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Summary

The goal of this work is to derive design principles for the implementation of robust
incoherent feedforward (IFF) synthetic genetic circuits.

These class of circuits are ubiquitous in biological gene regulation networks (GRN). They
allow the organisms to present adaptive behavior, or adaptation for short. This behavior is
generally related to the so-called homeostasis capability in living organisms. Thus, adapta-
tion consists of the circuit capability to respond to an input stimulus and return to its original
value even when the input change persists. Notice this aception of adaptation is different
from the one appearing in other branches of engineering. The biological adaptive IFF GRN
is to some extent an analogous to a positive flank detector in electronics.

In synthetic biology, feedforward genetic circuits can be used as pulse generator and
response accelerator. Furthermore it is theoretically demonstrated that fold-change detection
can be generated by this topology, so we can obtain a response that is proportional to the
fold-change in the stimulus relative to the background.

Tough the general principles behind the behavior of feedforward gene regulation circuits
are already well-known, their actual implementation to achieve the desired performance is
still challenging. Studies in the literature either implement a network and analyse the perfor-
mance a posteriori, or deal with very simplified non realistic computational models.

In this thesis a realistic biochemical first principles model is first defined. Then, the
model is reduced using both time-scale separation, and existence of invariant moieties. A
multi-objective optimization approach is used to obtain the Pareto-optimal solutions in the
circuit parameters space that make the circuit to achieve robust adaptation. Monte-Carlo
sampling is also used to asses on the degradation of circuit performance outside the Pareto
front.

Using all this information, design principles are tried to infer in order to be able to offer
new tools for the systematic design of genetic synthetic incoherent feedforward circuits with
pre-established adaptive response.

Next, these sets of optimal model parameters values are compared against the biolog-
ically achievable values to check the feasibility of implementation, and tuning rules using
biological tuning knobs are proposed. Finally, in order to show the applicability of this
work, a biological prototyping has been done.
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Chapter 1

Introduction.

1.1 ANTECEDENTS AND MOTIVATIONS

Synthetic biology (SB) is one of the most cutting-edge fields in Biotechnology nowadays.
Combining the knowledge from Genetic Engineering, Metabolic Engineering and Systems
Biology, Synthetic Biology (SB) is able to see biological systems as a composition of pieces
that may be altered, removed or exchanged between different systems to obtain a relevant
organism (nonexistent without engineering) which reports benefits to society. SB is area that
combines biology and engineering working together on designing and building biological
devices and systems so as to achieve a particular purpose. It uses overlapping technologies
from many fields and disciplines and shares their methodologies to come up with novel bio-
molecular components and networks to reprogram living organisms.

This can result in a big change in the way of living over the coming years, helping in
many matters such as targeted therapies for attaching ‘super-bugs’ and diseases, or leading
to cheaper drugs and vaccines. But even outside biomedicine, synthetic biology has its appli-
cability in several areas. In the field of Energy, this can provide ‘green’ means to supply cars,
custom-built microbes for generating hydrogen and other fuels, or for performing artificial
photosynthesis. Also the detection of pollutants, and their breakdown or removal from the
environment, are good points to highlight its importance. Another example is the production
of fine or bulk chemicals in Chemical industry, including proteins to provide an alternative
to natural fibres or existing synthetic ones, and in the field of Agriculture, the novel food
additives.

The greater challenge of creating self-sustaining and self-replicating artificial cells and
re-engineered organisms have become in a goal of SB. To achieve this goals, modelling
how synthetic genetic circuits behave and developing and incorporating individual gene se-
quences into DNA as a genetic ‘lego’ blocks are key steps.

The use of mathematical models is of paramount importance in Synthetic Biology. They

7
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enable the study of properties that emerge from the interaction and properties of individ-
ual parts. The modelling process itself results in hypothesis to be experimentally tested,
thereby iteratively producing refined models and insight about cellular mechanisms. They
are useful for engineering biological systems as they contribute to our understanding of how
endogenous systems are put together and work in their interactions, and hence, how cells and
synthetic networks operate and then predict their behavior.

To achieve the desired biological behaviours, the designer may work with synthetic Gene
Regulatory Networks (GRN). There are many classes of GRN motifs that achieve different
classes of behaviours [3]. These motifs can be thought of as modular components that can be
used in more complex circuits. Out of the many possibilities, feedforward circuits have re-
ceived lot of attention in the last years, for the appear in large quantities in nature. One of the
most oftenly encountered feedforward motif is the incoherent feedforward gene regulatory
network (IFF GRN).

The IFF GRN allows the organisms to present adaptive behavior. This consists of the
circuit capability to respond to an input stimulus and return to its original value even when the
input change persists. Notice this aception of adaptation is different from the one appearing
in other branches of engineering. The biological adaptive IFF GRN is to some extent an
analogous to a positive flank detector in electronics. This thesis is centred in these kind of
genetic circuits.

1.2 GOAL, PURPOSE AND SCOPE

1.2.1 Goal

The goal of this work is to derive design principles, in the sense of tuning of model pa-
rameters, for the systematic design of genetic synthetic incoherent feedforward circuits (IFF
GRN) with pre-established robust adaptive response. These sets of optimal model parame-
ters values are compared against the biologically achievable values to check the feasibility of
implementation, and tuning rules using biological tuning knobs are proposed. As secondary
goal, a biological prototyping of the circuit has been carried out.

1.2.2 Purpose

The purpose of the design circuit is the utilization of the IFF GRN as an essential biological
element for the design of more complex synthetic biologic circuits. In synthetic biology,
feedforward genetic circuits can be used as pulse generator and response accelerator. In
this regard, the IFF GRN will be implemented as a module by means of standardised DNA
sequences so-called biobricks. Biobricks can be understood as Lego-like building blocks

8



1. Introduction.

used to design and assemble synthetic biological circuits, which would then be incorporated
into living cells to construct new biological systems, as it is concerned.

1.2.3 Scope

Though the general principles behind the behavior of feedforward gene regulation circuits
are already well-known, their actual implementation to achieve the desired performance is
still challenging.

In this project a realistic biochemical first principles model is first defined. In the analysis
of biological phenomena, mathematical models are often reduced by means of model reduc-
tion techniques based on appropriate assumptions on time-scales separation and invariant
moieties, which has to preserve all its features if a successful simplifying model is intended
to be obtained. Complex systems are typically too expensive to simulate in complete detail,
so there is a need to minimize the execution times when computational algorithms work out
solutions for multi-scale models. Here is where the importance of reduced models lies in.
Thus, the initial model is reduced using both time-scale separation, and existence of invariant
moieties. A multi-objective optimization approach is then used to obtain the Pareto-optimal
solutions in the circuit parameters space that make the circuit to achive robust adaptation.
Monte-Carlo sampling is also used to asses on the degradation of circuit performance out-
side the Pareto front. Standard rules to achieve this performance by selecting the suitable
values of these parameters as tuning knobs, are then inferred. Finally, a basic prototyping of
the biological biobricks required for the actual biological implementation is done.

This work could be addressed to readers with no biological background, but with some
very basics in biology. For this reason a very short summary of the Central Dogma of
Molecular Biology and how to model gene expression has been given. A basic knowledge
on system dynamics is required to fully understand the methodologies used in this project.

1.3 OUTLINE

Chapter 2: Normative.

Scientific instruments, materials, chemical substances, and biological species and ma-
terials are needed to effectively carry out the practical work (so called wet-lab work)
designed and prototyped in the theoretical analysis (so called dry-lab work). This sec-
tion contains the rules and norms to follow in the wet-lab work related to the results of
this thesis.

Chapter 3: State of art.

9
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In this chapter, an overview is given of the existing theoretical and practical results re-
quired to design the IIF GRN in the remaining of the thesis. First, an overview is given
of the Central Dogma of molecular biology, that states how proteins are produced
(expressed). The basic forms of protein expression are described: constitutive gene
expression, and gene transcription regulation by activators and repressors. Then, syn-
thetic genetic circuits, network motifs and concepts such as robustness and adaptation
are adressed. Finally, the multi-objective optimization (MOO) approach is introduced
for the proper understanding of the methods used in this work.

Chapter 4: Modelling an Incoherent Feed-Fordward network.

A complete biochemical model of the IFF GRN is derived, and its corresponding dy-
namical model based on balance equations is formulated. This first model is of large
order, which implies a high computational cost for the parameters estimation pro-
cess. Therefore, the dynamical model is reduced using time-scale separation and de-
tection of invariant moieties. The reduction is made to achieve a reduced model more
amenable for computational analysis, but avoiding excessive reduction that would lead
to lack of biological relevance.

Chapter 5: Parameters optimization

In this chapter parameters optimization is performed to derive the set of values of the
parameters in the reduced model that allow the circuit to achieve adaptive behaviour.
The proposed reduced model is used to simulate the synthesis of a required protein us-
ing a Matlab code. The adaptive behaviour is specified using a set of index. This leads
to a multi-objective optimization problem. A multi-objective optimization algorithm
implemented in Matlab is used to get the Pareto-optimal solutions. Also a Monte-Carlo
analysis is done so as to compare results and deduce structural robustness, leading to
design principles for the systematical construction of adaptive genetic circuits.

Chapter 6: Prototyping.

This chapter is focused on the choice of parameters in order to create an adaptive
circuit that could be implemented using actual biological promoters encountered in
the biobricks databases.

Chapter 7: Budget.

The project budget includes an estimation of both the use of lab resources for the
circuit implementation, and the cost induced for the circuit design and prototyping.

10



Chapter 2

Normative.

This thesis is only concerned with the so called dry-lab, i.e. the design and analysis of biolog-
ical synthetic circuits by means of computational methods. Yet, the goal is to both design the
genetic circuit, and prototype its biological implementation. This wet-lab implementation
will imply the use of biological agents and chemical substances.

The use of biological agents and chemical substances brings different risks for human
health when used, depending fundamentally on the agent nature or the substance that con-
cerns. This means an obligation from people in charge of scientific activity sites and direct
users, to have a deep knowledge in the characteristics of such risk factors, with the aim of
maintaining their health.

In order to identify and analyse labour risks associated to the various operations with
biologic features that are habitually done in biotechnology laboratories, and so as to know
how to take action and the steps to institute for prevention and control, the following manuals
and decrees serve as a source of information.

Technical guidance for evaluation and prevention of risks related to biologic agents
exposure. Royal Decree 667/1997 of 12 May 1997 BOE nº124 of 24 May 1997. Ministry
of Labour and social welfare & National Institute of Workplace Safety and Hygiene.

Guía técnica para la evaluación y prevención de los riesgos relacionados con la ex-
posición a agentes biológicos. Real decreto 667/1997, de 12 de mayo BOE nº124, de 24
de mayo. Ministerio de Trabajo y Asuntos Sociales & Instituto Nacional de Seguridad e
Higiene en el Trabajo.

Safety manual for biologic activities in biotechnology laboratories. UPV.

11
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Manual de seguridad para operaciones en laboratorios de biotecnología y de tipo bi-
ológico. UPV.

Laboratory Biosafety Manual 3rd Edition. 1983 World Health Organization (WHO).

Manual de Bioseguridad en el Laboratorio 3ra Edición.bOrganización Mundial de la
Salud (OMS), 1983.

To summarize the essential information for procedures that probably will take place dur-
ing the implementation of the desired genetic circuit, these following sections are pointed
out. It is assumed the the physical implementation of the biological circuit will take place
in the Comunitat Valenciana. Thus, both the Generalitat Valenciana normatives, and the
national Spanish ones must be considered.

1. Laboratory as a workplace. Generalities.

According to what is disposed in Royal Decree 486/1997 of 14 April 1997, minimal
health and safety conditions in workplaces have to be respected. Attending to the
activities that will be developed, in case they take place at UPV laboratories, the labour
activities that must be considered are:

a) Docent assignment for educational work.

b) Field research, including previous preparatory operations, maintenance service,
etc.

In the Safety Manual for Biologic Activities in biotechnology laboratories (UPV) the
following aspects are mentioned in more detail. Here, only the relevant details are
described.

Order and cleanliness: Do not overload shelves and storage areas nor obstruct cross-
ing and enclosing areas. Be careful with spilling liquids on the tables and the floor
and do the disposing of waste in suitable containers. Clean and keep correctly
materials and equipment after use them, and put products away in the storage
areas.

Work spaces per worker: Full height from floor to roof: 3 meters. Free surface per
worker: 2 square meters. Cubic capacity (volume) not used by worker: 10 cubic
meters.

Temperature, humidity and ventilation: Thermal isolation must to be proper ac-
cording to climate conditions where laboratories are located. Temperature, hu-
midity and ventilation limits according to what is established in annex III Royal
Decree 486/1997. Minimum illumination conditions according to what is estab-
lished in annex IV Royal Decree 486/1997.

12
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2. Chemical products manipulation and storage.

For the correct manipulation and storage it is necessary for the user to identify the dif-
ferent risky compounds, according to what is disposed in the Royal Decree 363/1995
of 10 March. No dangerous compounds will be used for this work.

The Royal Decree 99/2003 of 24 January 2003 incorporates the following definitions:

Substances: Chemical elements and their compounds in natural state, or those ob-
tained by means of any production procedure, including needed additives to keep
stability product and contaminants that result from used technique, excluding
solvents that could isolate neither having influence on the stability nor modifying
the composition.

Preparations: mixtures or solvents composed by two or more chemical substances.

3. Safely operations in laboratories where biologic agents are manipulated.

In order to protect worker’s health against risks from biologic agents exposure during
the developmental activities, the Royal Decree 664/1997 of 12 May 1997 was pub-
lished inside the regulatory framework of Law 31/1995 of 8 November 1995 about
Prevention of Occupational Risks.

According to aforementioned Royal Decree 664/1997 of 12 May 1997, biologic agents
are defined as microorganisms, including those genetically modified, cell cultures and
human endoparasites, liable to produce any kind of infection, allergy or toxicity.

In turn, a microorganism is considered as any biologic entity, cellular or not, able to
replicate or transfer genetic material. There are four types of basic microorganisms:
bacteria, fungus, virus and parasites (protozoans, species of helminth, etc.). A cell
culture is the result of growing in vitro cells obtained from multi-cellular organisms.

Depending on the infection risk, the royal Decree 664/1997 clasifies biologic agents
in four groups. The biologic agents needed for this work are biologic agents from
group 1, those that are unlikely to cause an illness in the human being.

Biologic agents more likely to produce any kind of risky illness (groups from 2 to 4
in increasing dangerousness order), can be found in the link http://www.mtas.es/
insht/legislation/biologic.htm{#}anexo2.

Before starting any activity which implies the manipulation of biologic agents, these
have to be identified through an inventory. Control methods for biologic agents are
oriented according to the aforementioned groups of biologic agents. At this respect,
the control methods for the biologic agents of this work are Control methods from
group 1.

Some preventive measures of general character and for laboratories with 1st Control
Level (control methods from group 1) are described in the Safety Manual for Biologic
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Activities in biotechnology laboratories (page 84-87). Some of these recommenda-
tions of interest for biologic agents for group 1, apart from general preventive methods,
are :

• Not to use pipettes with the mouth. Use properly devices.

• Use lab coat to prevent normal clothing from contamination. Not to use lab coat
out of the laboratory.

• Always use ocular protection when risk of splash exists. If it is possible, plastic
material instead of glass material, so as to decrease risk of cutting.

• Decontamination of working surfaces at least one time per day and always a
spillage occurs.

• All the staff has to wash their hands after manipulating infectious materials and
when leaving the laboratory.

With respect to biologic material transportation, some preventive measures have to be
taken into account:

• Samples transportation between laboratories will be done such in case of falling
down, will not splash.

• Samples must be tagged or identified opportunely and will not be used for other
aim.

• Samples should not be carried by hand.

With respect to biologic samples storage:

• Biologic samples must be put in restricted access zones, minimizing the possibil-
ity of contamination in staff and environment.

• The storage in nitrogen liquid freezers implies the use glasses and protection
masks preventing from nitrogen liquid splashes. Moreover, in case of breaking
equipment, container must be emptied and let the nitrogen liquid to evaporate
before proceeding to its cleaning.

With respect to waste processing: all biologic rejects have to be decontaminated before
its removal, fulfilling the rules disposed in national Law 10/1998 of 21 April 1998
about Wastes, and the autonomous Royal Decree 240/1994 of 22 November 1994,
by which it is approved the ‘Reglamento Regulador de la Gestion de los Residuos
Sanitarios’; Order of 14 July 1997 from Conselleria de Medio Ambiente de la C.V.,
approving the Decree 240/1994; Law 10/2000 of 12 December 2000, about Residuos
de la Comunidad Valenciana.

Wastes from laboratories that use biologic agents are normally classified in:
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• Biologic solid wastes as urban wastes.

• Special biologic solid wastes.

• No pathogenic solid wastes from microbiological cultures.

• Biologic fluid wastes.

Waste processing for these different types of wastes are described in the Safety Manual
for Biologic Activities in biotechnology laboratories (page 70-71).

For more information, consult the normative documents described at the beginning of
this chapter.
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Chapter 3

State of the art

3.1 THE CENTRAL DOGMA AND GENE EXPRESSION IN
MOLECULAR BIOLOGY

The Central Dogma of molecular biology was first articulated by Francis Crick in 1958. The
dogma is a framework for understanding the transfer of sequence information hard-wired in
DNA (genes), and it is intrinsically related to the concept of gene expression.

Gene expression refers to the process of producing a specific and controlled amount of
gene products. These products are often proteins, which may have structural or mechani-
cal functions like acting as enzymes that catalyse specific metabolic pathways, that in turn
integrate the metabolic network, understood as the numerous different set of chemical trans-
formations or reactions that co-exist in cells and ensure that life is sustained. Also proteins
can work as receptors or transmitters in cell signaling, may form complexes that carry out
reactions, or serve as transporters for other molecules.

Proteins are macromolecules consisting of one or more chains of amino acids. Each chain
is a linear polymer chain of amino acids bonded together by peptide bonds, a polypeptide
[21]. The sequential information is carried by biopolymers, and this fact is given in biological
reactions that work at different rates of product and degradation between the three principal
elements: gene, mRNA and protein.

The biopolymers that comprise DNA, RNA and amino acids are linear polymers and
the sequence of their monomers effectively encodes the information whose normal flow or
transfer could be described in three fundamental steps: DNA is firstly copied to DNA (DNA
replication), DNA information is copied into messenger RNA or mRNA by means of a pro-
tein called RNA Polymerase (transcription), and finally proteins can be synthesized using
the information in mRNA as a template with the help of ribosomes (translation).

This is basically the essence of the so- called Central Dogma in molecular biology. Let’s
see this in more detail, just enough to better understand in a basic way the three processes
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mentioned above.

1. DNA replication
Inside the cell, the DNA replicates its information in a process that involves many en-
zymes. DNA covers four types of nucleotides each one referenced to the nitrogenous
base that they contain (Guanine, Adenine, Thymine and Cytosine) recorded using the
letters G, A, T and C. DNA replication begins at specific point when the two parent
strands are unwound with the help of DNA helicases, this means that this enzyme
unbinds and separates a portion of DNA so the DNA double helix is broken. Then,
there are two incomplete DNA strands called complementary and template strands.
Therefore, single stranded DNA binding proteins attach to the unwound strands, pre-
venting them from winding back together. Only one strand serves as a genetic infor-
mation template for transcription at any given time, and the other strand is referred
to as the noncoding strand. The strands are held in position, binding easily to DNA
polymerase, which catalyzes the following processes along with other enzymes called
DNA primase and DNA ligase until the duplication is completed.

2. Transcription
Transcription is the process by which the information contained in a section of DNA
is transferred to a newly assembled piece of messenger RNA (mRNA). This process
is triggered by the binding of RNA Polymerase to a determined region in DNA called
promoters, and is activated or inhibit by a range of promoter specific proteins called
transcription factors. This binding complements sequence of DNA after the replica-
tion, in other words, the template strands is complemented and generate the messenger
ribonucleic acid (mRNA), that carries the information contained in the gene. When
RNA Polymerase reaches a termination sequence on the DNA template strand, tran-
scription is terminated and the mRNA transcript and RNA Polymerase are released
from the complex (see Figure 2.3d). In eukaryotic cells, the site of transcription (the
cell nucleus) is usually separated from the site of translation (the cytoplasm), so the
mRNA must migrate from the nucleus to the cytoplasm, where it encounters cellu-
lar bodies called ribosomes so as to start Translation process. In prokaryotic cells,
which have no nuclear compartment, the process of transcription and translation may
be linked together in the cytoplasm.

3. Translation
The mRNA, which carries the gene’s instructions, dictates the production of proteins .
It is read by the ribosome as triplet codons, usually beginning with an AUG (adenine-
uracil-guanine), or initiator methionine codon downstream of the ribosome binding
site. Ribosomal units move along the mRNA chain converting the information encoded
in triplet codons into a chain of amino acids defining the desired protein. As the
amino acids are linked into the growing peptide chain, they begin folding into the
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correct conformation and this new polypeptide chain is released from the ribosome as
a complete protein. Translation ends with stop codon, that could be UAA, UGA, or
UAG.

Figure 3.1: Three principal stages of Central Dogma of molecular biology:
DNA replication, mRNA Transcription and protein Translation

Previously to the next section, it is interesting to appreciate the differences among the
several types of gene expression. Attending to how it is regulated, these are some of the
terms used to refer to this kind of such relevant process:

Constitutive gene expression This is non-regulated gene expression. The gene is continu-
ally transcibed.

Facultative gene expression The gene is only transcribed when needed, as opposed to the
constitutive gene.

Inducible gene expression It is inherently based on regultaion of gene expression. The in-
ducible gene is either responsive to environmental change or dependent on the position
in the cell cycle. This is interesting in order to intentionally think up a synthetic circuit
where the gene transcription could be regulated.

Constitutive gene expression and gene transcription regulation with inducible genes will
be addressed in the next sections, as the second one deals with specifically what our work
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consists on and the first one is indeed necessary to introduce how we model the most simple
gene expression by mass action laws.

3.2 CHARACTERIZATION OF GENETIC COMPONENTS

3.2.1 Constitutive gene exppression

As said before, the main processes that comprise the Central Dogma can be classified as
reactions that include degradation and transformation rates among the fundamental elements
gen, mRNA and protein.

Gene Transcr−−−−→mRNA Transl−−−→ Protein (3.1)

mRNA
Degrad−−−−→ /0 (3.2)

Protein
Degrad−−−−→ /0 (3.3)

It is said that the gene expression is constitutive when the gene is always ‘ON’. That
means that the starting point in the synthesis of the protein is not regulated by activator or
repressor agents and there is not promoter to associate with in order to start the process.

This biological problem demands a model that can represent a multi-component, tempo-
rally evolving dynamic system. In these terms, differential equation models come to the fore
and the regulatory networks can be represented by ordinary differential equations (ODEs).
Using the law of mass action, the ODEs set for constitutive expression is given as:

ṁ = k1−d1m (3.4)

ṗ = k2m−d2 p (3.5)

where: m is the mRNA concentration, p is the mRNA concentration, k1 is the constitutive
transcription rate, k2 is the translation rate, d1 is the mRNA degradation rate and d2 is the
protein degradation rate.

• k1: it is considered to be constant and it represents the number of mRNA molecules
produced per gene, per unit of time. In this case, k1 is for only one copy of the gene in
the cell. If there were several copies (e.g. plasmid located gene) k1 must be multiplied
by the copy number Cn to obtain the total transcription rate.

• d1: the typical half-time for mRNA in E. coli, the value is between [2,8] minutes (min)
and average value is 5 min.
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• k2: it is considered to be constant and it represents the number of protein molecules
produced per mRNA molecule, per unit of time.

• d2: it is formed by two terms: i) the first term corresponds to the tendency of the
protein to break down per unit of time, ii) the second term called the dilution term
corresponds to the variation of the cell volume (through cell expansion and division)
per unit of time. Typically in E. coli. The degradation rate is d2 =

ln(2)
τ

, where τ is the
cell cycle duration between (20,45) minutes.

Few genes have constitutive expression. In most cases their expression is controlled
by some external signals (DNA-binding proteins called transcriptions factors, metabolites,
temperature, etc.) as discussed in the next section.

3.2.2 Gene transcription regulation

The importance of this work resides in the control of the transcription of genes, i.e. the
control of the amount and timing of appearance of the functional product of a gene. This
can be done through certain proteins that regulate gene expression in response to a variety
of stimulus, like growth factors, stress or bacterial and viral infections, so in turn, these pro-
teins control a number of cellular processes giving cells the flexibility to adapt to a variable
environment, external signals, damage to the cell, etc.

Transcription regulation proteins are called Transcription factors. Each active transcip-
tion factor can bind a regulatory region of DNA that precedes the gene (promoter) to regulate
the rate at which this specific target gene is read (transcribed). For this purpose, they bind
determined sections of promoter called transcription factors binding sites. The quality of
this site specifies the transcription rate of the gene. According to if these transcription fac-
tors inhibit or activate the gene expression when bound to DNA, they are given the name of
repressors or activators respectively. Each edge in the network has a sign: + for activation,
- for repression. Transcription networks often show comparable numbers of plus and minus
edges, with more positive (activation) interactions that negative interactions.

The strength of the effect of a transcription factor on the transcription rate of its target
gene is described by an input function. Let us consider the production of protein Y con-
trolled by a single transcription factor X. When X regulates Y, the number of molecules of
protein Y produced per unit time is a function of the concentration of X in its active form,
X∗:

rate of production of Y = f(X∗)

Tipically, the input function f(X∗) is a monotonic, S-shaped function. It is an increasing
function when X is an activator and a decreasing function when X is a repressor. A use-
ful function that describes many real gene input function is the so-called Hill function. In
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that sense, Inducible gene expression is often modeled through the Hill function. The Hill
nonlinear equation was first introduced by A.V. Hill to describe the equilibrium relationship
between oxygen tension and the saturation of hemoglobin. The Hill coefficient is commonly
used to estimate the number of ligand molecules that are required to bind to a receptor to
produce a functional effect. Sometimes several substrates (i.e., transcriptional factors) are
needed to bind the enzyme (i.e., DNA) for the reaction to take place. In this case, this reac-
tion is said to be cooperative and its model is:

E + nS
k1


k−1

ES
k2→ E + P

where E is the free enzyme, S is the substrate, P is the reaction product, ES is the enzyme
substrate complex and n is the cooperativity coefficient (see Figure 3.2). This mechanism
illustrates the binding of substrate S and release of product P.

Figure 3.2: Enzyme cycle consists of (1) enzyme and substrates are free, (2)
substrate binds to enzyme and form the ES complex, (3) ES places stress on
the bond and (4) products are released and the enzyme is free to bind other
substrates.

The Hill function can be derived from considering the equilibrium binding of the tran-
scription factor to its site on the promoter, and it is defined as:

h(x) = β
X∗n

Kd +X∗n
(3.6)

where β is the maximal transcription rate and x is the substrate.

22



3. State of the art

Gene transcription regulation by activators.

Activation or positive control, occurs when the transcription level is activated by the
cooperative binding of activators to the transcription factor binding site. That is, activators
increase the transcription rate of the gene. In this case, the Hill function (see Figure 3.3a))
is a curve that rises from zero and approaches a maximal saturated level of product con-
centration,that is, its maximal expression level. The Hill function slope depends on the Hill
coefficient n.

Gene
Activator
↓−→ mRNA

↓
/0

−→Protein
↓
/0

The following nonlinear ODE model is commonly used to describe activator controlled
gene transcription:

ṁ = k1
A∗n

Kn +A∗n
−d1m (3.7)

ṗ = k2m−d2 p (3.8)

where m, p and A∗ are the mRNA, protein and activator concentrations respectively. K is
the activation coefficient (it defines the concentration of active A to significantly activate
expression). From the equation it is easy to see that half-maximal expression is reached
when A∗ = K. The value of K is related to the chemical affinity between A and its site on
the promoter, as well as additional factors. k1 is the maximal transcription rate or maximal
expression level of the promoter. Maximal expression is reached at high activator concentra-
tions, A∗ >> K, because at high concentrations, A∗ binds the promoter with high probability
and stimulates RNAp to produce many mRNAs per unit time. n is the Hill coefficient (num-
ber of activators that need to bind the promoter to trigger the activation of gene expression).
This coefficient governs the stepness of the input funcion. The larger is n, the more step-like
the input function. Tipically, input functions are moderately steep, with n = 1 - 4.

As many functions in biology do, the Hill function approaches a limiting value at high
levels of A∗, rather than increasing indefinitely. This saturation of the Hill function at high
A∗ concentration is fundamentally due to the fact that the probability that the activator binds
the promoter cannot exceed 1, no matter how high the concentration of A∗.

Gene transcription regulation by repressors.

Repression, or negative control, occurs when the transcription is repressed by the co-
operative binding of repressors to the transcription factor binding site. That is, repressors
reduce the transcription rate of the gene. The Hill function in this case (see Figure 3.3b)) de-
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creases from its maximal level of product concentration to the lowest level of concentration.

Gene
Repressor
⊥−→ mRNA

↓
/0

−→Protein
↓
/0

In the same way, the following ODE model is commonly used to describe repressor
controlled gene transcription:

ṁ = k1
Kn

Kn +R∗n
−d1m (3.9)

ṗ = k2m−d2 p (3.10)

where m, p and R∗ are the mRNA, protein and repressor concentrations respectively, k1 is the
maximum transcription rate, K is the repression coefficient, n is the Hill coefficient (number
of repressors that need to bind the promoter to trigger the inhibition of gene expression).

Since a repressor allows strong transcription of a gene only when it is not bound to the
promoter, this function can be derived by considering the probability that the promoter is
unbound by R∗. The maximal production rate is obtained when the repressor does not bind
the promoter at all, that is, when R∗ = 0. Half-maximal expression is reached when the
repressor activity is equal to K.

Figure 3.3: Hill function forms for transcription factors as (a) activators and
(b) repressors.

Hence, each edge in the network can be thought to carry at least three numbers, β , K
and n, additionally to the edge sign. These numbers can readily be tuned during evolution.
K can be changed by mutations that alter the DNA sequence of the binding site of X in the
promoter of gene Y, even a change of a single DNA letter. Variations in the position of the
binding site or changes in sequences outside of them can strengthen or weaken the chemical
bonds between X and the DNA. Similarly, the maximal activity β can be tuned by mutations
in the RNAp binding site or many other factors [4].

Although the input functions described here range from a transcription rate of zero to
maximal transcription rate β , many genes have nonzero minimal expression level. This is
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called the gene basal expression level, which can be described by simply adding to the input
function a term βo.

When several transcription factors affect a gene, interacting each other in a nonlinear way,
new behaviours occur. These behaviours can be expressed as combinations of the previous
ones.

3.3 SYNTHETIC GENETIC CIRCUITS

3.3.1 Introduction

Cells live in a complex environment and can sense many different signals, including physical
parameters such as temperature and osmotic pressure, biological signaling molecules from
other cells, beneficial nutrients, and harmful chemicals. Cells respond to these signals by
producing appropriate proteins that act upon the internal or external environment.

Synthetic genetic circuits can potentially result in more efficient pathways that would
permit to program living cells for advanced applications. In this sense, engineers seek to
harness cell’s capability of initiating gene expression in response to specific signals, to pro-
gram them to perform tasks or create chemicals and materials that match the complexity seen
in nature and provide with tools that aid the construction of genetic circuits [13].

Genetic regulatory circuits are functional clusters of genes that could have an effect on
each other’s expression through inducible transcription factors and cis-regulatory elements
CREs (regions of non-coding DNA which regulate the transcription of nearby genes). These
circuits can be modeled and performed in silico to predict the dynamics of a genetic system.
Furthermore as we have seen, circuit dynamics can be influenced by the choice of regulators
and changed with expression tuning knobs. The inputs to the network are signals that carry
information from the environment. Each signal is a small molecule, protein modification,
or molecular partner that directly affects the activity of one of the transcription factors. The
cross regulation of genes can be represented by a graph, where genes are the nodes and one
node is linked to another if the former is a transcription factor for the latter. See an example
in Figure 3.4.

Genetic regulatory circuits are analogous in many ways to electronic circuits. They are a
network integrated by several interconnected components with tuning knobs and at least one
closed trajectory. Similarly, the whole serve as a mean to develop a certain useful function,
that in terms of synthetic biology, it would be novel biological functions. For most genetic
circuits, a sufficient degree of cooperativity in their circuit components is required.

These networks are nonlinear and then, they require design and analysis tools more com-
plex than those used for linear problems.
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Figure 3.4: Graph example of a seven-node genetic circuit. The species luxR
and rhlR are input proteins that act as transcription factors activating the gene
expression of cI, lacIm, (normal arrow means activation). The production of
these proteins has a repressive effect on the next genes, and in turn, a third
stage of repression is derived (arrow with perpendicular termination means
repression).

Moreover, genetic circuits have no signal isolation. Biological systems are constructed
from very noisy devices. Circuit products may interfere with each other and the host cell, so
circuits behavior is non-deterministic in nature. That means that they are inherently stochas-
tic. In fact, we can find two kind of noise source in gene expression, intrinsic and extrinsic.

On one hand, the so-called intrinsic noise arises due to the stochastic fluctuations in the
transcription and translation steps of gene expression. On the other hand, gene expression
is subject to variability arising from fluctuations originating from the environment, i.e. from
other cell components upstream of the system of interest. This is the so-called extrinsic noise
[21].

Here is when the system robustness plays an important role. A robust control design of a
system must assume that there will exist an error or uncertainty between mathematical model
and reality. Robust control systems take into account this approximation or assumption so
that the specified behavior is fulfilled when perturbations on the system are given. That
means in biological terms, that robust designs in genetic circuits its essential function is
nearly independent of biochemical parameters that tend to vary from cell to cell, even if the
cells are genetically identical.

3.3.2 Network motifs

A biological transcription network is made of many interactions edges, making it very com-
plex. Little is known about the design principles of transcriptional regulation networks that
control gene expression in cells, so the question is if it is possible to define understand-
able patterns of interconnections that serve as building blocks so that we can understand the
dynamics of the entire network based on the dynamics of these units.
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Recent advances in data collection and analysis are generating unprecedented amounts of
information about gene regulation networks, and they are effectively showing that do exist
these building-block patterns or recurring circuit modules inside networks at frequencies
much higher than those found in randomized networks. They are called network motifs [26].

For instance, the transcription networks of the bacterium Escherichia coli [25, 20] and the
yeast Saccharomyces cerevisiae [20, 16] were found to contain the same small set of highly
significant motifs. The significance of these structures raised the question of whether they
have specific information-processing roles in the network, and since they do, they have been
used to understand the network dynamics in terms of elementary computational building
blocks [17].

Thus, simplest network motifs have been examined as they have resulted to be useful to
obtain certain kind of behavior. Each network motif has a specific function in determining
gene expression, such as generating temporal expression programs or velocity response, and
governing the responses to fluctuating external signals (stability).

Some examples of relevant network motifs [2] are given below:

1. Negative autoregulation

Negative autoregulation (NAR) occurs when a transcription factor represses the tran-
scription of its own gene (Figure 3.5). This network motif occurs in about half of the
repressors in E. coli and in many eukaryotic repressors.

Figure 3.5: Negative autoregulation of gene X by repression of its own promoter

NAR has been shown to display two important functions:
(1) NAR speeds up the response time of gene circuits.
(2) NAR can reduce cell-cell variation in protein levels.

2. Positive autoregulation

Positive autoregulation (PAR) occurs when a transcription factor enhances its own rate
of production (Figure 3.6)
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Figure 3.6: Positive autoregulation of gene X by activation of its own promoter

The properties of PAR are opposite to those of NAR:
(1) PAR slows the response time.
(2) PAR tends to increase cell-cell variability.

Slowed down response time increase fluctuation due to noise and can induce bistability.

3. Feedforward loop

The second family of network motifs is the feedforward loop (FFL). It predominantly
appears in many known networks e.g. gene systems in E. coli and yeast, as well as
in other organisms. It is a three-gene pattern, composed of two input transcription
factors, one of which regulates the other, both jointly regulating a target gene. In other
words, a motif in which a transcription factor X regulates a second transcription factor
Y, such that both X and Y jointly regulate an operon Z (In genetics, an operon is a
functioning unit of genomic DNA containing a cluster of genes under the control of a
single promoter) . This motif has been shown to be a feed forward system, detecting
non-temporary change of environment.

Feed-forward is a term describing an element or pathway within a control system,
which reacts to changes in its environment, normally in order to keep any determinate
state of the system. A control system which has only feed-forward behavior responds
to its control signal in a pre-defined way without responding to how the load reacts;
it is in contrast with a system that also has feedback, which adjusts the output to take
account of how it affects the load, and how the load itself may vary unpredictably;
the load is considered to belong to the external environment of the system. In a feed-
forward system, the control variable adjustment is not error-based. Instead it is based
on knowledge about the process in the form of a mathematical model of the process
and knowledge about or measurements of the process disturbances [1].

A feedforward loop motif is ‘coherent’ if the direct effect of the general transcription
factor on the effector operons has the same sign (negative or positive) as its net indirect
effect through the specific transcription factor. For example, if X and Y both positively
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regulate Z, and X positively regulates Y, the feedforward loop is coherent. If, on the
other hand, X represses Y, then the motif is incoherent.

Figure 3.7: Coherent and incoherent feedfordward motifs.

The FFL has eight possible structural types, because each of the three interactions in
the FFL can be activating or repressing. When theoretically analyzed the functions of
these eight structural types, it was found that four of the FFL types (incoherent FFLs),
act as sign-sensitive accelerators: they speed up the response time of the target gene
expression following stimulus steps in one direction (e.g., off to on) but not in the
other direction (on to off). The incoherent FFL mechanism can in principle apply to
any gene, not only to transcription factors, because the acceleration is carried out by
the two transcription factors upstream of the target gene. The other four types, coherent
FFLs, act as sign-sensitive delays (create delays in response to signal changes) [17].

In the often studied transcriptional networks (E. coli and yeast), two of the eight FFL
types occur much more frequently than the other six types. These common types are the
coherent type-1 FFL (C1-FFL) and the incoherent type-1 FFL (I1-FFL). The FFL motif
characterizes 40 effector operons in 22 different systems in the network database, with 10
different general transcription factors. It is found that most (85%) of the feedforward loop
motifs are coherent.

There are other network motifs, such as Single-input motif (SIM) or Dense overlapping
regulons (DOR).
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3.3.3 Robustness and Adaptation in genetic circuits

Systems biology has revealed numerous examples of networks whose dynamic behavior is
robust to system perturbations and noise. The ability of cells to extract and process informa-
tion from their environment allowing them to optimize their responses, must necessarily be
a robust property for it to be effective in the cell’s noisy and uncertain environment. A key
aim of systems biology is to identify the mechanisms through which robustness is achieved
in cellular processes. Such sources of robustness can be identified through the analysis of
models of biological systems [11].

Robustness is considered to be a fundamental feature of complex evolvable systems. It
is attained by several underlying principles that are universal to both biological organisms
and sophisticated engineering systems. Robust traits are often selected by evolution, and
insights in specific architectural features observed in robust systems can provide us with a
better understanding of this natural property of biological systems [12].

This capability was suggested to be an important design principle by M. Savageau in
theoretical analysis of gene circuits. Several studies about this principle could be mentioned,
for instance, robustness of metabolic fluxes with respect to variations of enzyme levels in
yeast, that was experimentally demonstrated (Kacser and Burns, 1973). But even before
robustness had been studied in a different context, the sensitivity of developmental patterning
of tissues as an egg develop into an animal to various perturbations [3].

Also, the many studies about Bacterial Chemotaxis, (known as the process in which
bacteria sense and move along gradients of specific chemicals), has brought about principles
of robustness that can give help to rule out a large family of plausible mechanism and to
home in on the correct design [3].

In bacterial chemotaxis, changes in concentration of a substrate in the surrounding media
influence propulsion activity of the cell, allowing it to move to the location of the highest
(attractor)/lowest (repellent) concentration. The basic features of the chemotaxis response
can be described by a process that is called adaptation, a process by which the response to an
extracellular stimulus returns to its pre-stimulus value even in the continued presence of the
signal. In other words, the ability of a system to compensate for changes in its environment.

This is common to many biological sensory systems. We can see it in all homeostasis
systems. Homeostasis is a property present in living organisms that consist of its ability to
keep a stable internal condition, trading off environmental changes by means of the regulated
exchange of resources and energy with the outside. This is possible because of the existence
of feedback control systems network that constitute the autoregulation mechanisms in cells.

But even not going beyond it, sensory adaptation occurs in all body senses as well (with
the possible exception of the sense of pain), when sensory receptors change their sensitivity
to the stimulus. In the visual system , dark adaptation and light adaptation, understood
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as adaptation to changes in light intensity, involves an immediate change in pupil size (it
becomes smaller or larger, admitting less or more light), and a change in the sensitivity of
the cones and rods to light (it decreases or increases). Other examples of sensory adaptation
are given in the hearing system: as a protective mechanism, loud sound causes a small muscle
attached to one of the bones of the inner ear to contract, reducing the transmission of sound
vibrations to the inner ear, where the vibrations are detected. Or in the touch system: as we
quickly adapt to hot and cold stimulation, if it is not too intense. The bath that was almost
too hot to enter soon feels too cool; similarly, the cold lake we jump into for a summer swim
feels freezing at first, but soon feels only refreshingly cool. Also smell system: we can detect
amazingly low concentrations of some chemicals in the air (e.g. perfumes) but although the
perfume is still in the air about us, we quickly cease to detect it.

Moreover, the proper function of many biological systems requires that external per-
turbations also be detected, allowing the system to adapt to these environmental changes,
so sensing changes in the input signals may be equally important for achieving proper cell
function [7].

Some ideas taken from [27] and [11] suggest that these kinds of behaviours (robustness,
adaptation, signal detection...) arise from simple yet fundamental features of the system ar-
chitecture. Under suitable technical assumptions, if a system adapts to a class of external
input signals which belong to a predetermined class of time-functions, in the sense of reg-
ulation against disturbances or tracking signals, then the system must necessarily contain
a subsystem which is itself capable of generating all the signals. In brief, adaptation and
regulation with signal detection implies internal model (internal model principle IMP) [27].

Once explained through some examples what the process of adaptation means, a defini-
tion with a mathematical approach will be given: A system shows adaptation when certain
quantity y(t) associated to the system, called its output (also called a regulated variable or
an error) has the property that y(t)→0 as t→∞ whenever the system is subject to an input
signal from a certain class. Of course, the choice of y=0 as the ’adaptation value’ is merely
a matter of convention, considering relative changes in response [27].

Adaptation in biology can be easily related to what is known in engineering electronic
circuits as an edge detector. Knowing about the existence of electronic modules with de-
tection functions for a given transition from low level to high level in the input, and then
producing a pulse signal for this input change, an adaptive genetic circuit can be also consid-
ered as a biologic module to detect changes in environmental molecules concentrations, and
respond with the synthesis of other ones in the same way. This can be useful, for instance,
for starting other vitally important sequence of mechanisms in living organisms.

Now, introducing a mathematical description of adaptation (depicted in Figure 3.8)
through the two characterizing adaptation terms defined in [29] will facilitate the analysis of
this phenomenon and will be taken into account in the next descriptions in this project. These
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two characteristic quantities are the circuit’s sensitivity to input change and the precision of
adaptation. Adaptation is understood as precision as the difference between the pre-stimulus
and post-stimulus steady states, that could be defined as the inverse of the relative error.

Figure 3.8: Indices for the system output for a step input [29]. Sensitivity is
related to the pick height and precision is related to the error.

If the system’s response returns exactly to the pre-stimulus level (infinite precision), it is
called exact or perfect adaptation. Perfect adaptation range from the chemotaxis of bacteria
(Bergand Brown, 1972; Macnab and Koshland, 1972; Kirsch et al., 1993; Barkai and Leibler,
1997; Yi et al., 2000; Mello and Tu, 2003; Raoet al., 2004; Kollmann et al., 005; Endres
and Wingreen, 2006), amoeba (Parent and Devreotes, 1999; Yang and Iglesias, 2006), and
neutrophils (Levchenko and Iglesias, 2002), osmo-response in yeast (Mettetal et al., 2008),
to the sensor cells in higher organisms (Reisert and Matthews, 2001; Matthews and Reisert,
2003), and calcium homeostasis in mammals (El-Samad et al., 2002).

3.3.4 Adaptative and robust topologies

As it has been shown in 3.3.2, a motif which predominantly appears in many known networks
is de IFFL and seems to play an important role. Thus, in [29], the authors computationally
searched all possible three-node enzyme network topologies to identify those that could per-
form adaptation. Only two major core topologies emerge as robust solutions: a negative
feedback loop with a buffering node and an incoherent feed-forward loop with a propor-
tional node. The idea was to identify network topologies are capable of robust adaptation and
then, by means of analysis techniques (circuit-function map form which it could be extracted
core topological motifs essential for adaptation), revealing the existence of design principles
in order to robustly engineer biological circuits that carry out a target function.
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For this analysis, the authors focused on enzymatic regulatory networks, modelling net-
work linkages by Michaelis-Menten rate equations. They started from examining the sim-
plest networks capable of achieving adaptation. For networks composed of only two nodes
(an input receiving node A and output transmitting node C, with no third regulatory node),
none of the 81 possible networks with the 4 possible links, was capable of achieving adap-
tation for the parameter space that was scanned. Next, minimal three-node topologies with
only three or fewer links between nodes were examined. The maximal complex three-node
topologies contain nine links. None of the two-link, three-node networks were capable of
adaptation. The minimal number of links for this to be functional seems to be three. After
that, three nodes were used as a minimal framework, including one node that receives input,
a second node that transmits output, and a third node that can play diverse regulatory roles.
Then their adaptation properties over a range of kinetic parameters were studied. According
to [29], the simplest topologies capable of adaptation are either a single class of negative
feedback loop or a single class of incoherent feed-forward loop.

Attending to the definition given in this article, a negative feedback loop is a topology
whose links, starting from any node in the loop, lead back to the original node with the
cumulative sign of regulatory links with in the loop being negative. As said, only one class of
simple negative feedback loop can robustly achieve adaptation: they are so-called Negative
Feedback Loop with a Buffer Node or NFBLB. All minimal NFBLB topologies use the
same integral control mechanism for perfect adaptation. The output node must not directly
feedback to the input node. Rather, the feedback must go through an intermediate node (B)
which serves as a buffer. The importance of this buffering node is discussed in detail in [29].

By contrast, an incoherent feedforward loop is defined as a topology in which two dif-
ferent links starting from the input-receiving node both end at the output-transmitting node,
with the cumulative sign of the two pathways having different signs (one positive and one
negative).

Among feedforward loops, coherent feedforward resulted poor at adaptation, and the rest
of incoherent feedforward loops also differed drastically in their performance. Of these, only
the circuit topology in which the output node C is subject to direct inputs of opposing signs
(one positive and one negative) appears to be highly preferred. The reason this architecture
is preferred is because the only way for an incoherent feedforward loop to achieve robust
adaptation is for node B to serve as a proportioner for node A.

In this work, considering that incoherent feedforward loops appear to perform adaptation
more robustly than negative feedback loops according to what results show, the chosen mo-
tif for modelling, simulating and discussing results was the Incoherent Feedforward Loop
with a Proportioner Node or IFFLP. This topology achieves adaptation by using a different
mechanism from that of the NFBLB class. Rather than monitoring the output and feeding
back to adjust its level, the feedforward circuit ‘anticipates’ the output from a direct reading
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of the input. Node B monitors the input and exerts an opposing force on node C to cancel
the output’s dependence on the input.

The modelling of this IFF motif was done in the referenced work [29]. There the au-
thors used Michaelis-Menten kinetic rate equations to describe in an approximate way the
behaviour of the three nodes IFF motif :

dA
dt

= IkIA
(1−A)

(1−A)+KIA
−FAkFAA

A
A+KFAA

dB
dt

= AkAB
(1−B)

(1−B)+KAB
−FBkFBB

B
B+KFBB

dC
dt

= AkAC
(1−C)

(1−C)+KAC
−BkFBC

C
C+KFBC

Nevertheless in this work a higher accuracy it is looked for. Because of that, attending
to the complete set of biochemical reactions that take place in this IFF GRN, a realistic first
principles ‘Complete model’ will be first defined in chapter 4. Then, the model is reduced
using both time-scale separation and existence of invariant moieties. A ‘Reduced model’
is finally deduced, which even the simplifications and approximations used, is much more
realistic than the set of Michaelis-Menten kinetic equations above.

3.4 MULTI-OBJECTIVE OPTIMIZATION

Multi-objective problems (MOPs) frequently appear in control engineering designing prob-
lems. These are problems in which the designer must deal with the fulfillment of multiple
objectives, and the set of different techniques used for giving solution to these problems
comprise what is known as multi-objective evolutionary optimization (EMO).

The term multiple-objective optimization refers to multiple criteria decision making.
Thus, it is concerned with mathematical optimization problems involving more than one
objective function to be optimized simultaneously. In these kind of problems optimal de-
cisions need to be taken in the presence of trade-offs between two or more objectives that
could be conflicting. In other words, it could happen that due to the impossibility of obtain-
ing a solution that is good for all objectives, several solutions with different trade-off levels
would appear. That is, there exists a possibly infinite number or Pareto optimal solutions
[19]. Given that, a solution is called to be in the Pareto Front if none of the objective func-
tions can be improved in value without degrading some of the other objective values. In this
sense, without additional subjective preference information, all Pareto optimal solutions are
considered equally good. However, when it exists preference information from the designer
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or decision maker (DM), multi-objective optimization techniques search for a set of poten-
tially preferable solutions so that the designer may then analyse the trade-offs among them,
and select the best solution according to his/her preferences.

Control engineering problems are generally multi-objective problems where the DM also
has a role, as there are several specifications and requirements that must be fulfilled. A tra-
ditional approach for calculating a solution with the desired balance among (usually conflic-
tive) objectives is to define an optimization statement. In [10] this design procedure based
on EMO is presented and significant applications on controller tuning are discussed. This
optimization approach seeks for a set of Pareto optimal solutions to approximate what is
known as the Pareto set [18]. Each solution in the Pareto set defines an objective vector in
the Pareto front.

In order to approximate this Pareto set, classic optimization techniques [19] and evolu-
tionary multi-objective optimization (EMO) approaches have been used. In the latter case,
multi-objective evolutionary algorithms (MOEAs) have become a valuable tool to approx-
imate the Pareto front for non-convex, non- linear and constrained optimization instances.
They have been used with success in several control systems and engineering design areas
[9].

3.4.1 Multi-objective optimization design (MOOD)

Any MOO design approach must follows three main steps: problem definition, MOO process
and decision making stage.

The problem will be defined in chapter 5. Fort this project a multi-objective optimization
design (MOOD) procedure defined by [8] was used.

This design concept is built with a family of design alternatives (Pareto optimal solutions
or Pareto Front) that are specific solutions in the design concept. Thus, a set of solutions
defining the Pareto set will also give a set of solutions called Pareto front, as each solution in
the Pareto set determine an objective vector in the Pareto front.

In Figure 3.9, five different solutions � are calculated to approximate a Pareto front (bold-
line). Solutions A, B, and C are non-dominated solutions, since there are no better solution
vectors (in the calculated set) for all the objectives. Solutions B and C are not Pareto optimal,
since some solutions (not found in this case) dominate them. Furthermore, solution A is also
Pareto optimal, since it lies on the feasible Pareto front. The set of non-dominated solutions
(A, B, and C) build the Pareto front approximation.

It is important to notice that most of the times the Pareto front is unknown and it shall
only to be relied on approximations.
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Figure 3.9: a Pareto front approximation (boldline) for particular design con-
cept is calculated with a set of Pareto-optimal design alternatives �

Figure 3.10: Pareto optimality and dominance concepts

Multi Objective Evolucionary Algorithm (MOEA).

When defining the multi objective problem, the selection of the optimization objectives
is done for measuring the desired performance. According to the expected design alterna-
tives, the MOEA would need to include certain mechanisms or techniques to deal with the
optimization statement. Some examples are related to robust, multi-modal, dynamic and/or
computationally expensive optimization.
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In [8] there are some references for a comprehensive review of the early stages of
MOEAs. These evolutionary/nature-inspired techniques require mechanisms to deal with
EMO since they were originally used for single objective optimization.

Regarding the Pareto set sought, some desirable characteristics include (in no particular
order) convergence, diversity, and pertinency.

Convergence refers to the algorithm’s capacity to reach the real (usually unknown) Pareto
front.

Diversity refers to the algorithm’s capacity to obtain a set of distributed solutions that pro-
vide a useful description of objective trade-off and decision variables.

Pertinency is the capacity to obtain a set of interesting solutions from the DM point of
view. Incorporating DM preferences into the MOEA has been suggested to improve
the pertinency of solutions.

Regarding the optimization statement, some features could be for handling constrained,
computationally expensive or large scale optimization instances. More details in [8]

Large scale optimization refers to the capabilities of a given MOEA to deal with an
MOP with any number of decision variables with reasonable computational resources.
Sometimes an MOEA can have remark-able convergence properties for a relatively
small number of decision variables, but may be intractable (according to the compu-
tational resources available) for solving a problem with a larger number of decision
variables.

Computationally expensive optimization is related to the cost function evaluation, that
sometimes requires a huge amount of computational resources. Therefore, stochas-
tic approaches could face a problem, given the complexity in evaluating the fitness
(performance) of an individual (design alternative); this could affect their exploration
capabilities and hence, slow down the convergence properties.

Any kind of MOO algorithm can be used in the MOO design methodology [9]. A MOEA
is selected due to its flexibility to handle complex functions. It will use the performance cal-
culated from the simulation process to evolve the population to the Pareto front. In particular,
the sp-MODE algorithm is based on differential evolution technique, which is an evolution-
ary algorithm [8].
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Multi Criteria Decision Making (MCDM).

Dealing with the multi-criteria decision making step, once the DM has been provided
with a Pareto front, he or she will need to analyse the trade-off between objectives and select
the best solution according to his/her preferences. It is widely accepted that visualization
tools are valuable and provide the DM with a meaningful method to analyse the Pareto front
and take decisions. Tools and/or methodologies are required for this final step to successfully
embed the DM into the solution refinement and selection process[8].

For two-dimensional problems (and sometimes for three- dimensional problems) it is
usually straight forward to make an accurate graphical analysis of the Pareto front, but the
difficulty increases with the dimension of the problem. In Lotovand Miettinen (2008), vi-
sualization techniques are reviewed, including tools such as decision maps, star diagrams,
value paths, GAIA, and heat map graphs. Some degree of interactivity with the visualisation
tool is also desirable (during and/or before the optimization process) to successfully embed
the DM into the selection process.

In [9] the LD visualization is presented and referenced. It helps to perform an analysis
of the obtained Pareto front. It has been used with success in control systems up to 15
objectives, safety systems analysis, and engineering design. The LD visualization is one of
the most useful methods to visualize m-dimensional Pareto fronts. The LD visualization is
based on the classification of the approximation obtained. Each objective is normalized with
respect to its minimum and maximum values.

To plot the LD, the LD visualization tool (LD-tool) will be used. This is a-posteriori
visualization tool (i.e., it is used after the optimization process) that enables the DM to iden-
tify preferences zones along the Pareto front, as well as selecting and comparing solutions.

The aforementioned steps (problem definition, MOO process and the decision making
stage) are important to guarantee the overall design methodology. With a poor problem
definition, not matter how good our MOEA and decision making methodologies are, we will
not have solutions which guarantee a good performance on the real system.
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Chapter 4

Modelling an Incoherent
Feed-Fordward network

4.1 INTRODUCTION TO I1-FFL

In the previous chapter 3.3.2, it was mentioned that the feedforward loop (FFL) frequently
appears in well-known networks. One more specific topology of this motif that concerns this
work is the incoherent feedforward loop type 1 (l1-FFL), in which an activator regulates both
a gene and a repressor of the gene. See Figure 3.7

What characterizes this topology, apart from the two arms of the FFL that act in oppo-
sition, is the fact that I1-FFL is a pulse generator and response accelerator. Many sensory
systems show a response that is proportional to the fold-change in the stimulus relative to the
background, a feature related to Weber’s Law I. Recent experiments suggest a response that
depends on the fold-change in the input signal, and not on its absolute level. It is theoretically
demonstrated that fold-change detection can be generated by the incoherent feedforward loop
(I1-FFL). The fold-change detection feature of the I1-FFL applies to the entire shape of the
response, including its amplitude and duration, and is valid for a wide range of biochemical
parameters [15].

All these features characterizing this topology (robust adaptation and fold-change de-
tection), make it interesting to model, simulate and analyse in order to get better tools,
well-characterized parts and a comprehensive understanding of how to compose regulatory
genetic circuits that can provide such abilities.

IWeber’s Law states that the ratio of the increment threshold to the background intensity is a constant.
More information in http://www.cis.rit.edu/people/faculty/montag/vandplite/pages/chap_3/
ch3p1.html
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4.2 DETERMINISTIC APPROACH OF A THREE-NODE I1-FFL

In this work, we start from scratch and make a complete model of the three-node I1-FFL and
then reduce it, trying to validate the reduced model that explains the main characteristics of
the genetic circuit.

The idea is to take into account just one cell (which simplifies enormously the work).
Indeed cells are normally together in large populations where they can grow and divide,
leading to a diffusion process and to variability in the population. These are factors also
important to consider but would extend this work to the analysis of the stochastic inherent
response in biologic systems.

We model the designed genetic circuit using a deterministic approach and taking into
account the key regulatory interactions between the main biochemical species present in the
genetic circuit: A protein, B protein, C protein and I inducer.

The proposed circuit in terms of genes and nodes can be seen in Figure 4.2. The product
of gene A bound to the inducer activates gene C. Simultaneously the gene A also represses
gene C by activating the repressor product of gene B. As a result, when a signal causes node
A to assume its active conformation, C is produced, but after some time B accumulates,
eventually attaining the repression threshold for the gene C promoter.

Figure 4.1: Three-node incoherent feedforward loop. gA produces the protein
A, which forms a dimer with the inductor. This dimer that activates gC and gB,
whose product in turn represses gC

In our gene synthetic network (see Figure 4.2), the feedforward circuit comprises a gene
gC under the control of the promoter PgC. The production of the protein C as a response,
so that it performs robust adaptation is the aim. This expression is activated by a complex
that acts as transcription factor for the promoter PgC. This complex consists of a dimer that
comes from the union of two monomers that in turn come from the binding of the gene
product A and an inducer. The regulatory part of the circuit appears when the same complex
that activated the expression of the gene C also activates B gene expression, which also acts
as a transcription factor for the PgC double or hybrid promoter, but in this case repressing
the production of C. In other words, when A (constitutively expressed protein) is bound
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to the dimer, it can prompt the activation of B and C gene expressions, but the protein B,
when produced, will inhibit the transcription of the genes downstream the promoter PgC.
Therefore, the circuit has a feedforward loop between the concentration of the protein A and
the expression of the gene gC.

Figure 4.2: Biologic system with an incoherent feedforward loop

The modelling scheme given above can be formally written as a set of biological reac-
tions. In the following section, a complete biochemical model of the IFF GRN is derived,
and its corresponding dynamical model based on balance equations is formulated. This first
model is of large order, which implies a high computational cost for the parameters estima-
tion process that will be carried out later on. Additionally, the large differences in the time
scales among the different species in the synthetic gene network (typically many orders of
magnitude) create huge difficulties for simulating the temporal evolution of the network and
for understanding the basic principles of its operation. Therefore, the dynamical model will
be reduced using time-scale separation and detection of invariant moieties. The reduction is
made to achieve a reduced model more amenable for computational analysis, but avoiding
excessive reduction that would lead to lack of biological relevance.
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4.3 COMPLETE MODEL

To summarize the interactions and dynamics among species involved, we can make a differ-
entiation between the three proteins in the gene expression block and the induction block.

In the gene expression block the main processes considered are the binding of the RNA
polymerase to the promoter, transcription, translation, mRNA degradation and protein degra-
dation.

In the induction block the main processes considered are the binding between the protein
A and the inducer to form monomer, the addition of external inducer, the diffusion of the
inducer, its degradation, the dimer formation and its degradation, the monomer degradation,
binding of the dimer to the gB promoter, binding of the dimer to the gC promoter and the
binding between the activator (or repressor) and the gC hybrid promoter. The corresponding
reactions.

For an individual cell, the set of biochemical reactions considered in this work are given
below:
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gA+RNAp
k1/k−1←−−−→ gA ·RNAp (4.1)

gA ·RNAp
kmA−−→ gA+RNAp+mA (4.2)

mA
kpA−−→mA+A (4.3)

mA
dmA−−→ /0 (4.4)

A
dA−→ /0 (4.5)

A+ I
k2/k−2←−−−→ A · I (4.6)

/0 ke−→ Ie (4.7)

Ie
kd/k−d←−−−→ I (4.8)

I dI−→ /0 (4.9)

2 ·(A · I) k3/k−3←−−−→ (A · I)2 (4.10)

(A · I) dAI−−→ /0 (4.11)

(A · I)2
dAI2−−→ /0 (4.12)

gB+(A · I)2
k4/k−4←−−−→ gB · (A · I)2 (4.13)

gC+(A · I)2
k5/k−5←−−−→ gC · (A · I)2 (4.14)

gC ·B+(A · I)2
k6/k−6←−−−→ gC ·B · (A · I)2 (4.15)

gB · (A · I)2 +RNAp
k7/k−7←−−−→ gB · (A · I)2 ·RNAp (4.16)

gB · (A · I)2 ·RNAp
kmB−−→ gB · (A · I)2 +RNAp+mB (4.17)

mB
kpB−−→mB+B (4.18)

mB
dmB−−→ /0 (4.19)

B dB−→ /0 (4.20)

gC · (A · I)2 +B
k8/k−8←−−−→ gC ·B · (A · I)2 (4.21)

gC+B
k9/k−9←−−−→ gC ·B (4.22)

gC · (A · I)2 +RNAp
k10/k−10←−−−−→ gC · (A · I)2 ·RNAp (4.23)

gC · (A · I)2 ·RNAp
kmC−−→ gC · (A · I)2 +RNAp+mC (4.24)

mC
kpC−−→mC+C (4.25)

mC
dmC−−→ /0 (4.26)

C
dC−→ /0 (4.27)
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Note: the empty set /0 means reactant degradation.

Notice that binding between the activator (or repressor) and the gC hybrid promoter is
possible, because this can happen even if the repressor B is already bound to the promoter of
C and vice-versa (the activator AI2 bound to the C promoter). For this reaction to take place
it requires the previous binding between the protein B and the C promoter.

The previous reactions can be written using ODEs as was shown in section 3.2. The
whole model can be written using the law of mass action kinetics:

ẋ1 =−k1x1x2 + k−1x3 + kmAx3 (4.28)

ẋ2 =−k1x1x2 + k−1x3 + kmAx3− k7x10x2 + k−7x15 + kmBx15 (4.29)

ẋ3 = k1x1x2− k−1x3− kmAx3 (4.30)

ẋ4 = kmAx3−dmAx4 (4.31)

ẋ5 = kpAx4−dAx5− k2x5x6 + k−2x7 (4.32)

ẋ6 =−k2x5x6 + k−2x7 + kdIe− k−dx6−dIx6 (4.33)

˙x6e = k−dx6− kdx6 +Ke(t)−dIIe (4.34)

ẋ7 = k2x5x6− k−2x7− k3x2
7 +2k−3x8−dAIx7 (4.35)

ẋ8 = k3x2
7−2k−3x8− k4x8x9 + k−4x10− k5x8x11 + k−5x12− k6x8x13 + k−6x14−dAI2x8

(4.36)

ẋ9 =−k4x9x8 + k−4x10 (4.37)

˙x10 = k4x9x8− k−4x10− k7x10x2 + k−7x15 + kmBx15 (4.38)

˙x11 =−k9x11x17 + k−9x13− k5x11x8 + k−5x12 (4.39)

˙x12 = k5x11x8− k−5x12− k8x12x17 + k−8x14 (4.40)

˙x13 = k9x11x17 + k−9x13− k6x13x8 + k−6x14 (4.41)

˙x14 = k6x13x8− k−6x14 + k8x12x17− k−8x14 (4.42)

˙x15 = k7x10x2− k−7x15− kmBx15 (4.43)

˙x16 = kmBx15−dmBx16 (4.44)

˙x17 = kpBx16−dBx17− k9x11x17 + k9x13− k8x12x17 + k8x14 (4.45)

˙x18 = kmCx12−dmCx18 (4.46)

˙x19 = kpCx18−dCx19 (4.47)

(4.48)

where the nomenclature used is shown in Table 4.1.
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Table 4.1: List of variables used in the complete model

Variable Description Units Symbol

x1
DNA promoter gene A nM gA

x2
RNA polymerase nM RNAp

x3
gA·RNAp complex nM gA·RNAp

x4
mRNAgA nM mA

x5
A protein nM A

x6
Inducer nM I

x7
A·I monomer nM A·I

x8
(A·I)2 dimer nM (A·I)2

x9
DNA promoter gene B nM gB

x10
gB(A·I)2 complex nM gB(A·I)2

x11
DNA promoter gene C nM gC

x12
gC(A·I)2 complex nM gC(A·I)2

x13
gC·B complex nM gC·B

x14
gC·B(A·I)2 complex nM gC·B(A·I)2

x15
gB(A·I)2RNAp complex nM gB(A·I)2RNAp

x16
mRNAgB nM mB

x17
B protein nM B

x18
mRNAgC nM mC

x19
C protein nM C

x20
External I ext nM Ie

4.4 ASSUMPTIONS FOR MODEL REDUCTION

If we have a look at the dynamic nature of the interaction among molecules inside cells, it
can be taken for certain through experimental evidence, that binding reactions occur very
fast in comparison with those corresponding to transcription, translation or even genuine
degradation. This feature of fast binding reactions can be translated to a mathematical char-
acterization. Indeed, as binding reactions are assumed to be very fast as compared to the
other reactions, that can be considered to be at steady state. Thus the respective differen-
tial equation of concentration can be equated to zero. Hence, all fast binding reactions that
appear in the model whose product is a species resulting from two previous ones will be
approximated in this way.

On the other hand, monomer formation (monomerization) is faster that dimerization [6].
Therefore, it will be assumed steady state for the differential equation corresponding to the
AI complex formation.

These kind of assumptions are based on perturbation analysis. In essence, time-scale
separation techniques consider that if some species have much faster dynamics in compar-
ison with the rest, one can apply the Quasi Steady-State Approximation (QSSA) to the fast
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chemical species, and reduce the number of species involved in the gene synthetic network.

More assumptions can be done through what is known as system invariants. In mathe-
matics, an invariant is a property of a class of mathematical objects that remains unchanged
when transformations of a certain type are applied to the objects. In the case of reaction
networks, it can be observed that some reactions are a linear combination of other ones.
Then, the linear combination of the concentrations of the species involved will keep constant
in time. These linear combinations can be understood as a kind of quasi-species that keep
invariant, i.e. keep constant concentration. These are the so called moieties.

Next we will arrive to an equivalent reduced model of complete one, applying the QSSA
and invariant moieties.

First, we consider the bound species formed in fast binding reactions, as shown in table
4.2.

Table 4.2: Bound species considered coming from fast binding reactions

Variable Eq. reference

gA ·RNAp 4.49
A · I 4.50
gB(A · I)2 4.51
gC(A · I)2 4.52
gC ·B 4.53
gC ·B · (A · I)2 4.54
gB(A · I)2 ·RNAp 4.55

The corresponding differential equations can be considered to be at quasi-steady state.
Therefore, the corresponding species derivatives are set to zero:

ẋ3 = k1x1x2− k−1x3− kmAx3 = 0 (4.49)

ẋ7 = k2x5x6− k−2x7− k3x2
7 +2k−3x8−dAIx7 = 0 (4.50)

ẋ10 = k4x9x8− k−4x10− k7x10x2 + k−7x15 + kmBx15 = 0 (4.51)

ẋ12 = k5x11x8− k−5x12− k8x12x17 + k−8x14 = 0 (4.52)

ẋ13 = k9x11x17 + k−9x13− k6x13x8 + k−6x14 = 0 (4.53)

ẋ14 = k6x13x8− k−6x14 + k8x12x17− k−8x14 = 0 (4.54)

ẋ15 = k7x10x2− k−7x15− kmBx15 = 0 (4.55)

In the context of invariant moieties, we can assume that the species gA, gB, and gC are
conserved during the global set of reactions. Recall these species correspond to the genes A,
B, and C. The copy number of these genes can be considered constant. If look through the
model equations, this hypothesis is confirmed by the presence of the following expressions:
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4. Modelling an Incoherent Feed-Fordward network

ẋ1 + ẋ3 = 0 (4.56)

ẋ9 + ẋ10 + ẋ15 = 0 (4.57)

ẋ11 + ẋ12 + ẋ13 + ẋ14 = 0 (4.58)

Also RNA polymerase (RNAp) is conserved. RNAp binding to the gene C It is not
considered for simplification. The amount of free RNA polymerase can be assumed to be
large enough so that variations of bound RNAp can be neglected.

ẋ2 + ẋ3 + ẋ15 = 0 (4.59)

Also, from 4.49 and 4.56 we get:

ẋ1 = 0∫
(ẋ1 + ẋ3) =

∫
0⇒ x1 + x3 = cst

x1 =CgA

From equation 4.49:

x3 =
k1

k−1 + kmA
CgAx2

From equations 4.50, 4.55 and 4.59

ẋ2 = 0

x2 = RNAp f

where RNApf is the total free RNAp. Recall we assume that the amount of bound RNAp
can be neglected. Thus, we can set RNAp f = RNAp. Thus:

ẋ4 =
kmAk1RNAp
k−1 + kmA

CgA−dmAx4

ẋ5 = kpAx4−dAx5− k2x5x6 + k−2x7

So the first block corresponding to gene A expression is reduced directly to the equations
for the mA and A species:

ẋ4 = KmACgA−dmAx4

ẋ5 = kpAx4−dAx5− k2x5x6 + k−2x7
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with KmA = kmAk1RNAp
k−1+kmA

.

For the dimerization block the analysis of the equations 4.34 and 4.35 gives that if the
external supply Ke(t) = Ke, that means that at equilibrium

Ie =
k−d

kd
I∞CgA +

Ke

kd

From equation 4.50:

ẋ7 = k3x2
7 +(dAI− k−2)x7− (k2x5x6 +2k−3x8) = 0

x7 =−
dAI + k−2

2k3
+

1
2k3

√
(dAI + k−2)2 +4k3(k2x5x6 +2k−3x8)

Notice this root only gives x7 ≥ 0

From equations 4.51, 4.55 and 4.57:

ẋ9 =−k4x9x8 + k−4x10 = 0

From equation 4.52:

− k5x11x8 + k−5x12 =−k8x12x17 + k−8x14

From equation 4.54:

− k6x13x8 + k−6x14 = k8x12x17− k−8x14

Notice that in equation 4.37 the retroactivity term is the sum of ẋ9 (which is zero as
deduced above) and the left members of the two equations that have just been written, whose
equivalents are the same but with opposite sign, so they get cancelled by each other in r8(x)

ẋ8 = k3x2
7−2k−3x8

r8(x)︷ ︸︸ ︷
−k4x8x9 + k−4x10︸ ︷︷ ︸

ẋ9=0

−k5x8x11 + k−5x12− k6x8x13 + k−6x14−dAI2x8

r8(x) = 0

ẋ8 = k3x2
7−2k−3x8−dAI2x8

48



4. Modelling an Incoherent Feed-Fordward network

The procedure for the reduction of the next two blocks (gene B and geneC expression) is
as follows. From 4.58, 4.52, 4.53 and 4.54:

ẋ11 = 0

From 4.55 and replacing x2 by RNApf:

x15 =
k7RNAp f

k−7 + kmB
x10

From equations 4.55 and 4.51, x10 results in a f = (x9,x8), which represents that
gB · (AI)2 depends on the binding between gB and the dimer (activator). This can in turn
be replaced in equation (from 4.57):

x9 + x10 + x15 =CgB

so, combining the three previous results, it is possible to obtain x15 as a function of x8:

x15 =

k4
k−4

k7 RNAp f CgB x8

(k−7 + kmB)+
k4

k−4
(k−7 + kmB)x8 +

k4
k−4

k7 RNAp f x8

=
CgBx8

θ ′1 +θ ′2x8

with θ ′1 =
k−4(k−7+kmB)

k4k7 RNApf
and θ ′2 = 1+ k4

k−4
θ ′1.

Then, from equation 4.45:

ẋ16 = kmB
CgBx8

θ ′1 +θ ′2x8
−dmBx16

= KmB
CgBx8

θ1 + x8

with kmB
θ ′2

and θ1 =
θ ′1
θ ′2

.

It turns out that the retroactivity term corresponding to the species x17 is null, as it is
shown next. From equations 4.53 and 4.54, the sum of ˙x13 and ˙x14 gives:

k9x11x17 + k−9x13 + k8x12x17− k−8x14 = 0

that is equal to r17(x). Therefore r17(x) = 0 and

ẋ17 = kpBx16−dBx17
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Finally, using 4.52, 4.53, 4.54 and 4.58, we can obtain a relationship x12 = f(x8,x17),
which represents that gC · (AI)2 depends on the effect of the activator (dimer (AI)2) and
the effect of the repressor (B). With the aid of the software Mathematica, a reduced quasi-
empirical expression is obtained:

ẋ18 = kmCCgC
x8

θ2 +θ3x8 +θ4x17 +θ5x8x17
−dmBx18

ẋ19 = kpCx18−dCx19

Summarising, after these assumptions and reducing methods, we reach a model with
only nine differential equations characterizing the gene network. The species in the reduced
model are mA, A, I, (AI)2, mB, B, mC, C, and Ie respectively. The resulting reduced dynam-
ical model is:

ẋ4 = KmACgA−dmAx4

ẋ5 = kpAx4−dAx5− k2x5x6 + k−2x7

ẋ6 =−k2x5x6 + k−2x7 + kdIe− k−dx6−dIx6

ẋ8 = k3x2
7−2k−3x8−dAI2x8

ẋ16 = KmB CgC
x8

θ1 + x8
−dmBx16

ẋ17 = kpBx16−dBx17

ẋ18 = KmCCgC
x8

θ2 +θ3x8 +θ4x17 +θ5x8x17
−dmCx18

ẋ19 = kpCx18−dCx19

İe = Ke− kdIe + k−dx6−dIeIe

4.5 REDUCED MODEL

In the Table 4.3, rates and constants, i.e. the set of parameters, involved in the model are
listed.

Reordering the equations in previous section, we get a system of nine ordinary differ-
ential equations (each one corresponding to the dynamics of one of the species) plus an
algebraic equation, and 26 decision variables which are the model parameters for the next
optimization step. The resulting model being:
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4. Modelling an Incoherent Feed-Fordward network

Table 4.3: Rates and constants from the model.

Parameter Description Unit
kmA ,kmB ,kmC gA, gB, gC transcription rate min−1

kpA ,kpB ,kpC mA, mB, mC translation rate min−1

kd ,k−d I e Ie difussion rate nM
dAI (AI) degradation rate min−1

dAI2 (AI)2 degradation rate min−1

k2, k3 (AI) y (AI)2 association rate min−1

k−2, k−3 (AI) y (AI)2 dissociation rate min−1

CgA ,CgB ,CgC gA, gB, gC copy number min−1

θ1 gB promoter constant min−1

θ2,θ3,θ4,θ5 gC promoter constants min−1

dmA ,dmB ,dmC mA, mB, mC degradation rate min−1

dA,dB,dC A, B, C degradation rate min−1

dI ,dIe I, Ie degradation rate min−1

dAI ,dAI2 (AI), (AI)2 degradation rate min−1

ẋ1 = kmACgA−dmAx1 (4.60)

ẋ2 = kpAx1−dAx2− k2x2x3 + k−2M (4.61)

ẋ3 =−k2x2x3 + k−2M+ kdx9− k−dx3−dIx3 (4.62)

ẋ4 = k3M2−2k−3x4−dAI2x4 (4.63)

ẋ5 = KmB CgC
x4

θ1 + x4
−dmBx5 (4.64)

ẋ6 = kpBx5−dBx6 (4.65)

ẋ7 = KmCCgC
x4

θ2 +θ3x4 +θ4x6 +θ5x4x6
−dmCx7 (4.66)

ẋ8 = kpCx7−dCx8 (4.67)

ẋ9 = Ke− kdx9 + k−dx3−dIex9 (4.68)

with M =−dAI+k−2
2k3

+ 1
2k3

√
(dAI + k−2)2 +4k3(k2x5x6 +2k−3x8).

Notice the decrease in the number of variables to consider in this reduced model (listed
in Table 4.4, as compared with those that governed the complete model. This means, in turn,
a decrease in the computational cost for simulations.

The differential equation for gene B mRNA 4.64 has the form of a Hill function, with
x4 the dimer (activation transcription factor). Something similar is seen in the differential
equation for gene C mRNA, but in this case we are dealing with an hybrid promoter, so x6

B protein (repression transcription factor) also appears along with x4. Doing the limit when
limx6→0 (no repressor action)
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Table 4.4: List of variables used in the reduced model

Variable Description Units Symbol

x1
mRNAgA nM mA

x2
A protein nM A

x3
Inducer nM I

M A·I monomer nM A·I

x4
(A·I)2 dimer nM (A·I)2

x5
mRNAgB nM mB

x6
B protein nM B

x7
mRNAgC nM mC

x8
C protein nM C

x9
External I ext nM Ie

lim
x6→0

x4

θ2 +θ3x4 +θ4x6 +θ5x4x6
=

x4

θ2 +θ3x4

and when limx4→0 (no activator action)

lim
x4→0

x4

θ2 +θ3x4 +θ4x6 +θ5x4x6
= 0
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Chapter 5

Parameters optimization

5.1 COMPUTIONAL METHODS AND TARGETS

The engineering design of the IFF genetic circuit requires a solution that results from the
trade-off between different objectives. These are the sensitivity and the precision in sys-
tem’s response, since we are looking for system’s adaptation (see Figure 5.1). Both design
principles are competing alternatives as results show. This means that they are opposing or
mutually exclusive.

I1 I2

O1

A.

Opeak

O2

Output

Input

tiempo

Sensitividad =
(Opeak O1)

(I2 I1)

Precisión =

1

No respuesta

(Opeak O1)

(I2 I1)

B.
Respuesta larga
(No adaptación)

Figure 5.1: A) Adaptation mathematical expression in a genetic circuit B) Other
responses which are not adaptive

An usual approach to face a multi-objective optimization problem consists of building a
function able to assemble the objectives in a unique index. Normally this is done by using
a weighting vector. Nevertheless the solution obtained depends too much on the correct
selection of the weighting factors, and it could not reflect with enough clarity the designer
preferences in relation with the desired balance of requirements.

Other option is the multi-objective optimization (MOO) [19], which is a natural alter-
native to face this kind of problems. This is the alternative used in this work. In MOO all
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optimization goals are important to the designer, so all of them are optimized simultaneously.
Thus, the solution rarely is unique, but a set of solutions called the Pareto Front instead (re-
call section 3.4). In this sense all solutions are optimal and differ from each other in the
objectives balance degree. Because of that, this multi-objective problem lead us to a range
of solutions that fulfil the needs. Then, the use of appropriate visualization tools will help us
to deduce design principles for this genetic circuit.

The algorithm that has been used for this purposed is a multiobjective differential evolu-
tionary algorithm with spherical pruning which has already been used for controller design
with several performance objectives and robustness requirements [24].

The selection of a balanced solution under the designer criteria takes place in an a-
posteriori analysis in the Pareto Front.

In this work the tool used to visualize the resulting front is the Level Diagram I (LD)
[5, 23].

5.1.1 Problem approach

The MOO problem we face consists of looking for the set of values for the 26 decision
variables θ –which are the model parameters in equations 4.60 to 4.68– that minimize the
following objectives

min
θ∈ℜ26

J(θ) = [J1(θ),J2(θ),J3(θ)] ∈ℜ
3

with:

J1(θ) =
2(x9(t f )− x9(t0))∫ t f

t0 |
dx8
dt |dt

(5.1)

J2(θ) =
x8(t f )− x8(t0)
x9(t f )− x9(t0)

(5.2)

J3(θ) =
1∫ t f

t0 |
dx6
dt |dt

(5.3)

The index J1 represents the inverse of absolute total variation of the concentration of the
protein C (x8) normalized with respect to changes in the external inducer x9 . In other words,
the target is to minimize the inverse of the sensitivity, i.e. to maximize the pick height in
the signal response. The reason for including the number 2 in this expression is because the
integer

∫ t f
t0 |

dx8
dt |dt takes into account the differential changes while the function goes up and

then goes down, and it ‘sums’ these changes so that if the function is supposed to return to
the previous level ,the sum is the double value of just the response part until it reaches the
maximum level.

ITool available at http://www.mathworks.com/matlabcentral/fileexchange/24042
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5. Parameters optimization

The index J2 represents the total variation of the protein C (x8) normalized with respect
to changes in x9. This corresponds to the precision of the circuit.

Finally, the index J3 represents the inverse of absolute total variation of the concentration
of the protein B (x6) normalized with respect to changes in the external x9.

In this work, attention is paid mainly to the first two indices, corresponding to sensitivity
and precision of the circuit. The minimization of these two objectives by means of the
optimization tool will lead us to determine in this dynamic system the Pareto Set θP, and its
projection in the objectives space as the Pareto Front JP.

The MOO problem tries to approximate the best parameters θ ∗P in a Pareto-optimal box
θP that give the best Pareto-front approximation J∗P. Such search could be done through
a random Monte-Carlo sampling in the decision variables space θ –the set of parameters
determining our biological model–, and then filter the solutions in order to obtain the θ ∗P that
define the front J∗P. For problems with few parameters this can result in a good option, but
for problems with a large number of parameters as in this project case, with (mxn) = (26x3),
it is more efficient to use a good MOO algorithm to approximate this solution. Even so, an
additional analysis with Monte-Carlo sampling, forcing parameters to move out of range,
will be done.

The algorithm used for this case is sp−MODEII[24], which is a version of the multi-
objective differential evolutionary algorithm (MOEA) with spherical pruning described in
[24].It is a MOEA that served us for the mentioned purpose. Basic features of the algorithm
are:

• Improving Convergence by using an external file to store solutions and include them
in the evolutionary process.

• Improving Spreading by using the spherical pruning mechanism.

• Improving Pertinency of solutions by a basic bound mechanism in the objective space
as described in [8].

As for the visualization tool, the level diagram (LD) is based on the classification of
calculated optimal parameters θ ∗P making each objective Jq(θ) to be normalized with respect
to its minimum and maximum value. For each normalized vector Ĵ(θ), the norm-p is applied
as

‖Ĵ(θ)‖p :=

(
m

∑
q=1
‖Ĵ(θ)q‖p

)1/p

IITool available in http://www.mathworks.com/matlabcentral/fileexchange/39215
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so as to evaluate the distance to the ideal solution Jideal = Jmin.

A LD is an alternative for the m-dimensional set and front visualization and analysis.
This visualization and analysis is not a trivial task when the number of objectives is larger
than 3 and/or the number of decision variables in Pareto package is large like in this case.

In the LD (see Figure 5.2) a graph for each objective q ∈ [1, . . . ,m] is displayed, and
another one for each decision variable l ∈ [1, . . . ,n] (see Figure 5.3) where the Y-axis is
‖Ĵ(θ)‖p and the X-axis corresponds to the objective value or decision variable depending
on the case. So, a given solution will have the same value -y in all graphs. Intentionally,
the LD has been modified so that points of both graphs use a code ranging from blue, that
represents low values of J1(θ), to dark red symbolizing high values of J1(θ). This colors
correspondence will help to evaluate general tendencies along the Pareto front and compare
solutions according to the selected norm.

Additionally and with the purpose of facilitate the analysis, also the dynamic response of
species from the model have been simulated along with the transcription/degradation mRNA
and translation/degradation protein proportions using the same color code.

5.2 COMPUTATIONAL IMPLEMENTATION

One can think that a high production of the protein B, which acts as repressor for the C
promoter, would make the C response return rapidly to its pre-stimulated value with even
less error. Following this intuition, it was tried to optimize the three objectives mentioned in
the previous section:

1. J1 , the inverse of absolute total variation of C protein concentration normalized with
respect to changes in external inducer.

2. J2, the total variation of C protein normalized with respect to changes in external
inducer, that means the precision.

3. J3 , the inverse of absolute total variation of B protein concentration normalized with
respect to changes in external inducer.

In other words, it was tried to optimize the index corresponding to the pick height and
the steady state error of the C protein, and the pick height of the B protein respectively.

The inclusion of J3 as an objective of our MOO shouldn’t be taken it with special rigour,
but as a soft constraint for our circuit design. Indeed, first simulations using just J1 and J2

as optimization indices gave some poor values for the production of protein B. Thus, it was
decided to include this production as a soft objective for our problem.
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The index J3 was optimized in both for the case of maximization, and the case of mini-
mization. That is, first maximizing the pick height in the production of B, and in a second
approach by minimizing it. The reason for the second approach was the importance of know-
ing how much could we reduce the production of B. This is important, for instance, when
attending to a reduction of internal cell resources.

Results showed that either maximizing B production or minimizing B production, the
optimizer was able to find ranges for the problem parameters that resulted in the circuit
output to perform adaptation. And even more, depending on the approach, slightly different
designing rules could be inferred.

In the model, transcription rates and gene copy number multiply each other (Kmi ·Cgi)

in the dynamic equations of the mRNA of each node (i = 1,2,3). So they were eventually
set together as a decision variable for the optimizer. When considered as separated variables
it was observed that the optimizer tended to fix one of them and play with the variability of
the other one.

The searching ranges for the optimizer were set widening the typically range with bio-
logical sense. So the analysis is slightly expanded out of the a priori possible values that we
can find in nature.

Other relevant issue is that related to the limit from which it is considered that a circuit
performs adaptation. That means that a pertinency on the objectives must be applied. The
limits established in this work were as seen in table 5.1.

Table 5.1: Objectives pertinence

Objective Description Expression Pertinency range
Min Max

J1 C protein sensitivity
2(x9(t f )−x9(t0))∫ t f

t0
| dx8

dt |dt
1e−3 100

J2 C protein precision x8(t f )−x8(t0)
x9(t f )−x9(t0)

1e−4 0.5

J3 B protein sensitivity
1∫ t f

t0
| dx6

dt |dt 2e−4 0.1

Note: the pertinency range for J1 and J3 is translated to [7500 0.75] and [5000 10]
respectively in terms of pick height in nanomols (nM).
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CODE.

From an existent previous Matlab code provided by some members of the research group
GCSC of the Instituto Universitario ai2, who have already work in the deterministic and
stochastic modelling of a synthetic genetic circuit [6], some modifications were done to
apply the developed code to the reduced model resulting in this work.

A short description of the main functions integrating this code and justification of the
value sets is given below. It has been divided in two groups: files more related to the model
computational characterization, and files used by the optimizer, which link to the first set.

Model code

• model_3genes.m is essentially the model system code. It gives a vector with the 9
variables with which the ode algorithm works.

• principal_func.m gives the three objectives values vector, each time that a dynamic
response for the whole model is obtained.

The 9 variables are initialized, and the 26 parameters are not because the optimizer
will work with a given range in its code.

The ode23s algorithm gives the variables values Y for each t, using model_3genes.m
. This ode algorithm was selected because our system model is what it is known as
stiff, in terms of the numerical solution of ordinary differential equations, i.e. it has
both slow and fast dynamics. An ordinary differential equation problem is stiff if the
solution being sought is varying slowly, but there are nearby solutions that vary rapidly,
so the numerical method must take small steps to obtain satisfactory results.

GraphicsVarias.m is used once the ode algorithm has calculated the solutions of the
model (the value of each species at every time instant).

For computational simulation, it is necessary to fix a time (in seconds) different from
t0 when the step signal Ke(t) (external supply) appears, to let the system stabilize itself
before. The value

time_step = 300

has been used. On the other hand, the amplitude (in nM) of this step signal has been
fixed to

amp_step = 10

With respect to the simulation parameters, the simulation sampling time (Ts) was fixed
to 1e−3 minutes, and a total simulation time T sim = 600 minutes was used.

• GraphicsVarias.m gives the dynamic response of each variable plot (9 subplots).
Each set of the parameters (the 26 decision variables in our MOO), gives a dynamic
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response for each variables or species. This means that this Matlab function will give
the whole model dynamic response for the Pareto set provided by the optimizer.

• modelo3genes_poblacion.m is the head function that accumulates in a matrix the ob-
jective values vector given by principal_func.m.

MOO code

First, highlight that we can make use of the file Tutorial.m as help. In this tutorial, basic
problems are solved using the spMODE algorithm, which is a version of the multi-objective
differential evolution algorithm with spherical pruning described in [24].

The MOO code implements a version of the multi-objective differential evolution algo-
rithm with spherical pruning.

The first step is to run the spMODEparam file to build the variable ‘spMODEDat’ with
the variables required for the optimization. Here the number of objectives are defined, also
the number of decision variables and the ‘Cost Function’, which brings the objectives matrix
after previous ode simulations (by means of interlinked functions mentioned above, consti-
tuting in essence the problem ‘nucleus’ or characterization). The field of search, and bounds
to improve pertinency of solutions in the objective space so as to cut solutions with no in-
terest to the DM, are defined here too. Also other aspects, such as maximum Pareto optimal
solutions required and a bound on the number of function evaluations.

Once the Pareto set and the Pareto front are found by the optimizer, results can be plot
with optional features through the Leveltool. This tool provides the LD visualization for the
MCDM (see section 3.4.1).

• spMODEparam.m generates the required parameters to run the spMODE optimization
algorithm.

In this file the variables regarding the multi-objective problem are defined. The values
of interest for our problem are:

1. Number of objectives.
spMODEDat.NOBJ = 3

2. Number of decision variables.
spMODEDat.NVAR = 26

3. Cost Function.
spMODEDat.mop = str2func(‘CostFunction’)

4. Problem Instance.
spMODEDat.CostProblem = ‘modelo3genes’
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5. Maximum and minimum values for the parameters or decision variables are fixed
in order to give a range to the optimizer to search the optimal solutions, (sp-
MODEDat.FieldD , see Table 5.2). kd and dIe were fixed to avoid the optimizer
to modify the model input Ie, as we want an step input determined by Ke(t). If kd

and dIe are not fixed the optimizer gives some Ie response with slow dynamics.
The table 5.2 gives the search ranges chosen for all the decision variables in the
problem.

Table 5.2: Optimizer searching range

Decision variable Range Biological values Reference
KmA ·CgA [1 200] -

KmB ·CgB [1 200] -

KmC ·CgC [1200] -

kd 0.06 fixed [0.01 0.1] ∼ 0.06 min−1 [6]

dA [0.01 0.1] 0.035 min−1 [21]

dB [0.01 0.1] 0.035 min−1 [21]

dC [0.01 0.1] 0.035 min−1 [21]

θ1 [200 600] -

θ2 [0.01 0.2] -

θ3 [0.0001 1] -

θ4 [0.0005 10] -

θ5 [0.1 10] -

kpA [1 100] 50 prot · (mRNA ·min)−1 [21]

kpB [1 100] 50 prot · (mRNA ·min)−1 [21]

kpC [1 100] 50 prot · (mRNA ·min)−1 [21]

k2 [1 20] 0.01 (nM ·min)−1 [6]

k3 [0.1 5] 0.05 (nM ·min)−1 [6]

kd2 [100 250] 100 nM [6]

kd3 [1 30] 20 nM [6]

dmA [0.01 0.5] 0.3624 min−1 [6]

dmB [0.01 0.5] 0.3624 min−1 [6]

dmC [0.01 0.5] 0.3624 min−1 [6]

dI [0.001 0.5] 0.0164 min−1 [6]

dIe 0.0164 fixed 0.0174 min−1 [6]

dAI [0.01 0.5] 0.0174 min−1 [6]

dAI2 [0.01 0.5] 0.0174 min−1 [6]
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5. Parameters optimization

6. Bounds on objectives.
spMODEDat.Pertinency=[1E-3 100; 1E-4 0.5; 2E-4 0.1] A row for each objec-
tive, minimum and maximum values desired.

• CostFunction.m calls the cost function of your own multi-objective problem, in this
case modelo3genes_poblacion.m, and include a mechanism to improve basic perti-
nency (Objective space bounded).

5.3 SIMULATIONS AND RESULTS

As three different approaches were taken into account, results will be shown and commented
separately. Then in section 5.5, design principles will be derived from the conclusions drawn
from the analysis of the results obtained from these approaches: MOO maximizing the B
protein production, MOO minimizing the B protein production, and Monte-Carlo Sampling
additional analysis.

It is also worth mentioning again the two criteria that will be addressed: ’High sen-
sitivity’ and ’High precision’. Since we are dealing with two conflicting objectives, this
differentiation has to be taken into account for the MCDM stage.

5.3.1 Multi-objetive Optimization Maximazing B protein production

Recalling previous sections, in the LD a graph for each objective is displayed (see Figure
5.2), and another one for each decision variable (see Figure 5.3), where the Y-axis is ‖Ĵ(θ)‖p

and X-axis correspond to the objective value or decision variable depending on the case.
So, a given solution will have the same value -y in all graphs. Intentionally, the LD has
been modified so that points of both graphs use the same color code, ranging from blue that
represents low values of J1(θ), to dark red symbolizing high values of J1(θ).

The dynamic response of the system can be seen in Figure 5.4, where solutions keep the
same colour convention as those from the other graphs (figures 5.2, and 5.3).

Additionally, and with the purpose of facilitating the analysis, also the dynamic responses
of the model species have been simulated along with the transcription/degradation mRNA
and translation/degradation protein proportions using the same color code (Figures 5.5 and
5.6 respectively). These expressions emerge from the study of the system when it is at the
equilibrium.

For instance, the extreme point X (see Figure 5.2, the turquoise blue point with the lower
norm), blue coloured because of its low J1(X) = 0.025 value, has a norm ‖Ĵ(X)‖ = 1. The
same point X is represented both in the others objective graphs, in the decision variable graph
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5.3, and in the time evolution system representation 5.4, with the same color and the same
norm. Such relationship helps to evaluate and identify general tendencies within the Pareto
set and the Pareto front, letting to infer design rules for the genetic circuit.

Notice that in this MOO, all desired objectives had to be minimized. For this reason the
J1 index represents the inverse of the pick height. Thus, the smaller the value of J1 , the
bigger the sensitivity (pick height).

Sensitivity and precision features being conflicting objectives is clearly appreciated in the
graph 5.2. The higher the precision (red points in the second graph), the worse the sensitivity
(red points in the first graph).

In Figure 5.4 the adaptation behaviour in the protein C is clearly demonstrated for all
points in the Pareto front.

In table 5.3, we can see the different tendencies that the model parameters follow to
optimize the problem (according to Figure 5.3). In some of them it can be appreciated even
the tendency to certain values according to the criterion of ‘High sensitivity’ or the criterion
of ‘High precision’, that is, blue and red points appear gathering separately in different values
or ranges.
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‖Ĵ(θ)‖i

0.
2

0.
4

0

0.
51

d
m

B
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Certain parameters show wide variability inside the sampling range. Nevertheless, others
show clear tendencies to attain high or low values. For instance, the degradation rates of the
monomer and the dimer tend to low values (since less degradation of this substance means
more amount of it, and it is necessary for the activation and production of the C protein).
Something similar happens with the degradation rate of the A protein; it tends to take low
values. This makes sense since a high amount of the A protein affects the production of B.
As a component of the activator, a high amount of A will produce a high amount of B, and
in this case it is expected to maximize B.

Other parameter that presents a very clear tendency is the degradation rate of the C pro-
tein. With high values of this parameter, the concentration of the C protein is expected to
return faster to its original level. So it is a key parameter to correctly achieve adaptation.

The parameters θ in the hybrid promoter also are forced by the optimizer to take certain
values for the system to attain the adaptive behaviour. These parameters affect as coefficients
of the x4 and x6 terms (mRNA of B and C) increasing or decreasing its importance in the
equation corresponding to the hybrid promoter.

With respect to the transcription and translation ratios, which in essence constitute the
process gains, it is interesting to highlight that just for the C protein transcription and trans-
lation it is possible to see a clear differentiation in the values depending on the selected
criterion. These ratios KmC·CgC

dmC and KpC·CgC
dC seem to work as tuning knobs for the level of ful-

filment of the objectives. The ’High sensitivity’ criterion is seen to be less restrictive when
selecting a value, as the range of blue points is wider than that one for the red ones. The KpB

dB
ratio resulted to be very low in comparison with the rest.

5.3.2 Multi-objetive Optimization Minimazing the production of B pro-
tein

Similarly to the previous section, for this approach the results for each objective are displayed
in Figure 5.7. The resulting decision variables (parameters) are shown in Figure 5.8, and the
system dynamic response in Figure 5.9, and in Figure 5.10 the transcription and translation
ratios.

The fact that sensitivity and precision features are conflicting objectives is appreciated
in the figure 5.7. The higher the precision (red points in the second graph), the worse the
sensitivity (red points in the first graph).

In Figure 5.9 the adaptive behaviour of the C protein is clearly demonstrated for all the
values of the parameters within the Pareto set.

In the table 5.4, the different tendencies that model parameters follow to optimize the
problem can be observed (related to Figure 5.8). In some cases it can be clearly appreciated
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5. Parameters optimization

the tendency to certain values according to the criterion of ‘High sensitivity’ or the criterion
of ‘High precision’ being chosen. Indeed, blue and red points appear gathering separately in
different values or ranges.

As it was the case for the first approach, certain parameters show wide variability inside
the simulation sampling range. Nevertheless, others show clear tendencies to get high or low
values. For this approach (minimization of B as third objective) the value of the A protein
degradation rate tends to be higher than when the B production was being maximized. That
makes sense, since in this approach we deal with the opposite goal (to minimize B). The
monomer and dimer degradation rates tend to low values as in the case before, and the C
protein degradation rate to high values as was expected intuitively.

With respect to the transcription and translation ratios, which in essence constitute the
process gains, also the significant tuning knobs seem to be the ones corresponding to the
protein C.
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‖Ĵ(θ)‖i

5
10

0

0.
51

θ
4
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‖Ĵ(θ)‖i

50
10

0
0

0.
51

k
p
A
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5. Parameters optimization

5.4 ADDITIONAL ANALYSIS: MONTE-CARLO SAMPLING

This extra analysis was done to figure out if this biologic system was robust by itself, that is,
with structural robustness. The goal is to see whether the circuit will always present adaptive
behaviour –better or worse, but adaptive– irrespective of the parameters values. For this
purpose, a Monte-Carlo sampling was carried out. Those parameters that showed variability
inside the given range according to the optimizer, were fixed to an approximate mean value.
Whereas the parameters which showed a strong tendency to relatively high or low values,
were let to vary by means of the sampling simulation. This decision would give some points
out of the optimal solution, since parameters which had to take certain restrictive values to be
in the Pareto set were forced to take values far from those ones. The results of this approach
are shown in Figure 5.12.
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Figure 5.12: Model dynamic response with Monte-Carlo Sampling simulation.
A wide variety of performances take place, with a significative number of them
hardly returning to zero, i.e. presenting very poor performance. The optimizer
did 30000 evaluations. 80 of them were sampled to check for their behaviour.
Out of these 80, a significative number did not present adaptive behavior.

According to the results shown in the graph 5.12, it cannot be affirmed that the system
has structural robustness. The optimizer did 30000 evaluations. 80 of them were sampled to
check for their behaviour. Out of these 80, a significative number did not present adaptive
behaviour. A larger sampling was made around the same level in the LD that the one of
the optimizer. The results of this larger sampling are shown in the figure 5.14 in section
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5.5 along with the Pareto Front provided by the optimizer to make the comparison more
easy. These results confirm that the circuit looses the adaptation capability for values of
the parameters out of an appropriate region. This result also confirms the need of using the
MOO approach to solve the problem posed in this project.

5.5 DISCUSSION

In order to make a correct analysis, it is recommendable not just seeing the results of each of
the two approaches separately but together. To this respect, differences and similarities are
observed.

If we look at Figures 5.3, and5.8, we find the main differences in the parameters and ratios
dA, KmB·CgB

dmB
, dB, kd2 and kd3. The main similarities are in the variability of KmA·CgA

dmA
and KpA.

This makes sense since the gene A is constitutive and should not be too enclosed a priori.
Thus, in both approaches we observe high values of dC and dmC (for faster degradation to
perform adaptation), low values of KpB, dAI and dAI2 , and finally, the same differentiation
between red points and blue points for the parameters KmCCgC and KpC, (blue points with
high values).

In order to get robust and adaptive behaviour, the θ values corresponding to the hybrid
promoter tend strongly to certain values either when it is expected to maximize B, or min-
imize B, and even with no dependency on the desired criterion (’High sensitivity’ or ’High
precision’). θ1 and θ5 tend to high values inside their range. θ2, θ3 and θ4 to values close to
zero.

Analysing the transcription and translation equations at the equilibrium, the levels of mB
and mC, and in turn the production levels of B and C, could be tuned by two distinguishable
components: the gain process (defined by the reaction rates) and the mathematical charac-
terization of the promoter (defined by the θ values and activator and repressor species).

Only the transcription and translation ratios of the protein C are a way to tune either high
sensitivity or high precision. For better analysis of these relations see the Figure 5.13.

The Monte-Carlo sampling gave a set of random values for the parameters that made the
system perform in different ways. In Figure 5.14 it is possible to see the representation of the
Pareto Front for two objectives with the MOO (red line), among with the random sampling
coloured in green and blue. The blue line results from the filtering of this random sampling,
generating also a Pareto front for this randomly sampled points. Green points do not fulfil the
precision pertinence of J2(θ). Blue points, although present a bad sensitivity, let the system
to respond to the perturbation giving little error (good precision). It can be appreciated that
the Pareto front given by the optimizer is in a forward position with respect to the Pareto
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5. Parameters optimization

front resulting from the filtering of the Monte-Carlo sampling points. This shows that the
optimization process that we have used was necessary and effective.

Figure 5.13: Left: transcription and translation ratios when maximizing B pro-
tein production. Right: transcription and translation ratios when minimizing B
protein production.

Figure 5.14: Pareto Front representation for two objectives obtained with the
MOO (red line), along with the random sampling coloured in green and blue
with its respective Pareto front located behind. Three responses of the C pro-
tein for three representative points are shown. Green points do not fulfil the
precision pertinence of J2(θ). Blue points, although present a bad sensitivity,
let the system to respond to the perturbation giving little error (good precision).
Extreme points X and Y enclose the Pareto Front obtained. Point A presents a
trade-off between both objectives.
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Finally, with a more mathematical perspective and the new results given by the optimizer,
it is interesting to see how they affect the model equations. Let us analyse what happens
with the hybrid promoter mathematical characterization. According to the optimizer, for the
C protein to performe adaptation θ2, θ3 and θ4 tend to very low values. However θ3 and θ4

tend to much lower values than θ2. Then:

x4

θ2 +θ3x4 +θ4x6 +θ5x4x6
' x4

θ2 +θ5x4x6
=

1
θ2
x4
+θ5x6

if limx6→0 (no repressor action) we have:

lim
x6→0

1
θ2
x4
+θ5x6

=
x4

θ2

with θ2 low. But notice that as soon as there is even a little amount of x6, the effect of x6 is
significantly multiplied repressing in turn the transcription process, since θ5 is very high.

5.5.1 Design principles

The capability of cells to extract and process information from their environment allows them
to optimize their responses and their allocation of resources, thus bequeathing selective ad-
vantages to the organism. However, such an ability must necessarily be a robust property for
it to be effective in the cell’s noisy and uncertain environment. A key aim of systems biology
is to identify the mechanisms through which robustness is achieved in cellular processes.
Such sources of robustness can be identified through the analysis of models of biological
systems as has been done in this work.

After the results discussion and by extracting the essential information from the graphs,
the following tables are provided to see in an organized way the design principles derived in
this work.

1. Parameters range in order to maximize B: see Table 5.3

2. Parameters range in order to maximize B: see Table 5.4

3. Transcription and Translation Gain: see Table 5.5

The ranges for these tables have been taken by rejecting outliers or values significantly
distant from tendencies. The coloured arrows refer to the blue points and red points seen
in the previous graphs, and the kind of tendency address the frequency of appearance to the
pointed values.
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Table 5.3: Parameters range in order to maximize B

Parameter Variation range Range selection criterion Tendency
by optimizer High sensitivity High precision

KmACgA [1 200] [1 50] [1 100] −−→ ←−− Slight

KmBCgB [1 200] [1 150] [100 200] ←−− −−→ Slight

KmCCgC [1 200] [40 100] [1 10] −−→ ←−− Strong

kd
0.0164 fixed

dA
[0.01 0.1] [0.01 0.05] [0.01 0.05] ←−− ←−− Strong

dB
[0.01 0.1] [0.01 0.1] [0.02 0.01] ←−− ←−→ Slight

dC
[0.1 0.5] [0.3 0.5] [0.3 0.5][ −−→ −−→ Strong

θ1
[200 600] [500 600] [500 600] −−→ −−→ Strong

θ2
[0.01 0.2] [0.01 0.02] [0.01 0.02] ←−− ←−− Strong

θ3
[1e-4 1] [1e-4 0.02] [1e-4 0.02] ←−− ←−− Strong

θ4
[5e-4 10] [5e-4 2] [2 l0] −−→ ←−− Strong

θ5
[0.1 10] [6 10] [6 10] −−→ −−→ Strong

kpA
[1 100] [1 50] [50 100] ←−− ←−→ Strong

kpB
[1 100] [1 2] [1 2] ←−− ←−− Strong

kpC
[1 100] [20 60] [1 10] −−→ ←−− Strong

k2
[1 20] [1 10] [1 10] ←−→ Variable

k3
[0.1 5] - - ←−→ Variable

kd2
[100 250] [160 250] [160 250] −−→ −−→ Strong

kd3
[1 30] [1 20] [1 20] ←−− ←−→ Strong

dmA
[0.01 0.5] - - ←−→ Variable

dmB
[0.01 0.5] - - ←−→ Variable

dmC
[0.01 0.5] [0.4 0.5] [0.4 0.5] −−→ −−→ Strong

d_I [0.001 0.5] - - ←−→ Variable

dIe
0.0164 fixed

dAI
[0.01 0.5] [0.01 0.1] [0.01 0.1] ←−− ←−− Strong

dAI2
[0.01 0.5] [0.01 0.03] [0.01 0.03] ←−− ←−− Strong
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Table 5.4: Parameters range in order to minimize B

Parameter Variation range Range selection criterion Tendency
by optimizer High sensitivity High precision

kmACgA [1 200] - - ←−→ Variable

kmBCgB [1 200] [1 50] [1 2] ←−− ←−− Strong

kmCCgC [1 200] [20 80] [1 3] ←−→ ←−− Strong

kd
0.0164 fixed

dA
[0.01 0.1] [0.08 0.1] [0.08 0.1] −−→ −−→ Strong

dB
[0.01 0.1] [0.07 0.1] [0.04 0.1] −−→ ←−→ Strong

dC
[0.1 0.5] [0.4 0.5] [0.4 0.5][ −−→ −−→ Strong

θ1
[200 600] [450 600] [450 600] −−→ −−→ Strong

θ2
[0.01 0.2] [0.01 0.02] [0.01 0.02] ←−− ←−− Strong

θ3
[1e-4 1] [1e-4 0.0l] [1e-4 0.0l] ←−− ←−− Strong

θ4
[5e-4 10] [5e-4 2] [2 l0] ←−→ ←−→ Strong

θ5
[0.1 10] [8 10] [9 10] −−→ −−→ Strong

kpA
[1 100] - - ←−→ ←−→ Variable

kpB
[1 100] [1 70] [1 18] ←−− ←−− Strong

kpC
[1 100] [3 30] [1 4] −−→ ←−− Strong

k2
[1 20] - - ←−→ Variable

k3
[0.1 5] - - ←−→ Variable

kd2
[100 250] - - ←−→ Variable

kd3
[1 30] [1 20] [1 20] ←−→ Variable

dmA
[0.01 0.5] - - ←−→ Variable

dmB
[0.01 0.5] - - ←−− ←−→ Slight

dmC
[0.01 0.5] [0.37 0.5] [0.47 0.5] −−→ −−→ Strong

d_I [0.001 0.5] [0.001 0.3] [0.001 0.3] ←−→ Variable

dIe
0.0164 fixed

dAI
[0.01 0.5] [0.01 0.1] [0.01 0.5] ←−− ←−→ Strong

dAI2
[0.01 0.5] [0.01 0.05] [0.01 0.3] ←−− ←−→ Strong

Table 5.5: Transcription and Translation Gain

Maximize Minimize Tendency

XXXXXXXXNode
Stage Transcription Translation Transcription Translation Color Kind

gA [0 500] [0 10000] [0 2000] [0 1200] - Variable

gB [200 1000] [0 50] [0 2000] [0 400] - Variable

gC [0 200] [0 100] [0 150] [0 60] ←−−
−−→ Strong
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Chapter 6

Prototyping

Finding the biological species which can fit with the design principles derived from this work
is not a trivial task.

On one hand, the task of get a set of genes whose products act as the desired way, re-
pressing or activating each other according to the circuit that want to be implemented, (in
this case a three-node Incoherent Feedforward Loop Type I), could result in a long search
in biologic databases because of the many interactions among species and also the high di-
versity of species. And even though the search come up with a theoretical solution, another
issue is that if it is wanted the circuit to empirically implement, it is necessary to have a mean
to implement connect all parts (coding sequences). At this respect, it will be introduced the
notions of plasmids (as vectors) and biobricks in next section.

On the other hand, once one has the set of genes that behaves following the dynamic
model of the aforesaid motif, it could happen that the biologic parameters of these species
don’t fulfill with the derived design principles, and in turn not being able to get less or more
pick height and error, or even perform adaptation.

If we have a look to the regions involved during the synthesis of a protein (Figure 6.1),
we find that changing any of them (and other external factors not mentioned) could affect to
reaction rates. So these regions mean a way of tuning the parameters model, depending on
the chains or nucleotides sequences comprising this regions.

• Coging region.
The coding region contain the production information about a protein, so it defines the
product to synthesize, which is the principal target. Also the degradation protein
rate depends fundamentally on this region.

• Promoter.
The promoter is an specific DNA sequence. It includes the operator or binding site,
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where a certain molecule binds in order to initiate (or repress when it is not constitu-
tive) the transcription process. In that sense the promoter controls the starting of this
process, playing a regulatory role. It determines in some way the mRNA degradation
rate and transcription rate.

• Ribosome Binding Site.
The Ribosome Binding Site (RBS) use to be referred to the mRNA region (see gener-
alities of Central Dogma in 3.1), to which ribosomes can bind and initiate translation.
Here the translation rate is fundamentally determined.

• Terminator.
Terminators are genetic parts that usually occur at the end of a gene or operon and
cause transcription to stop. Depending on the sequence, its efficiency changes.

Figure 6.1: Gene relevant regions for the protein synthesis

6.1 IMPLEMENTATION

The way to implement a genetic circuit and introduce it in a cell (for instance prokaryotic
bacteria cell like E.coli), is using biobricks as parts and plasmids as a vectors (which can also
integrate a biobrick).

Biobricks are DNA sequences which have been standardized and conform to the Bio-
Brick assembly standard [22].These Lego-like building blocks are used to design and as-
semble synthetic biological circuits, which would then be incorporated into living cells to
construct new biological systems. Examples of BioBrick parts include promoters, riboso-
mal binding sites (RBS), coding sequences and terminators. A wide catalog can be found in
http://parts.igem.org/Main_Page.

A vector is a plasmid into whose genome a fragment of foreign DNA is inserted; used
to introduce foreign DNA into a host cell in the cloning of DNA. A plasmid is a circular,
double-stranded unit of DNA that replicates within a cell independently of the chromosomal
DNA and is most often found in bacteria; it is used in recombinant DNA research to transfer
genes between cells.
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6. Prototyping

The purpose of this last target goes about finding the suitable standard parts for the I1-
FFL. As said before, finding the set of genes that fulfill the correct performance and integrates
the specific genetic circuit is not a trivial task. For this reason, knowing about the existence
of a previous work in which was empirically implemented this circuit with certain species
[28] (but with other focus in its studies), this work will take some idea for the species to use.

After searching for this parts in the Registry of Standard Biological Parts, the selection
of Biobricks is shown in the Table 6.1.

The three genes of the circuit:

LuxR : LuxR gene produce luxR proteins. This family consist of bacterial regulatory pro-
teins, but also are in a variety of organisms. In the gene code there is a region often
containing an autoinducer-binding domain in the N-terminal region. Most luxR-type
regulators act as transcription activators, but some can be repressors or have a dual role
for different sites. In this circuit it is wanted the luxR protein to bind to the autoinducer
AHL (N-acyl-L-homoserine lactone), which will be added from cell’s outside.

GFP-LVA : LVA tag consists of a short peptide sequence (AANDENYALVA) and is at-
tached to the C-terminal end of GFP. Green fluorescent protein (GFP) is often used
as a reporter protein, because it allows easy and nondestructive in situ monitoring of
cellular processes. It can be expressed in a wide range of organisms and it does not
require the addition of a special substrate in order to detect green fluorescence. Nev-
ertheless, the protein has one major drawback, it seems to be very stable. Once the
expression of GFP is started, it will fluoresce for a very long period of time. This
makes GFP unsuitable for monitoring rapid changes in gene expression. [14] had al-
ready indicated that proper tagging of GFP will make the protein less stable. LVA tag
seemed to be the most efficient tag to make GFP unstable.

CI-LVA : The standard name for this gene is Phage lambda cI. According to results of this
work, protein degradation rate for gene B is desired to be from 0.04 to 0.1. In E.coli
this rate is considered similar to protein dilution rate in the cell (0.035 min-1). So LVA
tag is interesting to make higher the degradation rate.

Table 6.1: Biobricks or standard parts for the genes

Gen Name Promoter RBS Coding region Terminator

gA LuxR BBa_J23106 BBa_B0034 BBa_C0062 BBa_B1006

gB CI-LVA BBa_R0062 BBa_B0034 BBa_K327018 BBa_B1006

gC GFP-LVA BBa_K415032 BBa_B0034 BBa_K18001 BBa_K259006
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Some clarifications and justifications for this selection must be done:

• Gene A promoter was searched to be constitutive.

• Hybrid promoter for gene C was chosen among these other options: BBa_1751501
and BBa_I1051. These were rejected because of including two operators instead of
one, as it was tried to resemble the part from [28].

• There are other terminators that could fit in, but it was tried to look for the more
efficient ones.

• The Biobrick for RBS was selected because it has many times been used, according to
the website where it was searched (up to 2935).

• All coding regions parts include the AUG starting codon.

• Also a plasmid is needed to connect properly the parts. The selected one was
BBa_J64100

This is just a first approximation of IFF GNR implementation. The Benchling free soft-
ware will be used for standard parts ensemble simulation. The future development of this
work will probably bring modifications in this given prototyping format.
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Chapter 1

Budget

1.1 INTRODUCTION

This document covers the estimated costs of the design, prototyping and implementation of
an Incoherent Feedforward Genetic Regularory Network.

This budget is organized in the following way. Firstly manpower and material resources
costs are defined and explained. Next, partial budgets of each Unit of Work are exposed and
commented. The different Units of Work attend to three functional groups:

• Theoretical analysis for design principles deduction
UW01 System modelling, simulations and discussion.

• Documents edition
UW02 Project development.

• Empirical implementation for prototypes
UW03 Obtaining the standard parts.
UW04 Gibson Assembly.
UW05 Final plasmid verification.

1.1.1 Manpower costs

In this section the costs associated to the staff employment are detailed. An Industrial Engi-
neer and a Biotechnologist are required for the execution of this project.

The set of tasks executed by the Industrial Engineer include the modelling and theoretical
analysis of the Genetic Regulatory Network, the text edition of this research, and finally the
real implementation of the Genetic Regulatory Network in the laboratory in a interactively
work with the Biotechnologist.
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The set of tasks executed by the Biotechnologist include essentially the work in the lab-
oratory, which correspond to the last three Units of Work mentioned above.

The three first task or Units of Work executed by the Industrial Engineer take three
months (April, May and June), 5 days per week, 6 hours per day. The work in the labo-
ratory lasts three weeks, six days per week, eight hours per day.

The measuring for the Industrial Engineer:

65days ·6hours
day

= 390hours

3weeks ·6 days
week

·8hours
day

= 144hours

390+144 = 534hours

The measuring for the Biotechnologist:

3weeks ·6 days
week

·8hours
day

= 144hours

Table 1.1: Manpower costs

Units Concept Working
hours

Unitary price (C/h) Income

1 Industrial Engineer 247 260.3
Cost itemization:
Professional fees 10
Social Security 3.3

260.3

1 Biotechnologist 144 157.3
Cost itemization:
Professional fees 10
Social Security 3.3

157.3
TOTAL 417.6

1.1.2 Material resources costs

In this section the costs attached to the implementation of the Genetic Regulatory Network
are listed and estimated.

For the acquirement of biological standard parts, costs are estimated in the biobricks
delivery and, in case of factory defects, the eventual request of synthesis of certain standard
parts (it has been estimated in two units). These standard parts and primers sequences are
calculated according to the price of the pair of bases.
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The eventual synthesis would correspond to 100 pb per part or sequence. Primers for
Gibson Assembly are estimated in 40 pb. The group of standard parts is comprised by 3
promoters, 3 coding regions and 2 terminators. In sum are 8 parts to take into account, 2
primers per part are needed. So for Gibson Assembly are needed 16 primers. Primers for
final plasmid sequencing are estimated in 20 pb. It is supposed to have two final plasmids.
Since 2 primers for plasmid duplication is needed, that results in 4 primers.

A unit of purified base by HPSF (0.01 µmol) cost 0.49 euro. The respective measuring
for each sequence is as follows.

Eventual synthesis of standard parts:

100pb ·0.49
euro
pb
·2 = 98euro

Primers for Gibson Assembly:

40pb ·0.49
euro
pb
·16 = 313.6euro

Primers for final plasmid sequencing:

20pb ·0.49
euro
pb
·4 = 39.2euro

The equipment associated to an active laboratory has been included in the fungible re-
sources, because of its difficulty of quantifying. It covers pipettes, microtubes, Petri dishes,
cultivation pipes, restriction enzymes, PCR reactants (dNTPs, Polymerasa), etc. As an ap-
proximation, it has been considered to be the 30% of the sum of operations costs in each of
the Units of Work.

UW03 operations/processes:

Eventual synthesis of standard parts.
Plasmid purification (Miniprep).

UW04 operations/processes:
Parts purification of PCR.

UW05 operations/processes:
Plasmid purification (Miniprep).
Plasmid verification.
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Table 1.2: Material resources costs

Unit of Work Concept Measuring Unitary price (C) Income
UW03 Biobrick delivery 1 100 100
UW03 Eventual synthesis of standard parts 2 49 98
UW04 Primers for Gibson Assembly 16 19.6 313.6
UW04 Gibson Cloning Kit reactant 2 20 40
UW05 Primers for sequencing 4 9.8 39.2

Fungible laboratory equipment (30%) 3 47.64
TOTAL 638.44

1.2 PARTIAL BUDGETS PER UNIT OF WORK

Table 1.3: UW01 System modelling, simulations and discussion

Ud Description Measuring Price Income
1. Theoretical analysis for design principles deduction

h Industrial Engineer Graduate 240 13.33 3199.2
TOTAL 3199.2

Table 1.4: UW02 Project development

Ud Description Measuring Price Income
2. Project development

h Industrial Engineer Graduate 144 13.33 1919.52
TOTAL 1919.52

Table 1.5: UW03 Obtaining the standard parts

Ud Description Measuring Price Income
4. Obtaining the standard parts

h Industrial Engineer Graduate 48 13.33 639.84
h Biotechnologic Postgraduate 48 13.33 639.84
u Biobrick delivery 1 100 100
u Eventual synthesis of standard parts 2 49 98
u Plasmid purification (Miniprep) 8 1.8 14.4

Fungible laboratory equipment (30%) 33.72
TOTAL 1492.08
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Table 1.6: UW04 Gibson Assembly

Ud Description Measuring Price Income
5. Gibson Assembly

h Industrial Engineer Graduate 48 13.33 639.84
h Biotechnologic Postgraduate 48 13.33 639.84
u Primers 16 19.6 313.6
u Gibson Cloning Kit reactant 2 20 40
u Parts purification of PCR 8 1.6 12.8

Fungible laboratory equipment (30%) 3.84
TOTAL 1646.08

Table 1.7: UW05 Final plasmid verification costs

Ud Description Measuring Price Income

6. Final plasmid verification
h Industrial Engineer 48 13.33 639.84

h Biotechnologist 48 13.33 639.84

u Plasmid purification (Miniprep) 2 1.8 3.6
u Plasmid verification 4 7.5 30
u Primers for sequences 4 9.8 39.2

Fungible laboratory equipment (30%) 7.28

TOTAL 1359.76
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1.3 FINAL BUDGET

The total budget of this project is obtained from the sum of each partial budget and the
recharge of the VAT tax.

Table 1.8: Total budget

01 Theoretical analysis for design principles deduction 3199.2
02 Documents edition 1999.5
03 Empirical implementation for prototypes 4497.92

Total Material Execution Budget 9696.62
21% VAT 2036.29
Total Budget 11732.92

The total budget rises to ELEVEN THOUSAND SEVEN HUNDRED AND THIRTY
TWO EURO WITH NINETY TWO CENTS.
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