Document downloaded from:

http://hdl.handle.net/10251/50142

This paper must be cited as:

Ebrahimi, M.; Daneshtalab, M.; Liljeberg, P.; Plosila, J.; Flich Cardo, J.; Tenhunen, H.
(2014). Path-Based partitioning methods for 3D Networks-on-Chip with minimal adaptive
routing. IEEE Transactions on Computers. 63(3):718-733. doi:10.1109/TC.2012.255.

The final publication is available at

http://dx.doi.org/10.1109/TC.2012.255

Copyright
Pyng Institute of Electrical and Electronics Engineers (IEEE)

IEEE TRANSACTIONS ON COMPUTERS, VOL. #, NO. #, MMMMMMMM 2013 1

Path-based Partitioning Methods for 3D
Networks-on-Chip with Minimal Adaptive Routing

Masoumeh Ebrahimi, Masoud Daneshtalab, Pasi Liljeberg, Juha Plosila, José Flich, Hannu Tenhunen

Abstract— combining the benefits of 3D ICs and Networks-on-Chip (NoCs) schemes provides a significant performance gain in
Chip Multi-Processors (CMPs) architectures. As multicast communication is commonly used in cache coherence protocols for CMPs
and in various parallel applications, the performance of these systems can be significantly improved if multicast operations are
supported at hardware level. In this paper, we present several partitioning methods for the path-based multicast approach in 3D
mesh-based NoCs, each with different levels of efficiency. In addition, we develop novel analytical models for unicast and multicast
traffic to explore the efficiency of each approach. In order to distribute the unicast and multicast traffic more efficiently over the
network, we propose Minimal and Adaptive Routing (MAR) algorithm for the presented partitioning methods. The analytical and
experimental results show that an advantageous method named Recursive Partitioning (RP) outperforms the other approaches. RP
recursively partitions the network until all partitions contain a comparable number of switches and thus the multicast traffic is equally
distributed among several subsets and the network latency is considerably decreased. The simulation results reveal that the RP
method can achieve performance improvement across all workloads while performance can be further improved by utilizing the
MAR algorithm. 19% average and 42% maximum latency reduction is obtained on SPLASH-2 and PARSEC benchmarks running on
a 64-core CMP.

Index Terms—3D Networks-on-Chip, unicast and multicast communication, partitioning methods, analytical models, adap-
tive routing algorithm

<+

1. INTRODUCTION

Networks-on-chip (NoCs) have been proposed as a promising solution for designing the interconnect fabric of multi-core
systems [1][2]. Planar (2D) chip fabrication technology is facing new challenges in the deep submicron regime [3]. Wire
delay and power consumption increase significantly by the usage of global interconnects in 2D designs. To overcome these
limitations, technology is moving rapidly towards the concept of 3D ICs where multiple active silicon layers are vertically
stacked. The major advantages of 3D NoCs are the considerable reduction in the average wire length and wire delay, re-
sulting in lower power consumption and higher performance [3][4][5].

Unicast and multicast communication can be considered for a NoC. In the unicast communication case, a message is
sent from a source node to a single destination node, while in the multicast communication, a message is delivered from
one source node to an arbitrary number of destinations. Multicast can be easily implemented with no hardware overhead
by assuming a multicast message is replicated and every instance is sent to a particular destination (this is termed unicast-
based multicast). However, this implementation is inefficient. This inefficiency arises because sending multiple copies of
the same message into the network not only causes a significant amount of traffic, but also introduces a large serialization
delay at the injection point. The vast majority of traffic in Multi-Processor Systems-on-Chip (MPSoCs) consists of unicast
traffic and most studies have assumed that the traffic is only unicast. Thereby, the concept of unicast communication has

been studied extensively in the literature. The proposed unicast protocols are efficient when all injected messages are

2 IEEE TRANSACTIONS ON COMPUTERS, VOL. #, NO. #, MMMMMMMM 2013

unicast. However, if only a small percentage of the total traffic is multicast, the efficiency of the overall system is consider-
ably reduced. Indeed, multicast communication has a large impact on Chip Multi-Processor (CMP) systems performance.
The multicast communication is frequently present in many cache coherence protocols (e.g. directory-based protocols,
token-based protocols, and Intel QPI protocol [6][7]). For example, around 5% of total traffic in a SGI-Origin protocol
(which is a directory based protocol) consists of multicast messages [7]. In this protocol, message latency can be reduced
by 50%, if multicast is supported in hardware, thus highlighting the importance of hardware-level multicast support. In
this paper, we performed some analysis to determine the percentage of multicast messages generated by coherence proto-
cols. We analyzed synthetic and application traces (i.e. SPLASH-2 [8], PARSEC [9][10]) on top of two popular coherence
protocols, MESI [11] and token-based MOESI [12] (the detailed system configuration parameters and workloads can be
found in Table 3). Based on experimental results, the bulk of the traffic in MESI protocol is generated by unicast messages
while token-based MOESI protocol is heavily multicast-based. On account of our analysis, on average, around 10% of
MESI traffic and more than 80% of token-based MOESI traffic are multicast.

Hardware-based multicast schemes can be broadly classified into path-based [14][15] and tree-based [14] methods. In
the tree-based method, a spanning tree is built at the source switch and a multicast message is sent down the tree. The
source switch is considered as the root while destinations are the leaves of this tree. The message is replicated along its
route at switches and forwarded along multiple outgoing channels reaching to disjoint subsets of destinations [2]. In the
path-based multicast method, a source switch prepares a message for delivery to a set of destinations by placing the list of
destinations in the header of the message. The message is routed along the path until it reaches the first destination. The
message is delivered both to the local core and to the corresponding output channel for continuing the path toward the
next destination in the list. By repeating this process, the message is eventually delivered to all specified destinations. A
number of studies have shown that path-based methods exhibit superior performance characteristics over tree-based
counterparts [16][17]. The path-based approach does not replicate messages within the network, thus not increasing mes-
sage contention. However, the path visiting all switches can become large. To reduce the length of the multicast path, des-
tinations can be divided into several disjoint subsets at the network interface of the source switch, and then copies of the
message are sent across several separate multicast paths with different destination sets [2]. Partitioning methods try to

reduce latency and increase the performance via an efficient partitioning of destinations into disjoint subsets [28].

AUTHOR: TITLE 3

Additionally routing algorithms can be classified into deterministic or adaptive algorithms. A deterministic routing al-
gorithm uses a fixed path for each pair of switches resulting in increased network latency especially in congested net-
works. In contrast, in adaptive routing, a message is not restricted to a single path while traveling from a source switch to
its destination(s). A message may take a different output at a given switch when the other paths are congested. Therefore,
adaptive routing algorithms can obtain better performance [18][19][20].

In this paper, we tackle how to efficiently implement routing in 3D mesh-based NoCs, addressing both unicast and
multicast traffic. To do this, we present several partitioning methods, named TBP, VBP, and RP, for the path-based mul-
ticast approach, each with different levels of efficiency'. In Two-Block Partitioning method (TBP), destinations are divided
into two groups and a multicast message is responsible to deliver the message to all destinations within each group. This
algorithm performs well when the network size is small. However, as the network enlarges, a message may take a long
path to deliver the multicast message to all destinations and thus increasing latency. In Vertical-Block Partitioning method
(VBP), destinations are divided into more number of groups depending on their vertical columns. This method suggests a
better degree of parallelism and lower latency as a message is dedicated to a smaller set of destination switches and thus a
shorter path is taken by each message. The main disadvantage of this method is regarding to the creation of unbalanced
partitions as a group may contain a large set of switches compared with others. This results in taking long paths by some
messages and short paths by others, keeping the multicast latency still high. Recursive Partitioning method (RP) tries to
have the comparable number of switches within each partition while keeping the number of messages low. The RP meth-
od suggests a lower average latency compared with TBP and VBP methods. To explore the efficiency of each approach, in
addition to simulation experiments, we develop novel analytical models for unicast and multicast traffic. The analytical
and experimental results show that RP outperforms the other approaches. On top of all partitioning methods, and in order
to efficiently distribute the unicast and multicast messages, we design a minimal and adaptive routing algorithm, named
MAR, based on the Hamiltonian path for all partitioning methods. The algorithm is simple and does not require any virtu-
al channel for neither unicast nor multicast messages. The main properties of the final approach which is a combination of
the RP and MAR methods can be summarized as follows: 1) decreasing the latency of messages by addressing the non-

optimal solutions of ordinary partitioning methods; 2) alleviating the traffic congestion by presenting an adaptive routing

"It has been published in the proceeding of the ACM/IEEE International Symposium on Networks-on-Chip (NOCS) [21].

4 IEEE TRANSACTIONS ON COMPUTERS, VOL. #, NO. #, MMMMMMMM 2013

algorithm for both unicast and multicast messages; and 3) causing a relatively small area overhead mainly by not using
virtual channels for deadlock avoidance and providing a simple implementation of the routing algorithm.

The rest of this paper is organized as follows: Section 2 reviews related work. A brief background on the Hamiltonian
path strategy along with the proposed partitioning methods is discussed in Section 3. The minimal adaptive routing is

presented in Section 4. The results are given in Section 5 while we summarize and conclude in the last section.

2. RELATED WORK

Due to the fact that the multicast communication is used commonly in various parallel applications, there have been sev-
eral attempts to improve the performance of multicast communication in 2D NoCs. “Virtual Circuit Tree Multicasting”
(VCTM) [6], “Recursive Partitioning Multicast” (RPM) [22], and “Hamiltonian path-based multicast algorithm for NoCs”
[15] are three recent works focused on 2D NoCs. VCTM and RPM are tree-based methods and the proposed algorithm in
[15] is a path-based method. In VCTM method, when the number of destinations is large, a large number of setup messag-
es must be delivered into the network (before the real multicast message is delivered) which decreases performance signif-
icantly. The area overhead of VCTM is relatively high due to maintaining a table at each switch to store the information of
a virtual circuit tree. In RPM method, the processing of the header information is complex and performed several times for
each multicast message. The common disadvantage of VCTM and RPM method is that a message may hold several chan-
nels for extended periods of time to receive all requested output channels, thereby increasing network contention [2]. Fi-
nally, both RPM and VCTM methods are based on deterministic algorithms and cannot provide adaptiveness to neither
unicast nor multicast messages. A solution to overcome the disadvantages of tree-based multicast is to utilize path-based
multicast routing. The authors in [15] present a deadlock-free adaptation of the dual-path multicast algorithm for 2D mesh
NoCs and evaluate the performance impact of the proposed method, demonstrating the efficiency of the proposed mul-
ticast algorithm. This method provides some degree of adaptiveness for routing unicast/multicast messages. To the best of
our knowledge, there has not been any prior study on path-based multicast routing in 3D NoCs. However, some related
studies can be found in the multicomputer domain [23][24][25]. An adaptive multicast communication in 3D mesh net-
works is discussed in [23]. The algorithm is based on an extension of a theory defined in [24] from 2D to 3D mesh net-
works. The algorithm utilizes the Hamiltonian path but provides adaptiveness and prevents deadlocks by using virtual
channels. However, adding virtual channels is costly in NoCs due to increased arbitration complexity and buffering re-

quirements [26]. Two additional methods of unicast/multicast communication in 3D mesh-based networks are presented

AUTHOR: TITLE 5

in [24] and [25]. The proposed methods are guaranteed to be deadlock-free by the means of the Hamiltonian path. Howev-
er, the presented algorithms are deterministic and suffer from low performance and their inability to partition the network

efficiently.

3. PARTITIONING METHODS

The performance of a multicast operation can be measured in terms of its latency in delivering a message to all its destina-
tions. Multicast latency consists of two components: the startup latency and the network latency. The startup latency
(startup-latency; SL) is the time required to break down a multicast message into several messages (each with a different
set of destinations), prepare the messages, and start injecting them into the network. The network latency for multicast
messages is defined as the time elapsed from the first flit injection into the network to the reception of the last flit in all
destinations of the multicast message. Based on that, we define the mean network multicast latency (mean-mul-latency;
MML) and the maximum network multicast latency (max-mul-latency; MxML).

As previously commented, partitioning methods help in reducing the network latency component [28]. In particular,
these methods divide the network into several logical partitions and assign destinations to different sets, one set for each
partition and including destinations that belong to that partition. Smart partitioning methods must balance the sets and
reduce the path length within each partition. However, breaking the network into logical partitions may have the follow-
ing deficiencies: 1- a large number of network partitions will lead to additional latency as more startup messages (SM) will
need to be prepared at the source node and this latency is usually high. 2- an unbalanced configuration of partitions will

create long paths within the network. In both cases the latency of the multicast operation will be increased.

3.1. Hamiltonian Path

The Hamiltonian path strategy [14] guarantees that the network will be free of deadlocks for both unicast and multicast
traffic. As shown in Fig. 1(a), for each switch, a label is assigned from 1 to N where N is the number of switches in the net-
work. A Hamiltonian path visits all the switches?, and each switch is visited exactly once. Several Hamiltonian paths can
be considered in the mesh topology. In axbxc mesh network, each switch is labeled by an integer value according to its x, y

and z coordinates. The following equations show one possibility of assigning the labels, which we utilize in this paper:

L(x,y, z)={(axbxz) +(axy)+(x+l)} wherez :even,y : even
L(x,y, z)={(axbxz)+(axy)+(a —x)} wherez :even,y:odd
L(x,y,z)={(a><bxz)+(a><(b—y—1))+(a—x)} wherez:odd,y : even
L(x,y,z)={(a><bxz)+ (ax(b—y—l))+(x+1)} wherez:odd,y :odd

2 For sake of understanding, we assume the node X is connected to switch X and the labels are for switches, not nodes.

6 IEEE TRANSACTIONS ON COMPUTERS, VOL. #, NO. #, MMMMMMMM 2013

As exhibited in Fig. 1, two directed Hamiltonian paths (or two subnetworks) are constructed by this labeling. The high
channel subnetwork starts at switch 1 (Fig. 1(b)), and the low channel subnetwork ends at switch 1 (Fig. 1(c)). In case the
label of the destination switch is greater than the label of the source switch, the routing always takes place in the high
channel subnetwork (Fig. 1(b)); otherwise it takes place in the low channel subnetwork (Fig. 1(c)). Notice that there are
shortcut channels (those drawn in dashed lines) that do not take part in the Hamiltonian path. However, shortcut channels
can be used by messages to improve performance. In this case, half of those channels are used for the high channel sub-
network and half for the other subnetwork. Deadlock is prevented as two separate sets of resources are used for each di-

rection and messages never change their directions. Thus, no dependencies are introduced between the two sets.

Fig. 1. (a) A 3x3x3 mesh physical network with the label assignment (b) high channel (c) low channel subnetworks. The solid lines indicate the
Hamiltonian path and dashed lines indicate the links that could be used to reduce path length in routing.

3.2. Partitioning Methods based on the Hamiltonian Path Strategy
In the partitioning methods, the destinations are grouped in two sets at each source switch. One set includes all the desti-

nations that are reached using the high channel subnetwork, and the other set includes the remaining destinations reached
using the low channel subnetwork.

In the next section, we explain the TBP method in detail, and then we introduce two other partitioning methods, VBP
and RP. Notice that the TBP method is a straight forward extension of the dual-path multicast in 2D NoCs [15] to 3D
NoCs. It can be seen as a naive method since no effort is made to balance the two sets. For each partitioning method, we
provide some analysis on the number of startup messages (SM), latency of multicast operations (MML and MxML), and
the average latency of unicast operations (AUL). Analytical models are provided for unicast and multicast messages as-
suming zero-load latency [5][27]. Based on the zero-load latency, a message never contends for network resources with

other messages. Under this assumption, the performance of each approach can be measured based on the number of hops

AUTHOR: TITLE 7

required for delivering a message from a source node to its destination(s). Contention effects will be investigated both

analytically and experimentally in Section 5.

3.2.1. Two-Block Partitioning (TBP)
The Two-Block Partitioning (TBP) method is a base scheme in which all switches are split in two disjoint sets: a high set

and a low set. As shown in Fig. 2, when considering the label assignment of the Hamiltonian path strategy, all switches
located in the same 2D layer as the source switch are distributed between the two sets while all the switches in higher or
lower 2D layers are put in the high or low set, respectively. In addition, when multicasting, at maximum one message is
created for each set and the destinations within each set are reached according to the Hamiltonian label. Therefore, desti-
nations in the high set are visited in ascending order and destinations in the low set are visited in descending order.

Fig. 2 (a) shows an example of the TBP partitioning policy and the portions of each partition that depends on the source
switch position. As illustrated in this figure, if the source switch is located in a middle layer, two partitions cover compa-
rable numbers of switches but still with a large number of switches in both partitions. However in Fig. 2 (b), one partition
contains considerably more switches than the other. Now, suppose that the multicast message m=(7,{2,3,20,26,45}) is gen-
erated at switch 7. Destination IDs are split into two sets and should be visited accordingly to their labels: Gu={20,26,45}
and G:={3,2}. The message created for Gu uses the Hamiltonian path as follows: {7,10,11,12,13,20,21,22,23,26,39,42,43,44,45}
where fourteen hops are needed to reach the last destination. The message path for the Gv. is:{7,6,3,2} where three hops are
required for delivering the message to all destinations in the low channel subnetwork. In the TBP method, the number of
startup messages is low and never gets larger than two. However, it suffers from high network latency due to unbalanced

partitions and high probability of long paths within the network.

GH1 GH2 GH3 GH4.

Fig. 2. The TBP method (a) balanced (b) unbalanced partitions. Fig. 3. The VBP method (a) balanced (b) unbalanced partitions.

8 IEEE TRANSACTIONS ON COMPUTERS, VOL. #, NO. #, MMMMMMMM 2013

A. Avg-Uni-Latency (AUL)
Since messages can utilize shortcut channels without introducing new cycles, the path taken by unicast messages is re-

duced to minimal paths between each pair of source and destinations. Assuming uniform distribution of destinations and
using minimal paths for unicast messages, the average unicast latency for axbxc 3D mesh-based network is [5]:

a’bc+ab’c+abe?-ac-be-ab

AULsp= 3abc

1
Regardless of the partitioning method used, unicast messages are routed within the network in the same manner, so the

formula (1) is valid for the VBP and RP methods. This equation can be easily applied to one-dimensional (when b=1 and

c=1) and two-dimensional (when ¢=1) mesh networks.

B. The Startup Latency and Network Latency for Multicast Messages
The multicast latency depends on the number and the location of destinations. This makes computing the analytical mul-

ticast latency complex. In order to simplify the complexity, we consider that the latency of a multicast message is set by the
final destination so that the multicast message always takes the longest path within the network (without using shortcut
channels). This is the worst case. For instance, in the previous example, the two messages have their final destinations set
as 45 and 2, and their distances from the source switch are fourteen and three hops, respectively. However, in MML, we
consider the longest path from the source to destinations 45 and 2 which are forty-one and six hops, respectively. In the
TBP method, the path between two destinations to reach in a sequential order is minimal while the path from the source to
each destination is not necessarily a minimal path. As an example in Fig. 2, the paths from switch 7 to 20, 20 to 26, and 26
to 45 are minimal; however, the paths from switch 7 to 26 and 7 to 45 are non-minimal. MML for every switch j in axbxc

network can be measured by: (Where 1 is the total number of switches in the network.)
1 i=j-1 i=n
MMLJ:H Z i+ Z G-) 2)
i=1 i=jt+1
The average multicast latency for the whole network in the TBP method can be obtained by:
j=n j=n i=j-1 i=n
MML —IJZMML—IJZ ! Z+Z i |21 3
TBP™ iT, n(1 @(-)) |= 3n 3)
=1 j=1 i=1 i=jt+1

This equation is proved by using the following set of formulas. The sum of partial factorial formula is given by:

m! (m+1)! (m+2)! (m+n-1)! (m+n)!
o1 20 7 T (D! (mrD(n-D)!

4

For all positive integers, we get the formulas (5) and (6) when m = 1 and m = 2, respectively:

AUTHOR: TITLE 9

_ n(+]) <
1+2+3+...+n=2 i=— (5) 1><2+2X3+3><4+...+n><(n+1)=z1(1+1)=

i=1 i=1

n(n+1)(n+2)
3

(6)

By using formulas (5) and (6), MMLrgp can be written as follow and the equation (3) is proved:

j=n j=n
1 -D(n+l) n-1
MMLTBP=E ZG-I)G)+Z(n-j)(n-j+1) =%:n3_n

=1 1

(7

MxML is the time when a multicast operation is completed and a message reaches all its destinations. The MxML for a

source switch j and the whole network are given by:

" 3n-2
n-j if 0sj< 3] s —~ ifneven
; ® MxMLgp—- > (e)={, % 9
j-1 if [=|<j<n = N
J [2] 3= 1 - if n:odd
n

MxML;=

In TBP, destinations are split in two sets. Thus, the maximum startup messages (SM) is set to two regardless of the
source switch location. There are two exceptions regarding the first and last switches which can deliver only one multicast

message to the network.

3.2.2. Vertical Block Partitioning (VBP)

In this method, similar to the TBP method, the network is partitioned into high and low channel subnetworks. Destina-
tions are divided into high and low sets. In an additional step, each subnetwork is vertically partitioned such that switches

in the same column (with the same a value in axbxc network) are included in a new set.

As illustrated in Fig. 3, this scheme does not guarantee balanced partitions. For the switch located at 26, partitions are
balanced, but they are not balanced when the source is at switch 7 (i.e. four subnetworks cover more switches than the
others). Moreover, the time required to prepare at most eight messages is considered as the number of startup messages.
For the multicast message m=(7,{2,3,20,26,45}), four sets are formed: Gu={26}, Gns={20,45}, Gr2={2} and Grs={3}. One message
is generated for each set and message paths are {7,26/,{7,10,11,12,13,20,45},{7,2} and {7,6,3} where the maximum hop count
is six.

This scheme has several advantages over the TBP method as it achieves a high level of parallelism; avoids the creation
of long paths and reduces the network latency. The VBP method increases, however, the number of startup messages as it
requires up to 2a messages in axbxc network. In addition, this scheme does not guarantee balanced partitions as it is bal-
anced only when the source switch is located in a middle layer while some partitions may cover considerably more

switches than the others when the source switch is located at the top or bottom layer.

10 IEEE TRANSACTIONS ON COMPUTERS, VOL. #, NO. #, MMMMMMMM 2013

C. The Startup Latency and Network Latency for Multicast Messages
Since the network is symmetric and is partitioned vertically, the MML value can be measured in one vertical partition and

then generalized to other partitions. For this purpose, we consider that axbxc mesh network is divided into a vertical parti-
tions where each partition contains bc switches. Using formulas (2) and (3), the MML value for a source switch j inside a

vertical partition and for all switches in a partition can be computed as follow:

i=j-1 i=bc j=be i=j-1 i=bc

MML—— ZH—Z(U) (10) MML, = bcz ZH—Z(]J) :(b3cg)c (11)

i=j+1 i=j+1

Moreover, messages are required to travel in the x dimension to reach their relative vertical partitions. For example, if a=4
in axbxc network and the source switch is located at the first vertical partition, it takes 1, 2 and 3 hops to reach the second,

third and fourth vertical partitions, respectively. This value should be considered when measuring the MML value.

j=a i=j-1 i=a

MML,=- i+) () |=— 12)
22 [y

—J+1

Finally, the MML value for the whole network is given by:

(be)? -1 a?bet+ab’c?-be-a
MMLygp=MML, +MMLbC——+

13
3a 3bc 3abc (13)

From another point of view, the network can be viewed as a 2D network (axb') where b'=bxc. The dimension-order routing
can be utilized for messages, and thus, by using formula (1) in a 2D network (when c=1) the average multicast latency can

be measured by:

a’b+ab -a-b B a’bctab’c?-be-a
3ab a 3abc

MMLygp=

In the VBP method, the network is divided into several vertical partitions according to the value a in axbxc network.

Thereby, the following formula is used for computing the MxML value in the network.

i=n/2

MxMLVBP——ZGnll @ 1) (14)

The number of partitions in the VBP method depends on the location of switches that result in different startup mes-
sages. The switches in the first row of the first layer and the last row of the last layer divide the network into 4, 5, 6, and 7
partitions, while the other switches divide the network into eight partitions. As a result, the average number of startup
messages for the VBP method in axbxc network is:

(3a%-a)+((abc-2a)(2a)) B 2a%bc-a*-a

M =
SMyge abc abc

(15)

AUTHOR: TITLE 11

3.2.3. Recursive Partitioning (RP)
The objective of the recursive partitioning (RP) method is to optimize the number of switches that can be included in a

partition and achieve parallelism. In this method, the network is recursively partitioned until each partition contains k
switches. In the worst case, the network is partitioned into 2a vertical partitions like in the VBP method. We have consid-
ered the value k as a reference value indicating the number of switches in each partition of the VBP method, i.e. (k=bc) in
axbxc network. An example of the RP method is illustrated in Fig. 4 (a) where a multicast message is generated at the
source switch 26. The required steps of the RP method can be expressed as follows:

Step1: The value k is set to 12 switches in a 4x4x3 network.

Step2: The network is divided into two partitions using the TBP method. The Fig. 2 (a) shows two formed partitions when
the source switch is located at switch 26.

Step3: If the number of switches in a partition exceeds the reference value k, the partition is divided into two new parti-
tions. This step is repeated until all partitions in the network cover at most k switches. Following the example of Fig. 2 (a),
22 switches are covered by the high channel subnetwork which is greater than k=12. The high channel subnetwork needs
to be further divided into two new partitions (Gu: and Grz as shown in Fig. 4 (a)). The G and Gnz partitions contain 10
and 12 switches, respectively. Since both numbers are less than or equal to k=12, no further partitioning is needed for the

high channel subnetwork. The same partitioning technique is applied to the low channel subnetwork.

GH: 41 nodes

GH: 22 nodes GH1=21 nodes GH2=20 nodes
GH1: max 10 nodes GH2: max 12 nodes GH1:11 GH2:10 GH3:10 GH4:10

GL1:7 GL2:6 GL3: 12 nodes GL: 6 nodes
GL1: 13 nodes (@) (b)
N |
GL: 25 nodes

Fig. 4. The RP method when the source is at (a) switch 26 (b) switch 7.
Fig. 4 (b) shows another example of the RP method where the multicast message is m=(7,{2,3,20,26,45}). In this example

three messages are formed and their paths are {7,10,11,12,13,20,45},{7,26}, and {7,6,3,2} as the maximum latency is six hops.

12 IEEE TRANSACTIONS ON COMPUTERS, VOL. #, NO. #, MMMMMMMM 2013

In brief, this scheme has a similar performance in avoiding long paths as the VBP method while it provides better paral-
lelism as the number of switches is comparable among partitions. By considering the RP method, the creation of balanced
partitions is less dependent of the source switch position, and thus it avoids long paths in the network and increases paral-

lelism while keeping the number of startup messages relatively low.

D. The Startup Latency and Network Latency for Multicast Messages
In the RP method, each subnetwork is recursively partitioned until all partitions cover around k switches, where k=bc. The

next set of formulas is concerned only the high channel subnetwork while the low channel subnetwork has similar formu-
las. According to this assumption, if the high channel subnetwork covers x switches where x>k, it is divided into two new
partitions. Each of the formed partitions might still cover more than k switches (x>k). Thereby, the partition is further di-
vided into two new partitions. In other words, the MML formula is recursively called until all partitions cover at most k
switches. Finally, the average multicast latency is computed when the number of switches x in a partition become less than

or equal to the value of k:

MML [%] +MMLE J

3 where x>k
MML={ | < x+1 (16)
— Z i=— where 0<x<k
X e 2
0 where x=0

Similar to (12), in order to deliver messages from the source switch to different partitions, average multicast latency in the

x dimension should be taken into account. Finally, the MML for the RP method is given by:

i=n
1
)+ MML, = —Z MML *MML, (17)
n
i=1
For measuring MxML, the number of switches in the biggest partition should be identified. To do this, we first find the

high

=n
|
_ It
MML gp= %Z (MML(?_“I’)-irMML(n_(M))
i=1

MxML value for the high and low channel subnetworks and then determine the number of switches in the biggest parti-

tion of the network.

Max(MxMLm ’MXMLFJ) where x>k
2 2

i=x
High i
MxMLj=Max(MxML, *jor MXML;*") where MxML;"®"or MxML;""= lz. x+1 where 0<x<k (18
0 where x=0

To compute the MxML value, the following formula is utilized.

i=n/2
2
MXMLRP=HZ (MxML; + MML,) (19)

i=1

AUTHOR: TITLE 13

In the case that x< k, the number of startup messages is equal to 1. However, when x>k, the partition needs to be divided
into two new partitions and the SM equation is called for every newly formed partition.

SMx1+SMx when x>k
SMX={ B (20)

1 when x<k

3.3. Hardware Implementation
The micro-architectures of the TBP, VBP, and RP methods are illustrated in Fig. 5 (a), (b), and (c), respectively. In all three

methods, the source label is compared (using a comparator) with the destinations labels, so that destinations are divided
into high and low channel subnetworks (Fig. 5(a)). In the VBP method, by decoding the value x of the destination address,
each destination is placed in one partition as shown in Fig. 5(b). In the RP method, however, the number of switches in the
high (or low) channel subnetwork is compared with the reference value k. The result of this comparison determines the
required number of partitions such that each can cover about k switches. In the next step, destinations are divided into
different partitions (Fig. 5(c)). All procedures are performed in the packetizer unit of the network interface and repeated
for every destination in the destination set [29]. Finally, each non-empty register is used in the header of a message. Notice
that for encoding the addresses in the message header, we have utilized the bit string scheme [2], where each bit corre-

sponds to a switch in a network. For a set of destinations, the corresponding bits in the bit-string become one.

Src_Lable Dest_Lable Src_Lable Dest_Lable Src_Lable Dest_Lable

¢ X value

K value

| |
. v v
Comparator ’W‘

(a) (b) GL1 GL2 GL3 GL4 (C) GL1 GL2 GL3 GL4

<;I<7

Comparator Comparator
High Channel Low Channel High Channel Low Channel High Channel Low Channel

decoder

Fig. 5. The micro-architectures of (a) TBP (b) VBP and (c) RP methods

4. MINIMAL ADAPTIVE ROUTING (MAR)

In the previous section, we provide different partitioning methods. All of them require a routing algorithm capable of
forwarding all the messages to their sets of destinations. In this section, we present a Minimal and Adaptive Routing
(MAR) algorithm based on the Hamiltonian path. Using MAR, unicast and multicast messages can be adaptively routed
inside the network. The MAR algorithm is implemented at switches and can be described in three steps as follows:

Stepl: it determines the neighbors of current switch u that can be used to move a message closer to its destination d. The

pseudo code for Stepl is shown in Fig. 6.

14 IEEE TRANSACTIONS ON COMPUTERS, VOL. #, NO. #, MMMMMMMM 2013

Step2: due to the fact that in the Hamiltonian path all switches are visited in ascending order (in the high channel subnet-
work) or descending order (in the low channel subnetwork), all of the selected neighbors in Step1l do not necessarily satis-
fy the ordering constraint. Therefore, if the labels of the selected neighbors (in Step1) are between the label of switch u and
destination d, it/they can be selected as the next hop. The pseudo code for Step2 is shown in Fig. 6.

Step3: since the MAR algorithm provides several choices at each switch, the goal of Step3 is to route a message through
the less congested neighboring switch. In the case where the message can be forwarded through multiple neighboring
switches, the stress values of the input buffers in the selected neighbors are checked and then the message is sent to the
neighbor with the smallest stress value. An example of the MAR algorithm is illustrated in Fig. 7 (a). According to the
algorithm, in the first step the neighbors are chosen in a manner that gets the message closer to its destination, i.e. p={7, 11,
27}. At the second step, the selected neighbors (in Stepl) are checked to determine whether they are in the Hamiltonian
path or not. Since the labels of the three selected neighbors are between the labels of the current switch (u=6) and destina-
tion switch (d=48), the message can be routed via all of them. Suppose that the neighbor p=11 has a lower stress value than
the other neighbors, so the algorithm chooses this neighbor to forward the message. If we continue with the switch u=11,
this switch has three neighbors belonging to the minimal paths, i.e. p={10, 14, 22}. However, only two of them (p={14, 22})
have the labels greater than the label of the current switch (u=11) and lower than the label of the destination switch (d=48).
Finally, according to the stress values of the input buffers in the corresponding direction, one of them is selected as the
next hop. The algorithm is repeated for the rest of the switches until the message reaches the final destination. Fig. 7 (b)
shows all possible shortest paths from the source switch (1=6) to the destination switch (d=48). It is worth noting that the
stress value is updated whenever a new flit enters or leaves the buffer (flit events: flit_tx or flit_rx). That is, in each flit
event, if the number of occupied cells of the input buffer is larger (smaller) than a threshold value, the threshold signal is
assigned to one (zero).

The MAR algorithm can be adapted for multicast messages such that alternative paths are used to route a message be-
tween the source switch and the first destination and also between successive destinations. An example is shown in Fig. 7
(c) where the source (u=6) forwards a multicast message towards its destinations (D={15, 32, 46}). The MAR algorithm
provides a set of alternative paths to send a message from the source switch to the first destination (d1=15). Similarly, the

message can be adaptively routed between each two destinations.

AUTHOR: TITLE

Algorithm: Minimal Adaptive Routing (MAR_3D)
Inputs: current switch label, destination switch label,
neighboring switches Labels
Begin
STEP 1
X_dir = East when (x_c<x_d) else West;
Y_dir = North when (y_c<y_d) else South;
Z dir = High when (z_c<z_d) else Low;
Process STEP 2
Begin
If ((Label(CurrentSwitch) = Label(DestSwitch)) then
Select Local;
Elsif ((Label(CurrentSwitch) < Label(DestSwitch)) then

If (Label(CurrentSwitch) < Label(Neighbor(X_dir))) and
(Label(Neighbor(X_dir)) < Label(DestSwitch)) then
First Choice -> Neighbor(X_dir)
End if;
If (Label(CurrentSwitch) < Label(Neighbor(Y_dir))) and
(Label(Neighbor(Y_dir)) < Label(DestSwitch)) then
Second Choice -> Neighbor(Y_dir)
End if;
If (Label(CurrentSwitch) < Label(Neighbor(Z_dir))) and
(Label(Neighbor(Z_dir)) < Label(DestSwitch)) then
Third Choice -> Neighbor(Z_dir)
End if;
Elsif ((Label(CurrentSwitch) >Label(DestSwitch)) then
---------- Low Channel Subnetwork---------
If (Label(CurrentSwitch) >Label(Neighbor(X_dir))) and
(Label(Neighbor(X_dir)) > Label(DestSwitch)) then
First Choice -> Neighbor(X_dir)
End if;
If (Label(CurrentSwitch) > Label(Neighbor(Y_dir))) and
(Label(Neighbor(Y_dir)) > Label(DestSwitch)) then
Second Choice -> Neighbor(Y_dir)
End if;
If (Label(CurrentSwitch) >Label(Neighbor(Z_dir))) and
(Label(Neighbor(Z_dir)) > Label(DestSwitch)) then
Third Choice -> Neighbor(Z_dir)
End if;
End If;
End Process;

15

Fig. 6. The pseudo code of the MAR algorithm

®
®
®EOE O B &6

Z 0OEE®EEEEEE®®EEE®E
OEEEOO®OEEEEEERGE®

—_

Fig. 7. Example of the MAR algorithm for unicast and multicast messages

For example, at switch 15, the message can make progress towards destination 32 either by selecting switch 18 in the

next layer or switch 16 in the current layer. The MAR algorithm is compatible with all methods supporting the Hamiltoni-

an path in 2D or 3D NoCs. Therefore, all the TBP, VBP and RP methods can utilize the MAR algorithm for both unicast

and multicast messages. Fig. 7 (d) shows all possible shortest paths from the source switch (u=6) to the destinations 15, 32,

and 46.

To show that the proposed algorithm is deadlock free, we need to prove that the channel dependency graph (CDG) is

acyclic [28]. To close a cycle in the high channel subnetwork, a message may require requesting a channel that forwards

the message to a lower-labeled switch, which is not allowed by the MAR algorithm. The same applies for the low channel

subnetwork. Since both in unicast and multicast traffic, messages are routed only in ascending and descending order, the

MAR algorithm is deadlock-free. However, in multicast traffic there is a possibility of deadlock in the consumption chan-

16 IEEE TRANSACTIONS ON COMPUTERS, VOL. #, NO. #, MMMMMMMM 2013

nels [28]. This happens when a message should be delivered both to the local core and the output channel (to move to-
wards the next destination). This may cause deadlock if two multicast messages reach the switch and request both chan-
nels, but each gets access to only one channel. There is a branch dependency that creates a deadlock situation. This can be
solved basically using extra resources between the local core and the corresponding switch to avoid such conflict. In our

case, we implement at each switch two ejection channels.

5. RESULTS AND DIScUSSION

5.1. Analytical Results

We analyzed and compared the unicast latency, the startup latency, and the network latency of the TBP, VBP, and RP
partitioning methods using analytical models. For this purpose, the previously presented factors (SM, MML, and MxML)
are utilized. For each method, we explore the values for two different network sizes along with two different numbers of
destinations, injection rates, and message lengths. Finally, the total latency is estimated under different configurations and

methods.

5.1.1. Startup Latency

We developed formulas to extract the number of startup messages (SM) of the TBP, VBP and RP methods. However, the
startup latency not only depends on the SM value but also it is affected by the message length, injection rate, and the num-

ber of destinations per multicast message.

A. The Impact of the Number of Destinations on the Startup Latency

We computed the upper-bound value of SM for the TBP, VBP, and RP methods by assuming that there is one message per
partition. The 3 column of Table 1 shows the maximum number of startup messages in the TBP, VBP, and RP methods.
However, in reality, the number of messages may be smaller than the number of partitions (e.g. when the number of des-
tinations is lower than the sets or destinations are not evenly distributed among sets). We have assumed uniform distribu-
tion and used conditional probabilities to find out the probability that a partition has received a message when there are
eight or sixteen destinations per message. Based on this evaluation, the 4% and 7* columns in Table 1 are filled. For exam-
ple, when there are eight partitions and eight destinations per message, on average, five partitions include at least a desti-
nation and three partitions are empty, thus the average of startup messages is five. As the number of destinations per mes-

sage increases (e.g. from 8 to 16 destinations), with a high probability there is at least one destination per partition. In this

AUTHOR: TITLE 17

case, the startup messages almost reach the upper-bound values. According to the values in Table 1, the RP method offers
a lower startup messages than the VBP method since some partitions are merged together.

The average unicast latency for different network sizes is listed in the 2" column. As already mentioned, the unicast la-
tencies of different methods are similar. This is because of the fact that unicast messages are routed similarly in the net-

work using the TBP, VBP, and RP methods. Obviously, the unicast latency is increased as the network scales up.

Table 1. Unicast latency, startup messages for different number of destinations, message lengths, and injection rates.
UL: Unicast Latency; SM: Startup Messages; SL: Startup Latency; D/M: Destination per Message; F/M: Flit per Message; R: Rate.

lst znd 3rd 4t|| Sth 6th 7t|| 8th 9th
Method Size UL SM SM SL SL SM SL SL
(hop) 8 D/M 8 D/M 8 D/M 16 D'M 16 D'M 16 D'M
1 EM 5F/M 5F/M 1 EM 10 F/M 10 F/M,
1% R 10% R 1% R 10% R
1M 100" M 1M 100" M
TBP Ax4x4 3,75 2 2 5 5 2 10 10
TBP 8x8x8 7,88 2 2 5 5 2 10 10
VBP 4x4x4 3,75 8 5 20 20 7 60 60
VBP 8x8x8 7,88 16 6 25 25 11 100 100+990
RP 4x4x4 3,75 5 4 15 15 5 40 40
RP 8x8x8 7,88 10 5 20 20 8 70 70

B. The Impact of Message Length on the Startup Latency

To show the impact of the message length on the startup latency, let us assume that a multicast message includes all desti-
nations, and thus only one message is sent to the network. In the TBP method and when there is no contention in the net-
work, the first flit of the message 1 (mul-msgl) enters the network at cycle 0 while the message 2 (mul-msg2) can start
sending its first flit at cycle N, where N is the number of flits per message (Fig. 8(a)). By partitioning the network in the
VBP and TP methods, the destinations are distributed among several sets. In this case, multiple copies of the message 1
(with different sets of destinations) are injected into the network at cycles 0, N, 2N, ... (Fig. 8(b)). The message 2 can deliver
its first flit as soon as all copies of the message 1 are delivered into the network. The startup latency is computed by con-
sidering the average message length as follow:
SL A:(startup messages—l)*(ﬂits per message)

In Table 1, the 4 and 5 columns indicate the differences between the startup latencies when the message size increases
from one to five flits. Similarly, the 7 and 8" columns show the startup latencies by changing the message size from one to
ten flits. The values show an increased in the startup latencies when the message size increases. In all configurations, the

TBP method has the lowest startup latency, and then the RP and VBP methods, respectively.

18

IEEE TRANSACTIONS ON COMPUTERS, VOL. #, NO. #, MMMMMMMM 2013

Cycle N Cycle 0
mul-msg-2 mul-msg-1
T 1| 1
PEFFCC=—) | = | Network
T] | |
v 0 |~ il
(@)
Cycle 2N CycleN Cycle 0
¢ (R | = | = | | = | = | =
Nva[T] T | va[T 7 | [T | [T] 1] | v] |~]| Network
v |~ 0 | v [| i 0| v 0 | v [|
[| [|
mul-msg-2 mul-msg-1 (b)

Fig. 8. The Impact of Message Length on the Startup Latency.

C. The Impact of the Injection Rate on the Startup Latency

In a low injection rate, the message 2 is probably generated by the core when all messages of the message 1 have already
sent to the network. However, in a case of high injection rate, the message 2 is ready to be sent to the network while the
messages of message 1 are still in the queue and have not completely delivered to the network. Therefore, if the number of
cycles required for delivering all the messages of a multicast message is larger than (100 - rate%), the following formula is
obtained: (Latency is cumulative, with each additional generated message)

SLg=SL o +(total number of generated messages-1)*(SL,-(100 - rate%))

The Table 1 also includes the results when the injection rate takes into consideration. The values are obtained based on
two injection rates, 1% and 10%. As can be seen in the 5 and 6" columns (or 8 and 9% columns), in most cases, the startup
latencies do not change as the message 1 has delivered all its messages before the message 2 is generated. However, in a
high injection rate (i.e. 10%), the time required to send the startup messages may exceed 100-10=90 cycles. As shown in the
9% column, in one case, it takes more than 90 cycles to deliver startup messages completely to the network. Indeed, the
newly generated messages experience considerably larger delays to send their first flit into the network. The values in the

6" and 9" columns are computed for the 100" message, while in 5% and 8# columns are measured for the first message.

5.1.2.Network Latency
Using analytical formulas, we have estimated the MxML and MML values for TBP, VBP, and RP methods in 4x4x4 and

8x8x8 networks. Since MxML and MML reveal the number of hops, to estimate the network latency, the switch delay
should also be taken into consideration. By assuming 3-stage pipeline architecture, the network latency is computed by
multiplying the number of hops and a factor of three. On the other hand, as the injection rate and contention increases,
per-hop delay is increased. We assume that in a 10% injection rate, the latency is six cycles per hop. According to this as-

sumption, we estimate the total latency using the following formula:

MML * 3 +SM
MML x 6 + SM

with 1% injection rate

Total Latency = { with 10% injection rate

AUTHOR: TITLE 19

The values in 27 and 3" column of Table 2 indicate that MxML and MML of the TBP method are considerably larger
than those of values in the VBP and RP methods. The VBP method can reduce the MML value significantly at a cost of
more startup messages. 4%, 5%, 6%, and 7% columns show the total latency values when the startup latency takes into con-
sideration. Since, the high number of startup messages in the VBP method may result in a time-overlapping of different

messages, as can be seen in the last column, in some cases the VBP method even behave worse than the TBP method.

Table 2. MML, MXML, and total latency in TBP, VBP, and RP methods.

1 9nd 3t 40 50 6" 7
Method Size MxML MML MML*3+SL MML*6+SL MML*3+SL MML*6+SL
51lits,8dests, 5flits,8dest, 10flits,16dests, 10flits,16dest,
1%rate, 10% rate, 1%rate, 10% rate,
1th message 100th message 1th message 100th message
TBP 4x4x4 48 21 68 131 73 136
TBP 8x8x8 384 171 518 1031 523 1036
VBP 4x4x4 14 6 38 56 78 96
VBP 8x8x8 51 24 97 169 172 1234
RP 4x4x4 15 7 36 57 61 82
RP 8x8x8 59 26 98 176 148 226

5.2. Simulation Results

To assess the efficiency of the proposed partitioning methods in experiment, we have developed a cycle-accurate NoC
simulator based on wormhole switching in 3D mesh configuration. The simulator inputs include the array size, the routing
algorithm, the link width, the buffer size, and the traffic type. The on-chip network, considered for experiment is formed
by a typical wormhole-switching structure including input buffers, a routing unit, a switch allocator, and a crossbar. Each
switch has 7 input/output ports, a natural extension from a 5-port 2D switch by adding two ports to make connections to
the upper and lower layers [23][31]. There are some other types of 3D switches such as the hybrid switch [3][31] and MIRA
[32], however, since switch efficiency is out of the goals of this paper, we have chosen a simple 7-port switch in our simula-
tion. The arbitration scheme of the switch allocator in the typical switch structure is round-robin. The data width and the
frequency were set to 64 bits and 1GHz, respectively, and each input channel has a buffer size of five flits with the conges-
tion threshold at 80% of the total buffer capacity. This congestion threshold is utilized by the presented MAR algorithm to
choose the less congested path if there would be any alternative path(s). The experiments were performed on a 48-switch
(4x4x3) 3D stacked architecture with a constant message size of five flits. For the performance metric, we used the mul-
ticast latency defined as the number of cycles between the initiation of a multicast message operation, including prepara-
tion and startup latency, and the time when the tail of the multicast message reaches all the destinations. For each load

value, the result of message latency is averaged over 80,000 messages after a warm-up session of 20,000 arrived messages.

20 IEEE TRANSACTIONS ON COMPUTERS, VOL. #, NO. #, MMMMMMMM 2013

5.2.1. Performance Evaluation

A. Multicast Traffic Profile
The first set of simulations was performed for a random traffic profile. A uniform distribution is used to construct the

destination set of each multicast message [14]. The number of destinations has been set to eight or sixteen. The average
communication delay as a function of the average message injection rate has been shown in Fig. 9. As observed from the
results, the RP method meets lower delay than the TBP and VBP methods. The foremost reason for this performance gain
is due to the efficiency of the RP method which not only reduces the number of hops for multicast messages but also the
number of startup messages. In fact, TBP suffers from long paths while the performance of VBP degrades due to a large
number of startup messages. Adaptive routing algorithms obtain better performance in congested networks due to using
alternative routing paths [18]. In Fig. 10, ARP (Adaptive RP, utilizing MAR in RP), and AVBP (Adaptive VBP, utilizing
MAR in VBP), are the adaptive models of the RP and VBP methods, respectively. As illustrated in this figure, adaptive

routings become more advantageous when the injection rate increases.

B. Unicast and Multicast (Mixed) Traffic Profile

In this set of simulations, we used a mixture of unicast and multicast traffic, where 70% of injected messages are unicast
messages and the remaining 30% are multicast messages. Hotspot and transpose traffic model profiles have been taken
into account for unicast traffic generation. Under the hotspot traffic pattern, one or more switches are chosen as hotspots
receiving an extra portion of the traffic in addition to the regular uniform traffic. In the hotspot traffic model, given a
hotspot percentage of 1, a newly generated message is directed to each hotspot switch with an additional / percent proba-
bility. We simulate hotspot traffic with a single hotspot switch. The hotspot switch is chosen to be the switch (2,2,2) in the

4x4x3 mesh network. Fig. 11 shows the performance with i = 10%.

. 350 350
) o
S 300 < 300
g 250 9 250
z ——TBP > ——TBP
c 200 2 200
2 RP o RP
8 150 § 150
—— ——

& 100 vep @ 100 V8P
©
g 50 T 50

>
< 0 < 0

0 0,05 0,1 0,15 0,2 0,25 0,3 0 0,05 0,1 0,15 0,2 0,25 0,3
Message Injection Rate (messages/cycle) Message Injection Rate (messages/cycle)

(a) (b)
Fig. 9. Performance under different loads in 4x4x3 3D mesh using deterministic routing with (a) 8 destinations, (b) 76 destinations

AUTHOR: TITLE

— 350
2
< 300
S
> 250
=
@ 200
i)
©
= 150
&
® 100
S s
<
0
Fi
7 350
S 300
2
> 250
o
$ 200
]
- 150
&
g 100
g 5o
<
0

350
300
250
200
150
100

50

~&— AVBP

—>—VBP
RP

—— ARP

\

Average Latency (cycle)

g.

0,1 0,2 0,3
Message Injection Rate (messages/cycle)

(a)

21

—@— AVBP

——VBP
RP

—&— ARP

\

0,05 0,1 0,15 0,2 0,25
Message Injection Rate (messages/cycle)
(b)

10. Performance under different loads in 4x4x3 3D mesh using adaptive routing with (a) 8 destinations, (b) 76 destinations

350
300
——TBP

RP
—>¢—VBP

200
150
100

50

Average Latency (cycle)

\

:) 0
0,05 0,1 0,15 0,2 0,25
Message Injection Rate (messages/cycle)

(a)

] —o—TBP
] RP

] ——VBP
0 0,05 0,1 0,15 0,2 0,25

Message Injection Rate (messages/cycle)

(b)

Fig. 11. Performance under different loads in 4x4x3 3D mesh using deterministic routing with (a) 8 destinations, (b) 76 destinations under mixed
traffic (30% multicast and 70% unicast); Unicast traffic is based on the hotspot traffic model with a single hotspot switch (2,2,2), and h=10%.

350
300
250
200
150
100

50

Average Latency (cycle)

. 3%
- < 300
z
1 —=—pavep 5 2%0
] —3—\/BP § 200
J RP § 150
4 —— ARP gﬂ 100
] —— § 50
T T \ < 0
0 0 0,3

0,1 ,2
Message Injection Rate (messages/cycle)
(a)

1 —#— AVBP
1 == \/BP

. RP

_ —&— ARP
0 0,05 0,1 0,15 0,2 ,25

0
Message Injection Rate (messages/cycle)

(b)

Fig. 12. Performance under different loads in 4x4x3 3D mesh using adaptive routing with (a) 8 destinations, (b) 76 destinations under mixed traffic
(80% multicast and 70% unicast); Unicast traffic is based on the hotspot traffic model with a single hotspot switch (2,2,2), and h=10%.

350
300
250
200
150
100
50
0

Average Latency (cycle)

\.

Average Latency (cycle)

350
300
250
200
150
100

50

——TBP

RP
—=—VBP

0

\ 0

0,05 0,1 0,15 0,2 0,25
Message Injection Rate (messages/cycle)

(a)

] —o—TBP
] RP
| ——V\/BP
0 0,05 0,1 0,15 0,2 0,25
Message Injection Rate (messages/cycle)
(b)

Fig. 13. Performance under different loads in 4x4x3 3D mesh using deterministic routing with (a) 8 destinations, (b) 76 destinations under mixed
traffic (30% multicast and 70% unicast); Unicast traffic is based on the transpose traffic model.

22 IEEE TRANSACTIONS ON COMPUTERS, VOL. #, NO. #, MMMMMMMM 2013

350 350
m —
< 300 @ 300
9 Z
r —=—Avgp & 250 —=— AVBP
g 200 ——\vBP & 200 —*—VBP
® 150 RP £ 150 RP
S 100 —+—ARP 2 5 —o—ARP
© oo
g 50 © 50
> [
< 9 Z 0
0 0,1 0,2 0,3 0 0,05 0,1 0,15 0,2 0,25
Message Injection Rate (messages/cycle) Message Injection Rate (messages/cycle)

(a) (b)
Fig. 14. Performance under different loads in 4x4x3 3D mesh using adaptive routing with (a) 8 destinations, (b) 76 destinations under mixed traffic
(30% multicast and 70% unicast); Unicast traffic is based on the transpose traffic model.

Under the transpose traffic pattern, the source switch positioned at (X, y, z) sends messages to the destination switch
(a-1-x, b-1-y, c-1-z) forall x € {0, ...,a— 1}, y € {0, ..., b -1}, z€ {0, ..., c -1}, in axbxc mesh network. As illustrated in Fig.
11 and Fig. 13, the RP method outperforms the two other partitioning methods under both traffic profiles when using a
deterministic routing algorithm. This improvement is achieved through using optimized partitions formed by the RP
method. Moreover, Fig. 12 and Fig. 14 show the average latency when utilizing the MAR routing algorithm. Based on the
presented partitioning methods, the adaptive routing reduces the average latency in comparison with the deterministic

routing.

C. Application Traffic Profile
The GEMS full system simulator [13] is used as our simulation platform coupled with a cycle-accurate 3D NoC model. In

order to know the real impact of the presented methods, we used traces from some application benchmark suites selected
from SPLASH-2 [8], and PARSEC [9][10]. Simulations are run on the Solaris 9 operating system based on SPARC instruc-
tion architecture. The adopted mapping strategy used in Solaris 9 is arbitrary mapping. Table 3 summarizes our full sys-
tem configuration where the cache coherence protocol is token-based MOESI and access latency to the L2 cache is derived
from the CACTI [33]. We form a 64-node on-chip network (4x4x4) that four layers are stacked on top of each other, i.e. out
of the 64 nodes, 16 nodes are processors and other 48 nodes are L2 caches. L2 caches are distributed in the bottom three
layers, while all the processors are placed in the top layer close to a heat sink so that the best heat dissipation capability is
achieved [32][34]. For the processors, we assume a core similar to Sun Niagara and use SPARC ISA [35]. The memory hier-
archy implemented is governed by a two-level directory cache coherence protocol. Each processor has a private write-back
L1 cache (split L1 I and D cache, 64KB, 2-way, 3-cycle access). The L2 cache is shared among all processors and split into
banks (48 banks, IMB each for a total of 48MB, 6-cycle bank access), connected via on-chip switches. The L1/L2 block size is

64B. The simulated memory hierarchy mimics SNUCA [36] while the off-chip memory is a 4GB DRAM with a 260-cycle

AUTHOR: TITLE 23

access time. The simulator produces, as output, the communication latency for cache access. Fig. 15 shows the average
network latency of the real workload traces collected from the aforementioned system configurations, normalized to TBP.
However, using the adaptive routing scheme, MAR, diminishes the average delay of each partitioning method significant-
ly under all benchmarks. That is, adaptive routing has an opportunity to improve performance. For instance, under the fft
application, the performance gain of using MAR in TBP, RP, and VBP is about (ATBP/TBP) 7%, (AVBP/VBP) 11.5%, and
(ARP/RP) 6%. We can see that ARP consistently reduces the average network latency across all tested benchmarks. Table 4
lists the performance gains of ARP over TBP, ATBP, RP, VBP, and AVBP where the overall performance gain is about 19%.

Table 3. System configuration parameters.

Processor Configuration

Instruction set SPARC, 16 processors

L1 cache 16KB. 4-way associative, 64-bit line, 3-cycle access time

L2 cache Shared, distributed in 3 layers, unified, 48MB (48 banks, each IMB). 64-bitline, 6-Clock
Cache coherence protocol | MESI, Token-based MOESI

Cache hierarchy SNUCA

Size 4GB DRAM

Access latency 260 cycles

Requests per processor 16 outstanding

Benchmarks SPLASH-2, PARSEC

Network configuration

switch scheme 3D mesh with wormhole

Flit size 64 bits

Workloads

SPLASH-2 Barnes, Cholesky, FFT, LU, Ocean, Radix, Raytrace, Water-Nsq
PARSEC x264

ETBP WATBP ERP EARP EVBP AVBP

(]
oo
o
[
1
LR
S8 07 —
=2 06 —
£ 0,5 —
5 0,4 -
S 0,3 —
0,2 —
0,1 [
0
Barnes cholesky FFT LU Ocean Radix Raytrace Water-Nsq X264
Fig. 15 Performance under different application benchmarks normalized to TBP.
Table 4. Performance gain of ARP over other presented schemes. 02 - Adaptive ™ deterministic
TBP ATBP | RP VBP AVBP -
Barnes 26% 23% 6% 16% 14% %’
Cholesky | 28% | 24% | 7% | 18% 14% %0,15]
FFT 42% 37% 6% 25% 15% t
LU 34% | 28% | 3% 9% 6% &
Ocean 41% 33% 9% 20% 13% E 0,1 -
Radix 35% | 29% | 12% | 18% 10% ' TBP VBP RP
Raytrace 28% 24% 5% 17% 14%
Water-Nsq | 30% 20% | 3% 11% % Fig. 16. Average power dissipation results in 4x4x3 3D mesh under
x264 30% 23% 9% 13% 6% Overall multicast traffic profile.
Avg. 32% 27% 7% 17% 11% 19%

5.2.2. Hardware Overhead

24 IEEE TRANSACTIONS ON COMPUTERS, VOL. #, NO. #, MMMMMMMM 2013

The presented partitioning methods have been implemented in network interfaces, thereby, to estimate the hardware cost
of the proposed methods, the network area of each partitioning scheme, including switches and network interfaces, with
the aforementioned configuration were synthesized by Synopsys D.C. using the UMC 90nm technology with an operating
point of 1GHz and supply voltage of 1V. We performed place-and-route, using Cadence Encounter, to have precise power
and area estimations. Depending on the technology and manufacturing process, the pitches of TSVs can range from 1um to
10um square [37]. In this work, the pad size for TSVs is assumed to be 5um? with pitch of around 8um?. The area of two-
unidirectional vertical channels, 2D switch, and 3D switch are 0.01mm?, 0.18mm?, and 0.23mm?, respectively, by considering
the link width of 64 bits. Therefore, the overhead of adding TSVs in a 3D switch is less than 4%. Different numbers of reg-
isters were employed for TBP (the base method), VBP, and RP methods to implement their partitioning mechanisms in
network interfaces, leading to different values of area overhead. Comparing the area cost of the TBP with VBP and RP
schemes indicates 5% and 6% additional overhead, respectively. All partitioning methods use the same routing unit, and
thus the differences in area overhead values are related to the implementation of different methods in the network inter-
faces. It is worth mentioning that the area overhead of the network interface unit alone in the TBP method is about 0.0419
mm?. The proposed adaptive routing unit (MAR) imposes less than 0.5% overhead on a switch in each method and it is

independent of the network size.

5.2.3. Power Dissipation

The power dissipation of the TBP, VBP, and RP methods were calculated and compared under the multicast traffic model
with sixteen destinations using the simulator based on the Orion [30] and the equation in [5]. The power values of the
network interfaces, computed after the place-and-route in the previous subsection, have been also integrated in the Orion
functions. The typical clock of 1GHz is applied in the aforementioned network (4x4x3 3D mesh network). The results for
the average power under multicast traffic are shown in Fig. 16.

The average power values are computed near the saturation point, 0.16 (messages/cycle), under multicast traffic. As the
results show, the average power consumption of the RP scheme is 16% and 8% less than that of the TBP and VBP schemes,
respectively, when using deterministic routing. In fact, this is achieved by smoothly balancing the traffic over the network

using efficient balancing scheme which reduces the number of the hotspots and, hence, lowering the average power.

AUTHOR: TITLE 25

6. SUMMARY AND CONCLUSION

In this paper, we first presented a set of partitioning methods for 3D mesh-based NoCs along with their analytical models.
Among them, the recursive partitioning method achieves higher performance. This method partitions the network recur-
sively until all partitions contain comparable numbers of switches. Experimental results show that the recursive partition-
ing method reduces the transmission delay and provides a high degree of parallelism compared with the two other meth-
ods, TBP and VBP. The paper continued by presenting an adaptive routing algorithm for both unicast and multicast traffic
in 3D mesh-based NoCs. The presented algorithm can add adaptivity to the network by taking advantage of the Hamilto-
nian path strategy without using virtual channels. Using SPLASH-2 and PARSEC benchmarks, the performance gain of
the RP method is about 17% and 27%, compared with the TBP and VBP methods, respectively, while reducing the power

consumption, 12% on average.

References

[1] A.Jantsch and H. Tenhunen, “Networks on Chip”, New York: Kluwer, 2003.

[2] J.Duato, S. Yalamanchili, L.M. Ni, “Interconnection networks: an engineering approach”, Morgan Kaufmann Publishers, 2003.

[31 B.S. Feero, P.P. Pande, “Networks-on-Chip in a Three-Dimensional Environment: A Performance Evaluation”, IEEE Transactions on Computers, v. 58,
no. 1, pp. 32-45, 2009.

[4] M. Daneshtalab, M. Ebrahimi, J. Plosila, "HIBS-Novel Inter-layer Bus Structure for Stacked Architectures," in Proceedings of IEEE International 3D
Systems Integration Conference (3DIC), pp. 1-7, Jan. 2012, Japan.

[S] V.E.Pavlidis and E.G. Friedman, “3-D topologies for networks-onchip”, IEEE Transactions on Very Large Scale Integration Systems, v.15, 1.10, pp.1081-
1090, 2007.

[6] N.E. Jerger, L.S. Peh, M. Lipasti, “Virtual Circuit Tree Multicasting: A Case for On-Chip Hardware Multicast Support”, 35th Int. Symp. on Computer
Architecture (ISCA), pp. 229-240, 2008.

[7] P. Abad et al., “MRR: Enabling fully adaptive multicast routing for CMP interconnection networks”, IEEE 15th Int. Symp. on High Performance Comput-
er Architecture (HPCA), pp. 355-366, 2009.

[8] S.C. Woo etal., “The splash- 2 programs: Characterization and methodological considerations”, in Proc. of the 22nd Int. Symp. on Computer Architecture,
pp. 24-36, 1995.

[9] C. Bienia, S. Kumar, J.P. Singh, and K. Li, “The parsec benchmark suite: characterization and architectural implications”, in Proc. of the 17th Int. Conf. on
Parallel architectures and compilation techniques, pp. 72-81,2008.

[10] C. Bienia, S. Kumar, and K. Li, “Parsec vs. splash-2: A quantitative comparison of two multithreaded benchmark suites on chipmultiprocessors”, in IEEE
Int. Symp. on Workload Characterization, pp. 47-56, 2008.

[11] A. Patel and K. Ghose, “Energy-efficient mesi cache coherence with pro-active snoop filtering for multicore microprocessors”, in Proc. of the 13th Int.
Symp. on Low power electronics and design, pp. 247-252, 2008.

[12] M. Martin et al., “Token coherence: decoupling performance and correctness”, in Proc. 30th Annual Int. Symp. on Computer Architecture, pp. 182-193,
2003.

[13] M. K. Martin, et al. “Multifacet's general execution driven multiprocessor simulator (GEMS) toolset”, SSIGARCH Computer Architecture News, v. 33, No.
4, pp.92-99. November 2005.

[14] X. Lin, L.M. Ni, “Multicast communication in multicomputer networks”, IEEE Trans. Parallel Distrib. Syst., v.4, pp. 1105-1117, 1993.

[15] M. Daneshtalab et al., “A Generic Adaptive path-based routing method for MPSoCs,” Elsevier Journal of Systems Architecture (JS4-elsevier), Vol. 57,
No. 1, pp. 109-120, 2011.

[16] R. V. Boppana et al., “Resource deadlock and performance of wormhole multicast routing algorithms”, IEEE Transactions on Parallel and Distributed
Systems, pp. 535-549, 1998.

[17] D. Panda et al., “Multi destination message passing in wormhole k-ary n-cube networks with base routing conformed paths”, IEEE Transactions on Paral-
lel and Distributed Systems, pp. 76-96,1999.

[18] J. Duato, “On the design of deadlock-free adaptive routing algorithms for multicomputers: Theoretical aspects”, in Proc. Second Europe Distributed
Memory Computing Conf., Apr. 1991.

[19] M. Ebrahimi et al., “HARAQ: Congestion-Aware Learning Model for Highly Adaptive Routing Algorithm in On-Chip Networks,” in Proceedings of 6th
ACM/IEEE International Symposium on Networks-on-Chip (NOCS), pp. 19-26, May. 2012, Denmark.

[20] M. Dehyadegari et al., “An Adaptive Fuzzy Logic-based Routing Algorithm for Networks-on-Chip,” in Proceedings of 13th IEEE/NASA-ESA Interna-
tional Conference on Adaptive Hardware and Systems (AHS), pp. 208-214, June 2011, USA.

[21] M. Ebrahimi et al., “Exploring Partitioning Methods for 3D Networks-on-Chip Utilizing Adaptive Routing Model,” in Proceedings of 5th ACM/IEEE
International Symposium on Networks-on-Chip (NOCS), pp. 73-80, May 2011, USA.

[22] L. Wang, H. Kim and E.J. Kim, “Recursive Partitioning Multicast: A Bandwidth-Efficient routing for Networks-On-Chip”, Int. Symp. on Networks-on-
Chip (NOCS), CA, pp. 64-73, 2009.

[23] Z. Liu, J.Duato, “Adaptive Unicast and Multicast in 3D Mesh Networks”, in Proc. of the Twenty-Seventh Hawaii Int. Conf., v.1, pp.173-182, 1994.

[24] J.Duato, “A New Theory of Deadlock-Free Adaptive Multicast Routing in Wormhole Networks”, IEEE Trans. on Parallel and Dist. Sys., pp.1320-1331,
1994.

26 IEEE TRANSACTIONS ON COMPUTERS, VOL. #, NO. #, MMMMMMMM 2013

[25] E. O. Amnah, W.L. Zuo, “Hamiltonian Paths for Designing Deadlock-Free Multicasting Wormhole-Routing Algorithms in 3-D Meshes*, Journal of Ap-
plied Sciences, pp. 3410-3419, 2007.

[26] L.M. Ni and P.K. McKinley, “A survey of wormhole routing techniques in direct networks”, IEEE Computer, v.26, 1.2, pp.62-76, 1993.

[27] R.S. Ramanujam, B. Lin, “Randomized Partially-Minimal Routing on Three-Dimensional Mesh Networks”, IEEE Computer Architecture Letters, vol. 7,
no. 2, pp. 37-40, 2008.

[28] X. Li, P.K. Mckinley, L.M. Ni, “Deadlock-free multicast wormhole routing in 2-D mesh multicomputers®, IEEE transactions on Parallel and Distributed
Systems, v.5, 1.8,pp. 793-804, 1994.

[29] M. Ebrahimi et al., "A High-Performance Network Interface Architecture for NoCs Using Reorder Buffer Sharing," in Proc. of PDP conference, pp. 547-
550, 2010.

[30] H. Wang et al., “Orion: A power-performance simulator for interconnection networks”, In MICRO 35, pages 294-305, 2002.

[31] F.Li, C. Nicopoulos, et. al, “Design and Management of 3D Chip Multiprocessors Using Network-in-Memory”, ISCA-33, pp, 130-141, 2006.

[32] D. Park, et. al , “MIRA: A Multi-Layered On-Chip Interconnect Router Architecture,” 35th International Symp. on Computer Architecture (ISCA),
pp-251-261,2008.

[33] N. Muralimanohar, et al., “Optimizing nuca organizations and wiring alternatives for large caches with cacti 6.0”, In proc. 40th IEEE/ACM International
Symposium on MICRO, pp. 3—14, 1-5 Dec. 2007.

[34] I Loi and L. Benini, “An Efficient Distributed Memory Interface for Many-Core Platform with 3D Stacked DRAM?”, in Proc. of the DATE Conference,
Germany, pp. 99-104, 2010.

[35] P. Kongetira, K. Aingaran, and K. Olukotun, “Niagara: a 32-way multithreaded Sparc processor”, IEEE Micro, vol. 25, pp. 21-29, 2005.

[36] B. M. Beckmann and D. A. Wood, “Managing wire delay in large chip-multiprocessor caches”, In Proc. of the 37™ annual IEEE/ACM International
Symposium on MICRO, pp. 319-330, 2004.

[37] L Savidis et al., “Electrical modeling and characterization of through-silicon vias (TSVs) for 3D integrated circuits”, Microelectronics Journal, v. 41(1),
pp. 9-16, 2010.

Masoumeh Ebrahimi received her B.S. degree in computer engineering from School of Electrical and Computer Engineering, University of
Tehran in 2005, and M. S. degree in computer architecture from Azad University, Science and research branch, in 2009. Since spring 2009 she
has been working in the Embedded Computer Systems laboratory, University of Turku. Her PhD thesis is focused on routing protocols in 2-D
and 3-D NoCs.

; 3 |

Masoud Daneshtalab received his PhD degree in information and communication technology from University of Turku in 2011. He is cur-
rently a Senior Researcher in Department of Information Technology at University of Turku, Finland. He has served as a Guest Editor for
Elsevier Journal of Systems Architecture (JSA), Springer Computing journal, and ACM Transactions on Embedded Computing Systems
(ACM TECS). He also co-organizes a special session on On-Chip Parallel and Network-Based Systems (OCPNBS) in the Euromicro PDP
conference. His current research interests include on/off-chip interconnection networks, manycore systems-on-chip, embedded operating
systems, 3D stacked architectures, machine learning, data centres architecture, and cloud computing. He is a member of IEEE and has pub-
lished more than 80 refereed international journals and conference papers. He is currently in a Technical Program Committee member of
different IEEE and ACM conferences, including NOCS, ESTIMedia, DSD, PDP, ICESS, NESEA, CASEMANS, NoCArc, and DATICS.

AUTHOR: TITLE 27

Pasi Liljeberg received his M.Sc. and Ph.D. degrees in electronics and information technology from the University of Turku, Turku, Finland,
in 1999 and 2005, respectively. He is an Adjunct Professor in embedded computing architectures at the University of Turku, Department of
Information Technology. Since January 2010 he has been working in the Embedded Computer Systems laboratory, University of Turku. His
current research interests include intelligent network-on-chip communication architectures and fault tolerant.

Juha Plosila is an Adjunct Professor in Digital Systems Design at the University of Turku, Department of Information Technology. He re-
ceived a PhD degree in Electronics and Information Technology from the University of Turku in 1999. Plosila is an Associate Editor of Inter-
national Journal of Embedded and Real-Time Communication Systems published by IGI Global. His current research interests include
SoC/NoC design issues primarily focusing on on-chip communication architectures, development of a multitasking virtual machine architec-
ture based on an in-house Java processor, fault-tolerance methods, and dynamically reconfigurable service based system architectures.

§.%

Jose Flich receied he M.S. and Ph.D. degrees in computer science from the Technical University of Valencia, Valencia, Spain, in 1994 and

2001, respectively. He joined the Department of Computer Engineering, Technical University of Valencia, in 1998, where he is currently an
Associate Professor of computer architecture and technology. His current research interests include high-performance interconnection net-
works for multiprocessor systems, cluster of workstations, and networks-on-chip. He has published over 100 papers in peer-reviewed confer-
ences and journals. He has served as a Program Committee Member in different conferences, including ICPP, IPDPS, HiPC, CAC, ICPADS,
and ISCC.

Hannu Tenhunen received his PhD from Cornell University, Ithaca, USA in 1985 and since that he has held professor, invited professor, or
honorary professor positions in Tampere, Stockholm, Ithaca, Grenoble, Shanghai, Beijing and Hong Kong. During the recent years he has
been director of Turku Centre of Computer Science and invited professor at University of Turku where he has established Computer Systems
Laboratory, the leading computer architecture and systems research centre in Finland. Prof. Tenhunen’s research interest is in new computa-
tional architectures, dependability issues, on-chip and off-chip communication and mixed signal and interference issues in complex electronic
systems including 3-dimensional integration. He has done over 600 publications or invited key note talks internationally.

