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ABSTRACT 

The activity of different Mg(Fe/Al), Ni(Fe/Al) and Co(Fe/Al) mixed oxides based on hydrotalcite-

like compounds have been studied for the catalytic oxidation of trichloroethylene. It has been 

shown that the Co catalysts are more active than the Ni catalyst, being the Mg catalysts the less 

active ones. The activity of all the catalysts improves when iron is substituted by aluminum in the 

catalyst composition. The best results have been obtained with the CoAl mixed oxide derived from 

hydrotalcite that is a stable, highly active and selective catalyst. These results have been related 

with the presence of aluminum in the Co3O4 structure that favors, in presence of oxygen, the 

formation of O2
- sites and enhances the acid properties of the catalyst. The combination of both 

characteristics maximizes the adsorption and oxidation of the TCE 
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1. INTRODUCTION 

Chlorinated volatile organic compounds (CVOCs) are widely used in industry in different 

processes as petrochemical manufacture and dry cleaning. They are recognized as important air 

pollutants and their emissions contribute to the ozone layer destruction, to the photochemical smog 

and to undesirable human health effects. Trichloroethylene (TCE) is a common CVOC pollutant 

that is toxic, stable and probably carcinogenic to humans [1]. To control CVOC´s emissions from 

stationary sources, thermal incineration is the most commonly used process, but it has important 

energetic costs because it operates at temperatures higher than 700ºC and chlorinated by-products 

can be formed. An interesting option to control CVOC emissions is the catalytic oxidation that 

makes feasible the operation at lower temperatures (250-550°C) [2-4]. Metal oxides [5-8] or 

supported noble metals [9, 12] have been the most common catalysts used in this reaction, but they 

have some drawbacks as the poisoning by chlorine [4] and the formation of chlorinated by-products 

that can be very toxic [7, 13]. Recently, other materials have been used for the catalytic oxidation of 

CVOCs as zeolites [12, 14] and bronzes [15], but it is still necessary to find more active and stable 

catalysts. An alternative could be the use of mixed oxides derived from hydrotalcite-like 

compounds as catalysts for the CVOC oxidation.  

Hydrotalcites are two-dimensional layered synthetic materials with alternating positively 

charged mixed metal hydroxide sheets and negatively charged interlayer anions  [16]. By changing 

the nature and the molar ratio of the metal cations as well as the type of interlayer anions, many 

isostructural materials with different physicochemical properties can be obtained. The calcination of 

hydrotalcites leads to the formation of mixed oxides with interesting properties for the CVOC´s 

catalytic removal, such as small particle size, large specific area and homogeneous interdispersion 

of the metals [17-20]. This work studies the use of mixed oxides derived from hydrotalcites, 

containing transition metals with oxidative properties, for the TCE catalytic oxidation reaction. The 

catalysts prepared are different Mg(Fe/Al), Ni(Fe/Al) and Co(Fe/Al) oxides based on hydrotalcite-

like compounds and their activity have been compared with that of a H-MOR zeolite, which is a 
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conventional catalyst used for this reaction [21]. The catalysts have been characterized by different 

techniques, i.e. gas adsorption (SBET), X-ray diffraction (XRD), temperature-programmed 

desorption (NH3-TPD), temperature-programmed reduction (H2-TPR) and elemental analysis 

through inductively coupled plasma (ICP), in order to correlate their activity with the physical-

chemical features of the materials.  

 

2. EXPERIMENTAL 

2.1. Catalysts preparation 

The MgAl hydrotalcite was synthesized by mixing an aqueous solution (2.5 M) of 

Mg(NO3)2·6H2O and Al(NO3)3·9H2O with a 1.86 M solution of NaOH to obtain the desired Mg/Al 

molar ratio at a constant pH of 9. The resulting gel was treated in a microwave autoclave (MIC-I, 

Sistemas y Equipos de Vidrio S.A. de C.V.) for 10 min operating at 2.45 GHz with a microwave 

irradiation power of 200 W, while the temperature was maintained at 80°C. The solid was 

recovered by decantation and washed several times with distilled water until the residual solution 

reached a pH value of about 8. Finally, the solid was dried at 60°C for 24 h and calcined in air at 

550°C for 6 h. 

NiAl, CoAl, MgFe, NiFe, CoFe, MgFeAl, NiFeAl and CoFeAl hydrotalcites were 

synthesized by using the simultaneous co-precipitation technique. An aqueous solution with the 

appropriate amounts of Ni(NO3)2·6H2O, Co(NO3)2·6H2O or MgCl2 and FeCl3 or Al(NO3)3·9H2O 

was mixed with a NaOH and Na2CO3 solution. Both solutions were added simultaneously with a 

flow rate of 60 mL.h-1 at room temperature and atmospheric pressure and they were mixed under 

vigorous stirring. The resulting gel was dried overnight at 60°C. The product was then filtered off 

and washed thoroughly with distilled water. The dried hydrotalcite was calcined in air at 550°C for 

6 h.   

Zeolite NH4-MOR (CBV 10AH with SiO2/Al2O3 = 14 and surface area of 490 m2.g-1) was 

supplied by Zeolyst Corp. and it was transformed into the H-form by calcination in air at 550°C for 

3 h. 
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2.2 Catalysts characterization 

The chemical composition of the samples was measured by inductively coupled plasma 

(ICP-OES). Samples (ca. 20 mg), previously calcined, were dissolved in a HNO3/HCl (1:3 vol.) 

solution and then analyzed in a Varian 715-ES ICP-Optical Emission Spectrometer.  

BET surface areas were determined from the nitrogen adsorption-desorption curves by the 

conventional multipoint technique with a Micromeritics ASAP 2420. The samples were pre-treated at 

400°C for 12 h at high vacuum. 

A Phillips X'Pert diffractometer coupled to a copper anode X-ray tube was used for the XRD 

characterization, employing the Kα-Cu monochromatic radiation. Compounds were identified in the 

conventional way using the JCPDS file.    

Temperature programmed reduction (TPR) experiments were carried out using a TPD-TPR 

Autochem 2910 analyzer equipped with a thermal conductivity detector (TCD). Samples (10-20 mg 

of catalyst) were treated with a N2:H2 flow (10% H2) of 50 mL.min−1 at a heating rate of 10°C.min−1 

from room temperature to 800°C. 

Temperature programmed desorption of ammonia (TPD) experiments were carried out on a 

Micromeritics Autochem II analyzer, where 300 mg of sample were pre-treated in an Ar stream at 

450°C for 1 h. Ammonia was chemisorbed by pulses at 100°C until equilibrium was reached. Then, 

the sample was fluxed with an He stream for 15 min, prior to increase the temperature up to 500°C 

using a heating rate of 10°C.min−1. The NH3 desorption was monitored by both thermal 

conductivity detector (TCD) and mass-spectrometer, following the mass of ammonia at m/e=15. 

 

2.3. Catalysts activity 

Catalytic oxidation reactions were carried out in a conventional quartz fixed bed reactor 

under atmospheric pressure. The catalysts were pelletized, and then crushed and sieved to obtain 

grains of 0.25–0.45 mm diameter. The catalyst bed (0.68 g) was supported on a quartz plug located 

into the reactor. Crushed quartz glass (>0.6 mm o.d.) was placed above the catalyst bed as a 
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preheating zone of the incoming feed stream. The temperature was measured with a K-

thermocouple located in the reactor, right before the catalyst bed. The reactor was housed in an 

electrically-heated furnace. Before reaction the calcined samples were activated at 150°C with air 

during 30 min [15]. After activation, the gas mixture, composed by trichloroethylene (1000 ppm) and 

dry air, was introduced into the reactor at 400 mL.min-1 (GHSV = 15000 h-1) and with a residence time 

of 0.24 s. The reaction was carried out under continuous flow of reactants, and each catalyst was tested 

at different temperatures, between 150 and 550°C in steps of 50°C keeping each temperature during 30 

min. A blank experiment was made in the same reaction conditions but introducing only crushed 

quartz glass into the reactor without catalyst. 

The reaction products (except Cl2 and HCl) were separated, identified and quantified by a 

Bruker 450 gas chromatograph equipped with an HP-5 column. The concentration of TCE, as well as 

any other chlorinated hydrocarbon formed in the reaction was analyzed with a flame ionization 

detector, whilst the CO and CO2 concentration was analyzed with a thermal conductivity detector. 

Analysis of both Cl2 and HCl was performed by bubbling the effluent stream through a 0.125 M 

NaOH solution [22]. Cl2 concentration was determined by titration with ferrous ammonium sulfate 

using N,N-diethyl-p-phenylenediamine as an indicator and the concentration of chloride ions in the 

solution was determined using an ion-selective electrode (Thermo scientific, Orion Products). 

 

3. RESULTS AND DISCUSSION 

3.1 Catalysts characterization 

Table 1 shows the specific surface area and the elemental composition of the calcined 

samples. The BET surface area of all samples varies between 80 and 255 m2.g-1, obtaining the highest 

values with the Mg-containing catalysts, and the lowest with the samples containing cobalt. This is 

related with the higher crystallite size of the cobalt catalysts compared with the magnesium catalysts 

[23] (e.g.  the crystallite size calculated from the Debye-Scherrer equation is 12 nm for CoAl and 4 nm 

for MgAl). In all the samples the partial replacement of iron by aluminum results in an increase of the 

surface area because the presence of aluminum diminishes the mean crystallite size of the samples [23] 
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(e.g. the crystallite size calculated from the Debye-Scherrer equation is 19 nm for CoFe and 14 nm for 

CoFeAl). 

The XRD patterns of the samples before and after calcination are displayed in Figures 1 and 

2. Before calcination (Figure 1), all the samples present the characteristic diffraction peaks of a 

typical nitrated hydrotalcite [24-26] around 2θ = 10.9°, 22.2°, 34.2°, 38.7º, 44.7°, 60.1° and 61.2°, 

indicating that the hydrotalcite phase was successfully formed, independently of the preparation 

method and the nominal molar ratio. Nevertheless, the substitution of aluminum by iron in the 

hydrotalcite structure results in a modification of the peak broadening which can be attributed to a 

strain between the crystalline planes. Moreover the position of the peaks in the samples containing 

iron is shifted to lower values of 2Ɵ degrees if compared with the samples with aluminum, due to 

the difference size of Fe3+ and Al3+ ions. 

After calcination, the hydrotalcites are converted into mixed oxides as it is reflected in the 

XRD pattern of the samples (Figure 2). As it can be seen, the MgAl catalyst after calcination shows 

a periclase-like structure with the main characteristic peaks at 2θ = 35.7°, 43.3°, 62.8°, 75° and 

79.4°. The NiAl catalyst presents the typical peaks associated to NiO at 2θ = 37.4°, 43.5°, 63°, 

75.9° and 79.7°. The peaks of both catalysts are shifted to higher angles if compared with the pure 

oxide as consequence of the aluminum incorporation into the NiO or MgO framework [27], 

indicating the formation of a mixed oxide. On the other hand, the CoAl sample presents peaks at 2θ 

= 31.3°, 36.8°, 38.5°, 44.8°, 55.6°, 59.3°, 65.2°, 76.5° and 77.6°, which can be associated to Co3O4 

(JCPDS 421467) and to other spinel phases as CoAl2O4 (JCPDS 440160) and Co2AlO4 (JCPDS 

380814) as it is suggested by the shift of the peaks to higher angles if compared with a pure Co3O4 

spinel [28]. On the contrary, the MgFe and NiFe samples show, together with the peaks of MgO or 

NiO, new peaks at 30.1°, 35.5°, 37°, 42.9°, 53.4°, 57.1°, 62.5°, 70.8°, 74.9° and 78.7°. These peaks 

are associated to a magnetite-like structure (Fe3O4) nevertheless they can also correspond to the 

formation of MgFe2O4 and NiFe2O4 spinel phases [29].The CoFe sample presents the same peaks 

that the CoAl catalysts, which has been assigned to Co3O4. In this sample, there are no peaks that 

can be assigned Fe3O4, indicating that iron is incorporated in the structure of the spinel-like Co3O4 
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phase substituting some of the cobalt atoms. This is also suggested by the shift of the peaks 

assigned to Co3O4 to higher 2Ɵ angles if compared with the peaks of a pure Co3O4 spinel. 

The NH3-TPD profiles of the Co- and Ni-containing samples are very similar for all the 

samples with a broad peak between 150-400ºC, being the main differences the quantity of ammonia 

adsorbed (Table 2). As the adsorption of NH3 is related with the acidity of the material, it can be 

stated that the catalysts containing aluminum are more acidic than those with iron and that the 

catalysts with cobalt are more acidic than those containing nickel. In this way the CoAl sample is 

the more acidic one and the high quantity of ammonia adsorbed by this catalyst must be pointed out. 

This can be explained by the higher electronegativity of cobalt if compared with nickel [30] and, as 

it has been suggested from the XRD results, by the formation of a mixed oxide where the Al3+-O-

Co3+/2+ bonds enhances the Lewis acidity of the Al3+. 

Temperature programmed reduction profiles obtained for the Ni- and Co-containing samples 

are shown in Figure 3. It can be seen that the reduction peaks shift to higher temperatures when Fe 

is replaced by Al in the catalyst structure and that different profiles are displayed depending on the 

Al content. The NiFe sample (Figure 3A) shows a high broad peak of hydrogen consumption 

between 300-450ºC. It matches with the reduction of NiO that typically features a broad single band 

located between 340-400°C [31, 32], but also with the reduction of Fe3O4, that occurs in the same 

temperature range [33, 34]. When part of the Fe is replaced by Al (NiFeAl sample) this band 

reduces its intensity and shifts toward higher temperatures. The shift and the broadness of the bands 

is maximum with the NiAl catalyst, displaying a complex reduction pattern that indicates different 

and important interactions of nickel with aluminum [17] in this sample.  

The TPR profiles of the Co-containing catalysts are shown in Figure 3B. As it can be seen, 

the CoFe sample presents a high and broad peak between 400-500°C with a small band between 

275-400°C. The highest reduction peak can be associated to the reduction of the spinel-like Co3O4 

[23] and the lower band can be related to the reduction of the iron in the spinel [34]. As it occurred 

with the Ni-containing samples, when substituting Fe by Al (CoFeAl and CoAl samples) there is a 

shift of the main reduction peaks towards higher temperatures. In this way, the CoAl sample 
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presents an undefined broad band between 400-700ºC that can be associated to the reduction of the 

cobalt atoms interacting with aluminum. It seems that the presence of aluminum hinders the 

reduction of the cobalt ions, probably because as it has been also suggested by the XRD and by the 

NH3 TPD experiments, the Al3+ ions interacts with the Co-O bonds, polarizing them and increasing 

the effective charge of the Co ions [23, 35] and therefore the reduction temperature [36].  

 

3.2 Catalytic activity results 

The catalytic activity for the oxidative decomposition of trichloroethylene was studied by 

the light-off curve, monitoring the conversion as a function of temperature for each catalyst. In 

Figure 4 the catalytic activity of different Fe-catalysts was compared to the activity of the H-MOR 

zeolite, which has been described as an active catalyst for the TCE oxidation [21] and with a blank 

reaction. The catalytic activity of the zeolite started at 400°C, the T50% (temperature at which 50% 

conversion was reached) is 475°C and the T90% was higher than 550ºC.  The results obtained with 

the MgFe mixed oxide (T50% = 550°C and T90% > 550°C) were much worse than those obtained with 

the reference catalyst and they were only slightly better than those of the blank reaction. The 

activity of the NiFe mixed oxide was similar to that of the zeolite catalyst (T50% = 485°C and T90% = 

550°C) and the highest activity was achieved with the catalyst containing cobalt (T50% = 395°C and 

T90% = 450°C). This clearly indicates that the intrinsic catalytic activity of cobalt for the TCE 

oxidation is higher than that of nickel and magnesium. 

The results obtained when there is a partial replacement of Fe by Al in the catalyst structure 

are shown in Figure 5. Similarly to what occurred with the Fe-samples, the catalytic activity of the 

cobalt catalyst, CoFeAl, was the highest (T50% = 350°C and T90% = 410°C) and the catalytic activity 

of the magnesium catalyst, MgFeAl, was the lowest (T50% = 540°C and T90% > 550°C). The 

comparison of these results with those obtained with the Fe-catalysts (Figure 4) clearly show that 

the partial substitution of iron by aluminium results in a slight increase of the activity for all the 

catalysts tested. For that reason, a NiAl and a CoAl catalyst, without iron, were prepared and their 

activity for the TCE oxidation were compared with those of the NiFe(Al) and CoFe(Al) catalysts. 
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The catalytic results for the Ni-containing samples are shown in Figure 6. As it can be seen, 

although the T90% for all the catalysts is the same, the reaction starts at lower temperature with the 

NiAl sample and an increase of the catalyst activity was observed as Fe was being substituted by Al 

(T50% = 485ºC for NiFe, T50% = 445 ºC for NiFeAl and T50% = 420ºC for NiAl). The same trend, but 

with better results, was observed for the Co-containing samples (Figure 7) and the highest catalytic 

activity was achieved with the CoAl sample (T50% = 280°C and T90% = 340°C).  

The enhancement of the catalytic activity for the TCE oxidation when substituting iron by 

aluminum in the catalyst structure is not related with the catalyst surface area, because the catalysts 

with the highest surface (the Fe/Al- samples) are not the most active ones. It seems that the activity 

of the catalyst must be related to the presence of aluminum in the catalyst framework and to the 

intrinsic activity of the other metals. It has been observed by H2-TPR that the replacement of Fe by 

Al results in a strong interaction of the Al with the Co (or Ni), as it was evidenced by the shift of the 

TPR peaks to higher temperatures. This interaction polarizes the metal-O bonds, increasing the 

effective strength of the metal ions and then its acidity, as it was observed in the NH3-TPD 

experiments. In addition, as it has been suggested when using this catalyst for other oxidation 

reactions [23], the surface of the Co-Al catalyst, in presence of oxygen, is enriched in oxygen-ion-

radicals that can oxidize the TCE adsorbed on the acid sites of the catalyst. According to previous 

works [23] an active assembly can be formed by the redox couple Co2+/Co3+ and O2
x- stabilized by 

the Al3+ ions that provides the TCE oxidation. The role of Al3+ ions in the generation of reactive 

superoxide species O2
- has also been proposed by Wang et al. [37] for the CO oxidation using other 

materials and this is probably the reason for the increase of the catalyst activity when iron is 

substituted by aluminum in the catalyst structure. 

Thus, the good results obtained with the CoAl catalyst can be explained by the high acidity 

of the material that favors the TCE adsorption and by the presence of reactive O2
- species that 

oxidize the TCE. 

Figure 8 presents the product distribution of the TCE oxidation reaction when using the 

CoAl catalyst. The main oxidation products obtained were hydrogen chloride (HCl), chlorine (Cl2) 
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and carbon dioxide (CO2). To a lesser extent tetrachloroethylene (C2Cl4) appeared, and traces of 

other chlorinated by-products, for example chloromethane, dichloromethane and carbon 

tetrachloride were found at mild temperatures in the product stream. It should be pointed out that no 

CO was detected at any temperature showing the good selectivity of the catalyst. 

The catalyst stability was tested by doing a long term reaction at a constant temperature. The 

results obtained with the CoAl catalyst at 300°C, temperature at which around 50% of TCE 

conversion was reached, are shown in Figure 9. As it can be seen, the catalyst was stable at this 

temperature and there was not a significant deactivation after 70 hours of reaction. These results 

indicate that Co-containing mixed oxides based on hydrotalcite-like compounds are highly active 

and stable catalysts for the TCE oxidation, being these results better than those obtained with an 

acid zeolite or with other type of catalysts based on bronzes or on Cu hydrotalcites  [15, 17]. 

 

CONCLUSIONS 

Co(Fe/Al) mixed oxides based on hydrotalcite-like compounds present a high catalytic 

activity and selectivity for the oxidative decomposition of trichloroethylene. The catalysts 

containing aluminum are more active than those with iron probably because the presence of 

aluminum enhances the acid properties of the catalyst and generates reactive O2
- species that oxidize 

the TCE. The CoAl sample is the most active catalyst (T50% = 280°C and T90% = 340°C), and its 

activity has been attributed to its higher acidity and to its oxidative properties. This catalyst is stable 

at 300°C at least for 70 h of reaction.  
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Caption to figures. 

Figure 1. XRD patterns of the samples before calcination. 

Figure 2. XRD patterns of the samples after calcination (~ MgO, ▲ NiO,  Fe3O4,  Co3O4) 

Figure 3. TPR profiles of (A) Ni- and (B) Co-containing samples. 

Figure 4. TCE oxidation light-off curves over Fe-catalysts. 

Figure 5. TCE oxidation light-off curves over Fe/Al-catalysts. 

Figure 6. TCE oxidation light-off curves over Ni-catalysts. 

Figure 7. TCE oxidation light-off curves over Co-catalysts. 

Figure 8. Product distribution of TCE oxidation over the CoAl catalyst. 

Figure 9. TCE oxidation over the CoAl catalyst at 300°C. 
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Table 1. Chemical composition and surface area of the catalysts. 

 

Bulk composition of calcined 
samples (weight %) Catalyst SBET 

(m2.g-1) 
%Mg %Ni %Co %Al %Fe 

Nominal molar ratio 

MgFe 189 25.7 - - - 17.2 Mg/Fe = 3:1 
MgFeAl 252 26.4 - - 6.6 4.1 Mg/Fe/Al = 3.75:0.25:0.75
MgAl 169 24.8 - - 6.9 - Mg/Al = 4:1 
NiFe 143 - 40.1 - - 19.2 Ni/Fe = 2:1 

NiFeAl 218 - 46.0 - 4.8 3.6 Ni/Fe/Al = 3:0.25:0.75 
NiAl 123 - 45.9 - 7.1 - Ni/Al = 3:1 
CoFe 81 - - 45.9 - 14.7 Co/Fe = 3:1 

CoFeAl 131 - - 50.9 6.1 4.1 Co/Fe/Al = 3:0.25:0.75 
CoAl 106 - - 46.5 9.9 - Co/Al = 2:1 

 

 

 

Table 2. NH3-TPD results of the Ni- and Co-containing samples. 

 

Catalyst TPD results 
NH3 adsorbed (µmol NH3 g-1) 

NiFe 138 
NiAl 349 
CoFe 174 
CoAl 539 
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Highlights 

 

The activity of the Me2+(Fe/Al) mixed oxides follow this trend: Co>Ni>Mg 

The substitution of Fe by Al in the mixed oxide improves the catalytic activity.   

There is a strong Co-Al interaction increasing the catalyst acidity and activity 

CoAl mixed oxides are stable, active and selective catalysts for the oxidation of TCE. 
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