in
En0 such that for x ∈ En0 one has p(x) ≤ q(x). Then, for each α = {αk}k ∈ `1,

c1

∞∑
k=1
|αk| ≤ p

( ∞∑
k=1

αkxjk

)
≤ q

( ∞∑
k=1

αkxjk

)
≤ sup

k
q(xjk)

∞∑
k=1
|αk| .

Set F := {
∑∞
k=1 αkxjk : α = {αk}k ∈ `1} ⊂ En0 . Then p and q restricted to F are

equivalent norms, and F endowed with any of them is a Banach space isomorphic
to `1. The spaces En0 and Em induce on F the same (Banach) topology. Denote
by UF the closed unit ball of F and by τm and τ the topologies of Em and E,
respectively. Then τ and τm coincide on UF , which is an absolutely convex 0-
neighbourhood for τm|F . Applying a result of Roelcke [53, 8.1.27] we conclude
that τm and τ coincide in F ; hence, there is a continuous seminorm r on E such
that p(z) ≤ r (z) for every z ∈ F . This implies, for each α = {αk}k ∈ `1,

c1

∞∑
k=1
|αk| ≤ p

( ∞∑
k=1

αkxjk

)
≤ r

( ∞∑
k=1

αkxjk

)
≤
(

sup
k
r (xjk)

) ∞∑
k=1
|αk| .

Thus, {xjk}k is equivalent to the unit vectors of `1 in E and the inclusion F ↪→ E
is a topological isomorphism into. Then, E contains an isomorphic copy of `1. 2
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In the proof of the next result we utilize the fact that a boundedly retractive (LF )-
space E does not contain `1 if and only if every µ (E′, E)-null sequence in E′ is
β (E′, E)-convergent to 0. This was proved by Domański and Drewnowski and by
Valdivia independently for Fréchet spaces. The proof can be seen in [14] and the
proof for arbitrary boundedly retractive (LF )-spaces follows the same steps as in
[14, Theorem 10] but using Proposition 1.4.13 instead of Rosenthal `1-theorem for
Fréchet spaces.

Theorem 1.4.14 Let E be a boundedly retractive (LF )-space. Assume that E ad-
mits an unconditional Schauder frame

(
{x′j}, {xj}

)
. Then,

(
{x′j}, {xj}

)
is shrink-

ing if and only if E does not contain a copy of `1.

Proof. We first assume that
(
{x′j}, {xj}

)
is shrinking. Then, by Proposition

1.3.4,
(
{x′j}, {xj}

)
is a Schauder frame for E′β and, in particular, E′β is separable.

Consequently E contains no subspace isomorphic to `1.

Conversely, assume that E does not contain a copy of `1. By Lemma 1.3.1,(
{xj}, {x′j}

)
is a Schauder frame of (E′, σ (E′, E)). We check that, for all x′ ∈ E′,

∞∑
j=1

x′(xj)x′j (1.4.4)

is subseries summable to x′ in E′β . Since for each x ∈ E the convergence of

∞∑
j=1

x′j(x)xj (1.4.5)

is unconditional and E is sequentially complete, then (1.4.5) is subseries summable
and we conclude that (1.4.4) is also σ (E′, E)-subseries summable. We can ap-
ply Orlicz-Pettis’ Theorem ([33, p. 308]) to obtain that (1.4.4) is µ (E′, E)-
unconditionally convergent to x′. Therefore it is β (E′, E)-convergent to x′, as
E does not contain a copy of `1. Consequently

(
{x′j}, {xj}

)
is shrinking. 2

1.5 Examples

In this section we present some examples of Schauder frames on locally convex
spaces. These Schauder frames are shrinking and boundedly complete since all
the spaces involved are Montel spaces.

Example 1. This example was obtained by Taskinen in [63]. Denote by D
the open unit disc D := {z ∈ C : |z| < 1} and for each n let vn be the weight
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vn (z) := min
{

1, |log (1− |z|)|−n
}
. We consider the weighted Banach space of

holomorphic functions

H∞vn :=
{
f : D→ C analytic : ‖f‖vn = sup

z∈D
|f (z)| vn (z) <∞

}
.

Since vn+1 ≤ vn then H∞vn ⊂ H∞vn+1
continuously and we consider the inductive

limit
V H = indn→∞H∞vn .

The unit disc D is decomposed as D :=
⋃
j Dj with

◦
Dj 6= ∅ for all j ∈ N in such

a way that the set of elements of D belonging to more that one of the Dj ’s has
Lebesgue measure 0. Let us fix, for all j ∈ N, λj ∈

◦
Dj . As proved in [63], we can

obtain such a decomposition with the property that

S : V H → V H, f 7→ (Sf) (z) :=
∞∑
j=1

m (Dj) f (λj)(
1− λjz

)2 ,

is an isomorphism.

Theorem 1.5.1 [63, Theorem 1] Under the conditions above, let fj(z) := m(Dj)
(1−λjz)2

and uj (f) :=
(
S−1f

)
(λj) be given. Then ({uj} , {fj}) is a shrinking and bound-

edly complete Schauder frame for V H.

Proof. Each f ∈ V H can be written as

f = S
(
S−1 (f)

)
=
∞∑
j=1

(
S−1f

)
(λj) fj ,

hence ({uj} , {fj}) is a Schauder frame in V H. Since V H is a Montel space we
can apply Theorem 1.3.14 to conclude that the Schauder frame is shrinking. 2

As pointed out in [63, p. 330], the coefficients in the series expansion above are
not unique.

Example 2. Let K be a compact subset of Rp that coincides with the closure of

its interior, i.e. K =
◦
K. Let C∞ (K) be the space of all complex-valued functions
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f ∈ C∞(
◦
K) uniformly continuous in

◦
K together with all partial derivatives. The

Fréchet space topology in C∞(K) is defined by the norms:

qn (f) := sup
{∣∣∣f (α) (x)

∣∣∣ : x ∈ K, |α| ≤ n
}
, n ∈ N0.

A continuous and linear extension operator is a continuous and linear operator
T : C∞(K) → C∞ (Rp) such that T (f)|K = f. Not every compact set admits
a continuous and linear extension operator but every convex compact set does.
Further information can be found in [28].

Theorem 1.5.2 Let K ⊂ Rp be a compact set which is the closure of its interior.
The following conditions are equivalent:

(1) There exists a continuous and linear extension operator T : C∞(K) →
C∞ (Rp) .

(2) There are {λj}j ⊂ Rp and {uj}j ∈ C∞ (K)′ such that
(
{uj} ,

{
e2πix·λj

})
is

an unconditional Schauder frame for C∞(K).

Proof. (1) ⇒ (2). We consider M > 0 such that K ⊂ [−M,M ]p and choose
φ ∈ D ((−2M, 2M)p) such that φ(x) = 1 for all x in a neighborhood of [−M,M ]p.
For every f ∈ C∞(K) we define Hf := φ · T (f) ∈ D ((−2M, 2M)p). Then
H : C∞ (K) → D ((−2M, 2M)p) is a continuous and linear map and Hf |K = f .
After extending Hf as a periodic C∞ function in Rp we get

Hf (x) :=
∑
j∈Zp

aje
2πix·λj , where λj = 1

4M (j1, . . . , jp)

and ak = ak (Hf) are the Fourier coefficients of Hf . By [39], supj∈Zp |aj | |j|
m
<

∞ for every m, which implies that the series f =
∑
j∈Zp aje

2πix·λj converges
absolutely in C∞ (K) . Each ak, being a Fourier coefficient of Hf, depends linearly
and continuously on f. Then

(
{uj (·)}, {e2πix·λj}

)
j∈Zp is a Schauder frame for

C∞ (K), with uj ∈ C∞ (K)′ defined by uj (f) = aj (Hf).

(2)⇒ (1). For every f ∈ C∞(K) we have

f(x) =
∞∑
j=1

uj(f)e2πix·λj in C∞(K)

and
∞∑
j=1

uj(f)bje2πix·λj
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converges in C∞(K) for every {bj} ∈ `∞. After differentiation, we obtain that the
series

∞∑
j=1

uj(f)(2π)αbjλαj e2πix·λj

converges in C∞(K) for every α ∈ Np0 and {bj} ∈ `∞. In particular, this series
converges for a fixed x0 in the interior of K, from where it follows

∞∑
j=1

∣∣uj(f)(2π)αλαj
∣∣ < +∞

for every α ∈ Np0. Consequently T (f) (x) :=
∑∞
j=1 uj(f)e2πix·λj defines a C∞

function in Rp and we obtain that T : C∞(K) → C∞(Rp) is a linear extension
operator. The continuity of T follows from the Banach-Steinhaus theorem, as
T (f) is the pointwise limit of Tn (f) :=

∑n
j=1 uj (f) fj , fj(x) := e2πix·λj . 2

Assume that condition (1) in the previous theorem holds. Then, for a fixed j0 ∈ Zp

we can choose φ such that the j0-th Fourier coefficient of φT (e2πiλj0 ·) is not equal
to 1. According to the comment after Corollary 1.2.4, we may remove one of the
exponentials in the Schauder frame above and still obtain a Schauder frame.

Choosing ψ 6= φ in the proof above, we find a different sequence (vj) ∈ C∞ (K)′
such that

(
{vj} ,

{
e2πix·λj

})
is an unconditional Schauder frame for C∞(K). In

fact, according to [39], no system of exponentials can be a basis in C∞ ([0, 1]) .

Example 3. We give a Schauder frame of the Schwartz space S(Rp) of rapidly
decreasing functions. It is inspired by the work of Pilipovic, Stoeva and Teofanov
[54], although their Theorem 4.2 cannot be directly applied to conclude that one
gets a Schauder frame. Let a, b > 0, and Λ = aZp × bZp be given. For z =
(x, ξ) ∈ R2p and f ∈ L2(Rp) we put π(z)f(t) = e2πiξtf(t− x). Let us assume that
g ∈ S(Rp) and {π(λ)g : λ ∈ Λ} is a Gabor frame in L2(Rp). As proved by Janssen
(see [30, Corollary 11.2.6]) the dual window is also a function h ∈ S(Rp) and every
f ∈ L2(Rp) can be written as

f =
∑
λ∈Λ

〈f, π(λ)g〉π(λ)h. (1.5.1)

For every λ ∈ Λ we consider uλ ∈ S ′(Rp) defined by uλ(f) = 〈f, π(λ)g〉 .

Proposition 1.5.3 ({uλ}λ∈Λ, {π(λ)h}λ∈Λ) is an unconditional Schauder frame
for S(Rp).
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Proof. According to [30, Corollary 11.2.6], the topology of S(Rp) can be described
by the sequence of seminorms

qn(f) := sup
z∈R2p

|〈f, π(z)g〉| vn(z), n ∈ N,

where vn(z) = (1 + |z|)n. So, we only need to check that, for every n ∈ N,∑
λ∈Λ

|〈f, π(λ)g〉| qn (π(λ)h) <∞. (1.5.2)

To this end, we fix N > n large enough. Since

|〈π(λ)h, π(z)g〉| ≤ |〈h, π(z − λ)g〉| ≤ qN (h)vN (z − λ)−1

and vn is submultiplicative we obtain that (1.5.2) is dominated by

qN (h)qN (f)
∑
λ∈Λ

(vN (λ))−1
vn(λ) <∞

and the proof is finished. 2

This example is closely related to the fact that {π(λ)g : λ ∈ Λ} is a Gabor frame
for each modulation space defined in terms of a polynomially moderate weight;
see for instance [30, Corollary 12.2.6].



Chapter 2

Frames in locally convex spaces

In this chapter frames and Bessel sequences in Fréchet spaces and their duals are
defined and studied. Their relation with Schauder frames and representing systems
is analyzed. The abstract results presented here, when applied to concrete spaces
of analytic functions, give many examples and consequences about sampling sets
and Dirichlet series expansions. Most of the results are submitted for publication
in a preprint of Bonet, Fernández, Galbis and Ribera in [12].

2.1 Notation and preliminaries

Definition 2.1.1 Given a sequence space Λ its β-dual space is defined as

Λβ :=

{yj}j ∈ ω :
∞∑
j=1

xjyj converges for every {xi}i ∈ Λ

 .

Clearly, (Λ,Λβ) is a dual pair. Under additional assumptions we even have the
relation given in next lemma.

Lemma 2.1.2 Let Λ be a barrelled sequence lcs for which the canonical unit vec-
tors {ej}j form a Schauder basis. Then, its topological dual Λ′ can be algebraically
identified with its β-dual Λβ and the canonical unit vectors {ej}j are a basis for
(Λβ , µ(Λβ ,Λ)). Moreover if we consider on Λβ the system of seminorms given by

pB((yi)i) := sup
x∈B

∣∣∣∣∣∑
i

xiyi

∣∣∣∣∣ ,
33
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where B runs on the bounded subsets of Λ then
(
Λβ , (pB)B

)
is topologically iso-

morphic to (Λ′, β (Λ′,Λ)).

Proof. The map
ψ : Λ′ 7→ Λβ , h→ {h (ei)}i

is a linear bijection. In fact, for every h ∈ Λ′ and x = {xi}i ∈ Λ we have
h(x) =

∑
i xih(ei) which implies that ψ is well defined and obviously linear and

injective. The barrelledness of Λ and the Banach-Steinhauss theorem give the
surjectivity.

If K ⊂ Λ is σ(Λ,Λβ)-compact, given y ∈ Λβ and ε > 0 there is n0 such that for
n ≥ n0, ∣∣∣∣∣

∞∑
i=n

yixi

∣∣∣∣∣ < ε

for all x ∈ K, from where y =
∑
i yiei in the Mackey topology µ(Λβ ,Λ).

As for each bounded subset B of Λ we have

pB ({h (ei)}i) = sup
x∈B
|h(x)| ,

the topological identity follows. 2

From now on, if the sequence space Λ satisfies the assumption in Lemma 2.1.2, we
identify Λ′ with Λβ and use always Λ′.

2.2 General results

Definition 2.2.1 Let E be a lcs and Λ be a sequence space.

1. {gi}i ⊂ E′ is called a Λ-Bessel sequence in E′ if the analysis operator

U = U{gi}i : E −→ Λ
x 7−→ {gi (x)}i

is continuous.

2. {gi}i ⊂ E′ is called a Λ-frame if the analysis operator U is an isomorphism
into. If in addition the range of the analysis operator, R

(
U{gi}i

)
, is com-

plemented in Λ then {gi}i is said to be a frame for E with respect to Λ. In
this case there exists S : Λ→ E such that S ◦ U = id|E .
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Clearly, given a lcs E each sequence {gi}i ⊂ E′ is an ω-Bessel sequence. On the
other hand, if Λ is a Hilbert space and E is complete, each Λ-frame is a frame with
respect to Λ. Obviously a lcs space has a Λ-frame if and only if it is isomorphic to
a subspace of Λ and it has a frame with respect to Λ if and only if it is isomorphic
to a complemented subspace of Λ. Therefore, the property of having a Λ-frame is
inherited by subspaces whereas having a frame with respect to Λ is inherited by
complemented subspaces.

Remark 2.2.2 Let E be a lcs, Λ1, Λ2 sequence spaces, {g1
i }i ⊂ E′ a Λ1-Bessel

sequence and {g2
i }i ⊂ E′ a Λ2-frame. We define {fk}k ⊂ E′ as fk = g1

i for
k = 2i− 1 and fk = g2

i when k = 2i. Consider the sequence space

Λ := {{αk}k : {α2k−1}k ∈ Λ1, and {α2k}k ∈ Λ2} ,

with the topology given by the seminorms

||α||p,q := p ({α2k−1}k) + q ({α2k}k) , where p ∈ cs(Λ1), q ∈ cs(Λ2).

Then {fk}k is a Λ-frame for E. In the case that Λ1 = Λ2 is one of the spaces c0
or `p then Λ = Λ1 = Λ2.

Recall the definition of Schauder frames given in Definition 1.1.1. Note that, if(
{x′i}i , {xi}i

)
is a Schauder frame for a lcs E, the associated sequence space is

Λ := {α = {αi}i ∈ ω :
∑∞
i=1 αixi is convergent in E}. Endowed with the system of

seminorms Q defined in Proposition 1.1.2, Λ is a sequence space and the canonical
unit vectors form a Schauder basis by Lemma 1.1.3.

There is a close connection between Λ-frames and Schauder frames.

Proposition 2.2.3 (a) Let
(
{x′i}i , {xi}i

)
be a Schauder frame for a barrelled

and complete lcs E and Λ the associated sequence space. Then {x′i}i ⊂ E′

is a frame for E with respect to Λ. If moreover Λ is barrelled then {xi}i ⊂ E
is a frame for E′ with respect to Λ′.

(b) If {x′i}i ⊂ E′ is a frame for E with respect to a sequence space Λ, and Λ
has a Schauder frame, then E also admits a Schauder frame.

Proof. (a) According to the proof of Theorem 1.1.4 the operators U : E → Λ and
S : Λ→ E given by U(x) := {x′i(x)}i and S({αi}i) :=

∑∞
i=1 αixi respectively, are

continuous and S ◦ U = idE . Consequently {x′i}i is a frame for E with respect
to Λ. Under the additional assumption that Λ is barrelled we have that Λ′ = Λβ
is a sequence space. Moreover S′(x′) := {x′(xi)}i for each x′ ∈ E′ and from
U ′ ◦ S′ = idE′ we conclude that {xi}i is frame for E′ with respect to Λ′.
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Statement (b) follows from the fact that having a Schauder frame is inherited
by complemented subspaces. That is, letting P : Λ → R

(
U{gi}i

)
the projec-

tion on the complemented subspace, the Schauder frame will be given by x =∑∞
i=1 gi (x)U−1

{gi}i (P (ei)) for every x ∈ E. 2

The barrelledness of the sequence space Λ naturally associated to a Schauder frame
follows for instance, if E is a Banach, Fréchet or a sequentially retractive (LF )-
space as we mentioned in Remark 1.1.6. Observe that the dual space E′ need not
be separable, in which case neither need Λ′ be.

Definition 2.2.4 ([34]) A representing system in a lcs E is a sequence {xi}i in
E such that each x ∈ E admits a representation

x =
∑
i

cixi

the series converging in E.

The coefficients in the representation need not be unique, that is, one can have

0 =
∑
i

dixi

for a non-zero sequence {di}i. Moreover, we do not assume that it is possible to
find a representation of this type with coefficients depending continuously on the
vectors.

Clearly each topological basis is a representing system. Given a Schauder frame
({x′n}n, {xn}n), the sequence {xn}n is a representing system. However, there are
representing systems that are neither basis nor coming from a Schauder frames.
In fact, each separable Fréchet space has a representing system [34, Theorem 1]
but only those Fréchet spaces with the bounded approximation property admit a
Schauder frame by 1.1.5

Definition 2.2.5 A Λ-representing system in a lcs E is a sequence {xi}i in E
such that each x ∈ E admits a representation x =

∑
i cixi with {ci}i ∈ Λ.

Proposition 2.2.6 Let E be a barrelled lcs and let Λ be a barrelled sequence lcs
for which the canonical unit vectors {ei}i form a Schauder basis. Then

(i1) {gi}i ⊂ E′ is a Λ-Bessel sequence if and only if the operator

T : (Λ′, µ(Λ′,Λ))→ (E′, µ(E′, E)), {di}i 7→
∞∑
i=1

digi
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is well defined and continuous.

(i2) {gi}i ⊂ E′ is Λ′-Bessel for E if and only if T : Λ→ (E′, β(E′, E)) given by
T ((di)i) :=

∑∞
i=1 digi is well defined and continuous.

(ii) If {gi}i ⊂ E′ is a Λ-frame in E, then {gi}i is a Λ′-representing system for
(E′, µ(E′, E)). If moreover E is reflexive, then {gi}i is a Λ′-representing
system for (E′, β(E′, E)).

(iii) If {gi}i ⊂ E′ is a Λ-Bessel sequence which is also a Λ′-representing system
for (E′, µ(E′, E)) then {gi}i is a (Λ, σ(Λ,Λ′))-frame for (E, σ(E,E′)).

(iv) If in addition E and Λ are Fréchet spaces, then {gi}i ⊂ E′ is a Λ-frame
for E if, and only if, {gi}i is Λ-Bessel and a Λ′-representing system for
(E′, µ(E′, E)).

Proof. (i1) Let us assume that {gi}i is a Λ-Bessel sequence and consider T = U ′

the transposed map of the analysis operator U : E → Λ, U(x) = {gi(x)}i. Then T :
(Λ′, µ(Λ′,Λ))→ (E′, µ(E′, E)) is continuous and T (ei) = gi. As the canonical unit
vectors are a basis for (Λ′, µ(Λ′,Λ)) we conclude T ({di}i) =

∑∞
i=1 digi. Conversely,

if T is a well defined and continuous map, then its transposed T ′ : E → Λ is also
continuous which means that {gi}i is a Λ-Bessel sequence. (i2) is proved similarly
considering that the dual (Λ′, β(Λ′,Λ)) is a sequence space.

(ii) If {gi}i is a Λ-frame then U is a topological isomorphism into, hence T = U ′

is surjective. In particular {gi}i is a Λ′-representing system in (E′, µ(E′, E)).

(iii) From (i), the map T : (Λ′, µ(Λ′,Λ)) → (E′, µ(E′, E)), {di}i 7→
∑∞
i=1 digi,

is well defined, continuous and surjective. Consequently T ′ : (E, σ(E,E′)) →
(Λ, σ(Λ,Λ′)) is an isomorphism into [33, 9.6.1], hence {gi}i is a (Λ, σ(Λ,Λ′))-frame
for (E, σ(E,E′)).

(iv) Necessity follows from (ii) and sufficiency follows from the closed range theo-
rem [33, 9.6.3] and (iii). 2

Proposition 2.2.7 Let E be a reflexive space and let Λ be a reflexive sequence
space for which the canonical unit vectors {ei}i form a Schauder basis. If either

(i) E and Λ are Fréchet spaces

or

(ii) E is the strong dual of a Fréchet-Montel space and Λ is an (LB)-space,
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then {gi}i ⊂ E′ is a Λ-frame for E if, and only if, {gi}i is Λ-Bessel and a Λ′-
representing system for (E′, β(E′, E)).

Proof. The case (i) is Proposition 2.2.6 (iv). Only the sufficiency in case (ii) has
to be proved. Let us assume that {gi}i is Λ-Bessel and a Λ′-representing system
for (E′, β(E′, E)) and consider the continuous map U : E → Λ, U(x) = {gi(x)}i.
Then T = U ′ : Λ′ → E′ is a well-defined continuous and surjective map. Since
E′ is a Fréchet-Montel space, the map T lifts bounded sets, that is, for every
bounded set B in E′ we can find a bounded set C in Λ′ such that B ⊂ T (C).
Hence U : E → Λ is a topological isomorphism into, which means that {gi}i is a
Λ-frame for E. 2

Example 2.2.8 Let F be the strong dual of a Fréchet-Montel space E. Since
E is separable it admits a representing system {gi}i ⊂ F ′. Consider the Fréchet
sequence space

Λ =
{
{αi}i ∈ ω :

∑
i

αigi is convergent in E
}

endowed with the system of seminorms as in (1.1.2). Then {gi}i is a Λ-representing
system for E and also a (Λ′, β(Λ′,Λ))-frame for F.

In fact, the continuous map T : Λ → E, {αi}i 7→
∑
i αigi, lifts bounded sets,

which implies that U = T ′ : E → Λ′ is an isomorphism into. 2

Example 2.2.9 Let E be a Fréchet-Schwartz space. Then there are a Fréchet
sequence space Λ and a sequence {gj}j ⊂ E′ which is a Λ-frame for E.

In fact, F := E′β = indkFk is a sequentially retractive (LB)-space, hence it is
sequentially separable and admits a representing system {gj}j ([34, Theorem 1]).
Now, for each k we put

Γk :=

α ∈ ω : αjgj ∈ Fk for all j and
∞∑
j=1

αjgj converges in Fk

 .

Without loss of generality we may assume that Γk is non-trivial for each k and we
endow it with the norm

qk(α) = supn||
n∑
j=1

αjgj ||k,
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where ‖·‖k denotes the norm of the Banach space Fk. Then {Γk, qk}k, k ∈ N,
is an increasing sequence of Banach spaces with continuous inclusions and

⋃
k Γk

coincides algebraically with

Γ :=

α ∈ ω :
∞∑
j=1

αjgj converges in F

 .

Hence Γ, endowed with its natural (LB)-topology, is a sequence space with the
property that the canonical unit vectors are a basis. Moreover, the map

Γ→ F, α 7→
∞∑
j=1

αjgj

is well defined, continuous and surjective. Therefore, Λ = Γ′ is a Fréchet sequence
space and {gj}j is a Λ-frame for E. 2

The following result relates Λ-Bessel sequences with frames with respect to Λ when
Λ is a barrelled sequence space for which the canonical unit vectors {ei}i form a
Schauder basis. Note that, if {gi}i ⊂ E′ is a frame with respect to Λ, by definition,
R
(
U{gi}i

)
is complemented in Λ; this means that the operator U−1

{gi}i : R (U)→ E

can be extended to a continuous linear operator S : Λ→ E.

Proposition 2.2.10 Let E be a barrelled and complete lcs and let Λ be a barrelled
sequence space for which the canonical unit vectors {ei}i form a Schauder basis.
If {gi}i ⊂ E′ is Λ-Bessel for E then the following conditions are equivalent:

(i) {gi}i ⊂ E′ is a frame with respect to Λ.

(ii) There exists a family {fi}i ⊂ E, such that
∑∞
i=1 cifi is convergent for every

{ci}i ∈ Λ and x =
∑∞
i=1 gi (x) fi , for every x ∈ E.

(iii) There exists a Λ′-Bessel sequence {fi}i ⊂ E ⊆ E′′ for E′ such that x =∑∞
i=1 gi (x) fi for every x ∈ E.

If the canonical unit vectors form a basis for both Λ and Λ′β, (i)- (iii) are also
equivalent to

(iv) There exists a Λ′-Bessel sequence {fi}i ⊂ E ⊆ E′′ for E′ such that x′ =∑∞
i=1 x

′ (fi) gi for every x′ ∈ E′ with convergence in the strong topology.

If each of the cases (iii) and (iv) hold then {fi}i is actually a frame for E′ with
respect to Λ′ . Moreover, ({gi}i, {fi}i) is a shrinking Schauder frame.
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Proof. We consider U as in Definition 2.2.1 which is an isomorphism into.

(i) → (ii) Let S : Λ → E be a continuous linear extension of U−1
{gi}i such that

S ◦ U = I|E . Define fi := S (ei) and observe that, for all {ci}i ∈ Λ,

∞∑
i=1

cifi =
∞∑
i=1

ciS (ei) = S

( ∞∑
i=1

ciei

)
= S ({ci}i) .

Moreover, for every x ∈ E, x = (S ◦ U) (x) =
∑∞
i=1 gi (x) fi.

(ii) → (i) Assume that (ii) is satisfied, we define S : Λ → E by S ({ci}i) :=∑∞
i=1 cifi with {ci}i. Observe that, by Banach-Steinhaus theorem, S is a

continuous operator. Taking {gi (x)}i ∈ R (U) we obtain

S ({gi (x)}i) =
∞∑
i=1

gi (x) fi = x.

We obtain that S is a continuous extension of U−1, and (i) holds.

(ii) → (iii) Let V : Λ → E be a linear continuous extension of U−1
{gi}i . Set

fi := V (ei). By Lemma 2.1.2, for every x′ ∈ E′ we have {x′ (fi)}i =
{x′ (V (ei))}i ∈ Λ′ and {fi}i, considered as a sequence in E′′, is an Λ′-
Bessel sequence for E′. Note that we can also prove the result using that
S′ : E′β → Λ′, given by S′(x′) := {x′ (fi)}i is continuous since it is the
transpose of S.

(iii) → (ii) By Proposition 2.2.6 (i2), if (iii) is valid then the operator T : Λ′ →
E ⊂ E′′ given by T ({ci}i) :=

∑∞
i=1 cifi is well defined and continuous,

hence (ii) is satisfied.

(iii) → (iv) Denote the canonical basis of Λ by {ei}i and the canonical basis of
Λ′β by {zi}i. If (iii) is valid, there exists {fi}i ⊂ E ⊆ E′′ that is Λ′-Bessel
for E′ such that x =

∑∞
i=1 gi (x) fi. Observe that, as {x′ (fi)}i belongs to

Λ′, then {x′ (fi)}i =
∑∞
i=1 x

′ (fi) zi in (Λ′, β(Λ′,Λ)). Given a bounded set
B ∈ E then C = {{gi (x)}i : x ∈ B} is a bounded set in Λ. If pB ∈ cs(E′β)
is the continuous seminorm defined by pB(u′) := supx∈B |u′(x)| then
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pB

(
x′ −

n∑
i=1

x′ (fi) gi

)
= sup

x∈B

∣∣∣∣∣x′ (x)−
n∑
i=1

x′ (fi) gi (x)

∣∣∣∣∣
= sup

x∈B

∣∣∣∣∣x′
( ∞∑
i=1

gi (x) fi

)
−

n∑
i=1

x′ (fi) gi (x)

∣∣∣∣∣
= sup

x∈B

∣∣∣∣∣
∞∑

i=n+1
x′ (fi) gi (x)

∣∣∣∣∣
= sup

φ∈C

∣∣∣∣∣φ
( ∞∑
i=n+1

x′ (fi) zi

)∣∣∣∣∣
= qC

( ∞∑
i=n+1

x′ (fi) zi

)
where qC ∈ cs(Λ′) is given by qC (α) := supΦ∈C |Φ(α)| for every α ∈ Λ′β .
Then, qC

(∑∞
i=n+1 x

′ (fi) zi
)
converges to 0 as n converges to infinity since

{x′(fi)}i =
∑∞
n=1 x

′(fi)zi in Λ′β .

(iv) → (iii) If (iv) is valid, then there exists {fi}i a Λ′-Bessel sequence for E′
such that x′ =

∑∞
i=1 x

′ (fi) gi. Given a bounded subset B′ ⊂ E′ then
C ′ = {{x′ (fi)}i : x′ ∈ B′} is a bounded set in Λ′β . If pB′ ∈ cs(E) is the
continuous seminorm defined by pB′(x) := supx′∈B′ |x′(x)| then

pB′

(
x−

n∑
i=1

gi (x) fi

)
= sup

x′∈B′

∣∣∣∣∣x′ (x)−
n∑
i=1

x′ (fi) gi (x)

∣∣∣∣∣
= sup

x′∈B′

∣∣∣∣∣
∞∑

i=n+1
x′ (fi) gi (x)

∣∣∣∣∣
= sup

φ′∈C′

∣∣∣∣∣φ′
( ∞∑
i=n+1

gi (x) ei

)∣∣∣∣∣
= q

( ∞∑
i=n+1

gi (x) ei

)

where q is a continuous seminorm in
∧
β . Then, q

(∑∞
i=n+1 gi (x) ei

)
con-

verges to 0 as n converges to infinity due to the fact that {gi(x)}i =∑∞
i=1 gi(x)ei in Λ.

To conclude, observe that, if (iii) and (iv) hold, then ({gi}i, {fi}i) and ({fi}i, {gi}i)
are Schauder frames for E and E′ respectively. By Proposition 1.3.4 we obtain
that ({gi}i, {fi}i) is a shrinking Schauder frame. 2
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Let us introduce now the concept of algebra.

Definition 2.2.11 A vector space A over K is called an algebra over K if a prod-
uct xy is defined for any two elements x and y of A, which satisfies the rules:

1. (xy)z = x(yz).

2. x(y + z) = xy + xz, (x+ y)z = xz + yz,

3. (xy)α = x(yα) = (xα)y with α ∈ K.

A locally convex algebra A is a lcs which is an algebra with separately continuous
multiplication.

The spectrum of the algebra is the set of all non-zero multiplicative linear func-
tionals. The following remark will be useful in Section 2.4.2.

Remark 2.2.12 (i) In many cases E is continuously included in a locally
convex algebra A with non-empty spectrum, Λ is a solid sequence space,
{gi}i is a Λ-frame and every gi is the restriction to E of a continuous linear
multiplicative functional on A. Let us assume that for some a ∈ A the
operator

T : E → E(⊂ A), x 7→ ax

is well defined and it is a topological isomorphism into, and that α :=
{gi(a)}i defines by pointwise multiplication a continuous operator on Λ.
Then, {hi}i, where

hi :=
{
gi, if gi(a) 6= 0
0 if gi(a) = 0

is a Λ-frame. In fact, since U ◦T is a topological isomorphism into then for
every continuous seminorm p on E there is a continuous seminorm q on Λ
such that

p(x) ≤ q ({gi(ax)}i) = q ({gi(a)gi(x)}i) = q ({gi(a)hi(x)}i) .

Finally, since the pointwise multiplication with {gi(a)}i is a continuous
operator on Λ we find a continuous seminorm r on Λ with

p(x) ≤ r ({hi(x)}i) , x ∈ E.
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(ii) If E is a locally convex algebra with non-empty spectrum, Λ is a sequence
space and {gi}i is a Λ-frame consisting of continuous linear multiplicative
functionals on E, then U(E) is a locally convex algebra under pointwisse
multiplication. Fix β ∈ U(E) such that there exists b ∈ E which β =
{gi(b)}i. Let us consider now the operator

T̂ : U(E)→ U(E), γ 7→ βγ;

since E is a locally convex algebra we obtain that if γ = {gi(x)}i for a
x ∈ E then

βγ = {gi(b)}i{gi(x)}i = {gi(bx)}i.

Therefore T̂ is well defined. Now, we also check that it is continuous. Given
p ∈ cs(Λ) and using that {gi}i is a Λ-frame consisting of continuous linear
multiplicative functionals, there exists q ∈ cs(E) such that

p({gi(b)gi(x)}i) = p({gi(bx)}i) ≤ q(bx).

Also, using that E is a locally convex algebra then there exists q′ ∈ cs(E)
such that

q(bx) ≤ q′(x).
Finally, using that {gi}i is a Λ-frame we find a continuous seminorm r on
Λ with

p({gi(b)gi(x)}i) ≤ q′(x) ≤ r ({gi(x)}i) .

Hence, if E has no zero-divisors, the analysis map U cannot be surjective.
In fact, if there are x, y ∈ E such that U(x) = e1 and U(y) = e2 then
U(x · y) = e1 · e2 = 0 and the injectivity of U implies x · y = 0, which is
a contradiction. Since the range of U is a topological subspace of Λ, the
non-surjectivity of U implies the non-injectivity of the transposed map U ′.
Consequently the expression of any element in E′ as a convergent series∑

i

αigi

with α ∈ Λ′ is never unique.

2.3 Λ-frames in (LB)-spaces

Let E = indn(En, ‖·‖n) and Λ = indn(Λn, rn) be complete (LB)-spaces and
{gi}i ⊂ E′ a Λ-Bessel sequence. Let U : E → Λ be the continuous and lin-
ear map of Definition 2.2.1 and, for each n ∈ N, consider the seminormed space
(Fn, qn) where

Fn = {x ∈ E : U(x) ∈ Λn}
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and qn(x) := rn(U(x)). Let us consider the topologies on E

(E, τ1) = indn(En, ‖·‖n), (E, τ2) = indn(Fn, qn).

Finally, denote by τ3 the topology on E given by the system of seminorms x 7→
p(U(x)), when p runs in cs(Λ). Then

τ1 ≥ τ2 ≥ τ3,

but observe that τ2 and τ3 need not be even Haussdorf.

We observe that {gi}i ⊂ E′ is a Λ-frame if, and only if, the former three topologies
coincide.

The coincidence τ1 = τ2 is easily characterized under the mild additional assump-
tion that the closed unit ball of Λn is also closed in ω. This is the case for all
(weighted) `p spaces, 1 ≤ p ≤ ∞, but not for c0.

Proposition 2.3.1 Assume that the closed unit ball of Λn is closed in ω. Then,
τ1 = τ2 if and only if (Fn, qn) is a Banach space for each n.

Proof. Assume that τ1 = τ2, which in particular implies that τ2 is Hausdorff.
Since (Fn, qn) is continuously injected in (E, τ2), qn is a norm. Moreover, if x ∈ E,
x 6= 0, there is n such that x ∈ Fn, hence qn(x) > 0. We have 0 < qn(x) =
rn(U(x)), which implies U(x) 6= 0. Thus U is injective. Let {xj}j be a Cauchy
sequence in (Fn, qn). Then, it converges to a vector x in the complete (LB)-space
E, and therefore its image under the analysis map {U(xj)}j is convergent to U(x)
in Λ. Now, given ε > 0 we can find j0 such that rn(U(xj)− U(xk)) ≤ ε whenever
j, k ≥ j0. That is, for k ≥ j0,

U(xk) ∈ U(xj) + (α ∈ Λn : rn(α) ≤ ε),

and then

U(x) ∈ U(xj) + (α ∈ Λn : rn(α) ≤ ε)
ω

for all j ≥ j0. By hypothesis we get U(x) ∈ Λn and rn(U(x − xj)) ≤ ε for all
j ≥ k0. Hence (Fn, qn) is a Banach space.

The converse holds since, by the open mapping theorem, two comparable (LB)-
topologies must coincide. 2

The next result depends on Grothendieck’s factorization theorem (see [48, 24.33]).
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Corollary 2.3.2 Assume that the closed unit ball of Λn is closed in ω. Then
τ1 = τ2 if and only if for each n there are m and C such that Fn ⊂ Em and

||x||m ≤ Cqn(x)

for each x ∈ Fn.

Proposition 2.3.3 If E is Montel and τ1 = τ2, then {gi}i is a Λ-frame for E.

Proof. As in Proposition 2.3.1, U is injective and each (Fn, qn) is a normed
space. By Baernstein’s lemma (see [53, 8.3.55]), as E is a Montel space and Λ
is a complete (LB)-space, it suffices to show that for each bounded subset B of
Λ, the pre-image U−1(B) is bounded in (E, τ2). Since Λ is regular, because it is
complete, there is n such that B is contained and bounded in Λn, hence U−1(B)
is contained and bounded in Fn, therefore bounded in E. 2

Proposition 2.3.4 Let E = indn(En, ‖·‖n) be a (DFS)-space and also let Λ =
indn(Λn, rn) be a complete (LB)-space. Assume that the closed unit ball of Λn is
closed in ω. If {gi}i ⊂ E′ is a Λ-Bessel sequence then the following conditions are
equivalent:

(i) {gi}i is a Λ-frame,

(ii) The map U : E → Λ, U(x) = {gi (x)}i, is injective and for every n ∈ N
there exists m > n such that Fn ⊂ Em.

Proof. If (i) is satisfied, τ1 = τ2 = τ3. The injectivity of U follows as in the proof
of Proposition 2.3.1 and the rest of (ii) follows by Corollary 2.3.2.

We prove that (ii) implies (i). Without loss of generality we can assume that En ⊂
En+1 with compact inclusion, En ⊂ Fn and qn(x) ≤ ‖x‖n for every x ∈ En. It
suffices to show that, under condition (ii), the inclusion Fn ⊂ Em+2 is continuous.
In fact, this implies the coincidence of the topologies τ1 = τ2, hence the Λ-frame
property by Proposition 2.3.3.

We take
B =

{
x ∈ Fn : qn(x) ≤ 1, ‖x‖m+1 > 1

}
and

A =
{
y = x

‖x‖m+1
: x ∈ B

}
.
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We can assume B is an infinite set since otherwise the inclusion Fn ⊂ Em+1 is
continuous and we are done. Let {pj}j denote a fundamental system of seminorms
for the Fréchet space ω. We claim that there are j0 ∈ N and C > 0 such that

‖x‖m+1 ≤ Cpj0(U(x))

for every x ∈ B. On the contrary there is a sequence {yj}j ⊂ A such that

pj(U(yj)) ≤
1
j! . (2.3.1)

Assume that {yj}j is bounded in Em. Then it would be compact in Em+1. There-
fore, there is a subsequence {ys}s of {yj}j that converges to y in Em+1. Hence
U(ys)→ U(y) in Λ, hence in ω. We can apply (2.3.1) to conclude that U(y) = 0,
hence y = 0, since U is injective. This contradicts ‖ys‖m+1 = 1 for all s. Con-
sequently, {yj}j is unbounded in Em. Hence, for j1 = 1 there exists j2 > j1 such
that

1
6 · 22 ‖yj2‖m > 3‖yj1‖m.

Hence there is ψ in the unit ball BE′m of E′m such that

1
6 · 22 |ψ(yj2)| > 3‖yj1‖m > 2 |ψ(yj1)| .

Since U : Em → ω is a continuous and injective map then U ′ : ω′ → E′m has
σ(E′m, Em)-dense range and we can find ϕ2 ∈ ω′ such that

max
k=1,2

|(ϕ2 ◦ U − ψ)(yjk)|

is so small that

1
6 · 22 |ϕ2(U(yj2))| > 3‖yj1‖m > 2 |ϕ2(U(yj1))| .

By condition (2.3.1) there is j′2 such that

|ϕ2(U(yj))| < |ϕ2(U(yj2))| , j > j′2.

Proceeding by induction it is possible to obtain a sequence {ϕ`}` ⊂ ω′ and an
increasing sequence {j`}` of indices such that ϕ` ◦ U ∈ BE′m and

1
`(`+ 1)2` |ϕ`(U(yj`))| > 3

`−1∑
k=1
‖yjk‖m > 2

`−1∑
k=1
|ϕ`(U(yjk))|

while
|ϕ`(U(yjk))| < |ϕ`(U(yj`))| ∀k > `.
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We now consider

y =
∞∑
k=1

1
k2k yjk ∈ Em+1.

Then

ϕ`(U(y)) =
∞∑
k=1

1
k2kϕ`(U(yjk)),

hence

|ϕ`(U(y))| ≥ 1
`2` |ϕ`(U(yj`))| −

∑
k<`

1
k2k |ϕ`(U(yjk))| −

∞∑
k>`

1
k2k |ϕ`(U(yjk))|

≥

(
1
`2` −

∑
k>`

1
k2k

)
|ϕ`(U(yj`))| −

∑
k<`

1
k2k |ϕ`(U(yjk))|

≥ 1
`(`+ 1)2` |ϕ`(U(yj`))| −

3
2
∑
k<`

‖yjk‖m

≥
∑
k<`

‖yjk‖m ≥
∑
k<`

‖yjk‖m+1 = `− 1.

On the other hand rn(U(yjk)) ≤ 1 for every k ∈ N, which implies that the series

∞∑
k=1

1
k2kU(yjk)

converges in the Banach space Λn. Hence y ∈ Fn ⊂ Em. Since ϕ` ◦U ∈ B′Em then
|ϕ`(U(y))| ≤ 1, which is a contradiction. Consequently the claim is proved and
there are j0 ∈ N and C > 0 such that

‖x‖m+1 ≤ Cpj0(U(x))

for every x ∈ B. In order to conclude that the inclusion Fn ⊂ Em+2 is continuous,
it suffices to check that B is bounded in Em+2. To this end we first observe that

1 ≤ ‖x‖m+1 ≤ Cpj0(U(x)) ≤ C ′‖x‖m+2

for some C ′ > 0 and for all x ∈ B. Then{
x

‖x‖m+2
: x ∈ B

}
⊂ Em

is a bounded set in Em+1, hence relatively compact in Em+2. We now proceed
by contradiction and assume that B is unbounded in Em+2. Then there exists a
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sequence {xj}j ⊂ B with ‖xj‖m+2 ≥ j. Passing to a subsequence if necessary we
can assume that

yj := xj
‖xj‖m+2

converges to some element z ∈ Em+2 such that ‖z‖m+2 = 1. Since the inclusion
Em+2 ⊂ Fm+2 is continuous we get

lim
j→∞

qm+2(yj − z) = 0.

From the injectivity of U we get qm+2(z) = rm+2(U(z)) = a > 0, and there is
j0 ∈ N such that qm+2(yj) ≥ a

2 whenever j ≥ j0, which implies qm+2(xj) ≥ a
2 j for

all j ≥ j0. This is a contradiction, since (m > n)

qm+2(xj) ≤ qn(xj) ≤ 1.

The proof is complete.

2

2.4 Examples

2.4.1 Weighted spaces of holomorphic functions

Let G be either an open disc centered at the origin or C. A radial weight on G is a
strictly positive continuous function v on G such that v(z) = v(|z|), z ∈ G. Then,
the weighted Banach space of holomorphic functions is defined by

Hv(G) := {f ∈ H(G) : ||f ||v := supz∈G v(|z|)|f(z)| < +∞} .

Let V = {vn}n be a decreasing sequence of weights on G. Then the weighted
inductive limit of spaces of holomorphic functions is defined by

V H := indn Hvn(G),

that is, V H(G) is the increasing union of the Banach spaces Hvn(G) with the
strongest locally convex topology for which all the injections Hvn(G) → V H(G)
become continuous.

Similarly, given an increasing sequence of weights W = {wn}n on G, the weighted
projective limit of spaces of entire functions is defined by

HW (G) := projnHwn(G),
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that is, HW (G) is the decreasing intersection of the Banach spaces Hwn(G) whose
topology is defined by the sequence of norms || · ||wn . It is a Fréchet space.

In both cases, when G = C we will simply write V H and HW.

Given any sequence S := {zi}i ⊂ G and a decreasing sequence of weights V on G
let us put

νn(i) = vn(zi)

and
V `∞(S) = indn`∞(νn).

For an increasing sequence of weights W = {wn}n on G, we put

ωn(i) := wn(zi)

and
`∞W (S) =

⋂
n

`∞(ωn).

Obviously, the restriction maps

R : V H(G)→ V `∞(S), f 7→ {f(zi)}i

and
R : HW (G)→ `∞W (S), f 7→ {f(zi)}i

are well defined and continuous, that is, {δzi}i is a V `∞(S)-Bessel sequence for
V H(G) and a `∞W (S)-Bessel sequence for HW (G). We want to analyze when
these Bessel sequences are in fact frames, that is, when the restriction map is an
isomorphism into.

Let us first concentrate on the Fréchet case. In this case, {δzi}i is a `∞W (S)-frame
if and only if for every n there are m and C such that

sup
z∈G
|f(z)|wn(z) ≤ C sup

i
|f(zi)|wm(zi)

for every f ∈ HW (G). This is the same as saying that S is a sufficient set for
HW (G). The concept of sufficient set was introduced by Ehrenpreis in [22].

The (LB)-case is more delicate. Following the notation of section 2.3, if En :=
Hvn(G), the space Fn := {f ∈ V H(G) : R(f) ∈ `∞(νn)} is usually denoted by
A(S, vn) and the corresponding seminorm qn is denoted ‖·‖n,S , that is,

‖f‖n,S = sup
i∈N
|f(zi)| νn(i), f ∈ A(S, vn).
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Then τ1 is the topology of the inductive limit V H(G) and τ2 is the topology of
indnA(S, vn). We recall that S is said to be weakly sufficient for V H(G) when
V H(G) = indnA(S, vn) topologically. It should be mentioned that this definition
a priori is not restricted to discrete sets, but this is the most interesting case.
According to Proposition 2.3.1 and Corollary 2.3.2 we recover the following well-
known result.

Theorem 2.4.1 The following statements are equivalent:

(i) S := {zi}i is weakly sufficient.

(ii) A(vn, S) is a Banach space for every n ∈ N.

(iii) For each n there are m ≥ n and C > 0 such that for every f ∈ V H(G) one
has

||f ||m ≤ C||f ||n,S .

Also from Proposition 2.3.4 we get

Theorem 2.4.2 Let us assume that vn+1
vn

vanishes at infinity on G for every
n ∈ N. Then, the following conditions are equivalent:

(i) S := {zi}i is weakly sufficient.

(ii) The restriction map V H(G) → V `∞(S) is injective and for each n there
are m ≥ n and C > 0 such that A(vn, S) ⊂ Hvm(G).

The injectivity of the restriction map means that S is a uniqueness set for V H(G).
As a consequence of Proposition 2.3.3 we obtain

Theorem 2.4.3 If V H(G) is Montel, S is weakly sufficient if and only if the
restriction map

R : V H(G)→ V `∞(S), f 7→ f |S ,
is a topological isomorphism into.

If the sequence V = {v} reduces to one weight, {δzi}i is a `∞(ν)-frame for Hv(G)
if and only if S is a sampling set for Hv(G). If {vn}n is a decreasing sequence
of weights on G and S is a sampling set for Hvn(G) for each n, then S is a
weakly sufficient set for V H(G). However, Khoi and Thomas [36] gave examples
of countable weakly sufficient sets S = {zi}i in the space

A−∞(D) := indnHvn(D), with vn(z) = (1− |z|)n,
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which are not sampling sets for any Hvn(D), n ∈ N. As A−∞(D) is Montel, {δzi}i
is a V `∞(S)-frame for A−∞(D) which is not a `∞(νn)-frame for Hvn(D) for any
n. Bonet and Domanski [11] studied weakly sufficient sets in A−∞(D) and their
relation to what they called (p, q)-sampling sets.

The dual of the space A−∞(D) can be identified via the Laplace transform with the
space of entire functions A−∞D := HW (C) for the sequence of weightsW = {wn}n,

wn(z) = (1 + |z|)ne−|z|,

(see [49] and also [1] for the several variables case). In [1] explicit constructions of
sufficient sets for this space are given. For instance, for each k take `k ∈ N, `k >
2πk2, and let zk,j := krk,j , 1 ≤ j ≤ `k, where rk,j are the `k-roots of the unity,
then, with an appropriate order, {δzk,j : k ∈ N, 1 ≤ j ≤ `k} is a `∞W (S)-frame in
A−∞D . More examples for non-radial weights can be found in [2].

Finally we recover the following result. This should be compared with Corollary
2.4.18 below.

Theorem 2.4.4 ([1])

(i) {λk}k ⊂ C is sufficient for A−∞D if and only if every function f ∈ A−∞(D)
can be represented as

f(z) =
∑
k

αke
λkz

where ∑
k

|αk| (1 + |λk|)−ne|λk| <∞ for some n ∈ N.

(ii) {λk}k ⊂ D is weakly sufficient in A−∞(D) if and only if each function
f ∈ A−∞D can be represented as

f(z) =
∑
k

αke
λkz

where ∑
k

|αk| (1− |λk|)−n <∞ for every n ∈ N.

Remark 2.4.5 (a) Observe that the sequence {λk}k in Theorem 2.4.4(i) cannot
be bounded. In fact, if we assume that {λk}k is bounded, condition∑

k

|αk| (1 + |λk|)−ne|λk| <∞ for some n ∈ N.
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simply means that ∑
k

|αk| <∞,

and hence each f ∈ A−∞(D) would be bounded, that is we would have the identity
A−∞(D) = H∞(D).

In the same way, the sequence {λk}k in Theorem 2.4.4(ii) cannot be contained in
a compact subset of D. If this were the case,∑

k

|αk| (1− |λk|)−n <∞ for every n ∈ N.

would be equivalent to {αk}k ∈ `1. Consequently, we could find 0 < a < 1 such
that each for each f ∈ A−∞D there is C > 0 with

|f(z)| ≤ Cea|z|.

(b) The convergence of the representations

f(z) =
∑
k

αke
λkz

in Theorem 2.4.4 is absolute. To this end, for λ ∈ C, let us denote by eλ the
exponential eλ(z) := eλz. Then, it is easy to see that

||eλ||vn =
{

1, if |λ| ≤ n
(ne )n e

|λ|

|λ|n , if |λ| > n

Hence if f ∈ A−∞(D) can be represented as

f(z) =
∑
k

αke
λkz

where ∑
k

|αk| (1 + |λk|)−ne|λk| <∞ for some n ∈ N,

we have that ∑
k |αk| ||eλ||vn ≤∑

|λk|≤n |αk|+ (ne )n
∑
|λk|>n |αk|

e|λ|

|λ|n <∞.

The other case is similar.
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2.4.2 The Hörmander algebras

We use here and in what follows Landau’s notation of little o-growth and capital
O-growth. A function p : C→ [0,∞[ is called a growth condition if it is continuous,
subharmonic, radial, increases with |z| and satisfies

(α) log(1 + |z|2) = o(p(|z|)) as |z| → ∞,

(β) p(2|z|) = O(p(|z|)) as |z| → ∞.

Given a growth condition p, consider the weight v(z) = e−p(|z|), z ∈ C, and the
decreasing sequence of weights V = {vn}n, vn = vn. We define the following
weighted spaces of entire functions (see e.g. [8], [5]):

Ap :=
{
f ∈ H(C) : there is A > 0 : sup

z∈C
|f(z)| exp(−Ap(z)) <∞

}
,

that is, Ap = V H, endowed with the inductive limit topology, for which it is a
(DFN)-algebra (see e.g. [46]). Given any sequence S = {zi}i we will denote
Ap(S) = V `∞(S), that is,

Ap(S) =
⋃
n

`∞(νn), νn(i) = e−np(|zi|).

If we consider the increasing sequence of weights W = {wn}n, wn = v1/n, we
define

A0
p :=

{
f ∈ H(C) : for all ε > 0 : sup

z∈C
|f(z)| exp(−εp(z)) <∞

}
,

that is, A0
p = HW, endowed with the projective limit topology, for which it is

a nuclear Fréchet algebra (see e.g. [47]). Clearly A0
p ⊂ Ap. As before, given a

sequence S = {zi}i we will denote A0
p(S) = `∞W (S), that is,

A0
p(S) =

⋂
n

`∞(ωn), ωn(i) = e−
1
np(|zi|).

Condition (α) implies that, for each a > 0, the weight va(z) := e−ap(|z|) is rapidly
decreasing, consequently, the polynomials are contained and dense in H0

va , and
that for a < b the inclusion Hva ⊂ H0

vb
is compact. Therefore the polynomials are

dense in Ap and in A0
p. Condition (β) implies that both spaces are stable under
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differentiation. By the closed graph theorem, the differentiation operator D is
continuous on Ap and on A0

p.

Weighted algebras of entire functions of this type, usually known as Hörmander
algebras, have been considered since the work of Berenstein and Taylor [8] by
many authors; see e.g. [5] and the references therein.

In order to present some examples we recall the definition of order and type of
subharmonic functions in C which allows us to compare the order of growth of a
function with different functions of log(|z|).

Definition 2.4.6 For a subharmonic function f in C, we consider M(f, r) =
sup|z|=r f(z). We say that:

• It is of class zero if
lim sup
r→∞

M(f, r)
log(r) <∞.

• It is of finite class p ≥ 1 if p is the smallest integer q ≥ 1 such that

lim sup
r→∞

logqM(f, r)
log(r) <∞.

• It is of infinite class if no such integer exists.

If p = 1 one says also that f is of finite order. In this case, the number a ∈ [0,∞[
defined by

a = lim sup
r→∞

log(M(f, r))
log(r)

is called the order of f .

For functions of positive order a > 0, we have also the concept of the type τ :

τ = lim sup
r→∞

M(f, r)
ra

.

We say that f is of minimal (resp. normal, maximal) type if τ = 0 (resp. it is
finite and nonzero, infinite). The function f is said to be of finite type if it is of
either minimal or normal type.

The entire functions most often considered are those of finite order and quite often
they are of exponential type. These are the entire functions for which there are
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constants A,B > 0 such that |f(z)| ≤ A exp(B|z|) z ∈ C. In other words, these
functions are precisely the entire functions of order < 1 together with the functions
of order 1 and finite type.

As an example, when pa(z) = |z|a, then Apa consists of all entire functions of order
a and finite type or order less than a, and A0

pa is the space of all entire functions
of order at most a and type 0. For a = 1, Ap1 is the space of all entire functions
of exponential type, also denoted Exp(C) and A0

p1
is the space of entire functions

of infraexponential type.

As we recall in Theorem 2.4.15 and Corollary 2.4.16, the Fourier-Borel transform
F : H(C)′ → Exp(C) defined by F(µ) := µ̂, where µ̂(z) := µω(ezω), is a topolog-
ical isomorphism. As a consequence, the dual space of Exp(C) can be identified
with the space of entire functions, H(C). In the same way, for a > 1 and b its
conjugate exponent (a−1 + b−1 = 1) via the Fourier-Borel transform F we have
the following identifications [64]

(Apa)′ = A0
pb
, and (A0

pa)′ = Apb .

Proposition 2.4.7 Let {zj}∞j=1 be a (weakly) sufficient set for (Ap) A0
p then we

can remove finitely many points {zj}Nj=1 and still we have a (weakly) sufficient set.

Proof. In fact, take Q a non constant polynomial which vanishes precisely at
points {zj}Nj=1. The multiplication operator

TQ(f)(z) = Q(z)f(z)

is a topological isomorphism from Ap (resp. A0
p) into itself. Using that the zeros

of the function are isolated, we obtain that, if TQ(f)(z) = 0 therefore f(z) = 0 and
we obtain that the multiplication operator is linear and injective. By [5, Lemma
2.5.9] we conclude that the range of TQ is closed, therfore TQ is an isomorphism
into. Also, using that pointwisse multiplication by {Q(zj)}j is continuous on Ap(S)
(resp. A0

p(S)) it suffices to apply 2.2.12(i). 2

Definition 2.4.8 A multiplicity variety V is a sequence of pairs (zk,mk), zk
distinct points of C, with limk|zk| = ∞ and the m′ks are positive integers, called
the multiplicities of the points zk.

Given two multiplicity varieties, V = {(zk,mk) : k ∈ N} and V ′ = {(z′k,m′k) :
k ∈ N}, we say that V ′ ⊂ V when {z′k}k is a subsequence of {zk}k and, for the
corresponding indices, we have m′j ≤ mk.
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For an entire function f 6≡ 0 its multiplicity variety V = V (f) is the set of pairs
(zk,mk), where zk runs over all the zeros of f and mk denotes the multiplicity of
that zero.

By Weierstrass interpolation theorem (see e.g. [4]), the restriction map

RV : H(C)→
∏
k∈N

Cmk , RV (g) :=
{{

g(l)(zk)
l!

}
0≤l<mk

}
k

,

is surjective.

We associate with a multiplicity variety V = {(zk,mk) : k ∈ N} and a growth
condition p the following sequence spaces

Ap(V ) :=
{
a = (ak,l) ∈

∏
k∈N

Cmk | there is B > 0 : sup
k∈N

mk−1∑
l=0
|ak,l| exp(−Bp(zk))<∞

}

endowed with the inductive limit topology; and

A0
p(V ) :=

{
a = (ak,l) ∈

∏
k∈N

Cmk | for all ε > 0 : sup
k∈N

mk−1∑
l=0
|ak,l| exp(−εp(zk)) <∞

}

endowed with the projective topology, for which it is a Fréchet space.

It is well-known that RV (Ap) ⊂ Ap(V ) and RV (A0
p) ⊂ A0

p(C); see [5], [6], [7], [8]. A
multiplicity variety is called interpolating for Ap (resp. for A0

p) if RV (Ap) = Ap(V )
(resp. RV (A0

p) = A0
p(C)). In case mk = 1 for all k, we will simply say that the

sequence {zk}k is interpolating (for the corresponding spaces).

Given two multiplicity varieties V ′ ⊂ V it is easy to see that V ′ has to be inter-
polating for Ap (resp. for A0

p) whenever V is interpolating for Ap (resp. for A0
p).

In particular, if V = {(zk,mk) : k ∈ N} is interpolating for Ap (resp. for A0
p), then

{zk}k is interpolating for Ap (resp. for A0
p).

Since A0
p and Ap are algebras without zero divisors, a sequence {zk}k cannot be

simultaneously interpolating for A0
p (Ap) and (weakly) sufficient by 2.2.12(ii).

Also, from 2.2.12 we recover the following well-known result:

Lemma 2.4.9 Let {zk}k be interpolating for Ap (resp. A0
p). Then there is f ∈

Ap, (resp. f ∈ A0
p), f 6= 0 such that f(zk) = 0 for all k.

Proposition 2.4.10 Let S := {zk}k be a weakly sufficient set for Ap and assume
that some subsequence {zkj}j is interpolating for Ap. Then S \ {zkj : j ∈ N} is a
weakly sufficient set.
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Proof. By the previous lemma, there exists f ∈ Ap, f 6≡ 0 such that f(zkj ) = 0
for every j ∈ N. Consider the multiplication operator

Tf (g)(z) = g(z)f(z).

By [5, 2.2.14, 2.2.15] is a topological isomorphism into of Ap. We conclude applying
2.2.12(i) as in the former proposition. 2

Now, we give examples of frames of type {δzi}i in these algebras. We deal first
with the Fréchet case.

Theorem 2.4.11 Given a growth condition q let S := {zn}n be a sequence in C
with limj |zj | = ∞ and assume that there is C > 0 such that the distance d(z, S)
satisfies d(z, S) ≤ C|z|/

√
q(|z|) for all z ∈ C. Then, the sequence {δzj}j is a

A0
p(S)-frame for A0

p whenever p(r) = o(q(r)) as r →∞.

Proof. We take V (r) = q(r). The family {ap, a > 0} satisfies (i), (ii) and (iii) in
[60, p.178] and the conclusion follows after applying [60, Theorem 5.1]. 2

In particular, if p(r) = o(r2) as r →∞ we may take q(r) = r2.

Corollary 2.4.12 If p(r) = o(r2), then for arbitrary α, β > 0 the regular lattice
{αm+iβm : n, m ∈ Z} is a sufficient set for A0

p(C). In other words, if S = {zn,m}
where zn,m := αn+ iβm then the sequence {δzn,m} is a A0

p(S)-frame for A0
p(C).

The former result is also true in the limit case p(r) = r2. In fact,

Proposition 2.4.13 If p(r) = r2, then for arbitrary α, β > 0 the regular lattice
{αm+iβm : n, m ∈ Z} is a sufficient set for A0

p(C). In other words, if S = {zn,m}
where zn,m := αn+ iβm then the sequence {δzn,m} is a A0

p(S)-frame for A0
p(C).

Proof. First, we observe that in this case, A0
p(C) coincides algebraically and

topologically with the intersection ⋂
γ>0
F2
γ

of the Bargmann-Fock spaces

F2
γ :=

{
h ∈ H(C) : ||f ||γ :=

∫
C
|f(z)|2e−γ|z|

2
dz <∞

}
.
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Then, by [61], there is γ0 such that for γ ≥ γ0 we find constants Aγ , Bγ such that

Aγ ||f ||2γ ≤
∑
n,m

|f(zn,m)|2e−γ|zn,m|
2
≤ Bγ ||f ||2γ .

To finish, it is enough to observe that in the definition of A0
p(S) one can replace

the `∞ norms by `2-norms. 2

According to [60] (see the comments after Corollary 4.9) there is an entire function
of order 2 and finite type which vanishes at the lattice points S = {n+im : n,m ∈
Z}. In the case r2 = o(p(r)) we have f ∈ A0

p, and the restriction map defined on
A0
p by f 7→ f |S is not injective. Consequently, the lattice points are not a sufficient

set for A0
p. Similarly, the lattice points are not a weakly sufficient set for Ap in the

case r2 = O(p(r)).

From [60, Proposition 8.1] and 2.4.2 we have that

Proposition 2.4.14 If p(r) = o(r2), then for arbitrary α, β > 0 the regular
lattice {αm + iβm : n, m ∈ Z} is a sufficient set for Ap(C). In other words, if
S = {zn,m} where zn,m := αn+ iβm then the sequence {δzn,m} is a Ap(S)-frame
for Ap(C).

In particular, for the space Exp(C), the sequence {δn+im}n,m∈Z is a Ap(S)-frame
[65, Theorem 1], where p(z) = |z| and S = {n+ im}n,m∈Z.

By Proposition 2.2.6 if S = {zi}i ⊂ G is a discrete (weakly) sufficient set in
HW (G) (resp. in V H(G)) each element in the dual space can be represented as a
convergent series of type ∑

i

αiδzi

with coefficients in a given sequence space. Since the spaces under consideration
are algebras, this representation is not unique by Remark 2.2.12(ii). As in many
cases the dual space can be identified with a weighted space of holomorphic func-
tions (via the Laplace or the Fourier-Borel transform). These vector spaces are
algebraically isomorphic due to the following theorem and its corollary.

Theorem 2.4.15 Fourier-Borel transform F : H(C)′ → Exp(C) defined by
F(µ) := µ̂ where µ̂ := µω(ezω) is an algebraic isomorphism. Moreover, B ∈ H(C)′
is equicontinuous if and only if there exists k > 0 such that F(B) is bounded in
Exp(C).

Corollary 2.4.16 Fourier-Borel transform F : H(C)′β → Exp(C) defined by
F(µ) := µ̂ where µ̂ := µw(ezw) is a topological isomorphism.
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Proof. H(C) is a Fréchet-Schwartz space (in fact, is a Fréchet nuclear space),
therefore H(C)′β is an inductive limit of Banach spaces which bounded sets are
the equicontinuous sets. Therefore, F is continuous since F applies the bounded
sets of H(C)′β to the bounded sets of Exp(C). The result holds applying the open
mapping theorem since Exp(C) is also an inductive limit of Banach spaces. 2

Due to this relation, the point evaluations δzi are identified with the exponentials
eziz, we get a representation of the elements in the dual space as Dirichlet series,
thus recovering known results, for instance:

Corollary 2.4.17 ([65]) Every entire function f(z) can be represented in the form

f(z) =
∞∑

n,m=−∞
an,me

(n+im)z

where |an,m|ek(n2+m2)1/2 → 0 as n2 +m2 → +∞ for every k > 0. Such expansion
of f is never unique.

Corollary 2.4.18 For a ≥ 2 every function f ∈ Apa and can be represented in
the form

f(z) =
∞∑

n,m=−∞
an,me

(n+im)z

with coefficients {an,m} satisfying

|an,m| ≤ Cexp(−ε(n2 +m2)b/2)

(b the conjugate of a) for some constants ε, C > 0.

Proof. According to Corollary 2.4.12 and Proposition 2.4.13 the sequence S =
{e(n+im)z : n,m ∈ Z} ⊂ Apa is a A0

pb
(S)-frame for A0

pb
. Since the dual space of

Λ = A0
pb

(S) is

Λ′ =
{
{an,m} : |an,m|exp(ε(n2 +m2)b/2) <∞ for some ε > 0

}
it suffices to apply Proposition 2.2.6 to conclude. 2





Chapter 3

Appendix

In this appendix, some concepts about locally convex spaces and their duals are
introduced with special attention to inductive limits. In addition, we also introduce
some results concerning topological bases. We establish the definitions and the
fundamental properties that we use through the thesis. We follow [9], [53],[33],
[41], [48] and [58].

A subset M of a lcs E is called bounded if it is absorbed by every neighborhood
(of the origin). If U is a basis of absolutely convex neighborhoods, the set M
is bounded if and only if to each U ∈ U corresponds a positive λ with M ⊆
λU . A subset M of a lcs is called precompact if, for every (absolutely convex)
neighborhood U , there are x1, . . . , xn ∈M such that M ⊆ ∪ni=1 (xi + U).

Given a locally convex space E, we denote by E∗ the algebraic dual of E, that
is, the space of all linear forms T : E → C, and by E′ its topological dual, i.e.,
the space of all continuous linear forms on E. Given a vector space E and F a
vector subspace of E∗ (the algebraic dual) we say that (E,F ) is a dual pair if
for each x ∈ E, x 6= 0, there is y∗ ∈ F such that y∗(x) 6= 0. The weak topology
of E, denoted by σ(E,E′), is defined as follows: a net {xα}α converges to x0
in (E, σ(E,E′)) if and only if for all x′ in E′, {x′(xα)}α converges to x′(x0) in
C. A net {x′α}α converges to x′0 in the weak-star topology on E′, usually known
as weak∗ or w∗ topology, and denoted by σ(E′, E), if and only if for all x in E,
{x′α(x)}α converges to x′0(x) in C. Let (E,E′) be a dual pair and A a set of weakly
bounded subsets of E. For each M ∈ A, put p′M (x′) = sup {|〈x, x′〉| : x ∈M};
then the set {p′M : M ∈ A} determines the topology of A-convergence. Taking
A to be the set of all weakly bounded subsets of E, this topology is denoted by
β (E,E′) and is sometimes called the strong topology. There is a finest topology of

61
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the dual pair (E,E′), namely the topology of uniform convergence on the set of all
absolutely convex σ (E′, E)-compact subsets of E′. This topology is denoted by
µ (E,E′) and sometimes called the Mackey topology. It is coarser than β (E,E′).
For a locally convex space E, cs(E) denotes a system of continuous seminorms
determining the topology of E, and for two locally convex spaces E and F, the set
of all continuous linear maps from E to F is denoted by L(E,F ). Each element
T ∈ L(E,F ) is called an operator, and it defines another operator T ′ : F ′ → E′,
T ′(λ)(x) = λ(T (x)), λ ∈ F ′, x ∈ E, called its transpose.

A set M is absorbing if ∪nnM = E. We say that a Hausdorff locally convex space
E is barrelled if every barrel, that is, if every closed, absolutely convex (i.e., convex
and balanced) and absorbing set in the space is a zero-neighbourhood. In most of
the results we need the assumption that the lcs is barrelled. The reason is that
Banach-Steinhaus theorem holds for barrelled lcs. Every Fréchet space is barrelled.
We refer the reader to [33] and [53] for more information about barrelled spaces.

Theorem 3.0.19 (Banach - Steinhaus theorem) Let E be a barrelled lcs spa-
ce and F be a lcs. Further, let M ⊂ L (E,F ) be a pointwise bounded set (i.e., for
each x ∈ E, {A (x) : A ∈M} is bounded in F ). Then, for each zero neighborhood
V in F there exists a zero neighborhood U in E with A (U) ⊂ V for all A ∈ M
(i.e. M is an equicontinuous set).

Corollary 3.0.20 If E is a barrelled lcs and F is a Hausdorff lcs, if {An}n is a
sequence of continuous linear mappings of E into F which is pointwise convergent
to A0, then A0 is a continuous linear mapping and the convergence is uniform on
every precompact subset of E.

As usual ω denotes the countable product KN of copies of the scalar field, endowed
with the product topology, and ϕ stands for the space of sequences with finite
support. A sequence locally convex space

∧
is a lcs which contains ϕ and is

continuously included in ω.

Let (E,E′) be a dual pair. If M is a subset of E, the subset of E′ consisting of
those x′ for which sup {|〈x, x′〉| : x ∈M} ≤ 1 is called the polar of A in E′ and
denoted by M◦. The following theorem implies that if E is a lcs and M is an
absolutely convex subset of E. Then, M = (M◦)◦ =: M◦◦.

Theorem 3.0.21 (Bipolar theorem) Let (E,E′) be a dual pair and F a vector
subspace of E′′ containing E. Then the bipolar M◦◦ in F of a subset M of E is
the σ (F,E′)-closed absolutely convex envelope of M .
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In what follows we give an introduction to countable inductive of locally convex
spaces. For the definitions, the proofs and more background, see e.g. [9] [48], [53].

Let E be a linear space, {En : n = 1, 2, . . . } an increasing sequence of subspaces
of E and Jn : En → E, Jn,n+1 : En → En+1, the canonical injections. Suppose
that each En is endowed with a Hausdorff locally convex topology τn such that
each Jn,n+1 : (En, τn) → (En+1, τn+1) is continuous. Then E := {(En, τn) : n =
1, 2, . . . } is called an inductive sequence with respect to the mappings {Jn : n =
1, 2, . . . }. An inductive sequence is strict if each Jn,n+1 is an isomorphism onto its
image and hyperstrict if it is strict and each En is closed in (En+1, τn+1). Each
(En, τn) is called a step of E .

Let E be an inductive sequence and let τ be the finest locally convex topology
on E such that each Jn : (En, τn) → (E, τ) is continuous. Then (E, τ) is called
the inductive limit of the defining sequence E and we write (E, τ) = ind E =
ind{(En, τn) : n = 1, 2, . . . }. If E is strict (resp., hyperstrict), (E, τ) is said to be
the strict (resp., hyperstrict) inductive limit of E . If each (En, τn) of an inductive
sequence is a Banach (resp., Fréchet) space, then (E, τ) is said to be an (LB)-space
(resp., (LF )-space).

Proposition 3.0.22 ([53, 0.3.2]) If (E, τ) = ind{(En, τn) : n = 1, 2, . . . } and if

(i) {n(k) : k = 1, 2, . . . } is a strictly increasing sequence of positive integers,
then F := {(En(k), τn(k)) : k = 1, 2, . . . } is also a defining sequence for
(E, τ).

(ii) T : (E, τ) → F, F being a Hausdorff locally convex space, is a linear map-
ping, then T is continuous if and only if each T ◦ Jn : (En, τn) → F is
continuous.

(iii) U is an absolutely convex subset of E, then U is a 0-neighbourhood in (E, τ)
if and only if each U ∩En is a 0-neighbourhood in (En, τn). Thus a basis of
0-neighbourhoods in (E, τ) can be given by the sets Γ( ∪

n∈N
Un), where each

Un is a 0-neighborhood in (En, τn) and Γ denotes the absolutely convex hull.

Theorem 3.0.23 (Grothendieck’s Factorization Theorem [53, 1.2.20]) Let F be
a Baire space, E = indnEn a countable inductive limit of Fréchet spaces and
T : F → E a linear mapping with closed graph in F × E. Then, there exists a
positive integer k such that T (F ) is contained in Ek and T : F → (Ek, τk) is
continuous.

We say that an inductive limit E = indnEn is regular if, for every bounded set
B ⊆ E, there exists n ∈ N such that B is a bounded subset of En. E is boundedly
retractive if, for every bounded subset B of E, there exists n ∈ N such that B
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is bounded in En and the topologies of E and En coincide on B, and E is said
strongly boundedly retractive if E is regular and, for every n ∈ N, there exists
some m ∈ N, m ≥ n such that the topology τ of the inductive limit E and the
topology of Em coincide on each bounded subset B of En. It is clear that a strongly
boundedly retractive inductive limit is boundedly retractive.

Certain properties of locally convex spaces are preserved by the operation of tak-
ing inductive limits. In fact, an inductive limit of barrelled spaces is barrelled.
However, even though we suppose that each of the locally convex spaces En in
an inductive limit has a Hausdorff topology, it is possible that the inductive limit
topology τ of E = indnEn is not Hausdorff. Regular inductive limits always carry
a Hausdorff topology.

Now, we recall the concept of basis and of related objects in topological vector
spaces and, in particular, in locally convex spaces. If {en}n is a basis in the
Hausdorff lcs E, then e′n will always be used without further explanation to denote
the coefficient functionals associated with {en}n.

Let E be a Haussdorf tvs. A infinite sequence {en}n in E is called a Schauder
basis, if every x ∈ E determines a unique sequence {αn}n in K such that x =∑∞
n=1 αnen and its coefficient functionals e′n ∈ E′, defined by e′n(α) = αn for

every n ∈ N, are continuous for every n ∈ N. It is clear that {e′n}n is a Schauder
basis in (E′, σ(E′, E)) provided {en}n is a Schauder basis in E. By a shrinking
basis in E we mean a Schauder basis {en}n such that {e′n}n is a Schauder basis
even in (E′, β(E′, E)). By a boundedly complete basis in E one understands a
Schauder basis {en}n in E with the following property: If {αn}n ⊂ K is such that
{
∑k
n=1 αnxn}k∈N is bounded in E, then

∑∞
n=1 αnxn converges in E.

Let E be a Hausdorff lcs and U a zero neighborhood basis in E consisting of
absolutely convex sets. A sequence {xn}n is called unconditionally summable if
{
∑k
n=1 xγ(n)}k∈N converges in E, for each permutation γ of N. All these sequences

have the same limit, regardless of the permutation γ. If {xn}n is a sequence in
E which is unconditionally summable in the completion of E, then we call {xn}n
unconditionally Cauchy. A sequence {xn}n in E is said to be absolutely summable
if
∑∞
n=1 pU (xn) converges in R, for every U ∈ U , and if

∑∞
n=1 xn exists in E. If

the latter condition is omitted, the former still implies convergence of
∑∞
n=1 xn in

the completion of E. In that case we shall say that {xn}n is absolutely Cauchy. A
sequence {xn}n in E is said to be subseries summable if

∑∞
k=1 xnk converges, for

every strictly increasing sequence {nk}k in N. The corresponding Cauchy concept
will not be needed here.

Proposition 3.0.24 ([33, Proposition 14.6.2]) Every subseries summable sequen-
ce {xn}n in E is unconditionally summable.
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Let E be a Hausdorff lcs. By an unconditional basis in E we mean a Schauder
basis {en}n in E such that all sequences {〈e′n, x〉 · en}n, x ∈ E, are uncondi-
tionally summable. Now, we introduce some characterizations of unconditional
convergence.

Theorem 3.0.25 (McArthur - Retherford, [45, p. 116] ) Let E be a sequentially
complete lcs and let `∞ the Banach space of bounded sequences of scalars b = {bj}j
with ‖b‖ = supj |bj |. For a series

∑∞
j=1 xj in E the following are equivalent:

(a)
∑∞
j=1 bjxj converges for all b = {bj}j ∈ `∞;

(b)
∑∞
j=1 bjxj converges for all b = {bj}j with bj either 0 or 1 for each j;

(c)
∑∞
j=1 xj is unconditionally convergent;

(d) limn

∑n
j=1 bjxj exists uniformly for b = {bj}j ∈ `∞ with ‖b‖ ≤ 1;

(e) limn

∑n
j=1 bjxj exists uniformly for b = {bj}j ∈ `∞ with bj either 0 or 1

for each j.

Since `∞ is non-separable, a Hausdorff lcs E with a shrinking basis cannot contain
a subspace which is linearly homeomorphic to `1. In fact, otherwise the adjoint of
`1 ↪→ E would be a continuous surjection of the separable lcs (E′, β(E′, E)) onto
`∞, and this is impossible.

Theorem 3.0.26 ([33, Theorem 14.7.3]) Let E be a barrelled, sequentially com-
plete lcs and {xn}n an unconditional basis in E. {xn}n is shrinking if and only if
E does not contain a copy of `1 (i.e. no subspace of E is linearly homeomorphic
to `1).

Corollary 3.0.27 ([33, Corollary 14.7.4]) If E is a sequentially complete, bar-
relled lcs with unconditionally basis {xn}n, then {xn}n is shrinking if and only if
(E′, β(E′, E)) is separable.

Proceeding to the dual situation and consider unconditional basis which are bound-
edly complete.

Theorem 3.0.28 ([33, Theorem 14.7.5]) Let E be a barrelled lcs with an uncon-
ditional basis {xn}n. The following are equivalent:

1. {xn}n is boundedly complete.
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2. (E, σ(E,E′)) is sequentially complete.

3. E contains no copy of c0 and is sequentially complete.

From the previous theorems 3.0.28 and 3.0.26, we may now conclude:

Corollary 3.0.29 ([33, Corollary 14.7.6]) If E is a sequentially complete barrelled
lcs with unconditional basis which contains neither a copy of c0 nor a copy of `1,
then E is reflexive.

Finally, we introduce the concept of frames, which provide basis-like but usually
redundant series representations of vectors in a Hilbert space. A sequence {xn}n
in a Hilbert space H is a frame for H if there exist constants A,B > 0 such that
the following pseudo-Plancherel formula holds:

For every x ∈ H, A‖x‖2 ≤
∑
n

|〈x, xn〉|2 ≤ B‖x‖2.

The constants A,B are called frame bounds. We refer to A as a lower frame bound,
and to B as an upper frame bound. The largest possible lower frame bound is called
the optimal lower frame bound, and the smallest possible upper frame bound is
the optimal upper frame bound. {xn}n is a frame if ‖x‖ = ‖|{〈x, xn〉}n‖|`2 is an
equivalent norm for H, and if it is possible to take A = B = 1 then we actually
have ‖x‖ = ‖{〈x, xn〉}n‖`2 and in this case we call {xn}n a Parseval frame. Every
orthonormal basis is a Parseval frame. A frame is a sequence, not a set, and
hence repetitions of elements are allowed. Also, the zero vector is allowed to be
an element of a frame. This gives us more trivial examples of frames that are not
bases. The analysis operator C : H → `2 takes an element x to the sequence of
coefficients Cx = {〈x, xn〉}n and its adjoint D : `2 → H is the synthesis operator.
The frame operator for {xn}n is S = D ◦ C : H → H.

Frames yield unconditionally convergent, basis-like representations of vectors in a
Hilbert space. In the statement of the next result, we use the operator notation
U ≤ V if and only if 〈Ux, x〉 ≤ 〈V x, x〉 for every x ∈ H.

Theorem 3.0.30 ([31, Theorem 8.13]) Let {xn}n be a frame for a Hilbert space
H with frame bounds A,B. Then the following statements hold.

1. The frame operator S is a topological isomorphism of H onto itself, and
AI ≤ S ≤ BI.

2. S−1 is a topological isomorphism, and B−1I ≤ S−1 ≤ A−1I.
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3. {S−1xn}n is a frame for H with frame bounds B−1, A−1.

4. For each x ∈ H,

x =
∑
n

〈x, S−1xn〉xn =
∑
n

〈x, xn〉S−1xn,

and these series converge unconditionally in the norm of H.

For more details about frames in Hilbert spaces we refer to [31].
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[37] Korobĕınik, Y. F. Representative systems. Uspekhi Mat. Nauk 36, 1(217)
(1981), 73–126, 248.
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