

Appl. Gen. Topol. 16, no. 1(2015), 75-80 doi:10.4995/agt.2015.3244 © AGT, UPV, 2015

When is a space Menger at infinity?

Leandro F. Aurichi a and Angelo Bella b

 a Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, São Carlos, SP, Brazil (aurichi@icmc.usp.br)

 b Dipartimento di Matematica, Città Universitaria, Catania, Italy (bella@dmi.unict.it)

Abstract

We try to characterize those Tychonoff spaces X such that $\beta X \setminus X$ has the Menger property.

2010 MSC: 54F65; 54D40; 54D20.

KEYWORDS: Menger; remainder.

1. INTRODUCTION

A space X is Menger (or has the Menger property) if for any sequence of open coverings $\{\mathcal{U}_n : n < \omega\}$ one may pick finite sets $\mathcal{V}_n \subseteq \mathcal{U}_n$ in such a way that $\bigcup \{\mathcal{V}_n : n < \omega\}$ is a covering. This equivals to say that X satisfies the selection principle $S_{\text{fin}}(\mathcal{O}, \mathcal{O})$. It is easy to see the following chain of implications:

 σ -compact \longrightarrow Menger \longrightarrow Lindelöf

An important result of Hurewicz [4] states that a space X is Menger if and only if player 1 does not have a winning strategy in the associated game $G_{\text{fin}}(\mathcal{O}, \mathcal{O})$ played on X. This highlights the game-theoretic nature of the Menger property, see [7] for more.

Henriksen and Isbell ([3]) proposed the following:

Definition 1.1. A Tychonoff space X is Lindelöf at infinity if $\beta X \setminus X$ is Lindelöf.

They discovered a very elegant duality in the following:

Received 26 August 2014 - Accepted 2 January 2015

L. F. Aurichi and A. Bella

Proposition 1.2 ([3]). A Tychonoff space is Lindelöf at infinity if and only if it is of countable type.

A space X is of countable type provided that every compact set can be included in a compact set of countable character in X.

A much easier and well-known fact is:

Proposition 1.3. A Tychonoff space is Čech-complete if and only if it is σ -compact at infinity.

These two propositions suggest the following:

Question 1.4. When is a Tychonoff space Menger at infinity?

Before beginning our discussion here, it is useful to note these well known facts:

Proposition 1.5. The Menger property is invariant by perfect maps.

Corollary 1.6. X is Menger at infinity if, and only if, for any Y compactification of X, $Y \setminus X$ is Menger.

Fremlin and Miller [6] proved the existence of a Menger subspace X of the unit interval [0, 1] which is not σ -compact. The space X can be taken nowhere locally compact and so $Y = [0, 1] \setminus X$ is dense in [0, 1]. Since the Menger property is invariant under perfect mappings, we see that $\beta Y \setminus Y$ is still Menger. Therefore, a space can be Menger at infinity and not σ -compact at infinity. Another example of this kind, stronger but not second countable, is Example 3.1 in the last section.

On the other hand, the irrational line shows that a space can be Lindelöf at infinity and not Menger at infinity.

Consequently, the property \mathcal{M} characterizing a space to be Menger at infinity strictly lies between countable type and Čech-complete.

Of course, taking into account the formal definition of the Menger property, we cannot expect to have an answer to Question 1.4 as elegant as Henriksen-Isbell's result.

2. A CHARACTERIZATION

Definition 2.1. Let $K \subset X$. We say that a family \mathcal{F} is a **closed net at** K if each $F \in \mathcal{F}$ is a closed set such that $K \subset F$ and for every open A such that $K \subset A$, there is an $F \in \mathcal{F}$ such that $F \subset A$.

Lemma 2.2. Let X be a T_1 space. If $(F_n)_{n \in \omega}$ is a closed net at K, for $K \subset X$ compact, then $K = \bigcap_{n \in \omega} F_n$.

Proof. Simply note that for each $x \notin K$, there is an open set V such that $K \subset V$ and $x \notin V$.

Lemma 2.3. Let Y be a regular space and let X be a dense subspace of Y. Let $K \subset X$ be a compact subset. If $(F_n)_{n \in \omega}$ is a closed net at K in X, then $(\overline{F_n}^Y)_{n \in \omega}$ is a closed net at K in Y. *Proof.* In the following, all the closures are taken in Y. Let A be an open set in Y such that $K \subset A$. By the compactness of K and the regularity of Y, there is an open set B such that $K \subset B \subset \overline{B} \subset A$. Thus, there is an $n \in \omega$ such that $K \subset F_n \subset B \cap X$. Note that $K \subset \overline{F_n} \subset \overline{B} \subset A$.

Lemma 2.4. Let X be a compact Hausdorff space. If $K = \bigcap_{n \in \omega} F_n$, where $(F_n)_{n \in \omega}$ is a decreasing sequence of closed sets, then $(F_n)_{n \in \omega}$ is a closed net at K.

Proof. If not, then there is an open set V such that $K \subset V$ and, for every $n \in \omega$, $F_n \setminus V \neq \emptyset$. By compactness, there is an $x \in \bigcap_{n \in \omega} F_n \setminus V = K \setminus V$. Contradiction with the fact that $K \subset V$.

Theorem 2.5. Let X be a Tychonoff space. X is Menger at infinity if, and only if, X is of countable type and for every sequence $(K_n)_{n\in\omega}$ of compact subsets of X, if $(F_p^n)_{p\in\omega}$ is a decreasing closed net at K_n for each n, then there is an $f: \omega \longrightarrow \omega$ such that $K = \bigcap_{n\in\omega} F_{f(n)}^n$ is compact and $(\bigcap_{k\leq n} F_{f(k)}^k)_{n\in\omega}$ is a closed net for K.

Proof. In the following, every closure is taken in βX .

Suppose that X is Menger at infinity. By Lemma 1.2 X is of countable type. Let $(F_n^n)_{p,n\in\omega}$ be as in the statement. Note that, by Lemma 2.3 and Lemma 2.2, $\bigcap_{p\in\omega} F_p^n = \bigcap_{p\in\omega} \overline{F_p^n}$ for each $n \in \omega$. Thus, for each $n \in \omega$, $(V_p^n)_{p\in\omega}$, where $V_p^n = \beta X \setminus \overline{F_p^n}$, is an increasing covering for $\beta X \setminus X$. Since $\beta X \setminus X$ is Menger, there is an $f : \omega \longrightarrow \omega$ such that $\beta X \setminus X \subset \bigcup_{n \in \omega} V_{f(n)}^n$. Note that $K = \bigcap_{n \in \omega} \overline{F_{f(n)}^n}$ is compact and it is a subset of X. By Lemma 2.4, $(\bigcap_{k\leq n} \overline{F_{f(k)}^k})_{n\in\omega}$ is a closed net at K in βX , therefore, $(\bigcap_{k\leq n} F_{f(k)}^k)_{n\in\omega}$ is a closed net at K in X. Conversely, for each $n \in \omega$, let \mathcal{W}_n be an open covering for $\beta X \setminus X$. We may suppose that each $W \in \mathcal{W}_n$ is open in βX . By regularity, we can take a refinement \mathcal{V}_n of \mathcal{W}_n such that, for every $x \in \beta X \setminus X$, there is a $V \in \mathcal{V}_n$ such that $x \in V \subset \overline{V} \subset W_V$ for some $W_V \in \mathcal{W}_n$. Since X is of countable type, By Lemma 1.2 we may suppose that each \mathcal{V}_n is countable. Fix an enumeration for each $\mathcal{V}_n = (V_k^n)_{k \in \omega}$. Define $A_k^n = \beta X \setminus (\bigcup_{j \le k} \overline{V_j^n})$. Note that each $K_n = \bigcap_{k \in \omega} \overline{A_k^n}$ is compact and a subset of X. By Lemma 2.4, $(\overline{A_k^n})_{k\in\omega}$ is a closed net at K_n . Thus, $(\overline{A_k^n}\cap X)_{k\in\omega}$ is a closed net at K_n in X. Therefore, there is $f: \omega \longrightarrow \omega$ such that $K = \bigcap_{n \in \omega} (\overline{A_{f(n)}^n} \cap X)$ is compact and $(\bigcap_{k \le f(n)} \overline{A_{f(k)}^k} \cap X)_{n \in \omega}$ is a closed net at K. So, by Lemma 2.3, $K = \bigcap_{n \in \omega} \overline{(A_{f(n)}^n \cap X)}$. Since $\bigcap_{n \in \omega} \overline{(A_{f(n)}^n \cap X)} = \bigcap_{n \in \omega} \overline{A_{f(n)}^n}$ and by the fact that $K \subset X$, it follows that $\beta X \setminus X \subset \bigcup_{n \in \omega} \beta X \setminus \overline{A_{f(n)}^n} \subset \bigcup_{n \in \omega} Int(\bigcup_{j \leq f(n)} \overline{V_j^n}) \subset U_{j \leq f(n)} \setminus V_{j}$ $\bigcup_{n\in\omega}\bigcup_{j\leq f(n)}W_{V_j^n}.$ Therefore, letting $\mathcal{U}_n=\{W_{V_j^n}:j\leq f(n)\}\subset\mathcal{W}_n,$ we see that the collection $\bigcup_{n \in \omega} \mathcal{U}_n$ covers $\beta X \setminus X$, and we are done.

Property \mathcal{M} given in the above theorem does not look very nice and we wonder whether there is a simpler way to describe it, at least in some special cases.

L. F. Aurichi and A. Bella

Recall that a metrizable space is always of countable type. Moreover, a metrizable space is complete if and only if it is σ -compact at infinity. Therefore, we could hope for a "nicer" \mathcal{M} in this case.

Question 2.6. What kind of weak completeness characterizes those metrizable spaces which are Menger at infinity?

Proposition 2.7. Let X be a Tychonoff space. If X is Menger at infinity then for every sequence $(K_n)_{n\in\omega}$ of compact sets, there is a sequence $(Q_n)_{n\in\omega}$ of compact sets such that:

- (1) each $K_n \subset Q_n$;
- (2) each Q_n has a countable base at X;
- (3) for every sequence (Bⁿ_k)_{n,k∈ω} such that, for every n ∈ ω, (Bⁿ_k)_{k∈ω} is a decreasing base at K_n, then there is a function f : ω → ω such that K = ∩_{n∈ω} Bⁿ_{f(n)} is compact and (∩_{k≤n} B^k_{f(k)})_{n∈ω} is a closed net at K.

Proof. Suppose X is Menger at infinity. Let $(K_n)_{n\in\omega}$ be a sequence of compact sets. Since X is Menger at infinity, X is Lindelöf at infinity. Thus, by Proposition 1.2, for each K_n , there is a compact $Q_n \supset K_n$ such that Q_n has a countable base. Now, let $(B_k^n)_{k,n}$ be as in 3. Since each Q_n is compact and X is regular, each $(\overline{B_k^n})_{k\in\omega}$ is a decreasing closed net at Q_n . Thus, by Theorem 2.5, there is an $f: \omega \longrightarrow \omega$ as we need.

To some extent, the Menger property is closer to σ - compactness rather than to Lindelöfness. Since a Čech- complete space has the Baire property, we may ask:

Question 2.8. Is it true that a space Menger at infinity has the Baire property?

We thank M. Sakai for calling our attention to the above question. He also noticed a partial answer to it:

Theorem 2.9 (Sakai). Let X be a first countable Tychonoff space. If X is Menger at infinity, then X is hereditarily Baire.

Proof. According to a result of Debs [2], a regular first countable space is hereditarily Baire if and only if it contains no closed copy of the space of rationals \mathbb{Q} . To finish, it suffices to observe that \mathbb{Q} is not Menger at infinity. \Box

We end this section presenting a selection principle that at first glance could be related with the Menger at infinity property.

Definition 2.10. We say that a family \mathcal{U} of open sets of X is an **almost** covering for X if $X \setminus \bigcup \mathcal{U}$ is compact. We call \mathcal{A} the family of all almost coverings for X.

Note that the property "being Menger at infinity" looks like something as $S_{fin}(\mathcal{A}, \mathcal{A})$, but for a narrow class of \mathcal{A} . We will see that the "narrow" part is important.

Proposition 2.11. If X satisfies $S_{fin}(\mathcal{A}, \mathcal{A})$, then X is Menger.

When is a space Menger at infinity?

Proof. Let $(\mathcal{U}_n)_{n \in \omega}$ be a sequence of coverings of X. By definition, for each $n \in \omega$, there is a finite $U_n \subset \mathcal{U}_n$, such that $K = X \setminus \bigcup_{n \in \omega} \bigcup U_n$ is compact. Therefore, there is a finite $W \subset U_n$ such that $K \subset \bigcup W$. Thus, $X = W \cup \bigcup_{n \in \omega} \bigcup U_n$.

Example 2.12. The space of the irrationals is an example of a space that is Menger at infinity but does not satisfy $S_{fin}(\mathcal{A}, \mathcal{A})$ (by the Proposition 2.11).

Example 2.13. The one-point Lindelöfication of a discrete space of cardinality \aleph_1 is an example of a Menger space which does not satisfy $S_{fin}(\mathcal{A}, \mathcal{A})$.

Example 2.14. ω is an example of a space that satisfies $S_{fin}(\mathcal{A}, \mathcal{A})$, but it is not compact.

Proof. Let $(\mathcal{V}_n)_{n \in \omega}$ be a sequence of almost coverings for ω . Therefore, for each $n, F_n = \omega \setminus \bigcup \mathcal{V}_n$ is finite. For each n, let $V_n \subset \mathcal{V}_n$ be a finite subset such that $F_{n+1} \setminus F_n \subset \bigcup V_n$ and $\min(\omega \setminus \bigcup_{k < n} V_k) \in V_n$. Note that $\omega \setminus \bigcup_{n \in \omega} \bigcup V_n = F_0$.

3. More than Menger at infinity

One may wonder whether the hypothesis "player 2 has a winning strategy in the Menger game $\mathsf{G}_{\mathrm{fin}}(\mathcal{O}, \mathcal{O})$ played on $\beta X \setminus X$ " is strong enough to guarantee that X is Čech-complete. It turns out this is not the case, as the following example shows.

Example 3.1. Take the usual space of rational numbers \mathbb{Q} and an uncountable discrete space D. Let $Y = \mathbb{Q} \times D \cup \{p\}$ be the one-point Lindelöfication of the space $\mathbb{Q} \times D$ and then let $X = \beta Y \setminus Y$. Since Y is nowhere locally compact, we have $Y = \beta X \setminus X$. X is not Čech-complete, since Y is not σ -compact, but player 2 has a winning strategy in $G_{\text{fin}}(\mathcal{O}, \mathcal{O})$ played on $\beta X \setminus X$. The latter assertion easily follows by observing that any open set containing p leaves out countably many points.

Therefore, to ensure the Čech-completeness of X, we need to assume something more on the space (see for instance Corollary 3.3 below). Moreover, the first example presented in the introduction shows that a metrizable space (actually a subspace of the real line) can be Menger at infinity, but not favorable for player 2 in the Menger game at infinity (see again Corollary 3.3).

Recall that a space X is sieve complete [5] if there is an indexed collection of open coverings $\langle \{U_i : i \in I_n\} : n < \omega \rangle$ together with mapps $\pi_n : I_{n+1} \to I_n$ such that $U_i = X$ for each $i \in I_0$ and $U_i = \bigcup \{U_j : j \in \pi_n^{-1}(i)\}$ for all $i \in I_n$. Moreover, we require that for any sequence of indexes $\langle i_n : n < \omega \rangle$ satisfying $\pi_n(i_{n+1}) = i_n$ if \mathcal{F} is a filterbase in X and U_{i_n} contains an element of \mathcal{F} for each $n < \omega$, then \mathcal{F} has a cluster point.

Every Čech-complete space is sieve complete and every sieve complete space contains a dense Čech-complete subspace. In addition, a paracompact sieve complete space is Čech-complete and a sieve complete space is of countable type [9].

L. F. Aurichi and A. Bella

Telgársky presented a characterization of sieve completeness in terms of the Menger game played on $\beta X \setminus X$ (note that in [8] the Menger game is called the Hurewicz game and is denoted by H(X)):

Theorem 3.2 (Telgársky [8]). Let X be a Tychonoff space. $\beta X \setminus X$ is favorable for player 2 in the Menger game if and only if X is sieve complete.

Since a sieve-complete space has the Baire property, Question 2.8 has a positive answer for spaces which are Menger favorable at infinity.

Taking into account that a paracompact sieve complete space is Cech-complete, we immediately get:

Corollary 3.3. Let X be a paracompact Tychonoff space. X is Čech-complete if and only if player 2 has a winning strategy in the game $G_{fin}(\mathcal{O}, \mathcal{O})$ played on $\beta X \setminus X$.

In particular:

Corollary 3.4. A metrizable space X is complete if and only if player 2 has a winning strategy in $G_{fin}(\mathcal{O}, \mathcal{O})$ played on $\beta X \setminus X$.

Corollary 3.5. A topological group G is Čech-complete if and only if player 2 has a winning strategy in $G_{fin}(\mathcal{O}, \mathcal{O})$ played on $\beta G \setminus G$.

Proof. Every topological group of countable type is paracompact. \Box

ACKNOWLEDGEMENTS. The first author was partially supported by FAPESP (2013/05469-7) and by GNSAGA.

References

- [1] L. F. Aurichi and A. Bella, On a game theoretic cardinality bound, Topology Appl., to appear.
- [2] G. Debs, Espaces héréditairement de Baire, Fund. Math. 129 (1988), 199–206.
- [3] M. Henriksen and J. Isbell, Some properties of compactifications., Duke Math. J. 25 (1958), 83–106.
- [4] W. Hurewicz, Uber eine verallgemeinerung des Borelschen theorems, Mathematische Zeitschrift. 24 (1925), 401–421.
- [5] E. Michael, Complete spaces and triquotient maps, Illinois J. Math. 21 (1977), 716–733.
- [6] A. Miller and D. Fremlin, On some properties of Hurewicz, Menger and Rothberger, Fund. Math. 129 (1988), 17–33.
- [7] M. Sakai and M. Scheepers, *The combinatorics of open covers*, Recent progress in General Topology III, J. van Mill and K. P. Hart ed., (2014) 751–799.
- [8] R. Telgarsky, On games of Topsoe, Math. Scand. 54 (1984), 170–176.
- [9] F. Topsoe, *Topological games and Čech-completeness*, Proceedings of the V Prague Topological Symposium, 1981, J. Novak ed. (1982), 613–630.

© AGT, UPV, 2015