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Abstract Prioritized atomic multicast consists in delivering messages in total
order while ensuring that the priorities of the messages are considered; i.e.,
messages with higher priorities are delivered first. That service can be used
in multiple applications. An example is the usage of prioritization algorithms
for reducing the transaction abort rates in applications that use a replicated
database system. To this end, transaction messages get priorities according
to their probability of violating the existing integrity constraints. This paper
evaluates how that abort reduction may be improved varying the message
sending rate and the bounds set on the length of the priority reordering queue
being used by those multicast algorithms.

Keywords Total-order multicast · Database replication · Integrity con-
straints · Abort rate · Prioritized message delivery

1 Introduction

An atomic multicast message protocol, also known as total order multicast
protocol is a basic group communication building block that can be used to
design and develop robust distributed applications. Such a protocol enables
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an application to send messages to a set of nodes such that they are delivered
in the same order by each node. Atomic multicast has been studied for more
than thirty years, during which a large amount of results has been produced
[2, 4]. Some of these services offer an additional feature that enables users to
prioritize the delivery of certain messages over others [19, 16, 14].

Our research group has also produced some results related to prioritized
atomic multicast. Specifically, in [11] an experimental study shows the effec-
tiveness of the prioritization techniques proposed in [9], reducing the abort
rates of transactions being served by a replicated database system that man-
aged different integrity constraints. To this end, our system prioritized the
delivery of those transactions that will not violate such constraints. Those re-
sults constituted a first study in this line, proving the effectiveness of these
strategies in a given configuration. This paper extends those preliminary re-
sults, analyzing the impact that a control of the prioritizing queue length has
on the behavior of these techniques.

This experimental work is not tied to a single prioritization approach.
On the contrary, several prioritization approaches previously proposed in [9]
(based on different atomic multicast protocol families, as identified in [4]) are
considered and compared. The results show that, although all prioritization
approaches reduce the overall transaction abort rates, the effectiveness of each
of them depends on multiple factors: prioritizing queue length, degree of sat-
uration, sending rate, ... This study identifies in which conditions each one
of the protocols is the best option to achieve a global message prioritization.
Such information may be used by an atomic multicast switching mechanism
[17, 12, 10] for selecting and installing the best protocol at every moment,
enhancing the adaptability of these applications.

The rest of the paper is organized as follows. Section 2 briefly surveys
related work. Section 3 describes the system model assumed in the rest of
the paper. Then, Section 4 describes the experimental study that has been
performed. It includes the description of the testbed and the application being
used, the methodology, the parameters being managed, the obtained results
and their discussion. Finally, Section 5 concludes the paper.

2 Related Work

Unlike plain total order multicast, priority-based total order multicast has not
been too much studied and only a few results have been presented.

Tulli and Shrivastava [19] identify prioritized message delivery as a po-
tential source of non-determinism in state-machine replicated processes. They
assume that message order is being set at the receiving side and propose an
extended prioritized input function to manage such order-setting step. The
main problem being solved is to ensure that all replicas have the same set
of messages in their input queues when a message is being chosen from that
set depending on its priority. This was one of the first papers dealing with
any prioritization-related management. We will see later that not all atomic
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multicast protocols need to apply priority reordering at the receiver side. So,
there are other simpler and faster ways to deal with determinism assurance in
this type of protocols.

In [15] (an extension of [14]), a starvation-free priority-based total order
protocol is presented. The protocol sits on top of an existing total order broad-
cast service so it receives in all processes the messages in the same order. It
then locally and deterministically orders messages according to their priorities.
Time is divided in time parts, and the protocol ensures that all the messages
that belong to the same part are totally ordered according to their priori-
ties. This time-based solution is also used to avoid starvation of low-priority
messages. The protocol keeps a queue of incoming messages that is ordered ac-
cording to the priorities of the messages. Messages with the same priority are
queued according to their arrival order. Such protocol is a wrapper for some
existing total order protocol rather than a total order broadcast protocol itself
and does not integrate the priority management in the original protocol core.
For this reason, it cannot be classified according to the taxonomy of [4].

Rodrigues et al. [16] base their protocol on a Priority accounting property.
According to this property, if a message of a given priority has not been deliv-
ered at any process when a message of a higher priority is received, then the
latter will be delivered prior to the former. Thus, a priority-based total order
multicast protocol is defined as a broadcast protocol that preserves the Pri-
ority accounting property in addition to a regular Total order property. The
protocol keeps a list of incoming messages that is ordered according to their
priority. This list has a common suffix in all the processes. When a process
receives a message, it blocks part of the list of the incoming messages (the
part that contains messages of a lower priority). The process then sends some
information related to the blocked list part to a special process that acts as a
coordinator. It also sends information about the last messages delivered to the
application. The coordinator uses all this information to decide in which point
of the list processes must insert the incoming message. Regarding the classifi-
cation of [4], as the delivery history is used to decide the order of the messages
(as well as the priorities of the incoming and existing messages), this protocol
may be classified in the deterministic merge subclass of the communication
history protocol class.

We studied and proposed different approaches for managing message pri-
oritization in multiple classes of atomic multicast protocols. To this end [9],
we proposed four different alternatives for prioritizing multicasts:

– At the sending step. Multicast protocols that need to temporarily buffer
their messages in the sender process may re-order their messages before
sending them. Thus, every sending process may reorder locally all the mes-
sages it holds in its sending queue. Since the prioritization is made by the
sender, there is no danger of losing determinism, since all receivers ob-
tain the messages already prioritized and no re-ordering is needed in the
receiving side.
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This happens in the privilege-based [4] multicast protocols where the “send-
ing privilege” is transmitted from process to process using a logical token.
Only the process with the token is able to multicast messages. Once a mes-
sage is multicast the token is logically transferred to the next process in a
logical ring.

– At the sequencing step. Multicast protocols that use any kind of central
sequencer may prioritize the messages in the queue of that sequencer. Mes-
sages are first forwarded to the sequencer. Once “ordered” the sequencer
broadcasts them to all intended receivers. This is the sequencer-based fam-
ily of multicast protocols identified by [4].
In these two approaches (privilege-based and sequencer-based) the danger
of losing determinism, as identified in [19], does not arise. Note also that
a sequencer-based prioritization algorithm achieves a global prioritization
while the privilege-based algorithms may only prioritize locally.

– At the delivery step. In some kinds of multicast protocols messages are
temporarily buffered at the receiver side, waiting for other messages from
other senders. This happens when causal order should be also ensured. In
those algorithms some messages may be temporarily prevented from being
delivered while other preceding messages in the causal order are not yet
received. Multiple messages might be blocked in that receiving queue and
prioritization among concurrent messages may be applied in those queues.
In order to ensure determinism at the receiving side, FIFO channels are
provided by the transport and a message is not delivered until there is at
least one message enqueued from each potential sender. Thus, this priori-
tizing approach will not provide a good throughput at low sending rates,
but it also ensures determinism.
This approach is applicable to the communication-history multicast proto-
cols identified in [4].

– In the consensus step. Some other multicast protocols use a consensus
algorithm to actively decide in a distributed way the delivery order. In
that case, the priority assigned to each message by its sender needs to
be considered in these consensus steps. The participating processes need
to agree also on the size of the set of messages to be ordered in each
consensus. Thus, determinism is also ensured. This approach is applicable
to the destinations agreement multicast protocols identified in [4].

The results presented in [9] were centered on the description of these prior-
itizing approaches and on their validity. In that paper no performance evalua-
tion was given. The current paper extends those results evaluating the perfor-
mance of three of these four approaches: all but the last. Note that protocols
that prioritize at the consensus step will clearly provide the worst performance
among all these alternatives, since that family of protocols has been identified
as costly in other papers [4].

Besides the prioritizing approaches, a second axis that should be considered
for analyzing related work is that of the research areas where message priori-
tization makes sense. The main one has traditionally been that of distributed
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real-time systems. Schedulability in real-time systems is commonly based on
priority management. Communication in those systems should follow a similar
approach [18]. As a result, some kind of message prioritization is needed in
those systems. One of the first strategies in that research area was described by
Tindell and Clark [18]. Most real-time systems maintain a shared bus in order
to deal with message-based communication. This facilitates a TDMA (time
division multiple access) scheme, where the most prioritized processes receive
longer slots for accessing the bus. Those approaches are easier to manage than
those based on more general atomic broadcast protocols executed on any kind
of network topology (as those assumed in the other related papers described
up to now).

Another example of prioritized communication in real-time systems is the
one proposed in the Controlled Area Network (CAN) standard [6], that is
currently used by millions of cars and other vehicles around the world [3]. A
CAN is a bus-based network specifically designed to communicate a number
of physical processors by means of short control messages. Each processor is
assigned by design an identifier which also determines its priority. The smallest
identifier (0) has the highest priority and the highest identifier gets the lowest
priority. Then, the priority of a message is that of its sender processor. A CAN
bus allows many processors to concurrently send messages. It includes an ar-
bitration mechanism, based on certain physical characteristics of the bus, that
resolves collisions according to the priorities of the involved senders. Moreover,
in case of media access collision, it guarantees that the sending and delivery
of the higher priority message is not interrupted. This example of prioritized
communication strongly depends on a specific hardware context and on its
constraints.

When schedulability is not the main focus, other aspects may require a pri-
ority management. A second field of applications demanding prioritization was
proposed by our group [11] regarding replicated database systems managing
integrity constraints. These applications may easily identify those transactions
that might violate a given integrity constraint, tagging them with a lower pri-
ority than those that do not introduce any danger. However, the application
layers placed on top of the relational database are unable to decide which
transactions should be discarded since there may be a large number of concur-
rent transactions and their rejection depends on the current database state.
As a result, only the database machinery is able to accept or reject a trans-
action. Such decision is taken using database triggers or stored procedures.
Since relational DBMSs store their data on secondary storage and persistence
is ensured when updates are committed at the end of each transaction, quite
long intervals are required for finalizing a submitted transaction. So, the per-
formance bottleneck in distributed systems managing this kind of applications
will usually be the replicated DBMS. This may admit longer intervals in the
multicast step, improving the results of the prioritization approaches that will
be presented in the rest of this paper, since this admits a larger set of messages
being considered in order to select the most prioritized message.
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In [11] we already evaluated the abortion rates and throughput of several
prioritization approaches. However, in that paper a single sending rate was
chosen (50 msgs/sec. per node). We have extended those results in the current
paper. To this end:

– The basic multicast protocols have been optimized. The sending rate being
used in [11] was close to that needed to saturate every protocol. Their
transport and buffer management have been reimplemented. As a result,
the current version is able to accept up to 140 msgs/sec. per node before
being saturated.

– A more complete performance analysis varying the sending rate is included
in Section 4.5 of the current paper. This allows an easier identification of
the degree of saturation needed in each technique in order to provide good
prioritization results.

– New approaches for enlarging the set of prioritized messages are discussed
and evaluated in Sections 4.4.2 and 4.6. These techniques improve the
prioritizitation benefits without requiring high sending rates and without
enlarging excessively the message delivery times.

– Prioritization algorithms might cause the starvation of messages with a
very low priority. Mechanisms to avoid such problem in our new proposed
approaches are also described.

3 System Model

The system is composed of a set of physical nodes. In each node, a process
is run. Processes communicate through message passing by means of a fair
lossy channel (i.e., a channel that may lose some messages, but not all of
them; moreover, it does not produce new spurious messages, does not duplicate
messages, and does not change their contents).

Each node has a multilayer structure. The user level is represented by a
distributed client application that uses the services offered by a group commu-
nication system (GCS) that is composed of one or more group communication
protocols (GCP). The GCP providing atomic multicast is placed on top of a
reliable message transport.

The system is partially synchronous [5]. Although several definitions exist
on partial synchrony, it is considered that on the one hand, processes run
on different physical nodes and the drift between two different processors is
not known. On the other hand, the time needed to transmit a message from
one node to another is bounded but the bound is not known. In practice,
the system does not need more synchrony than that offered by a conventional
network which offers a reasonably bounded message delivery time.

Although the existing bounds on the message transmission time are un-
known, we assume that such time does not vary a lot among different messages
when a non-prioritized multicast algorithm is used. This means that for those
algorithms the mean and median delivery times are close to each other.
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On the other hand prioritized multicast algorithms are able to transmit
and deliver high-priority messages in a short time and might also penalize
low-priority messages with a long delivery time. As a result, prioritized mul-
ticast algorithms regularly show low median delivery times (since messages
with median to high priorities are delivered faster than in regular multicast
algorithms) but high mean delivery times (since low-priority messages require
a long time to be delivered and their values increase the mean delivery time).
In order to evaluate the quality of prioritization algorithms, all next sections
thoroughly compare the mean and median delivery times in every presented
experiment.

Processes can fail due to several reasons (for instance, hardware failures,
software bugs or human misoperation). Processes are also subject to network
failures that keep them from sending or receiving messages. Network parti-
tions may also occur. Nevertheless, since this work focuses on prioritization
techniques, these issues will not be addressed here since prioritization is unre-
lated to fault management. An implementation of these techniques may rely
on some mechanisms (like failure detectors, membership services, message sta-
bility criteria, etc.) regularly used by the GCS in order to deal with failures.

4 Experimental Work

This section describes the experimental work done in order to analyze the im-
pact that some parameters of the prioritization algorithms have on the eval-
uation of the integrity constraints being considered in an application sample.
First, the testbed, the parameters and the methodology are presented. Then,
the results are explained.

4.1 Testbed

The study uses a test application that relies on the services of a total order
multicast algorithm which uses a reliable transport layer implemented on top
of the JBoss Netty 3.2.4 networking library [7]. Netty is a library that offers
asynchronous event-driven abstractions for using I/O resources. Netty allowed
us to build a reliable, stream oriented, TCP-like message transport layer used
by the group communication protocols to unicast and broadcast messages.
This reliable transport is needed for dealing with two different aspects of our
assumed system model: partial synchrony and lossy channels. This transport
allows us to record the regular delays of each channel. With that information,
useful timeouts can be set and they are able to identify when a message has
been lost and needs to be re-sent. If a timeout for a given sender expires
multiple times for a given message, the membership service of our system
tags that node as crashed. As a result of this, the results being presented in
Sections 4.5 and 4.6 are able to correctly deal with the system model described
in Section 3.
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The experiments have been conducted in a system of four nodes with an
Intel Pentium D 925 processor at 3.0 GHz and 2 GB of RAM, running Debian
GNU/Linux 4.0 and Sun JDK 1.5.0. The nodes are connected by means of
a 22-port 100/1000Mbps DLINK DGS-11224T switch that keeps the nodes
isolated from any other node, so no other network traffic can influence the
results.

4.2 Test Application

The BalanceAppl test application being used for these tests is very similar
to the BalanceTest application developed in [11]. It simulates a system that
keeps track of the overall amount of money being processed by all investment
brokers of a stock trade enterprise. Each broker runs its own instance of the
application, operating on the stock exchange on behalf of the stock owners
and a potentially large number of investors.

When a broker performs some operation, the application attempts to ap-
ply the requested updates to the global balance. If the operation implies the
purchase of shares, the application checks whether it can be performed, con-
sidering the price of the purchase and the current global balance. To this end,
the application invokes a stored procedure in all database replicas. Those pro-
cedures reject an operation (rolling back its associated transaction) when the
price of its purchase exceeds the global balance.

As there are several brokers working at various sites buying and selling
shares concurrently, the global balance is incessantly updated. In order to
ensure that the current value of the global balance is consistent among all
nodes of the application, a total order multicast is needed. It is used by all
nodes to multicast the update transaction calls so that all brokers see the same
sequence of operations and apply the same sequence of updates to the global
balance. That way, consistency among all nodes is achieved.

Each node creates and multicasts a number of messages, each one rep-
resenting a stock trading operation that updates the current balance. Each
update carries an integer value. Positive and negative values represent selling
and buying operations of stock trading, respectively. The values range from
-1100 to 1000. The actual value assigned to each message is generated at ran-
dom.

Each message carries a second integer value which represents its priority.
In real-life stock trading, these priorities are determined by considering a large
number of factors, such as the market situation, recent evolutions of shares,
some long-term trends, risk analyses, expected benefits, etc. To simplify the
test process, the priority of each operation is uniquely determined by its type
(purchase or sale), as follows. Given the value v of an operation, its priority p
is computed as p = 1000− v. Thus, a sale update of the global balance with a
value of 1000 obtains the priority value 0, and a purchase update with a value
of -1100 obtains priority 2100. Since priority management in the modified total
order protocols is implemented according to a lower value = higher priority
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rule, the priority of the first update is higher than that of the second one.
So, positive updates (from sales) are prioritized over negative updates (from
purchases).

As already outlined above, this system implements an integrity constraint
that aborts every transaction that would generate a negative balance. So, it
ensures that the predicate “balance ≥ 0” is always true. The initial value of
that balance is 0 in every test execution.

The lowest transaction abort rate caused by that constraint in these tests
is 4.76%. In order to show this, let us assume that in a test 2101 transactions
have been used. Since the balance update contained in each message is in
the range [-1100,1000] and such value is assigned randomly, let us assume
(for the sake of simplicity) that each message receives each one of the integer
values in that range, following a uniform distribution. If all those messages
could be held by the prioritized multicast algorithm in its ordering queue at
once, the first to be delivered would have a 1000 value in its balance update,
while the last one would have a -1100 value. With such order, the first 2001
delivered messages would have been accepted (note that they define a finite
arithmetic progression with common difference of -1, an initial term of 1000
and a final term of -1000 whose sum is 0), leaving again a balance of 0. The
2002nd message would have tried to apply a -1001 update, but it is the first
being aborted, as all the remaining ones. In the end, those last 100 messages
are aborted and the resulting abort rate is 100/2101 (i.e., 4.76%). This is the
lowest possible abort rate when a uniform distribution of updating values is
assumed. On average, without any prioritization, these executions generate a
7% transaction abort rate. For this example, assuming a uniform distribution
of the updating values, transaction abort rates lower than 6.7% are impossible
to achieve without message prioritization.

The results presented in the evaluations that follow are only focused in
the transaction abortions being caused by the integrity constraint discussed
above. Database replication protocols based on total order broadcast [20] may
generate other abortions due to conflicts among concurrent transactions. Those
conflicts are detected at transaction validation time and their rate depends
on the specific replication protocol being used. Since those aborting actions
are not caused by our message management, they are not considered in the
evaluations presented in this paper.

4.3 Test Methodology

To test the proposed prioritization techniques, different multicast protocols
are compared. Two different sets of tests have been carried on. In a first set,
for each protocol, the sending rate at which each node multicasts messages
is varied, as discussed in Section 4.4. For each combination of protocol and
sending rate, BalanceAppl is executed, recording the number of updates each
node discarded. Then, the message discard rate is computed, i.e, the percentage
of messages that a node has discarded, relative to the total number of messages
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it has received. To obtain reliable results, each execution of BalanceAppl has
been repeated a statistically relevant number of times. We also measure the
delivery time of each message, as the time needed by a node to multicast a
message and receive it back once totally ordered.

In the second set, we consider a fixed sending rate and modify other pa-
rameters, as explained in Section 4.4.

When a prioritized protocol is being compared against its non-prioritized
version, the random values being used by both protocols are generated before
starting each test iteration, saved into a file, and loaded into main memory in
each variant in order to share the same sequence of values. This guarantees
that the differences in their transaction abort rates do not depend on a worse
or a better sequence of update values being used by each variant.

4.4 Parameters

Each BalanceAppl instance is run in a physical node, using four instances
in each test (i.e., four nodes). Each instance creates a sequence of messages,
as described above, and sends them by a rate that is constant during all the
test. Each instance is configured to receive 10000 messages. The initial balance
value is set to 0.

Three non-prioritized total order protocols and a prioritized version for
each have been compared. The UB protocol is an implementation of the UB
sequencer-based total order algorithm proposed by [8]. UB stands for Unicast-
Broadcast. The TR protocol implements a privilege-based algorithm (i.e., one
using a token ring in order to rotate the “privilege” of multicasting messages),
inspired by the ones of [13] and [1]. Finally, the CH protocol is an implemen-
tation of the communication (causal) history algorithm from [4]. The corre-
sponding prioritized versions are UBp, TRp and CHp and their prioritization
approaches have been outlined above and are thoroughly described in [9].

4.4.1 Sending Rate Variation

The first series of executions is focused on studying the effect of the message
sending rate on the prioritization effects. In order to be effective, a prioriti-
zation algorithm needs multiple messages in the ordering queue for selecting
that with the highest prioritiy. When the message sending rate is high, several
messages should be found in that queue. In order to test this parameter, this
series of tests uses different sending rates: 40, 60, 80, 120 and 140 messages
sent per second and per node.

The results presented in this paper have been obtained with a prototype
GCS written from scratch in Java, executing it at user level without any kind
of optimization. Its aim is to provide a proof of concept about the suitability
of the prioritization techniques. So, the message sending rates that can be
achieved with this GCS are quite modest and its saturation point is also low
(some multicast protocols reach it at 125 msg/sec per node, managing only
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500 msg/sec in a system with four nodes). This explains why the maximum
sending rate being analyzed in this series is 140 msg/sec per node.

4.4.2 Setting Lower Bounds on the Length of the Priority Re-ordering Queue

In the second series, a fixed sending rate of 60 messages sent per second and
node has been chosen. Additionally, some modifications in the total order pro-
tocols are needed, so they can retain the messages multicast by the application
some time before ordering them. The goal of these modifications is to allow the
protocols to apply their prioritization rules to a larger set of messages. These
modifications have been applied to the sequencer-based and the privilege-based
protocols, as follows.

In the sequencer-based protocols, both UB and UBp have a queue of in-
coming messages (those forwarded from each node) managed by the sequencer
node. In UBp, this queue is ordered according to the priorities of the messages
it stores. In both protocols, when there are messages in this queue, the first
one is taken, sequenced (i.e., assigned a sequence number) and multicast.

In the bounded UBp version, incoming messages are not immediately se-
quenced. Instead, UBp requires that a number of messages have been stored
in the incoming message queue. Thus, the sequencer can reorder at least that
amount of messages according to their priorities. The UBp manages two num-
bers, interpreted as a minimum bound and an upper threshold on the size of
the incoming message queue of the sequencer. They are used as follows. When
incoming messages are received by the sequencer, they are queued until the
number of messages reaches the upper threshold. Then, the sequencer starts
sequencing and broadcasting messages. When the queue length is equal to the
minimum bound, then the sequencer stops taking messages. As new incom-
ing messages arrive, the queue starts to grow again and its size eventually
reaches the upper threshold, thus allowing the sequencer to restart its message
sequencing.

For instance, the minimum bound and the upper threshold may be 5 and
10, respectively. This means that initially, the sequencer waits until at least
10 messages are queued in the incoming message queue to start sequencing
them. When 5 messages are left in the queue, the sequencer stops sequencing
messages, until new messages are queued. When the queue has at least 10
messages, sequencing is resumed.

Since these bounds can be updated dynamically, while messages are being
multicast, they provide a means to avoid the starvation problem (starvation
arises when messages with minimal priority do not leave the re-ordering queue
while a stream of other messages is continuously arriving to that queue). To
this end, from time to time the minimum bound can be set to zero, compelling
the protocol to empty its reordering queue. Once the queue is emptied, such
minimum bound can be reset to a higher value. In spite of this, the performance
experiments presented in Section 4.6 only use static minimum bounds in their
executions.

Regarding the privilege-based protocols, a similar approach is followed.
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In TR, each node has an outgoing message queue where it queues the
messages sent by the user application. In TRp this queue is ordered according
to the priorities of the messages it stores. In both protocols, when the local
node receives the token it takes the first message in the queue, sequences it
and broadcasts it.

In the TRp protocol, messages broadcast by the application are not im-
mediately broadcast. Instead, TRp requires that a number of messages were
queued in the outgoing message queue of the node. Thus, the local node can
reorder at least some messages according to their priorities. When the token is
received, TRp checks if there are at least that minimum number of messages
previously queued. If the requirement is met, then the first message (i.e. that
with the highest priority) is sequenced and broadcast. If not, the message is
queued and the token is sent to the next node (thus performing an empty
token passing).

To avoid starvation issues at low sending rates, a limit is imposed on the
number of times the token is sent to the next node without broadcasting
any message. If such a bound is reached, then the protocol sequences and
broadcasts the next available message, regardless of the size of the outgoing
message queue.

Thus, the modified version of TRp uses two parameters. The first parameter
is the minimum size of the local outgoing message queue, used to force a
number of messages to be retained in that queue. The second parameter is the
limit imposed on the number of empty token passes.

In the second series of executions, the second parameter value was 30 in all
the tests. Moreover, we logged the number of empty token passes in all tests
and checked that in all of them it was lower than 30. In practice, it means
that the message sending rate is sufficient for guaranteeing that the sending
queues in all nodes reach the imposed lower bound in a few token rounds. It
also means that in the executed tests, the mechanism used to avoid starvation
is not having any impact on the prioritization mechanism. Indeed, it is only
useful for guaranteeing that the sending queues are emptied at the end of the
test. Thus, the unique significant parameter is the first one.

4.5 Results with Increasing Sending Rates

Table 1 and Figure 1 show the mean message discard rate of each test, for
each protocol and each sending rate, according to the methodology discussed
in Section 4.3.

Table 2 shows the mean delivery time (in milliseconds). These mean num-
bers are also depicted in Figure 2. Table 3 shows the corresponding median
numbers.

For sending rates between 40 and 120 messages sent per second and node,
the results show that increasing the sending rate has an impact on the message
discard rate that depends on the protocol. The impact is small in case of the
UB and UBp protocols. At a sending rate of 140 messages sent per second
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Table 1 Mean message discard rate.

UB UBp Benefit TR TRp Benefit CH CHp Benefit
40 6.92 6.91 0.14% 7.10 7.10 0% 7.07 7.08 -0.14%
60 6.97 6.96 0.14% 6.97 6.96 0.14% 6.95 6.77 2.59%
80 6.89 6.85 0.58% 6.95 6.88 1.01% 6.90 6.67 3.33%

120 6.81 6.86 -0.73% 6.93 6.75 2.60% 6.89 6.48 5.95%
140 7.12 6.76 5.06% 6.88 6.72 2.33% 7.00 6.81 2.71%
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Fig. 1 Mean message discard rate.

and node, the sequencer is finally able to accumulate messages in its incoming
queue. Then, the UBp protocol has a chance to reorder messages and the
message discard rate is reduced. The drawback is that the mean delivery time
is increased (to more than 40 ms, as shown in Table 2). However, this is not
a real drawback but only a side effect of the prioritization since the median
delivery time is still good (below 1.75 ms) and close to that obtained with the
non-prioritized protocol version (UB). Such values only show that a sequencer-
based protocol applies a global prioritization and those messages with the
lowest priority spend a lot of time in the prioritizing queue, thus increasing
the mean delivery time.

In case of TR and TRp the situation is slightly different. Due to the token
ring arrangement of the nodes, messages broadcast by the user application
are stored in the outgoing message queue of the protocol, while it waits for
the token to arrive. In the meantime, TRp can reorder the queued messages
according to their priorities and then reduce the message discard rate. As
the sending rate is increased, more messages are queued in each node while
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Table 2 Mean delivery times (ms).

UB UBp TR TRp CH CHp

40 1.02 1.10 1.18 0.91 17.14 17.14
60 0.98 1.06 2.03 2.51 11.10 11.13
80 1.05 0.99 3.54 3.31 7.71 7.57
120 1.02 1.20 4.72 7.67 5.74 5.16
140 1.40 41.06 5.08 6.88 367.30 575.74

Table 3 Median delivery times (ms).

UB UBp TR TRp CH CHp

40 1.46 1.47 1.29 1.28 18.76 19.19
60 1.47 1.49 1.38 1.39 12.56 12.59
80 1.52 1.51 1.50 1.48 8.80 8.74
120 1.54 1.55 1.72 1.72 6.54 5.42
140 1.72 1.74 1.77 1.79 9.78 468.35
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waiting for the next token to arrive and more benefit can be gotten from the
reordering. This explains the increasing difference of the message discard rates
of TRp regarding to TR as the sending rate increases.

For CH and CHp, something similar happens. As the sending rate is in-
creased, more messages are queued in the incoming message queue of CHp
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waiting for the previously received messages to be delivered to the applica-
tion. Thus, more (causally independent) messages can be reordered according
to their priorities. Regarding the mean and median delivery times, up to send-
ing rates of 120 messages sent per second and node, they decrease. As shown
in the original description of CH in [4], to deliver a message in CH , a node
needs at least one message from each of the nodes. At lower sending rates,
nodes have to wait more time for receiving the needed messages from the rest
of the nodes. At higher rates, this waiting time is reduced, thus reducing the
delivery time of the messages and the global mean delivery time. However, for
extremely high sending rates (those saturating the protocol performance, that
are those exceding 130 msg/sec per node in case of our CHp GCP prototype
since both its mean and median delivery times are two orders of magnitude
larger than those obtained at 120 msg/sec) the percentage of “concurrent”
messages is decreased and there is a lower amount of messages that can be
prioritized, explaining the unsatisfactory results in the decrease of the discard
rates in that case.

In order to sum up the results of this first series, one can observe that
sequencer-based multicast protocols have not introduced any benefit in the
discard rate reduction at low or medium sending rates. However, their results
are good at high sending rates since they generate an acceptable reduction
on the transaction abort rate (5.06%) while still providing a good median
message delivery time (below 2 ms, identical to that of the non-prioritized
protocol version at the same sending rate). Multicast protocols based on a
communication history are able to provide acceptable results at intermediate
sending rates. This is because they demand the reception of messages from
every node in the group before delivering each received message. Therefore,
each node may have multiple received messages before each delivery, with the
option of delivering the concurrent ones according to their priorities. At the
highest sending rate that they admit before being saturated (120 msg/sec per
node, in this test) they have been able to reduce the discard rate in 5.95%
(6.48 vs 6.89). Although they are able to generate those results with an ac-
ceptable delivery time (about 5 ms), that delivery time is unacceptably high
when the protocol is saturated (with an average greater than 570 ms and a
median exceeding 460 ms at 140 msg/sec per node). Finally, privilege-based
multicast algorithms show an intermediate position. They are able to reduce
a bit the discard rates (a reduction that reaches 2.6% in the best case at 120
msg/sec per node: 6.75 vs 6.93), while presenting always a good mean delivery
time (below 8 ms) in all the evaluated range of sending rates. Moreover, their
median message delivery time is also below 2 ms in all these tests, as with
the sequencer-based protocols. As a result, privilege-based prioritization (i.e.,
TRp) and communication-history protocols seem to be the best candidates for
intermediate message sending rates, while a sequencer-based protocol is the
best one at high sending rates. None of the protocols provide any advantage
at low sending rates.

It is worth noting that these small abort reductions are conditioned by
the scenario that has been chosen. In previous papers [11] our prioritization
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mechanisms were tested against symmetrical updates; i.e., the range of values
for the updates was set between -1000 and 1000. In those cases, the maximum
abort rate using non-prioritized delivery reached 3.3% and was decreased to
0.35% using prioritized delivery; i.e., the same comparison made until now in
the current paper, that provides a 5% best relative reduction in the current
experiments and provided a 89.4% (0.35% vs 3.30%) relative reduction in that
case. However, those old protocols did not allow any control on the reorder-
ing queue length. We repeated our experiments in that symmetrical-update
scenario with an adequate queue-length control: the average transaction abort
rate in the new test-runs is 0.05% in the worst cases. As a result, in that
symmetrical-update scenario our best prioritizing protocols generate at least
98.5% reduction on the relative abort rate (0.05% vs 3.3%). Despite those good
values, all forthcoming sections describe the results obtained with the stress-
ing scenario described in Section 4.2, since it allows a thorough comparison
between different strategies for controlling that queue length.

4.6 Results Bounding the Re-ordering Queue Length

The initial objective of increasing the message sending rates is to extend the
length of the queue of messages to be prioritized. In some cases this is not
enough. When that situation arises, it can be analyzed what would happen if
a bound were set on the minimal amount of messages being maintained in the
queue that holds the messages to be re-ordered according to their priority. That
is the aim of this second series of experiments, checking the benefits on the
discard rate reduction and the inconveniences regarding the extended message
delivery times that will be obtained. Communication history protocols have
not been analyzed in this series since they do not admit an easy management
of that lower bound. Their incoming queue grows and shrinks depending on
the causal dependences among messages. This implies that in a worst case
–where all messages were causally related– there would be no message to be
prioritized.

As discussed in Section 4.4.2, in this second series of experiments the UB
and UBp protocols are configured with two parameters: a) the minimum bound
for the size of the incoming queue of the sequencer and b) an upper threshold
for the size of this queue. On the other hand, the TR and TRp protocols can
be configured with two other parameters: a) the minimum size of the outgoing
message queue of each node and b) the maximum number of empty token
passes allowed.

Table 4 summarizes the parameter combinations that have been tested. The
configurations for the UB and UBp protocols include the values of the first and
second parameter of the corresponding protocol. Three kinds of configurations
have been tested. The first one (tagged as UBNS and UBpNS , with NS as an
acronym for “No Starvation”), the minimum bound is set to 0 in all cases.
It avoids message starvation and provides good reductions on the message
discard rates, at the cost of presenting a high median message delivery time.
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The second one (tagged as UBMM and UBpMM , with MM meaning “Minimal
Median”), when the upper threshold is set to value n, the minimum bound is
set to value n−1. This minimizes median message delivery time, although this
approach sacrifices message discard rates. The third kind (tagged as UBIC and
UBpIC , with IC meaning “Intermediate Configuration”) sets the minimum
bound to a half of the upper threshold value. It provides results that are
intermediate to those of the other two variants. The configurations for the
TR and TRp protocols only include the value of the first paramater, since the
second one is fixed to 30, as explained above.

Table 4 Parameter configurations.

Configuration number
1 2 3 4

UBNS , UBpNS 0, 5 0, 10 0, 20 0, 30
UBMM , UBpMM 4, 5 9, 10 19, 20 29, 30
UBIC , UBpIC 3, 5 5, 10 10, 20 15, 30

TR, TRp 3 5 10 15

The mean message discard rate for each combination is shown in Table 5
and depicted in Figure 3. All figures include a parameter configuration labelled
as 0 that corresponds to the results obtained in the first series of experiments
using this same sending rate (60 msg/sec per node) without any bound on
the length of the prioritization queue. It is included for the sake of facilitating
these results comparison.

Table 5 Mean percentages of discarded messages.

UB UBpNS Benefit UB UBpMM Benefit
0 6.97 6.96 0.14% 6.97 6.96 0.14%
1 6.94 6.16 11.28% 6.94 6.60 4.94%
2 6.97 5.82 16.50% 6.97 6.54 6.17%
3 6.95 5.75 17.23% 6.95 6.51 6.29%
4 6.94 5.55 19.99% 6.94 6.50 6.30%

UB UBpIC Benefit TR TRp Benefit
0 6.97 6.96 0.14% 6.97 6.96 0.14%
1 6.94 6.38 8.08% 6.99 6.85 1.99%
2 6.97 6.03 13.52% 7.09 6.79 4.16%
3 6.95 5.76 17.11% 7.03 6.57 6.61%
4 6.94 5.48 21.03% 7.11 6.25 12.05%
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Fig. 3 Mean percentages of discarded messages.

The delivery time of each message was also recorded, computing later the
mean and median delivery time of each test. These numbers are shown in
Table 6 and Figure 4. Delivery times for the non prioritized protocols have not
been presented in those figures since their mean values do not show significant
differences when compared with their prioritized variants.

Table 6 Delivery times (ms).

Mean Median
UBpNS UBpMM UBpIC TRp UBpNS UBpMM UBpIC TRp

0 1.06 1.06 1.06 2.51 1.49 1.49 1.49 1.39
1 25.67 29.34 26.96 14.78 11.59 2.21 5.51 1.25
2 37.50 47.38 38.93 24.29 22.19 2.28 14.06 1.25
3 56.44 88.68 71.72 62.63 45.17 2.31 24.71 1.27
4 83.16 130.79 104.49 92.45 70.41 2.25 37.50 1.26

As expected, in both non-prioritized multicast algorithms (UB and TR),
the bounds set on the minimal length of the incoming message queue had no
effect on the resulting discard rates. They were in all cases close to 7% as it
can be shown in Table 5 and Figure 3.

In case of the prioritized UBpNS algorithm, its effects are clearly positive,
achieving an important reduction on that discard rate. As more messages are
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forced to wait in the incoming message queue, the sequencer can reorder more
messages according to their priorities, thus achieving a better discard rate re-
duction. That reduction ranges from 11.28% in configuration 1 to 19.99% in
configuration 4. Those results are much better than those obtained by any
protocol when only the message sending rate was considered. However, they
do not come for free, since both the mean and median message delivery times
are excessively extended in configuration 4 (reaching a mean of 83.16 ms and
a median of 70.41 ms), although the median is still acceptable in configura-
tion 1 (11.59 ms). As a result, configuration 1 for UBpNS is one of the best
alternatives shown until now, since it is able to obtain a 11%-reduction on
the discard rate with a median message delivery time (11.59 ms) that is com-
parable to the time needed by a DBMS to commit a transaction, persisting
its updates, on a node like those used in these tests. Note also that UBpNS

avoids message starvation, since it flushes the prioritization queue each time
that queue reaches its upper threshold.

The second variant of the sequencer-based prioritized protocols (UBpMM )
provides larger mean message delivery times (from 29.34 ms in configuration
1 to 130.79 ms in configuration 4). This is explained by the larger minimum
bound set on its re-ordering queue length: messages with low priorities are
held in the re-ordering queue and, at the end of the test, those n− 1 messages
with the lowest prioritites could be found there. This means that no starvation
avoidance approach is being used in this variant and that at the end of this test
most of the multicast messages did not stay any time in that queue since they
have better priority than those messages already maintained in the queue. As



20 Emili Miedes, Francesc D. Muñoz-Escóı
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a result, the median delivery time is the lowest one among the sequencer-based
prioritized variants (from 2.21 ms in configuration 1 to 2.31 ms in configuration
3). This large difference between medians and means implies that there have
been some messages that have spent a lot of time in the queues. Unfortunately,
this has not generated a large improvement on the transaction abort rate. Its
reduction varies from 4.94% in configuration 1 to 6.30% in configuration 4.
Thus, UBpMM presents the worst mean message delivery time and the best
median message delivery time among all the sequencer-based prioritized vari-
ants, with a moderate benefit in the transaction abort rate (having a similar
value to that obtained in the first series of tests at a message sending rate of
120 msg/sec per node with CHp).

The third variant (UBpIC) generates intermediate values regarding mean
and median message delivery times, as expected. Regarding its transaction
abort rate reduction, it provides intermediate results in configurations 1 and
2, but in configuration 3 it is able to match the best results provided by the
UBpNS algorithm and in configuration 4 it is able to improve the UBpNS ’s
results (generating the best reduction in all these tests: 21.03%). Such best
value does not mean that UBpIC is the best sequencer-based variant, because
it is penalized by its lack of any starvation avoidance technique.

The last protocol being studied in these tests has been TRp. It is able
to provide the lowest mean message delivery time at configurations 1 and 2,
complemented with good values at configurations 3 and 4 (close to those of
UBpNS , that was the best protocol there). Additionaly, it presents the best
possible values regarding median message delivery time, that are below 1.3 ms
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in all configurations. Note, however, that such median delivery time directly
depends on the time needed to obtain the token in each node. So, with 8 nodes
and the same message sending rate, that time will be doubled. Despite this,
TRp is the best one considering message delivery times. Not surprisingly, these
excellent times are not accompanied by good transaction abort rate reductions.
Indeed, its benefits are the worst ones in configurations 1 and 2 (1.99% and
4.16% respectively) –those with the best mean message delivery time– but
are not so bad at configuration 4 (12.05%). In that last configuration TRp

provides better results than UBpMM . Both protocols do not use any starvation
avoidance mechanism and this justifies their excellent median delivery times
and their poor results in transaction abort rate reduction.

In order to sum up, no clear winner has been found in this comparative.
The protocol to be chosen depends on the application requirements. In some
cases the application being used will not provide a continuous service (e.g.,
stock exchange markets are open a bounded number of hours per day) and
the requests or orders that remain enqueued in the multicasting queue can
be analyzed at the end of the day. They may be resubmitted next day with
a better priority or simply discarded, reporting that fact to their requesters
explaining the reasons of that decision. In those cases, message starvation is not
a problem. In that scenario, three prioritizing protocols are reasonable (TRp,
UBpMM and UBpIC). TRp (with configuration 4) is the best one when message
propagation time should be optimized, generating an intermediate transaction
abort rate reduction. On the other hand, if the transaction abort rate needs to
be minimized UBpIC (in configuration 4) will be the best approach, although
it increases the median message delivery time up to 37.50 ms and the mean
delivery time to 104.49ms, but those times are still acceptable for a human
user that usually considers reasonable a response time close to one second.

In some cases, message starvation is not allowed by an application. If so
arises, UBpNS is the approach to be chosen. It flushes the sequencer re-ordering
queue as soon as it reaches its upper threshold. The resulting protocol gener-
ates good reductions in the transaction abort rate (from 11.3% to 20% in these
experiments) and its median message delivery times are not extremely bad in
configurations 1 and 2 (11.59 ms and 25.67 ms, respectively). If those values
are too large, a hybrid dynamic solution should be implemented, taking as
its basis UBpMM (or TRp) in order to obtain low median and mean message
delivery times and flushing their queues periodically. This does not demand
a new protocol in case of the UBp algorithm. A monitoring module could be
implemented in order to set its lower bound to 0 flushing the queue when it
were needed, setting it again to value n − 1 when that queue is empty. The
results from such hybrid approach would be intermediate to those obtained by
UBpNS and UBpMM .
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5 Conclusion

This paper presents the experimental work done in order to analyze the impact
that some parameters of the proritization algorithms have on the amount of
aborted transactions due to the integrity constraints being considered in a
highly available application that uses a replicated relational database. To this
end, we have executed such test application using the services offered by six
different total order multicast protocols. Three of them are implementations
of classical total order protocols and the other three are prioritized versions
of the former.

Two experimental studies have been performed. In the first one, all pro-
tocols were tested varying only the message sending rates. In a second study,
a bound is set on the minimal length of the prioritizing queue being man-
aged by some of these protocols. These new protocols allow the prioritization
mechanism to be able to reorder more messages, permitting the application to
discard less messages, compared to the version of those protocols used in the
first study.

Some conclusions can be drawn from these results. First, it can be noticed
that the sending rate used by the application to broadcast messages has a
limited impact on the transaction abort rate, since it generally demands high
sending rates in order to obtain a significant abort rate reduction. On the
other hand, the modifications applied in the second experimental study have
a significant impact on the abort rate. As the protocols are forced to retain
messages until a minimum number of messages are queued, the prioritization
mechanisms are applied to a larger set of messages, thus achieving a better
prioritization and allowing the user application to discard less messages (i.e., to
abort a lower amount of transactions). In some cases (e.g., the privilege-based
algorithms) this improvement on the message discard rate does not penalize
at all the median message delivery time.

However, there is no clear winner in all tested configurations. When no
bounds are set on the minimal size of the prioritizing queues, either a com-
munication history (for moderate to high sending rates) or a sequencer-based
(for high to extremely high sending rates) prioritized multicast algorithm is
needed. On the other hand, when bounds are set, a sequencer-based mul-
ticast algorithm is able to ensure a minimal transaction abort rate while a
privilege-based algorithm ensures a minimal median message delivery time.
These queue-bounded protocols can be complemented with a starvation avoid-
ance mechanism, as that described in the UBpNS variant.

Thereby, the usage of a dynamic switching total order protocol architecture
as those presented in [17, 12, 10] seems to be appropriate in these systems. Such
mechanism allows a user application to replace, at run-time, the total order
protocol it is currently using, with a different one, to better adapt to varying
workloads or new user requirements. In this way, an application interested in
a minimal message delivery time would use a bounded-queue privilege-based
multicast (i.e., TRp with configuration 4) algorithm when message sending
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rates were low to high, replacing it by an unbounded-queue sequencer-based
multicast algorithm (i.e., the regular UBp) at extremely high sending rates.
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