

Appl. Gen. Topol. 16, no. 1(2015), 19-30 doi:10.4995/agt.2015.2057 © AGT, UPV, 2015

On some topological invariants for morphisms defined in homological spheres

NASREDDINE MOHAMED BENKAFADAR a and Boris Danielovitch $\operatorname{Gel'Man}^b$

 a Faculty of Sciences, Department of Mathematics, Constantine Algeria. (kafadar@gmx.com)

⁷ Faculty of Mathematics, Department of Functional Theory and Geometry, Voronezh, Russia. (gelman@math.vsu.ru)

Abstract

In the paper one defines topological invariants of type degree for morphisms in the category $Top_{(2)}$ of topological pairs of spaces and continuous single valued maps, which admit homological *n*-spheres as target and arbitrary topological pairs of spaces as source. The different described degrees are acquired by means homological methods, and are a powerful tool in the root theory. Several existence theorems are obtained for equations with multivalued transformations.

2010 MSC: 55N10; 54H25; 54C60.

KEYWORDS: Homology; homotopy; topological degree; fixed points.

0. INTRODUCTION

The concept of topological degree deg is well know for maps of homological n-spheres and oriented n-dimensional manifolds (see for example, [4] and [2]). Recall this concept: if X and Y are both homological n-spheres and $f : X \to Y$ is a continuous single valued map by fixing some generated elements z_1 and z_2 of homology groups $H_n(X)$ and $H_n(Y)$ respectively, one obtains an equality $f_{n*}(z_1) = k \cdot z_2$. This number k is called the degree of f and is denoted by deg f. Topological degree theory plays a preponderant role in topology fixed points theory and non linear analysis. The different degrees can be considered as a generalization of the Winding number, Kronecker's characteristic and others

topological invariants. Different generalizations of the topological degree has been studied for multivalued transformations (see for example [7] - [10]).

1. Homological invariants for some classes of morphisms in the categories Top and $Top_{(2)}$

1.1. Notations and definitions. In the present section one introduces some basic topics which play an important role in the sequel.

A pair (X, A) of topological spaces such that $A \subseteq X$ is called a pair of topological spaces, in this context, a topological space X is conceived as the pair (X, \emptyset) . Let (X, A) and (S, T) be some pairs of topological spaces and $f \in Mor_{Top}(X, S)$ such that $f(A) \subseteq T$, then f is named a continuous single valued map of pairs of topological spaces and denoted $f : (X, A) \to (S, T)$. The collections of pairs of topological spaces and continuous single valued maps of pairs of topological maps with the composition of maps define a category denoted $Top_{(2)}$, it admits as a full subcategory the category Topof topological spaces and continuous single valued maps. Two morphisms f, $g \in Mor_{Top_{(2)}}((X, A), (S, T))$ are called homotopic if and only if there exists a morphism

 $\Phi \in Mor_{Top_{(2)}}((X, A) \times [0, 1], (S, T))$

such that $\Phi(x,0) = f(x)$ and $\Phi(x,1) = g(x)$ for every $x \in X$.

By H one denotes the covariant functor H of singular homology with coefficients in the abelian ring of integer \mathbb{Z} , defined from the category $Top_{(2)}$ in the category G_d of graded groups and homomorphisms of degree zero, where G the category of abelian groups and homomorphisms of groups is a full subcategory. Thus, for a given object $(X, A) \in Obj(Top_{(2)})$ and a morphism $f \in Mor_{Top_{(2)}}((X, A), (Y, B))$ the functor H assigns a graded group $\{H_i(X, A)\}_{i\geq 0}$ and a homomorphism of degree zero

$${H_i(f)}_{i>0} \in Mor_{G_d}({H_i(X,A)}_{i>0}, {H_i(Y,B)}_{i>0})$$

1.2. Degree for a class of morphisms in the category Top. An object Y in the category Top will be called a homological n-sphere if the topological space Y admits the same homological groups of the n-sphere.

Consider $f \in Mor_{Top}(X, Y)$ a morphism with source an arbitrary topological space X and target Y a homological *n*-sphere. Let $H_n(f) := f_{n*} \in Mor_G(H_n(X), H_n(Y))$ be the induced homomorphism of f and e be a generator of $H_n(Y)$.

Definition 1.1. The degree of a morphism $f \in Mor_{Top}(X, Y)$ is the integer denoted and defined as dg(f, X, Y) = |k|, where $k \in \mathbb{Z}$ verifies $a = k \cdot e$ and

$$\operatorname{Im} f_{n*} = \langle a \rangle \subseteq H_n(S^n) = \langle e \rangle.$$

Example 1.2. Consider the open subset:

 $U = \{(x_1, x_2) \in \mathbb{R}^2 \mid (x_1 - 1)^2 + x_2^2 < 1\} \cup \{(x_1, x_2) \in \mathbb{R}^2 \mid (x_1 + 1)^2 + x_2^2 < 1\}$ of \mathbb{R}^2 and let $X = \partial U$ be the boundary of U.

If x_0 is a fixed element of $\mathbb{R}^2 \setminus X$ one can define the morphism $f \in Mor_{Top}(X, \mathbb{R}^2 \setminus \{0\})$ given by the rule $f(x) = x - x_0$ for every $x \in X$.

Then the next equalities are satisfied:

$$dg(f, X, \mathbb{R}^2 \setminus \{0\}) = \begin{cases} 1, & \text{if } x_0 \in U\\ 0, & \text{if } x_0 \notin \overline{U} \end{cases}$$

Let us give some properties of this topological invariant.

One will begin by giving the relation between the Winding number deg f of a morphisms $f \in Mor_{Top}(S^n, S^n)$ defined on the sphere and its topological invariant $dg(f, S^n, S^n)$.

Proposition 1.3. Let $f \in Mor_{Top}(S^n, S^n)$ then $dg(f, S^n, S^n) = |\deg f|$.

Proof. Consider $H_n(S^n) = \langle e \rangle$ then $\operatorname{Im} f_{n*} = \langle f_{n*}(e) \rangle$, moreover $f_{n*}(e) = \deg f \cdot e$, hence $dg(f, S^n, S^n) = |\deg f|$.

Definition 1.4. A morphism $f \in Mor_{Top_{(2)}}((X, A), (Y, B))$ is called h - sectional if f admits a right inverse homotopy.

It is not difficult to check the next properties of this degree:

Proposition 1.5. The Topological degree satisfies the following assertions:

- (1) let $f \in Mor_{Top}(X, Y)$ be a constant map then dg(f, X, Y) = 0;
- (2) let $f \in Mor_{Top}(X, Y)$ be h sectional morphism then dg(f, X, Y) = 1;
- (3) Let Z be is a topological space and $(f,g) \in Mor_{Top}(X,Z) \times Mor_{Top}(Z,Y)$ then $dg(g \circ f, X, Y)$ is a multiple of dg(g, Z, Y);
- (4) let X_0 be a subset of X an object in the category Top and $f_{X_0} \in Mor_{Top}(X_0, Z)$ be the restriction of a morphism $f \in Mor_{Top}(X, Y)$ then there exists a natural number $n \in \mathbb{N}$ such that $dg(f_{X_0}, X_0, Y) = n \cdot dg(f, X, Y)$.

Proposition 1.6. Let Y_1 and Y_2 be both some homological *n*-spheres in the category Top and $(f,g) \in Mor_{Top}(X,Y_1) \times Mor_{Top}(Y_1,Y_2)$ be a pair of morphisms then $dg(g \circ f, X, Y_2) = dg(f, X, Y_1) \cdot dg(g, Y_1, Y_2)$

Proof. This is a consequence of the definition 1.1, of the topological degree. \Box

The topological degree is invariant for homotopic morphisms:

Proposition 1.7. Let $(f,g) \in Mor_{Top}(X,Y) \times Mor_{Top}(X,Y)$ then if f and g are homotopic dg(f,X,Y) = dg(g,X,Y).

Let us consider some aspects of the degree dg(f, X, Y) in that case where the target $Y = S^n$.

Proposition 1.8. Let $f \in Mor_{Top}(X, S^n)$ such that $dg(f, X, S^n) \neq 0$ then f is an epimorphism in the category Top.

Proof. Suppose that $f \in Mor_{Top}(X, S^n)$ is not an epimorphism so $f(X) \subset S^n$. Let $y \in S^n \setminus f(X)$, then one can diagramed:

$$egin{array}{ccc} X & \stackrel{f}{
ightarrow} & S^n \ & \searrow & \uparrow i \ & & S^n \diagdown \{y\} \end{array}$$

where \tilde{f} is the submap of f and i is the canonical injection. One can conclude by remarking that $H_n(S^n \setminus \{y\})$ is a trivial group.

Proposition 1.9. Let $f, g \in Mor_{Top}(X, S^n)$ then if $dg(f) \neq dg(g)$ the morphisms f and g admit at least a coincidence point in X.

Proof. Indeed, if $f(x) \neq g(x)$ for every element $x \in X$ then for $(x, t) \in X \times [0, 1]$ the vector field $v(x, t) = (1 - t) \cdot f(x) + t \cdot (-g)(x) \in \mathbb{R}^{n+1}$ is free of zero. This finding offers the opportunity to get the morphism $F \in Mor_{Top}(X \times [0, 1], S^n)$ where, $F(x, t) = \frac{v(x, t)}{\|v(x, t)\|}$ for all element (x, t) from the source $X \times [0, 1]$. The morphism F defines a homotopy between f and (-g). Hereafter, from propositions 1.7 and the definition 1.1, one takes $dg(f, X, S^n) = dg(-g, X, S^n) = dg(g, X, S^n)$. □

1.3. Degree for a class of morphisms in the category $Top_{(2)}$. An object $(Y, B) \in Obj(Top_{(2)})$ is called a homological *n*-sphere if $H_0(Y, B) = H_n(Y, B)$ isomorphic to the abelian ring of integers \mathbb{Z} and $H_i(Y, B) = \{0\}$ for all other indices. For more notions one this topics see [9].

For instance, the pairs of spaces $(\mathbb{R}^n, \mathbb{R}^n \setminus \{0\})$; (B^n, S^{n-1}) where B^n is the closed ball in \mathbb{R}^n and $S^{n-1} = \partial B^n$, are some *n*-spheres in that category.

Definition 1.10. The degree of a morphism $f \in Mor_{Top_{(2)}}((X, A), (Y, B))$ where (Y, B) is a homological *n*-sphere with $H_n(Y, B) = \langle \eta \rangle$ is denoted and defined by dgr(f, (X, A), (Y, B)) = |k|, where $Im f_{n*} = \langle b \rangle$ and $b = k \cdot \eta$.

The next properties are obvious.

Proposition 1.11. The following assertions are satisfied:

- (1) if a morphism $f \in Mor_{Top_{(2)}}((X, A), (Y, B))$ is a constant map then dgr(f, (X, A), (Y, B)) = 0;
- (2) if $(f,g) \in Mor_{Top_{(2)}}((X,A), (X',A')) \times Mor_{Top_{(2)}}((X',A'), (Y,B))$ then there exits an integer $k \in \mathbb{N}$ such that :

 $dgr(g \circ f, (X, A), (Y, B)) = k \cdot dgr(g, (X', A'), (Y, B));$

(3) let $(X_0, A_0) \subseteq (X, A)$ and $f_0 \in Mor_{Top_{(2)}}((X_0, A_0), (Y, B))$ be the submap of the morphism $f \in Mor_{Top_{(2)}}((X, A), (Y, B))$ then there exists a natural number $k \in \mathbb{N}$ such that :

$$dgr(f_0, (X_0, A_0), (Y, B)) = k \cdot dgr(f, (X, A), (Y, B))$$

(4) let (Y_1, B_1) and (Y_2, B_2) be some n-spheres in the category $Top_{(2)}$ and $(f,g) \in Mor_{Top_{(2)}}((X, A), (Y_1, B_1)) \times Mor_{Top_{(2)}}((Y_1, B_1), (Y_2, B_2))$ be a pair of morphisms then :

 $dgr(g \circ f, (X, A), (Y_2, B_2)) = dgr(f, (X, A), (Y_1, B_1)) \cdot dgr(g, (Y_1, B_1), (Y_2, B_2))$

(5) if $f, g \in Mor_{Top_{(2)}}((X, A), (Y, B))$ are some homotopic morphisms then

dgr(f, (X, A), (Y, B)) = dgr(g, (X, A), (Y, B)).

This homological invariant satisfies some more specific properties. Let us describe some of them.

Proposition 1.12. Let $Z \subset Int(A) \subseteq A \subseteq \overline{A} \subset X$ and $f \in Mor_{Top_{(2)}}((X, A), (Y, B))$

then

$$dgr(f, (X \setminus Z, A \setminus Z), (Y, B)) = dgr(f, (X, A), (Y, B))$$

where $\widetilde{f} \in Mor_{Top_{(2)}}((X \setminus Z, A \setminus Z), (Y, B))$ is the submap of the morphism f on the pair $(X \setminus Z, A \setminus Z)$.

Proof. This is a consequence of the following commutative diagram:

$$\begin{array}{ccc}
H_n(X,A) & \searrow f_{n_*} \\
i_{n_*} \uparrow & H_n(Y,B) \\
H_n(X \backslash Z, A \backslash Z) & \nearrow \widetilde{f}_{n_*}
\end{array}$$

where $i \in Mor_{Top_{(2)}}((X \setminus Z, A \setminus Z), (X, A))$ is the natural injection. From excision theorem one infers that i_{n*} is an isomorphism and concludes the proof.

Proposition 1.13. Let $f \in Mor_{Top_{(2)}}((X, A), (Y, B))$ be a morphism such that $dgr(f, (X, A), (Y, B)) \neq 0$ then there exist $x \in X \setminus A$ and $y \in Y \setminus B$ such that f(x) = y.

Proof. Indeed, if $f(x) \notin Y \setminus B$ for every element $x \in X \setminus A$ on can get the following commutative diagram:

$$\begin{array}{ccc} H_n(X,A) & \stackrel{f_{n*}}{\longrightarrow} & H_n(Y,B) \\ \widetilde{f}_{n*} \downarrow & \nearrow i_{n*} \\ H_n(B,B) \end{array}$$

where $i \in Mor_{Top_{(2)}}((B,B),(Y,B))$ is the natural injection and $\tilde{f} = f$. One concludes by observing that $H_n(B,B)$ is a trivial group.

Corollary 1.14. Let $f \in Mor_{Top}(X, \mathbb{R}^n)$ be a morphism in the category Top and A be a closed subset of X such that $f(a) \neq 0$ for every $x \in A$, then if the degree of the morphism $f \in Mor_{Top_{(2)}}((X, A), (\mathbb{R}^n, \mathbb{R}^n \setminus \{0\}))$ is not zero, there exists $x_0 \in X \setminus A$ such that $f(x_0) = 0$.

Corollary 1.15. Let $f \in Mor_{Top}(B^n, \mathbb{R}^n)$ such that $f(x) \neq 0$ for every element $x \in \partial B^n = S^{n-1}$ then if the degree of the morphism

$$f \in Mor_{Top_{(2)}}((B^n, S^{n-1}), (\mathbb{R}^n, \mathbb{R}^n \setminus \{0\}))$$

is not zero there exists at least an element x in the interior of the ball such that f(x) = 0.

2. Homological invariant for a class of multivalued Transformations

Let $(X, A), (S, T) \in Obj(Top_{(2)})$ a correspondence $F : (X, A) \to (S, T)$ which assigns for each element $x \in X$ a subset $F(x) \subseteq S$, and $F(A) = \bigcup_{a \in A} F(a) \subseteq T$ is named a multivalued transformation, the graph of F denoted Γ_F is the pair $(\Gamma_F^X, \Gamma_F^A) \in Obj(Top_{(2)})$, where $\Gamma_F^X = \{(x, s) \in X \times S \mid s \in F(x)\}$ and $\Gamma_F^A = \{(a, t) \in A \times T \mid t \in F(a)\}.$

A representation of a multivalued transformation $F : (X, A) \to (S, T)$ is a quintuple Q = [(X, A), (S, T), (M, N), p, q] where

 $(p,q) \in Mor_{Top_{(2)}}((M,N),(X,A)) \times Mor_{Top_{(2)}}((M,N),(S,T))$

and $q(p^{-1}(x)) = F(x)$ for every element $x \in X$. In the case when $p := t_F \in Mor_{Top_{(2)}}((\Gamma_F^X, \Gamma_F^A), (X, A))$ and $q := r_F \in Mor_{Top_{(2)}}((\Gamma_F^X, \Gamma_F^A), (S, T))$ are the natural projections the quintuple $\tilde{Q} = [(X, A), (S, T), (\Gamma_F^X, \Gamma_F^A), t_F, r_F]$ is named the canonical representation of F.

2.1. Degree for multivalued transformations defined in homological *n*-spheres. Let Y_1 and Y_2 be both some homological *n*-spheres and $F: Y_1 \to Y_2$ be a multivalued transformation with a representation $Q = [Y_1, Y_2, X, p, q]$.

Definition 2.1. The degree of a multivalued transformation $F: Y_1 \to Y_2$ relative to the representation Q is denoted and defined by $\mathfrak{D}g(F,Q) = dg(p,X,Y_1) \cdot dg(q,X,Y_2)$.

The degree $\mathfrak{D}g(F, \tilde{Q})$ of F relative to the canonical representation \tilde{Q} will be called the degree of the multivalued transformation F and will denoted by $\mathfrak{D}g(F)$.

Let us give some properties of this homological invariant.

Proposition 2.2. Let $Q = [Y_1, Y_2, X, p, q]$ be a representation of F, then $\mathfrak{D}g(F,Q)$ is a multiple of $\mathfrak{D}g(F)$.

Proof. One can consider the following commutative diagram:

$$\begin{array}{cccc} & & \Gamma_F \\ & & \Gamma_F \swarrow & \uparrow \lambda & \searrow^{r_F} \\ Y_1 & \xleftarrow{p} & X & \xrightarrow{q} & Y_2 \end{array}$$

where $\lambda(x) = (p(x), q(x))$ for every element $x \in X$. One concludes by using assertion 3 of proposition 1.5.

Proposition 2.3. Let $F, G : Y_1 \to Y_2$ be two multivalued transformations such that $G(x) \subseteq F(x)$ for every element $x \in Y_1$ then $\mathfrak{D}g(G) = k \cdot \mathfrak{D}g(F)$ for some integer $k \in \mathbb{N}$.

Proof. Under the hypothesis, one obtains that $\Gamma_G \subseteq \Gamma_F$. One concludes the proof with the following commutative diagram:

and by referring to the assertion 3 of proposition 1.5.

What happened if one gets a morphism $f \in Mor_{Top}(Y_1, Y_2)$ and considers it as a multivalued morphism in the following sense $F(x) = \{f(x)\}$ for every element $x \in Y_1$. In such situation, one has which follows:

Proposition 2.4. Let $f \in Mor_{Top}(Y_1, Y_2)$ and $F : Y_1 \to Y_2$ be the multivalued transformation given by the rule $F(x) = \{f(x)\} := f(x)$ for every element $x \in Y_1$, then $\mathfrak{D}g(F) = dg(f, Y_1, Y_2)$.

 Y_2

Proof. It is a consequence of the following commutative diagram:

$$\begin{array}{ccc} \Gamma_f & \stackrel{r_f=r_F}{\to} \\ t_f = t_F & \downarrow \\ & Y_1 & \swarrow \\ & f \end{array}$$

where the morphism $t_f \in Mor_{Top}(\Gamma_f, Y_1)$ realizes a homeomorphism.

Corollary 2.5. Let $G : Y_1 \to Y_2$ be a multivalued mapping which admits a selector $f \in Mor_{Top}(Y_1, Y_2)$ then $dg(f, Y_1, Y_2) = k \cdot \mathfrak{D}g(G)$ for some natural number $k \in \mathbb{N}$.

Proof. Indeed $F(x) := \{f(x)\} \subseteq G(x)$ for every $x \in Y_1$ and thus one can conclude by referring to the propositions 2.3 and 2.4.

Proposition 2.6. Let Y_1 , Y_2 and Y_3 be some homological n-spheres, $F: Y_1 \to Y_2$ be a multivalued transformation and $f \in Mor_{Top}(Y_2, Y_3)$ then $dg(f, Y_1, Y_2) \cdot \mathfrak{D}g(F) = k \cdot \mathfrak{D}g(f \circ F)$ for some $k \in \mathbb{N}$.

Proof. Of course, the quintuple $Q = [Y_1, Y_2, \Gamma_F, t_F, f \circ r_F]$ is a representation of the multivalued morphism $f \circ F : Y_1 \to Y_2$ therefore, from proposition 1.6 one obtains $\mathfrak{D}g(f \circ F, Q) = dg(f, Y_1, Y_2) \cdot \mathfrak{D}g(F)$ one concludes thanks to proposition 2.2.

Proposition 2.7. Let Y be a homological n-sphere and $F : Y \to S^n$ be a multivalued transformation such that $\mathfrak{D}g(F)$ is different from zero then $F(Y) = S^n$.

Proof. Of course, in this case $dg(r_F, \Gamma_F, S^n) \neq 0$ one concludes by referring to the proposition 1.8.

Definition 2.8. Two multivalued transformations $F_0, F_1 : Y_1 \to Y_2$ defined on some homological *n*-spheres Y_1 and Y_2 are called homotopic if there exists a quintuple $[Y_1, Y_2, X \times [0, 1], \Phi, \Psi]$ such that $Q_0 = [Y_1, Y_2, X, \Phi_0, \Psi_0]$ and $Q_1 = [Y_1, Y_2, X, \Phi_1, \Psi_1]$ realize some representations of F_0 and F_1 respectively, where $\Phi_t : X \to S^n$ and $\Psi_t : X \to S^n$ are defined by the rules $\Phi_t(x) = \Phi(x, t),$ $\Psi_t(x) = \Psi(x, t)$ for every element $(x, t) \in X \times \{0, 1\}$.

Proposition 2.9. Let $F_0, F_1 : Y_1 \to Y_2$ be some multivalued transformations defined on some homological n-spheres Y_1 and Y_2 then if F_0 and F_1 are homotopic there exist some natural numbers $k_0, k_1 \in \mathbb{N}$ such that $k_0 \cdot \mathfrak{D}g(F_0) = k_1 \cdot \mathfrak{D}g(F_1)$.

Proof. For this purpose one refers to propositions 1.7 and 2.2.

2.2. Degree for multivalued transformations with images in homological *n*-spheres in the category $Top_{(2)}$. In this section one displays a homological invariant for multivalued transformations acting between homological *n*-spheres of the category $Top_{(2)}$

Let (Y_0, B_0) and (Y_1, B_1) be some homological *n*-spheres and $F : (Y_0, B_0) \rightarrow (Y_1, B_1)$ be a multivalued transformation that admits a quintuple

$$Q = [(Y_0, B_0), (Y_1, B_1), (M, N), p, q]$$

as a representation.

Definition 2.10. The degree of a multivalued transformation $F : (Y_0, B_0) \rightarrow (Y_1, B_1)$ relative to the representation Q is denoted and defined by

$$\mathfrak{D}gr(F,Q) = dgr(p,(M,N),(Y_0,B_0)) \cdot dgr(q,(M,N),(Y_1,B_1)).$$

The degree of F relative to the canonical representation

$$\widetilde{Q} = [(Y_0, B_0), (Y_1, B_1), (\Gamma_F^{Y_0}, \Gamma_F^{B_0}), t_F, r_F]$$

will be denoted by $\mathfrak{D}gr(F) := \mathfrak{D}gr(F, \widetilde{Q}).$

In the sequel, one describes some properties of this homological invariant.

Proposition 2.11. Let $Q = [(Y_0, B_0), (Y_1, B_1), (X, X'), p, q]$ be a representation of a multivalued transformation $F : (Y_0, B_0) \to (Y_1, B_1)$ then there exists a natural number $k \in \mathbb{N}$ such that $\mathfrak{D}gr(F, Q) = k \cdot \mathfrak{D}gr(F)$.

Proof. Of course, one can consider the next commutative diagram:

$$\begin{array}{cccc} (Y_0, B_0) & \xleftarrow{p} & (X, X') & \xrightarrow{q} & (Y_1, B_1) \\ & t_F^{\nwarrow} & \downarrow \lambda & \nearrow r_F \\ & & (\Gamma_F^{Y_0}, \Gamma_F^{B_0}) \end{array}$$

where $\lambda(x) = (p(x), q(x))$ for every element $x \in X$. One concludes by using the assertion 2 of the proposition 1.11.

© AGT, UPV, 2015

Appl. Gen. Topol. 16, no. 1 26

Corollary 2.12. Let $F : (Y_0, B_0) \to (Y_1, B_1)$ be a multivalued transformation $Q = [Y_0, Y_1, X, p, q]$ be a representation of $F : Y_0 \to Y_1$ then the quintuple $Q = [(Y_0, B_0), (Y_1, B_1), (X, p^{-1}(B_0)), p, q]$ is a representation of $F : (Y_0, B_0) \to (Y_1, B_1)$ and there exists a natural number $k \in \mathbb{N}$ such that $\mathfrak{D}gr(F, Q) = k \cdot \mathfrak{D}gr(F)$.

Proof. This is a consequence of the definition 2.10 and the proposition 2.11. \Box

Example 2.13. Let $B_1(0)$ be the unit ball of the complex plane \mathbb{C} and $S_1(0) = \partial B_1(0)$ be the boundary of $B_1(0)$ and let $F : (B_1(0), S_1(0)) \to (\mathbb{C}, \mathbb{C} \setminus \{0\})$ be the multivalued transformation defined by the rule $F(z) = \sqrt[\eta]{z}$. The quintuple

$$Q = [(B_1(0), S_1(0)), (\mathbb{C}, \mathbb{C} \setminus \{0\}), (B_1(0), S_1(0)), p, q]$$

where $p(w) = w^n$ and q(w) = w for every element $w \in B_1(0)$, is a representation of the multivalued mapping F.

Moreover, $dgr(p, (B_1(0), S_1(0)), (B_1(0), S_1(0))) = dg(p) = n$ and $dgr(q, (B_1(0), S_1(0)), (\mathbb{C}, \mathbb{C} \setminus \{0\})) = dg(q) = 1$ so Dgr(F, Q) = n.

On the other hand, the single valued map $\lambda : (B_1(0), S_1(0)) \to (\Gamma_F^{B_1(0)}, \Gamma_F^{S_1(0)})$ where $\lambda(w) = (p(w), q(w))$ is an isomorphism in the category $Top_{(2)}$ this implies that the induced homomorphism in homology is an isomorphism in the category \mathcal{G} of groups and homomorphisms of groups and thus Dgr(F) = Dgr(F, Q) = n.

Proposition 2.14. Let F, G: $(Y_0, B_0) \rightarrow (Y_1, B_1)$ be both some multivalued transformations such that $G(x) \subseteq F(x)$ for every element $x \in Y_0$ then $\mathfrak{D}gr(G) = k \cdot \mathfrak{D}gr(F)$ for some natural number $k \in \mathbb{N}$.

Proof. Under the hypothesis, one obtains that $(\Gamma_G^{Y_0}, \Gamma_G^{B_0}) \subseteq (\Gamma_F^{Y_0}, \Gamma_F^{B_0})$. Therefore one infers the assertion from, the following commutative diagram:

$$\begin{array}{ccc} {}^{t_{F}}\swarrow & (\Gamma_{F}^{\mathbf{Y}_{0}}, \Gamma_{F}^{\mathbf{B}_{0}}) & \searrow^{r_{F}} \\ (Y_{0}, B_{0}) & \uparrow i & (Y_{1}, B_{1}) \\ {}^{t_{G}} \nwarrow & (\Gamma_{G}^{\mathbf{Y}_{0}}, \Gamma_{G}^{\mathbf{B}_{0}}) & \nearrow_{r_{G}} \end{array}$$

and by referring to the assertion 2 of the proposition 1.11

Proposition 2.15. Let $f \in Mor_{Top_{(2)}}((Y_0, B_0), (Y_1, B_1))$ and $F : (Y_0, B_0) \rightarrow (Y_1, B_1)$ be the multivalued transformation given by the rule $F(x) = \{f(x)\} := f(x)$ for every element $x \in Y_0$, then $\mathfrak{D}gr(F) = dgr(f, (Y_0, B_0), (Y_1, B_1))$.

Proof. For this purpose one can consider the next diagram:

$$(Y_0, B_0) \stackrel{t_f = t_F}{\longleftrightarrow} (\Gamma_f^{\mathbf{Y}_0}, \Gamma_f^{\mathbf{B}_0}) \stackrel{r_f = r_F}{\to} (Y_1, B_1)$$

Corollary 2.16. Let $G : (Y_0, B_0) \to (Y_1, B_1)$ be a multivalued transformation which admits a selector $f \in Mor_{Top(2)}((Y_0, B_0), (Y_1, B_1))$ then:

$$dgr(f, (Y_0, B_0), (Y_1, B_1)) = k \cdot \mathfrak{D}gr(G)$$

for some natural number $k \in \mathbb{N}$.

Appl. Gen. Topol. 16, no. 1 27

Proof. This is a consequence of the propositions 2.14 and 2.15.

Proposition 2.17. Let (Y_0, B_0) , (Y_1, B_1) and (Y_2, B_2) be some homological *n*-spheres, $F : (Y_0, B_0) \to (Y_1, B_1)$ be a multivalued transformation and $f \in Mor_{Top_{(2)}}((Y_1, B_1), (Y_2, B_2))$ then

$$dgr(f, (Y_1, B_1), (Y_2, B_2)) \cdot \mathfrak{D}gr(F) = k \cdot \mathfrak{D}gr(f \circ F)$$

for some natural number $k \in \mathbb{N}$.

Proof. Of course, the quintuple $Q = [(Y_0, B_0), (Y_2, B_2), (\Gamma_F^{Y_0}, \Gamma_F^{B_0}), t_F, f \circ r_F]$ is a representation of the multivalued transformation $f \circ F : (Y_0, B_0) \to (Y_2, B_2)$ therefore, from the assertion 4 of proposition 1.11 one obtains the next equality:

$$\mathfrak{D}gr(f \circ F, Q) = dgr(f, (Y_1, B_1), (Y_2, B_2)) \cdot \mathfrak{D}gr(F).$$

one concludes due to proposition 2.11

 \Box

Definition 2.18. Let $F_0, F_1 : (X, A) \to (S, T)$ be some multivalued transformations, F_0 and F_1 are called homotopic if there exists a quintuple

$$Q = [(X, A), (S, T), (M, N) \times [0, 1], \Phi, \Psi]$$

such that the following quintuples:

$$Q_0 = [(X, A), (S, T), (M, N), \Phi_0, \Psi_0]$$

and

$$Q_1 = [(X, A), (S, T), (M, N), \Phi_1, \Psi_1]$$

are some representations of F_0 and F_1 respectively and where $\Phi_t : (M, N) \to (X, A)$ and $\Psi_t : (M, N) \to (X, A)$ are defined by the rules $\Phi_t(m) = \Phi(m, t)$, $\Psi_t(m) = \Psi(m, t)$ for every element $(m, t) \in M \times \{0, 1\}$.

Proposition 2.19. Let $F_0, F_1 : (Y_0, B_0) \to (Y_1, B_1)$ be some multivalued transformations then if F_0 and F_1 are homotopic there exist some representations Q_0 and Q_1 of F_0 and F_1 respectively such that $\mathfrak{D}gr(F_0, Q_0) = \mathfrak{D}gr(F_1, Q_1)$.

Proof. It is a consequence of assertion 5 of proposition 1.11.

Proposition 2.20. Let $F : (Y_0, B_0) \to (\mathbb{R}^n, \mathbb{R}^n \setminus \{0\})$ be a multivalued transformation such that $\mathfrak{D}gr(F) \neq 0$ then there exists an element $y \in Y_0 \setminus B_0$ such that $0 \in F(y)$.

Proof. Indeed, $\mathfrak{D}gr(F) \neq 0$ so $dgr(r_F, (\Gamma_F^{Y_0}, \Gamma_F^{B_0}), (\mathbb{R}^n, \mathbb{R}^n \setminus \{0\})) \neq 0$ after which one can conclude due to the proposition 1.13.

Let S be the boundary of a closed ball B of \mathbb{R}^n and $F : B \to \mathbb{R}^n$ be a multivalued transformation. The multivalued vector field induced by F noted by Φ is the multivalued transformation given by the rule $\Phi(x) = x - F(x)$ for every element $x \in B$. It is obvious that if $Q = [B, \mathbb{R}^n, \Gamma_F, p, q]$ is the canonical representation of F and the multivalued vector field induced by F is such that $\Phi : (B, S) \to (\mathbb{R}^n, \mathbb{R}^n \setminus \{0\})$ then the quintuple $\hat{Q} =$

 $[(B,S), (\mathbb{R}^n, \mathbb{R}^n \setminus \{0\}), (\Gamma_F^B, \Gamma_F^S), p, p-q)]$ is a representation of the multivalued vector field Φ .

In the sequel the degrees:

$$dgr(p, (\Gamma_F^B, \Gamma_F^S), (\mathbb{R}^n, \mathbb{R}^n \setminus \{0\}))$$

and

$$dgr(p-q, (\Gamma_F^B, \Gamma_F^S), (\mathbb{R}^n, \mathbb{R}^n \setminus \{0\}))$$

will be denoted by dgr(p) and dgr(p-q) respectively.

Proposition 2.21. Let $F: B \to \mathbb{R}^n$ be a multivalued transformation which is free of fixed point on the boundary S of a closed ball B then if the topological degree $\mathfrak{D}gr(\Phi)$ of the multivalued vector field induced by F is not zero i.e. $Dgr(\Phi) \neq 0$, the multivalued transformation $F: B \to \mathbb{R}^n$ admits a fixed point in the interior of the ball B.

Proof. This is a consequence of proposition 2.20.

Proposition 2.22. Let $F : B \to \mathbb{R}^n$ be a multivalued transformation free of fixed point on the boundary S of a ball B and $F(S) \subseteq B$ then the following equivalence is satisfied:

$$\mathfrak{D}gr(\Phi, \widehat{Q}) \neq 0$$
 if and only if $dgr(p) \neq 0$.

Proof. Consider the morphisms $p, p - q \in Mor_{Top_{(2)}}((\Gamma_F^B, \Gamma_F^S), (\mathbb{R}^n, \mathbb{R}^n \setminus \{0\}))$ and let $\Psi \in Mor_{Top}(\Gamma_F^B \times [0, 1]), \mathbb{R}^n)$ be a morphism given by the rule:

$$\Psi((x,y),\lambda) = p(x,y) - \lambda \cdot q(x,y)$$

for every element $((x, y), \lambda) \in \Gamma_F^B \times [0, 1]$. It follows that the morphism:

$$\Psi \in Mor_{Top_{(2)}}((\Gamma_F^B, \Gamma_F^S) \times [0, 1]), (\mathbb{R}^n, \mathbb{R}^n \setminus \{0\}))$$

is a homotopy between the morphisms:

$$p, p - q \in Mor_{Top_{(2)}}((\Gamma_F^B, \Gamma_F^S), (\mathbb{R}^n, \mathbb{R}^n \setminus \{0\}))$$

therefore from assertions 5 of proposition 1.11 one deduces what follows :

$$dgr(p) = dgr(p-q)$$

and thus one obtains the next equality:

$$\mathfrak{D}gr(\Phi,\widehat{Q}) = (dgr(p))^2$$
.

Hence, $\mathfrak{D}gr(\Phi, \widehat{Q}) \neq 0$ if and only if $dgr(p) \neq 0$.

The last proposition 2.22, permits to obtain a generalization of the theorems due to Eilenberg-Montgomery [3] and Kakutani [8].

© AGT, UPV, 2015

Theorem 2.23. Let $F : B \to \mathbb{R}^n$ be a multivalued transformation which satisfies the following conditions:

(1)
$$dgr(p) \neq 0$$
,
(2) $F(S) \subseteq B$.

Then the multivalued transformation F admits in the ball a fixed point.

Proof. Of course, if F has a fixed point on S then the conclusion of the theorem is satisfied. Otherwise, if F is free of fixed point on S then $\mathfrak{D}gr(\Phi) \neq 0$. One concludes the proof from proposition 2.21.

ACKNOWLEDGEMENTS. Project supported by CNEPRU No B00920110092 and PNR / ATRST No 8/u250/713. Laboratory M.M.E.R.E. U.M.1 Constantine and Russian FBR grant 11-01 -00382-a.

References

- Yu. G. Borisovich, B. D. Gel'man, A. D. Myshkis and V. V. Obukhovskii, *Topological methods in the fixed point theory of multivalued maps*, Uspehi Mat. Nauk **35**, no. 1 (1980), 59–126 (in Russian); English translation: Russian Math. Surveys **35** (1980), 65–143.
- [2] A. Dold, Lectures on Algebraic Topology, Springer-Verlag, Berlin-Heidelberg-New York, 1972.
- [3] S. Eilenberg and D. Montgomery, Fixed point theorems for multivalued transformations, Amer. J. Math 68 (1946), 214–222.
- [4] S. Eilenberg and N. Steenrod, Foundations of Algebraic Topology, Princeton university Press, Princeton, New Jersey, 1952.
- [5] L. Górniewicz, Homological methods in fixed point theory of multi-valued maps, Dissertationes Math. Warsaw 129 (1976), 1–66.
- [6] L. Górniewicz, Topological Fixed Point Theory of Multivalued Mappings, Kluwer Acad. Publ., Dordrecht-Boston-London, 1999.
- [7] A. Granas, Sur la notion du degre topologique pour une certaine classe de transformations multivalentes dans les spaces de Banach, Bull. Acad. polon. sci. Ser. sci. math., astron. et phys. 7, no. 4 (1959), 191–194.
- [8] S. Kakutani, A generalization of Brouwer's fixed point theorem, Duke Mathematical Journal 8 (1941), 457–459.
- [9] R. M. Switzer, Algebraic Topology- Homotopy and Homology, Springer Verlag, Berlin-Heidelberg-New York, 1975.
- [10] N. M Benkafadar and B. D. Gel'man, Generalized local degree for multi-valued mappings, International Journal of Math. Game Theory and Algebra 10, no. 5 (2000), 413–434.