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Abstract13

Within the emergent field of Systems Biology, mathematical models obtained from physical-chemical laws
(the so-called first principles-based models) of microbial systems are employed to discern the principles that
govern cellular behaviour and achieve a predictive understanding of cellular functions. The reliance on this
biochemical knowledge has the drawback that some of the assumptions (specific kinetics of the reaction
system, unknown dynamics and values of the model parameters) may not be valid for all the metabolic
possible states of the network. In this uncertainty context, the combined use of fundamental knowledge and
data measured in the fermentation that describe the behavior of the microorganism in the manufacturing
process is paramount to overcome this problem. In this paper, a grey modelling approach is presented
combining data-driven and first principles information at di↵erent scales, developed for Pichia pastoris
cultures grown on di↵erent carbon sources. This approach will allow us to relate patterns of recombinant
protein production to intracellular metabolic states and correlate intra and extracellular reactions in order to
understand how the internal state of the cells determines the observed behaviour in P. pastoris cultivations.

Keywords: Metabolic network , Possibilistic consistency anlaysis , Monte Carlo sampling , Principal14

Component Analysis, Missing-data methods for Exploratory Data Analysis15

1. Introduction16

Currently, biotechnological industries are devoted to the production of economically important enzymes17

and proteins, generally using genetically modified microorganisms. The main goal of these industries is to18

maximize protein yields and productivity. The production of these high-added value products is governed19

by highly correlated factors that require a multidisciplinary approach to process optimization (biochemistry,20

molecular biology, process engineering, biotechnology, etc).21

The development of accurate monitoring schemes to control the manufacturing process becomes a chal-22

lenging task due to the scarcity of measurements and the high complexity of the biochemical synthesis23

process. Only few process variables can be measured in industrial microbial fermentations, such as pH,24

temperature, and oxygen consumption. Others, such as substrate consumption, can be inferred depending25

on the operational strategy. In this kind of processes, measurements corresponding to biological process26

variables (such as intracellular specific reaction rates) are promising to achieve a more accurate process27
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control. In order to develop novel monitoring schemes, the study of di↵erent cellular behaviours is crucial28

for the biotechnological production of high-added value biochemicals. For this purpose, the modelling of the29

available data is needed to know which key variables control the main metabolic pathways and, possibly,30

their regulation mechanisms.31

First principles-based models of microbial systems can be developed to describe the principles that gov-32

ern cellular behaviour and achieve a predictive understanding of cellular functions [1]. Typically, networks33

of biochemical reactions are used to approach an organism microbial metabolism and growth [2, 3]. These34

networks are modelled assuming that certain constrains operate at steady-state, such as environmental con-35

straints [4], regulatory constraints [5, 6], gene expression data [7], mass balances or reactions irreversibilities36

[8] (the so-called constraint-based perspective) [9, 10, 11]. The imposed constraints define a solution space37

that encloses all the possible states of the network (i.e. flux distributions through the reactions). The38

development of this type of models based solely on fundamental or knowledge information has the drawback39

that the unknown part of the process is not represented as well as some of the underlaying assumptions40

(e.g. specific kinetics of the reaction system, unknown dynamics, values of the model parameters, objec-41

tive functions) may not be valid for all the metabolic possible states of the network [12, 13]. To address42

this problem, hybrid models that combine knowledge-based models, which fit the theoretical behavior, and43

empirical models, which fit any remaining systematic variation, can be used [14].44

In the context of grey modelling, there are di↵erent approaches to descompose the data into the three45

types of variation (known causes, unknown causes and residuals) [15], which be roughly classified into three46

categories. The first category are the models based on known constraints. There exist general frameworks47

that enable to impose very specific constraints on each type of information, e.g. observed experimental48

information [16] or transformations on the original variables [17]. These methods are based on the projection49

of a data matrix, followed by multivariate model decomposition. Principal Component Analysis (PCA) [18]50

is one of the most applied multivariate statistical projection methods to reveal the internal structure of the51

cell. This analysis is commonly preceded by a Monte Carlo sampling in order to produce a data set of52

possible states or feasible solutions from which the PCA elucidates the meaningful principal components53

(PCs) [19, 20, 21]. PCA has also been compared to other multivariate techniques, such as Multivariate54

Linear Regression [21] and Parallel Factor Analysis (PARAFAC) [22, 23] in the field of Systems Biology.55

Partial Least Squares regression (PLS) [24] has been applied directly [25, 26] and combined with Hierarchical56

Clustering (HC-PLSR) [27] to deal with situations where the input-output relations (e.g. the e↵ect of the57

substrates consumption of the cell or the environmental conditions in the production of a particular protein)58

are highly nonlinear or non-monotone. Recently, Grey Component Analysis (GCA) has been proposed using59

a cost function to maximise the interpretability of the solutions by forcing the decomposition towards the60

direction of the prior information - a chemically or biologically meaningful solution - [28]. A second strategy61

is formed by methods based on introducing a priori knowledge by means of mathematical relations that62

describe the system behaviour or dynamics. The starting point is some specific structure based on first63

principles mathematical relations, where some functions must be estimated. Di↵erent tools can be used to64

calculate these functions, such as artificial Neural Networks (NNs) [29] or Kalman filters [30, 31]. Finally,65

a third category are the methods based on incorporating the fundamental knowledge through constraints66

on the modelling algorithms. For instance, some model parameters can be forced to have values within67

certain regions in the parameters space [32]. Projection to Latent Pathways (PLP) [33] has been recently68

formulated as a modification of the PLS regression algorithm by using the concept of Elementary Modes (i.e.69

thermodinamically feasible pathways through the metabolic network). This method is devoted to obtain a70

more biologically explanatory set of latent variables (LVs) relating the observed behaviour of the cell and71

its initial conditions.72

The complexity of data available from microbial systems requires the design of sophisticated grey mod-73

els that combine data-driven and knowledge-based information at di↵erent scales for biochemical process74

understanding. The main goal of this paper is to use this hybrid framework to analyse the behaviour of75

the methylotrophic yeast P. pastoris [3], as a first step to analysing which conditions and through which76

reactions the cell achieves an optimal state for our interests. Several scenarios corresponding to di↵erent77

chemostat runs are collected from the literature [34, 35, 36, 37, 38, 39, 40, 41, 42] with the aim of starting78

the analysis with a rich data set of di↵erent culture conditions. A recently developed adaptation [3, 43]79
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of the possibilistic theory [44] is applied in order to check the consistency between model and data. For80

the completion of the unmeasured data, a Monte Carlo sampling method is applied to produce feasible flux81

solutions for the microbial system under study. At this point, a PCA is performed to obtain a reduced82

number of PCs explaining most of the variance of the collected and sampled data. Finally, the Missing-data83

method for Exploratory Data Analysis (MEDA) [45] is applied to obtain a better interpretation of the PCs84

derived from the PCA model.85

This paper is organized as follows. Section 2 presents the metabolic network reconstruction of the yeast86

P. pastoris and the di↵erent scenarios used in the study. Section 3 describes the grey modelling approach87

proposed in detail. This procedure is applied to the available data from P. pastoris in Section 4. Finally,88

some conclusions on the grey modelling approach presented in this paper and how it may be applied to89

improve the understanding of microbial cultures are drawn in Section 5.90

2. Materials91

Metabolic network reconstruction92

The methylotrophic P. pastoris has become one of the most widely used yeasts for heterologous protein93

production since its development, in the early 1970s [46]. This system is of particular industrial interest due94

to its powerful and tightly regulated methanol-inducible alcohol oxidase 1 promoter (pAOX1), its capacity95

for foreign protein secretion, its ability to perform post-translational modifications (including glycosylation96

and disulfide bond formation) and its capability to grow on defined media at high cell densities [47, 48].97

The constraint-based model, whose corresponding metabolic network is shown in Figure 1, has been used98

throughout this work. The model is a simplified representation of the whole metabolism of the yeast P.99

pastoris, meaning that only a reduced number of biochemical reactions has been included (45), from the100

larger amount available from genomic information (more than 1200). The reactions were selected on the101

basis of previous models found in literature, as lumped equivalents of more complex pathways. This model102

was previously validated by the authors for this organism and the experimental conditions studied [3, 49]103

and is the only one used in the referred experiments throughout this work. The model represents the most104

significant features of P. pastoris metabolism, including the main catabolic pathways of the yeast, such as105

glycolysis, the citric acid cycle, glycerol and methanol oxidation and fermentative pathways [49]. Anabolism106

is introduced through the pentose phosphate pathway and a general lumped biomass equation according to107

which growth is assumed to depend exclusively on key biochemical precursors. Branch-point metabolites,108

such as NADH, NADPH, AcCoA, oxalacetate and pyruvate, are considered in compartmentalized cytosolic109

and mitochondrial pools [34].110

P. pastoris experimental data set111

In this work, experimental data from several fermentation runs with di↵erent P. pastoris strains have112

been taken from the available literature, building the di↵erent scenarios considered for the subsequent113

statistical analysis. For the sake of visualization, the 40 scenarios under study have been grouped attending114

to the experimental substrates (i.e. glucose, glycerol, methanol, and glycerol and methanol mixtures) (see115

Figure 2). Scenario A1 is taken from the strain expressing the Fab fragment of the human anti-HIV116

antibody 3H6 [34]. Scenarios from B1 to B7, and C1 and C2, are from a strain expressing a Rhizopus117

oryzae lipase (ROL) [35, 36]. Scenarios from D1 to D10 come from a P. pastoris strain expressing and118

secreting recombinant avidin [37]. Scenario E1 has been obtained from a macrokinetic model for P. pastoris119

expressing recombinant human serum albumin (HSA) [38]. Scenarios from F1 to F7 are from a P. pastoris120

strain genetically modified to produce sea raven antifreeze protein [39]. Scenarios from G1 to G10 are121

obtained from a P. pastoris strain producing recombinant human chymotrypsinogen B [40]. Scenario H1122

has been obtained from the continuous fermentation of a P. pastoris strain for the extracellular production123

of a recombinant ovine interferon protein [41]. Finally, scenario I1 comes from the expression of recombinant124

chitinase with a genetically modified P. pastoris strain [42]. The data for all these scenarios are detailed in125

Figure 2.126
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Figure 1: Summarized representation of the metabolic network of P. pastoris, representing the central carbon
metabolism of the yeast during growth on glucose, glycerol and methanol. For the purpose of clarity, the
biomass equation is not represented in the figure. Please refer to the stoichiometric matrix for details about
each reaction and the involved metabolites.

At this point, there is a paramount comment that is in due. Batch e↵ects, which are defined as systematic127

non-biological variation between groups of samples (or batches) due to experimental artifacts [50, 51, 52, 53],128

can be present in data collected from di↵erent cultures. In case that replicates of the same scenario are129

collected (i.e. same strain and same quantities of initial substrates) and the presence of batch e↵ects is130

statistically confirmed, this artificial variation must be removed. Otherwise, the bias introduced by the131

non-biological nature of this kind of e↵ects may confound true biological di↵erences [52], a↵ecting the132

results of statistical analysis. In this study, the scenarios within a single strain of P. pastoris have di↵erent133

initial substrate quantities (see Figure 2). Hence, the variation observed across scenarios can be due to134

these di↵erent initial conditions, which were applied with the aim of obtaining di↵erent flux values. This135
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fact jointly with the scarcity of information about the experimentation conditions disable the possibility to136

straightforwardly confirm actual batch e↵ects in data.137
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Figure 2: Set of 40 experimental scenarios corresponding to P. pastoris chemostat cultures grown on glucose,
glycerol and methanol mixtures. For each scenario, the values of measured fluxes belonging to substrate
and product specific consumption and production are shown. The substrates are glucose (QGLU ), glycerol
(QGLY C), methanol (QMET ), citrate (QCIT ) and oxygen (OUR). The products are ethanol (QETOH),
carbon dioxide (CPR), biomass (µ) and protein (QP ). Note that NaN values stand for missing measured
external fluxes.

3. Methods138

The grey modelling approach proposed is composed of several steps (see Figure 3). Firstly, the constraint-139

based model is built by transforming the network in a mathematical form (the stoichiometric matrix S and140

the flux irreversibilities are detailed in the Supplementary Information). At the same time, di↵erent ex-141

perimental fermentation scenarios are collected from the literature. The combination of these two steps142

represents the novel grey modelling approach, detailed in the previous sections. Then, a Possibilistic consis-143

tency analysis is performed to elucidate which scenarios are not consistent with the model. On the consistent144

scenarios, a Monte Carlo sampling is applied to obtain a hundred di↵erent feasible solutions satisfying the145

proposed model. With the feasible flux solutions matrix, a Principal Component Analysis (PCA) is per-146

formed with the aim of getting an insight of the metabolic structure of the yeast. All the outliers are detected147
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by using two Shewhart-type control charts based on the Hotelling-T 2 and Square Prediction Error (SPE)148

statistics and, later on, root causes are diagnosed. Once the ouliers are isolated, PCA is computed again.149

This procedure is repeated until the percentage of outliers is consistent with the confidence limits (99%150

confidence level)). Finally, the Missing-data method for Exploratory Data Analysis (MEDA) is applied in151

order to attain more informative components. The theory behind these steps are described in the following152

subsections.153

Stoichiometric modelling154

To build a constraint-based model, the stoichiometric information embedded in the metabolic network155

(i.e. metabolites or cofactors involved in each reaction) must be arranged into a I⇥J matrix S (the so-called156

stoichiometric matrix). Rows of this matrix represent the I metabolites, columns the J metabolic reactions157

and each element (i, j) the stoichiometric coe�cient Si,j of the ith metabolite in the jth reaction. A value158

of Si,j = �1 indicates that the ith metabolite is consumed by the jth reaction. In contrast, a Si,j = 1159

indicates the ith metabolite is produced by the jth reaction. Finally, a value of Si,j = 0 stands for the ith160

metabolite is not involved in the jth reaction.161

The stoichiometrix matrix is used, in combination with the flux vector v = (v1, ..., vJ), the intracellular162

metabolites concentration c = (c1, ..., cI) and the specific growth rate of the cell µ, to represent the mass163

balances through the metabolic network. The ordinary di↵erential equation describing this process is as164

follows:165

dc

dt

= S · v� µ · c (1)

This equation is called the dynamic mass balance equation, and describes the evolution of the concentra-166

tion of each metabolite over time [11]. In stoichiometric modelling, the dynamic intracellular behaviour is167

disregarded on the basis assumption of pseudosteady state for the internal metabolites [8]. This assumption168

is supported by the observation that intracellular dynamics are much faster than extracellular dynamics.169

Therefore, it is sensible to assume that these compounds reach the steady state instantaneously and, hence,170

its transient behavior can be omitted. In addition, the dilution term µ · c is also discarded because it is gen-171

erally much smaller than the fluxes a↵ecting the same metabolite. Under these considerations, the general172

equation can be expressed as:173

S · v = 0 (2)

This equation constrains the J -dimensional space of feasible solutions. An extra constraint is added,174

assuming that some of the fluxes of the metabolic network flow only in one direction:175

D · v � 0 (3)

where D is a J ⇥ J diagonal matrix with binary values: 1 for the irreversible fluxes and 0 for the reversible176

ones.177

Finally, a maximum value for each flux value is computed:178

vj  vj,max 8j 2 1, ..., J (4)

The combination of the constraints imposed by Equations 2-4 define a space (a bounded convex cone)179

of feasible steady-state flux distributions: only flux vectors that fulfill Equation 2-4 are considered valid180

cellular states. In this way, Equations 2-4 define our model of Pichia pastoris, following a constraint-based181

modelling approach [9, 10, 11].182
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Possibilistic consistency analysis183

The simplest consistency analysis could be performed by checking that the flux states shown by cells184

fulfill the constraints imposed by the model (see Equations 2-4) [3]. However, this simple approach would be185

impractical because measurements are imprecise and do not exactly satisfy the constraints. Such di�culty186

is overcome by taking into account uncertainty as follows:187

w = vm + e (5)

where e represents the deviation error between an actual flux vm and its measured value w.188

The consistency analysis can be also formulated as a possibilistic constraint satisfaction problem [43].189

The basic idea is that a flux vector fulfilling Equations 2 and 3, and compatible with the measurements190

will be considered as “possible”, otherwise as “impossible”. This can be refined to cope with measurements191

errors by introducing the notion of “degree of possibility” [44].192

This degree of possibility provides an indication of the consistency between the model and the measure-193

ments. A possibility equal to one must be interpreted as complete agreement between the model and the194

original measurements. Lower values of possibility imply that certain error in the measurements is needed195

to find a flux vector fulfilling the model constraints. For further details readers are referred to [3, 43].196

The main formulation of Possibilistic consistency analysis is summarized in this section.197

Model and measurements constraints. Firstly we consider the constraints conforming the model (Equa-198

tion 2-4). Then measures of (some) extracellular fluxes are incorporated as additional constraints (Equation199

6):200

8
>><

>>:

vm = w + "1 � µ1 + "2 � µ2

"1,µ1, "2,µ2 � 0

"2  "2,max

µ2  µ2,max

(6)

where vector vm represents the actual metabolite concentrations and w the measured values, which di↵er201

due to errors and imprecision (uncertainty). This uncertainty is represented by the vectors of slack variables202

"’s and µ’s.203

Possibility. Let us denote each candidate solution of Equation 6 as � = {v,w, ",µ} in �. The basic204

building block of possibility theory is a user-defined possibility distribution ⇡(�) : � ! [0, 1]. This function205

defines the possibility of each solution � in �, ranging between impossible (⇡ = 0) and fully possible (⇡ = 1).206

Among di↵erent possible choices, a simple -yet sensible- way to define possibility is using a linear cost index207

such as Equation :208

J(�) = ↵T · "1 + �Tµ1 (7)

and define the possibility of each solution � as follows:209

⇡(�) = e

�J(�)
, � 2 � (8)

where ↵ and � are row vectors of user-defined, sensor accuracy coe�cients.210

The interpretation of Equations 6-8 may be: v = w is fully possible; the more v and w di↵er, the less211

possible such situation is212

Representing uncertainty. Two pairs of vectors of slack variables have been chosen to represent the213

uncertainty of each measurement: "2 and µ2 define an interval of fully possible values, and "1 and µ1214

penalise values out of it (with weights ↵ and �). This is achieved choosing two vectors of bounds. Hence,215

in all computations the uncertainty of each measurement has been represented as follows:216

(i) Full possibility (⇡ = 1) is assigned to values with less than ± 5% of deviation.217

(ii) Larger deviations are penalised, so values with a deviation equal to ± 20% have a possibility of ⇡ = 0.1,218

and those with a deviation equal to ± 10% have a ⇡ ⇡ 0.5.219

8



(iii) Uncertainty is considered as symmetric, and thus ↵ = �.220

This is achieved choosing bounds "2,max and µ2,max and weights ↵ and � for each measurement: (i)221

implies that "2,max = µ2,max = 0.05 ·w, and (ii) defines ↵, noticing that 0.2 ·w = µ1,20% + µ2,max, then222

↵ = �log(0.1)/(0.2� 0.05)/w.223

Possibilisitic consistency evaluation. This method can be applied to evaluate the degree of consistency224

between a given model and a set of experimental measurements. Notice that the most possible solution225

of the constraint-satisfaction problem is the maximum possibility (minimum-cost) solution, which can be226

obtained solving a linear programming problem (LP):227

J

min = min
",µ,v

J (9)

subject to Equations 2-4 and the experimental measurements. This solution has an associated degree of228

possibility:229

⇡

mp = e

�Jmin

(10)

This value, ⇡mp in [0,1], grades the consistency between model and measurements. A possibility equal230

to one must be interpreted as complete agreement, while lower values imply that there is some error in the231

measurements, the model or both, which severity depends on how the uncertainty has been defined (see232

above). More details on Possibilistic consistency analysis are given in a previous work, where the model of233

P. pastoris was validated [3, 49].234

Monte Carlo sampling method235

Metabolic Flux Analysis was designed with the aim of obtaining the flux values of all reactions based on236

the known fluxes, typically extracellular, which are easier to measure. Assuming the J1 measured fluxes of237

the J = J1 + J2 fluxes of the metabolic network, the J2 unmeasured fluxes can be derived from the general238

equation of the stoichiometric modelling (see Equation 2):239

SJ1 · vJ1 = �SJ2 · vJ2 (11)

where SJ1 and vJ1 involves the measured fluxes (the external ones), and SJ2 and vJ2 are related to the240

unmeasured fluxes (the internal ones). The problem with this formulation is that the number of internal241

fluxes often remain high compared to the number of external fluxes. Thus, the system shown in Equation242

11 is undetermined, i.e. there are di↵erent flux distributions compatible with the known flux values.243

In this context, Monte Carlo sampling methods can be used to produce feasible flux distributions across244

the cell [19, 20, 21, 54, 55]. This way, the available experimental data and the first-principles knowledge245

captured by the model are coupled together, providing a new richer data-set amenable to further analysis246

with a statistical multivariate projection method. To randomly generate possible values for the unmeasured247

fluxes (internal fluxes) for each cultivation, stoichiometry (see Equation 2), irreversibility (see Equation 3)248

and measured fluxes (see Equation 4 and experimental data on Figure 2) are taken into account.249

In order to deal with experimental errors, external fluxes are allowed to vary within a defined range250

of values centered on the original measured value. The upper (lower) bound of this range is the sum251

(subtraction) of the measured value and the maximum value between 0.001 and the 10% of the measured252

value:253

(LB,UB)j = (vj �max(0.001, 0.1⇥ vj), vj +max(0.001, 0.1⇥ vj)) 8j 2 1, ..., J (12)

where vj is a measured flux, and LB and UB are the lower and upper bounds for the Monte Carlo sampling254

method.255

At this point, it is worth commenting that the feasible solutions for each scenario are obtained by256

sampling within the slice of the cone defined by Equations 2-4 and the experimental data, i.e. the measured257

fluxes reduce the feasible solution space from the initial cone, which is bounded only by the constraint-based258

model, to the portion of it fulfilling these specific experimental measurements. The complete procedure can259

be visualized in Figure 4.260
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Figure 4: Constraint-based modelling and allowed flux states sampling. The convex cone is obtained by
Equations 2-4. The experimental measurements constrain the cone through Equation 12. Finally, the
sampling is performed on the resulting slice of the cone.

Principal Component Analysis261

The aim of Principal Component Analysis (PCA) is to find the subspace in the space of the variables262

where data mostly vary [56]. The original variables, commonly correlated, are linearly transformed into263

a lower number of uncorrelated variables (the so-called principal components, PCs). PCA follows the264

expression:265

X = TA ·Pt
A +EA (13)

where X is a N ⇥M matrix of data, TA is the N ⇥A scores matrix containing the projection of the objects266

in the A PCs subspace, PA is the M ⇥A loadings matrix containing the linear combination of the variables267

represented in each of the PCs, and EA is the N ⇥M matrix of residuals.268

As a previous step of PCA, the data matrix is autoscaled, i.e. each variable (flux) is centered and269

divided by its standard deviation, making all variables have a variance equal to 1. In the present work,270

since the components obtained by PCA are linear combinations of di↵erent fluxes, the more positive the271

coe�cient of a flux is, the more positive correlated is with this particular component, in the sense that the272

flux is higher than its mean value in this component. As well, the more negative its coe�cient is, the more273

negative correlated is with this component, in the sense that the flux is lower than its mean value in this274

component. In other words, fluxes with positive coe�cients in a component are overused, and fluxes with275

negative coe�cients are underused.276

PCA outlier detection277

Square Prediction Error (SPE) and Hotelling-T 2 are two statistics widely used to detect outliers on a278

given data. SPE is the orthogonal distance of a particular object to the A-dimensional subspace of latent279

variables defined by PCA. It is expressed as:280

SPEn = e

t
n · en 8n 2 1, ..., N (14)

where en is the nth row of the residual matrix E = X�TAP
t
A. By taking the eigenvalues of the covariance281

matrix of the residual matrix (�A+1, . . . ,�M ), the control limit of the SPE [57] is computed as follows:282

SPE↵ = ✓1

"
z↵

p
2✓2h2

0

✓1
+ 1 +

✓2h0(h0 � 1)

✓

2
1

#1/h0

(15)

where ✓m =
PM

j=A+1(�j)m, h0 = 1 � 2✓1✓3
3✓2

2
and z↵ is the 100 ⇥ (1 � ↵) percentile of a standard Normal283

distribution.284
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Hotelling-T 2 is a statistic based on the Mahalanobis distance [58]. This statistic is used in multivariate285

monitoring to compute the distance between one object and model’s centre according to the covariance286

structure [59]. When the data is centered (the mean of each column of X is equal to zero), the distance287

between an observation xn (a row from the data matrix X) and the centre of the original M -dimensional288

variable space is:289

�

2
n = x

t
n ·⌃�1 · xn 8n 2 1, ..., N (16)

where ⌃ is the real covariance matrix of the original M -dimensional variable space, and �

2
n follows a �

2
290

distribution with M degrees of freedom. In practice, the mean and the covariance matrix are estimated291

by the data matrix X as S = X

t
X/(N � 1). So the approximation to the Mahalanobis distance is the292

Hotelling-T 2:293

T

2
n = x

t
n · S�1 · xn 8n 2 1, ..., N (17)

where xn is the nth row of the data matrix X, corresponding to a concrete object. The control limit for the294

Hotelling-T 2 [60] is computed as :295

T

2
↵ =

(N2 � 1)A

N(N �A)
F↵(A,N �A) (18)

where A is the number of PCs of the model, and F↵(A,N �A) is the 100⇥ (1�↵) percentile of a Snedecor’s296

F distribution with (A,N �A) degrees of freedom.297

MEDA298

The Missing-data methods for Exploratory Data Analysis (MEDA) [61] can be seen as a substitute of299

rotation methods with better properties. First of all, it is more accurate than rotation methods in the300

detection of relations between pairs of variables. Also, it is robust to the overestimation of the number of301

PCs and it does not depend on the normalization of the loadings.302

Once the PCA has been performed, the MEDA approach consists of the following steps for each variable303

m (m = 1, . . . ,M):304

1. Construct matrix ˜

Xm, which is a N ⇥ M matrix full with zeros except in the mth column where it305

contains the mth column of matrix X, xm.306

˜

Xm = [0 . . .0 xm 0 . . .0] (19)

2. Estimate the scores from ˜

Xm using a missing-data method. In this case, the Known-Data Regression307

(KDR) method is applied, which has been proved to be statistically superior to other missing data308

imputation techniques in [62].309

ˆ

TA = MD(˜Xm) (20)

3. Estimate the reconstruction of the original measurements with A latent variables and compute the310

estimation error311

ˆ

XA = ˆ

TA ·Pt
A (21)

312

ˆ

EA = X� ˆ

XA (22)

where P is the estimated loadings matrix from X (the complete N ⇥ M matrix of data), ˆ

XA is the313

estimation matrix and ˆ

EA the estimation error matrix.314

4. Compute an index of goodness of prediction [63] in all columns but the mth one315

Q

2
A,(m,l) = 1�

PN
n=1(ÊA,(n,l))

2

PN
n=1(Xn,l)2

, 8l 6= m (23)
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where Xn,l is the element located at the nth row and the lth column of X, and ÊA,(n,l) is its estimation316

error. The closer Q2
A,(m,l) is to 1, the more related variables m and l are.317

Once the values of Q2
A,(m,l) for all possible combinations of m and l are computed, a matrix Q

2
A can318

be constructed so that Q

2
A,(m,l) is located at row m and column l. This matrix is similar in nature to the319

element-wise squared correlation matrix. Structural relations between variables are detected as high values320

in Q

2
A, but the direct/inverse pair-wise relation is not represented on the matrix because of the squared321

values. To avoid obvious relations, the values of principal diagonal of Q2
A matrices are set to zero. When322

the number of variables is large, matrix Q

2
A can be shown as a grey map to improve interpretability.323

The Q

2
A matrices have been built in a cumulative way, i.e. they have the variability of the first A PCs.324

These matrices can also be constructed by taking the information of a single PC. For this purpose, the325

method previously detailed has to be changed in Equations 20-23. The new equations have to consider only326

the a-th component for estimation. Finally, this kind of MEDA matrices, which have been used in this327

work, are written as Q2
(a), where a = 1, . . . , A.328

Software329

All methods commented in this Section have been computed in Matlab environment. The Monte Carlo330

sampling method has been applied using the COBRA toolbox [64]. PCA has been performed on MATLAB’s331

Statistical Toolbox. Finally, MEDA has been performed using Explanatory Data Analysis Toolbox [65].332

4. Results and Discussion333

In this section, the grey modelling approach proposed is applied to the methylotrophic yeast P. pastoris334

to discover patterns of heterologous protein production and correlate intra and extracellular reactions in335

order to understand how the internal state of the cells determines their observed behavior.336

Possibilistic consistency analysis337

The di↵erent scenarios collected from the literature are combined with the proposed model in order338

to validate which ones are consistent and which ones are not. From each one of the 40 scenarios, the339

flux values through the external reactions, which are di↵erent depending on the initial conditions of each340

experiment, are validated against the stoichiometric modelling of the P. pastoris. As explained in Section 3,341

the most possible solution for each scenario (i.e. experimental dataset) is computed to perform a Possibilistic342

consistency analysis. The corresponding possibility values (⇡) are shown in Table 1. The majority of datasets343

are highly consistent with the model (65% are fully possible, and 87% have a possibility higher than 0.5).344

There are, however, 4 out of 40 datasets with a possibility lower than 0.25 (i.e. a possibility that is equivalent345

to an error of 14% in one measurement, or to an error of 8% in three measurements). These scenarios (B3,346

B4, C2, and E1) are not fully consistent with the model. The inconsistency can be due to (a) limitations of347

the model, which may be unable to capture phenomena ocurring in those experiments, (b) larger errors than348

expected in the data measured in those scenarios, or (c) the two previous reasons acting simultaneously. For349

this reason, we decided to remove these scenarios (B3, B4, C2, and E1) so they are not considered in the350

following analysis.351

Monte Carlo sampling352

The previous analysis concludes that 36 out of the 40 scenarios are consistent with the model. However,353

only the external fluxes of each solution have been measured. Due to the complexity of measuring the354

internal fluxes, the Monte Carlo sampling method is proposed to simulate di↵erent possible flux solutions,355

consistent with the proposed model and the measured subset of fluxes, in order to get enough complete flux356

solutions to be analysed.357

Once the sampling has been performed, a feasible flux solution matrix X is built. X has the complete358

3600 sampled flux solutions in its rows (36 scenarios ⇥ 100 samples) and the corresponding 45 flux values359

and the protein production for each scenario in its columns (see Additional file 2).360
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Scenario Group ⇡

A1 glucose 1,000
B1 glycerol 1,000
B2 glycerol + methanol 0,739
B3 glycerol + methanol 0,246(*)
B4 glycerol + methanol 0,082(*)
B5 glycerol 1,000
B6 glycerol + methanol 0,819
B7 glycerol + methanol 0,319
C1 glucose 0,658
C2 methanol 0,052(*)
D1 glycerol + methanol 1,000
D2 glycerol + methanol 1,000
D3 glycerol + methanol 1,000
D4 glycerol + methanol 1,000
D5 glycerol + methanol 1,000
D6 glycerol + methanol 0,908
D7 glycerol + methanol 0,709
D8 glycerol + methanol 0,637
D9 glycerol + methanol 0,614
D10 methanol 0,500
E1 glycerol 0,065(*)
F1 glycerol + methanol 1,000
F2 glycerol + methanol 1,000
F3 glycerol + methanol 1,000
F4 glycerol + methanol 1,000
F5 glycerol + methanol 1,000
F6 glycerol + methanol 1,000
F7 glycerol + methanol 1,000
G1 methanol 1,000
G2 methanol 1,000
G3 methanol 1,000
G4 methanol 1,000
G5 methanol 1,000
G6 methanol 1,000
G7 methanol 1,000
G8 methanol 1,000
G9 methanol 1,000
G10 methanol 1,000
H1 methanol 1,000
I1 glucose 1,000

Table 1: Possibility values (⇡) for each scenario. Those scenarios that are not consistent (i.e. ⇡ < 0.25) with
the constrained-based model are signaled with (*).
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Principal Component Analysis361

A PCA is performed to the feasible flux solutions matrix X to obtain a low number of principal compo-362

nents (PCs) explaining a high variance percentage of the complete data set. These PCs are linear combina-363

tions of the actual 46 variables (45 flux values of the reactions and the protein production).364

After the PCA has been fitted, explaining 94.3% of total variance with five PCs, the outlier analysis is365

applied to the scores and the residuals of the di↵erent scenarios. The results on the statistic SPE show that366

scenario C1, classified on group glucose widely exceed the control limits. Thus, the hundred observations367

generated by the Monte Carlo sampling for this scenario are knocked-out. Afterwards, a new PCA is fitted.368

The results with the second analysis are that the first five PCs capture 95.9% of total variance in data:369

42.4% for the first component, 24.2% for the second one, 19.7% for the third one, 7.0% for the fourth, and370

2.5% for the last one. In these results no outliers are detected.371

Enhancement of model interpretation372

The MEDA is applied to the first five components obtained by the PCA, and the Q

2
(a), a = 1, . . . , 5373

matrices are obtained. Looking at the values in each matrix, the first three PCs are su�cient to explain the374

behaviour of the yeast, which capture 86,3% variance in data. Fourth and fifth PCs are classified as noise.375

The first three MEDA matrices can be seen in Figure 5.376

If analysed from a biological standpoint, the first principal component relates protein production rate to377

reactions 5-8 (glycolysis), 14-16 and 18 (TCA cycle), 19-20, 28, 30, 36 and 37. In Figure 5a these reactions378

are rounded by the solid line rectangle. It can be seen that this relations are indeed strongly correlated,379

having Q

2
(1),(m,l) coe�cients close to 1. As can be seen in the stoichiometric matrix, each of these groups380

is directly connected to NADH and ATP metabolism: ATP is formed in reactions 6, 8, 18 and 28, whereas381

NADH is formed in reactions 6, 14, 16 and 18-20. Finally, reactions 28, 30 and 36 represent the electronic382

transport chain, oxygen consumption and ATP dissimilation. The first PC can be then understood as383

the main pathway for ATP formation and dissimilation, this is, energy generation. Interestingly, protein384

productivity and ATP generation have been previously related in a first-principles based approach to predict385

recombinant protein production [49].386

The second principal component is related to the biomass growth rate, which involves reactions 9-13387

(fermentative pathways), 17, 21, 29 and 41 (relations shown by dashed line rectangles in Figure 5b). Except388

for reaction 41, corresponding to the glycerol consumption rate, reactions 12 (around which reactions 9, 10,389

11, 13 and 29 are connected), 17 and 21 share NADPH (either mitochondrial or cytosolic) production, which390

is, in fact, one of the major contributing precursors to biomass formation. It is worth noting that reaction 17391

(corresponding to NADPH-requiring form) and not 16 (corresponding to the isoenzyme NADH-requiring)392

is identified.393

Finally, the third principal component relates methanol consumption rate to the pentose phosphate394

pathway, strongly connected by reaction 34 (reactions correlated are rounded by dotted rectangles in Figure395

5c). Reactions 3-4, 22-26, 32, 35 and 44 are also related with this component.396

The first three principal pathways are depicted in Figure 6. In this way, the reactions involved by the397

three first principal components seem to pinpoint specific metabolic indicators (cofactors NADH, NADPH398

and ATP) and their relation with protein, biomass and substrate (glycerol and methanol) consumption.399

It is worth pointing out that the fit of a PCA model on the available experimental data is not feasible400

due to two main reasons: i) only seven out of nine external fluxes are measured for all scenarios under401

study, of which three have zero values mostly (see Figure 2), ii) the flux distributions across the metabolic402

network cannot be represented since no internal fluxes are considered. Actually, a PCA does not clearly403

relate substrates consumption to biomass and protein production, so this model is not meaningful (results404

not shown).405

5. Conclusions406

In this paper, a grey modelling strategy that combines data-driven and knowledge-based information at407

di↵erent scales is presented to analyse the behaviour of the methylotrophic yeast P. pastoris. This strategy408
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(a) Q2
(1) (b) Q2

(2)

(c) Q2
(3)

Figure 5: MEDAs plots for the first (a), second (b) and third (c) PC. Solid line rectangles marks reactions
related to the first PC, dashed line rectangles round reactions associated to the second PC and, finally,
reactions related to the third PC are rounded by dotted line rectangles.

is composed of five main steps. Firstly, the available flux measurements, mainly external, are coupled with409

a model-based estimation of the unmeasured fluxes, mainly internal. Secondly, a possibilistic analysis is410

applied to check the consistency between the constraint-based model and data. Thirdly, a Monte Carlo411

sampling is performed to produce feasible flux solutions for the microbial system under study. As a result,412

a large solution data set -a mixture of experimental data, data-based estimations, and variability resulting413

from uncertainty- is obtained. Fourthly, a PCA model is fitted on the sampled data to reveal its internal414

biochemical structure. Finally, MEDA analysis is performed to enhance the interpretation of the Principal415

Components (PCs) derived from the PCA analysis.416

The grey modelling of the methylotrophic yeast P. pastoris yielded three meaningful PCs from the417

biological point of view, which are su�cient to explain most of the variance of the sampled data. The first418
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Figure 6: The first three PCs represent the main metabolic pathways through the yeast P. pastoris.

PC is related to protein productivity, the second one corresponds to the biomass growth rate, and the third419

one represents methanol consumption rate. Note that the experimental data taken from literature do not420

describe the whole space of behaviours that P. pastoris could exhibit. In order to explore all the feasible421

solution space, future work should address this issue in two ways: (a) a generalisation: incorporating more422

datasets to explore in a wider scope, and (b) a particularization: perform a similar study only with similar423

datasets (e.g. mixed cultures of glycerol and methanol), with the aim of getting a deeper insight in their424

di↵erences and their impact of the process performance.425

An important benefit of the grey modelling and analysis approach presented in this paper is its scalability.426

New knowledge, e.g. metabolomics or gene regulation, can be incorporated in the form of extra constraints,427

new flux data can be added via new scenarios, and other data pieces -not fluxes- could be incorporated428

directly into the data matrix before performing the multivariate methods. This joint with its capability to429

describe the most important biochemical processes makes this strategy promising for the design of real-time430
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monitoring systems.431
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Associate Professor José Camacho for providing the Exploratory Data Analysis Toolbox.436

References437

[1] F. Llaneras, Interval and possibilistic methods for constraint-based metabolic models, Master’s thesis, Universidad Politc-438

nica de Valencia (2010).439

[2] A. Kayser, J. Weber, V. Hecht, U. Rinas, Metabolic flux analysis of escherichia coli in glucose-limited continuous culture.440

i. growth-rate-dependent metabolic e�ciency at steady state, Microbiology 151 (3) (2005) 693–706.441
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[11] F. Llaneras, J. Picó, Stoichiometric modelling of cell metabolism, Journal of Bioscience and Bioengineering 105 (1) (2008)457

1–11.458

[12] M. D. Mesarovic, S. N. Sreenath, J. D. Keene, Search for organising principles: understanding in systems biology, Systems459

Biology, IEE 1 (1) (2004) 19–27.460

[13] K. J. Kau↵man, P. Prakash, J. S. Edwards, Advances in flux balance analysis, Current Opinion in Biotechnology 14 (5)461

(2003) 491 – 496.462

[14] S. Feyodeazevedo, B. Dahm, F. Oliveira, Hybrid modelling of biochemical processes: A comparison with the conventional463

approach, Computers & Chemical Engineering 21 (1997) S751–S756.464

[15] H. Ramaker, E. van Sprang, S. Gurden, J. Westerhuis, A. Smilde, Improved monitoring of batch processes by incorporating465

external information, Journal of Process Control 12 (4) (2002) 569 – 576.466

[16] Y. Takane, T. Shibayama, Principal component analysis with external information on both subjects and variables, Psy-467

chometrika 56 (1) (1991) 97–120.468

[17] Y. Takane, H. Kiers, J. Leeuw, Component analysis with di↵erent sets of constraints on di↵erent dimensions, Psychometrika469

60 (2) (1995) 259–280.470

[18] J. E. Jackson, A User’s Guide to Principal Components, Wiley Series in Probability and Statistics, 1991.471

[19] B. Sariyar, S. Perk, U. Akman, A. Hortasu, Monte carlo sampling and principal component analysis of flux distributions472

yield topological and modular information on metabolic networks, Journal of Theoretical Biology 242 (2) (2006) 389–400.473

[20] C. Barrett, M. Herrgard, B. Palsson, Decomposing complex reaction networks using random sampling, principal component474

analysis and basis rotation, BMC Systems Biology 3 (30) (2009) 1–8.475

[21] S. Van Dien, S. Iwatani, Y. Usuda, K. Matsui, Theoretical analysis of amino acid-producing escherichia coli using a476

stoichiometric model and multivariate linear regression, Journal of Bioscience and Bioengineering 102 (1) (2006) 34–40.477

[22] R. Bro, PARAFAC. tutorial and applications, Chemometrics and Intelligent Laboratory Systems 38 (2) (1997) 149–171.478

[23] M. Verouden, R. Notebaart, J. Westerhuis, M. van der Werf, B. Teusink, A. Smilde, Multi-way analysis of flux distributions479

across multiple conditions, Journal of Chemometrics 23 (7-8) (2009) 406–420.480
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