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ABSTRACT   

Leaf temperature is a physiological trait that can be used for monitoring plant water 

status. Nowadays, by means of thermography, canopy temperature can be remotely 

determined. In this sense, it is crucial to automatically process the images. In the present 

work, a methodology for the automatic analysis of frontal images taken on individual 

trees was developed. The procedure can be used when cameras take at the same time 

thermal and visible scenes, so it is not necessary to reference the images. In this way, 

during the processing in batch, no operator participated. The procedure was developed 

by means of a non supervised classification of the visible image from which the 

presence of sky and soil could be detected. In case of existence, a mask was performed 

for the extraction of intermediate pixels to calculate canopy temperature by means of 

the thermal image. At the same time, sunlit and shady leaves could be detected and 

isolated. Thus, the procedure allowed to separately determine canopy temperature either 

of the more exposed part of the canopy or of the shaded portion. The methodology 

developed was validated using images taken in several regulated deficit irrigation trials 

in Persimmon and two citrus cultivars (Clementina de Nules and Navel Lane-Late). 

Overall, results indicated that similar canopy temperatures were calculated either by 

means of the automatic process or the manual procedure. The procedure developed 

allows to drastically reduce the time needed for image analysis also considering that no 

operator participation was required. This tool will facilitate further investigations in 

course for assessing the feasibility of thermography for detecting plant water status in 

woody perennial crops with discontinuous canopies. Preliminary results reported 

indicate that the type of crop evaluated has an important influence in the results 

obtained from termographic imagery. Thus, in Persimmon trees there were good 
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correlations between canopy temperature and plant water status while, in Clementina de 

Nules and Navel Lane-Late citrus cultivars canopy temperature differences among trees 

could not be related with tree-to-tree variation in plant water status.  
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1- Introduction 

 

Efficient irrigation scheduling procedures require the analysis of plant water status. Leaf 

water potential measured with the pressure chamber, either at predawn or at midday, has 

long been used as a plant water stress indicator. More recently, the use of water 

potential of bag covered leaves, named stem water potential (s) has been adopted 

because of its high sensitivity to water deprivation (McCutchan and Shackel, 1992) and 

its good prediction of the yield response to deficit irrigation (Naor, 2000). Particularly 

in fruit trees, s has been used to modify the irrigation regime avoiding severe plant 

water stress situations (Lampinen et al. 2001). Midday stem water potential is then 

considered the reference measurement of plant water status but it is quite time and labor 

consuming what often limits its use. It is important then to look for alternatives to 

determine plant water status from techniques that could be potentially automated. 

Transpiration is an endo-energetic thermodynamic process. When water is transpired 

by plants, the latent heat of evaporation is drawn from them, decreasing thereby their 

temperature. Plants under soil water limitations often respond decreasing stomatal 

conductance (gs), reducing hence transpiration. This implies that canopy temperature 

should raise in plants grown under soil water limitations. Therefore infrared sensing of 

the canopy temperature can be used to estimate gs and plant evapotranspiration 

(Jackson, 1982; Jones, 1999; Merlot et al., 2002; Jones et al., 2002). 

Infrared thermography is a powerful tool to estimate crop temperatures. Images can 

be taken by thermographic cameras carried on airborne platforms (Berni et al., 2009) or 

by hand operated cameras where images are taken manually in the field assisted with 

auxiliary devices as tripods, platforms or cranes (Moller et al. 2007). Aerial images 
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normally cover a large surface area according to the camera field of view and flight 

height. Afterwards images are radiometrically calibrated, georeferenced and 

atmospheric corrections applied. . Hand-operated cameras allow taking images of 

individual plants or even portions of them, achieving therefore higher spatial resolution. 

For instance, images can capture different tree parts (shady, sunlit or zenithal positions). 

Subsequently, images are processed, without the need of georeferentiation if crops are 

identified previously in the field and linked to their corresponding images. 

In order to make this technique more useful for assessing crop water status, the 

automation of the images analysis is required. This is particularly important in the case 

of woody perennial crops that often have discontinuous canopies (i.e. ground cover is 

less than 100%). In this case images can contain both canopy and soil portions that need 

to be separated. A few attempts to do this task have been described. For example, 

Leinonen and Jones (2004) used software of the remote sensing environment as ENVI 

(Research Systems Inc, Boulder, Colorado, USA) for the image analysis. The procedure 

consisted in taking an infrared image of the crop and another one in the red and infrared 

bands with a camera designed for that purpose. Images were overlapped by means of an 

orthorectification process, image pixels were classified and the vegetation identified by 

supervised classification techniques, and finally using the vegetation as a mask, the 

temperature was extracted from the thermal image. This procedure is relatively time 

consuming as it involves the participation of an operator in the orthorectification 

process and the selection of spectral signatures to feed the supervised classification. 

Subsequently, Cohen et al (2005) converted the thermal images to a grey scale. 

The images were exported with ThermaCamExplorer (FLIR Systems, Boston, USA) 

and were converted to 8 bits uncompressed TIFF format. Afterwards the spatial analysis 
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was performed by means of the IMAGINE 8,7 software (Leica Inc, Wetzlar, Germany ). 

Finally the interest areas were manually selected and their temperatures calculated. 

More recently, Wang et al (2010) developed a methodology where firstly an infrared 

thermal image was overlaid with an optical image. With the aim of identifying 

vegetation, leaf color was assumed to follow a Gaussian distribution in HSV space (hue, 

saturation and value), where vegetation was identified by its mean and covariance. Then 

temperature statistics were calculated. In addition, the procedure developed by Wang et 

al. (2010) allowed to calculate dry and wet reference leaves in order to compute the crop 

water stress index (CWSI) as described by Jones et al (2002). In order to ensure that 

objects different from a leaf were not included in the temperature calculation routines a 

Gaussian mixture temperature distribution approach was used. However, the mean and 

covariance that characterize the spectral signature of vegetation can differ from one 

image to another due to several factors as vegetation type, sunlight intensity or the 

presence of shadows on the image. A methodology that will avoid the characterization 

of vegetation for each image analysis would be desirable to process in batch. 

In this work, a routine has been developed where vegetation temperature is calculated 

with the help of a color image. The routine can be applied to any camera that takes a 

color and an infrared image at the same time in order to avoid any time consuming 

because no alignment procedures are required. Objects in the scene are classified into 

classes using an unsupervised classification method of the color image. Classes are 

identified by means of its vector in the red, green and blue model (RGB) and they are 

grouped according to their intensity. As a consequence, no operator participates in the 

analysis phase and images are processed in a sequential way. The methodology has been 

implemented using ArcGIS 9.x (ESRI, Redlands, USA) a commercial software and its 
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developing platform named ArcObjects. Examples of the validation of this procedure 

are reported and results obtained in different irrigation trials are also presented and 

briefly discussed. 

 

2. Materials and methods  

 

2.1. Experimental orchards 

 

The experiment was performed during 2009 in three commercial orchards of 

Persimmon (Diospyros kaki L.f.), Clementina de Nules (Citrus clementina, Hort ex 

Tan) and Navel Lane Late (Citrus sinensis (L) Osbeck), located in Manises, Liria and 

Chulilla (Valencia, Spain), respectively.  

The Persimmon orchard was planted in 2001 with the cv ‘Rojo Brillante’ grafted on 

Diospyros lotus at 5.5 by 4 m. During the experimental period trees had, on average, a 

shaded area of 39%. The soil was sandy loam to sandy clay loam, calcareous; with an 

effective depth of 0.8 m. Trees were drip-irrigated with two laterals per row and 8 

emitters (4 L/h) per tree. Two irrigation treatments were applied in this orchard: a) 

Control, irrigated at 100% of the estimated crop evapotranspiration (ETc) defined by 

Allen et al (1998); during the whole season with a total amount of water applied of 487 

mm, and b) RDI, irrigated at 50% of ETc from July (DOY 185) to August (DOY 230) 

with a total amount of water applied of 429 mm. The statistical design was a complete 

randomised block with three replicate plots per treatment and 6-7 sampling trees per 

replicate. Other details about the orchard design and treatments lay out can be found in 

Badal et al. (2010). 
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The orchards with Clementina de Nules (CN) and Navel Lane Late (NLL) were planted 

in 1999 and 2000, respectively, at 6 by 4 m and grafted on Carrizo citrange (Citrus 

sinensis, Osb. x Poncirus trifoliata, Raf.). At the beginning of the experiment, CN trees 

had an average shaded area of 37% and NLL trees of 32%. Trees were drip irrigated 

with two laterals per row and 8 emitters (4 L/h) per tree. The statistical design was a 

randomised complete block with four replicate plots per treatment. Each plot had three 

rows and perimeter trees were used as a guard, so 5-10 sampling trees per replicate plot 

were used in CN and NLL, respectively. Other orchard and experimental characteristics 

are described in more detail in Ballester et al (2008). The same irrigation treatments 

were applied in both orchards: a) Control, irrigated at 100% of ETc during the whole 

season, b) RDI-1, irrigated at 50% of ETc from July (DOY 209) to September (DOY 

257) in CN and from July (DOY 201) to the end of September (DOY 271) in NLL, and 

c) RDI-2, irrigated at 30-40% of ETc during the same periods as RDI-1. The seasonal 

amount of water applied averaged for the two orchards was 491 mm, 425 mm and 417 

mm for the Control, RDI-1 and RDI-2 treatments, respectively.   

 

2.2. 2.2 Tree water relations determinations 

 

Stem water potential (s) was measured weekly at solar midday (12:00 h GMT) in all 

the orchards, using a pressure chamber (Model 600 Pressure Chamber Instrument, 

Albany, USA), following recommendations of Turner (1981). Two mature leaves of 

two trees per replicate plot, in the case of NLL and three trees per replicate plot, in the 

case of CN and Persimmon, were enclosed in plastic bags covered with silver foil at 

least two hours prior to the measurements.  
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Stomatal conductance (gs) was measured with a leaf porometer (SC 1 Porometer, 

Decagon, WA, USA). In the case of Persimmon, measurements were taken in all the 

trees where s was determined. In CN and NLL measurements were made only in 

Control trees and trees from the treatment with the more severe restrictions, RDI-2. 

Stomatal conductance of each tree was determined as the mean value of measurements 

taken in five different fully exposed leaves. Mean values of s and of gs for each tree 

were compared with the thermal images taken simultaneously to the water status 

determinations. 

 

2.3 Acquisition of thermal images 

 

Thermal images were taken with an infrared thermal camera TH9100 WR (NEC San-ei 

Instruments, Tokyo, Japan) with a precision of 2 ºC or 2% of reading. The camera had a 

visible of 752x480 pixels and a 320x240 pixel microbolometer sensor, sensitive in the 

spectral range of 8 and 14 µm and a lens with an angular field of view of 42.0ºx32.1º. 

Emissivity used was 0.98, a value characteristic of healthy vegetation (Monteith and 

Unsworth, 2008). Images were registered in a proprietary format denominated SIT 

where information is arranged in sections. Temperature is stored in a file of type “band 

sequential” (bsq) of 16 bits with temperature stored on 14 bits. Information referred to 

RGB format has a JPG format. 

Thermal images were taken at solar noon in both, sunlight and shaded sides of all 

the trees where s and gs were measured. In the case of Persimmon, images were taken 

in 8 different days (DOY 169, 204, 221, 225, 239, 246, 260 and 267) at a distance of 3 

m from trees. A total of 344 images were taken. In citrus, images were taken at 1-2 m of 
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distance from trees. In the CN experiment images were taken in 5 different days (DOY 

215, 229, 236, 260 and 267) making a total of 448 images taken. In the NLL 

experiment, images were taken in 7 different days (DOY 203, 217, 224, 231, 238, 245 

and 252) with a total of 384 images. However, for the purpose of the present experiment 

only part of all the images taken on each crop were analysed..  

 

2.4 Methodology developed 

 

For the image analysis the ArcGIS 9.3 software (ESRI, Redlands, USA) was used. This 

software has an application called “Geoprocessing” which is a set of windows and 

dialog boxes used to manage and build models that execute a sequence of tools. These 

models can be customized and run by means of programming languages like Microsoft 

Visual Basic. In addition, it is possible to connect with a database (DB) to feed the 

processes developed in the ArcGIS environment and to store the results on the DB. The 

analysis process included the following steps (see algorithm in Fig. 1): 

Images were catalogued and stored in the DB. Each image was clearly identified 

with the date and hour, treatment, replicate, tree and position (sunlit or shadow). 

Images were selected by means of a query to the DB. This allows to analyse all the 

images captured in a day or for a selected irrigation treatment. 

The SIT image format was exported to a standard format compatible with the 

software used. For that purpose, pixels with thermal information image were exported 

to the bsq format (ESRI, 2007) and pixels with RGB information were exported to JPG 

format. 
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Thermal images were reclassified assigning to each pixel the corresponding 

temperature, in a binary code, according to the scale used by the camera. In this case, 

temperature range was -50ºC to 130ºC and pixel temperature was calculated by the 

equation: T(ºC)=40+DN*180/16384, where DN is the 14 bits value , 40 is the 

temperature value for DN = 0, 180 is the temperature range and 16384 the possible 

values of a 14 bits pixel. 

Non supervised pixel classification of the RGB image was performed (Lillesand et 

al 2004). The reason was to avoid the presence of an operator in the spectral signatures 

selection phase. Normally, up to six classes appeared in a scene: clear sky, clouds, 

shadows, soil, shady vegetation and sunlit vegetation. In a supervised process, the 

operator has to assign a representative area to the classes presented in the image. 

Successively, the operator should calculate, for each selected class, a spectral signature 

in RGB. This consists of a vector of three dimensions where each component represents 

the red, blue and green bands (Fig. 2). This process has to be repeated for each single 

image analysis considering that scene features might differ among days and even among 

scenes taken in a same day. The possible number of different classes in a scene was 

tested concluding that, for more than 7 classes, the algorithm did not find enough pixels 

to identify a new class. The above mentioned six classes were identified, assigning the 

extra class to pixels of vegetation. In the absence of clouds and when the sky had 

different levels of intensity, the extra class was assigned to sky. An example of this 

classification, is shown in Fig. 3 where a photograph taken in the Persimmon orchard 

has been included. 

Once the classes where set up, image was classified using a Maximum Likelihood 

Classification algorithm based on the Bayes theorem considering that each class is 
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normally distributed in a multidimensional space (Lillesand et al 2004). The tool 

implemented in ArcGIS offered us the possibility of produce a raster file with 14 levels 

showing the interval of confidence of the pixel classification. For the images where 

neither sky nor soil were captured, classes were assigned within the shady and sunlit 

vegetation, representing the intermediate classes vegetation with different illumination 

intensities. 

For each class, the RGB vector module was calculated. Each coordinate vector was 

defined by the pixel value in the RGB bands as shown in Fig. 2. These classes are 

ordered according to their intensity. The darkest classes, usually represent shadows, 

have a lower value.  

Due to the low sky emissivity in clear days (Wunderlich 1972), pixels composing 

the sky classes show a lower average temperature and higher standard deviation than the 

other classes. In the case that sky would had been photographed, gravity centers of the 

darkest class and sky can be calculated and a polygonal can be created to overlap the 

intermediate pixels existing between both classes. The rest of pixels can then be 

excluded from the analysis to avoid possible errors in pixel classification (e.g. a sunlit 

soil zone could be misclassified as vegetation). The width of the mask was set taking 

into account the average distance from the camera to the tree and the camera field of 

view which determined the scale and the size of the photographed scene. This area must 

be lower than the canopy diameter, thus the target tree can be properly analysed (Fig. 4). 

When sky was not detected in the scene, masking was not applied, nevertheless, a 

mask can be forced to include only an image zone. In the case that the mask was 

applied, the shadiest class gravity center was calculated. The image orientation (vertical 
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or horizontal) was determined and the midpoint of the opposite edge was chosen as 

reference to build the polygon mask. 

When sunlit leaves were chosen for temperature calculation, pixels with highest 

RGB module were selected. In case all pixels need to be included the whole selectable 

classes can be easily taken into account. 

The minimum (Tmin, ºC), maximum (Tmax, ºC), average (Tc ºC) and standard deviation 

(Tstd ºC) of selected pixels were calculated. It is possible to exclude from the calculation 

those pixels not to be classified, for example those below a certain degree of confidence, 

making a mask with the confidence raster produced during the classification process. 

Output results were stored in the database together with s and gs determined for each 

crop and date. 

 

2.5  Data analysis 

 

A comparison between canopy temperature calculated either manually or with the 

automatic procedure was performed in 44 images taken in different days and treatments 

in the Persimmon and CN trees. Linear regressions between pair of temperature 

calculation procedures were performed using the regression models “REG” procedure 

of the SAS statistical package (version 9.0; SAS Institute, Cary, NC). In addition 

differences between manual and automatic canopy temperature determinations were 

assessed by one-way ANOVA. 

Tree-to-tree variations in midday stem water potentials were linearly related with the 

respective values of canopy temperature either manually or automatically computed. 

Finally, for each crop type and on a selected day of measurements, the effects of the 
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irrigation regime on canopy temperature, s and gs was evaluated by analysis of 

variance using the general linear models “GLM” procedure of the SAS software.  

 

3- Results and discussion 

 

3.1 Automatic versus manual image processing 

 

In both Persimmon and Clementina de Nules citrus trees, the ANOVA results indicated 

that there were no statistically significant differences between canopy temperatures 

obtained either via automatic or manual procedures (P values of 0.427 and 0.627 for 

Persimmon and CN trees, respectively).  

The slopes of the linear regressions between pairs of Tc computed either manually or 

automatically were not different from 1 (Fig. 5A Persimmon, Fig 5B CN) However, the 

intercepts (“a”) were in both cases significantly different from zero. In Persimmon, “a” 

was -1.46 indicating a general underestimation of the Tc when automatically calculated. 

This underestimation occurred in 36 images out of 44 that were taken to deliberately 

capture the whole tree. The reason for this underestimation is due to the fact that when 

the mask is created, some leaf pixels close to sky, together with some sky pixels 

misclassified as leaves, are included in the average Tc computation. Since the sky has a 

lower emissivity than the leaves, this lead to an underestimation of temperature 

calculated automatically. This fact can be seen in Figure 6 where the T raster computed 

by means of a mask manually performed by an operator (Fig. 6A) and the T raster 

computed with a mask automatically created detecting the shadow and the sky (Fig 6B) 

are shown. The darkest pixels represent the lower temperatures. They are located on the 
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canopy outline with the sky as background. This issue could be overcome taking 

photographs with higher resolution, where sky and leaves could be more clearly 

separated.  

In contrast, in CN the intercept “a” was =+1.40, indicating overestimation of the 

temperature in the low range (Tc <28ºC) compared with those calculated manually. In 

this case images were taken at a closer distance from the tree. This fact involves the 

absence of sky in most of the scenes. An example of a CN image processed with a mask 

generated either, manually (Fig. 7 A) or automatically (Fig. 7 B) shows that mostly 

canopy leaves were taken in the CN photographs. For this reason, in CN Tc is 

distributed on both sides of the straight (1:1) line. In this case 30 images out of 44 

automatically analysed slightly overestimated the temperature compared with those 

calculated manually by an average of -0.31ºC.  

Another validation of the procedure developed for automatically extracting Tc from 

photographs was carried out comparing the relationships between s and Tc either 

manually or automatically determined (Fig. 8 and 9). In Persimmon, for the two days 

(Fig 8 A  DOY 169, Fig 8 B DOY 204) when this analysis was performed, there were 

statistically significant relationships between s and Tc. Despite the degree of 

correlation between the plant water status indicators varied among days, similar  values 

of the coefficient of determination (r2) of the Tc - s were obtained for Tc either 

manually or automatically calculated. In addition, it should be remarked that differences 

in both slopes and intercepts of the regression lines obtained from Tc either manually or 

automatically calculated were not statistically significant (at P<0.05 or higher) on any 

day and crop. 
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The time saving obtained by the automatic procedure is important considering that 

the manual analysis of a image takes an average of 17 minutes, whereas in the automatic 

way each image took about 1,1 minute to be processed (Intel Core 2 Duo, p8400 2.26 

Ghz Memory Ram 4.00 GB) and operators do not have to participate during the 

analysis. The time for cataloguing and storing images in the database is the same for 

both methodologies. In addition, the automatisation makes possible to repeat the 

analysis as many times as required modifying the input parameters or changing the 

analysis conditions, without having to repeat the manual tasks every time these are 

modified. 

 

3.2 Physiological results 

 

Since the image analysis procedure here developed was succesfully validated, the whole 

set of 1176 images have been processed. This data set (results not shown) will be used 

to determine in further communications the feasibility of using Tc obtained with a 

thermographic camera as a water stress indicator in both Persimmon and citrus trees. 

In any case, an example of the type of results obtained by means of the automatic 

thermographic analysis is shown in Table 1. During the selected days, for similar water 

restrictions levels in the deficit irrigated treatments, Persimmon trees reached higher Tc 

than citrus trees in response to water stress. This behaviour could be observed for both 

sunny and shaded leaves. In addition, the best relationships among Tc versus s and gs 

were also observed in Persimmon (data not shown). The fact that in Persimmon Tc was 

able to better detect differences in plant water status might be due to: i) different 

stomatal regulation in response to irrigation restrictions and ii) differences in leaf 
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characteristics among crops, like leaf size and stomatal density, which affect the 

aerodynamic and indirectly stomatal conductances. In citrus trees, there were not 

differences in stomatal conductance between irrigation treatments, while in Persimmon 

gs was about half in the RDI trees than in the control, well-watered ones (Table 1). In 

addition, Persimmon trees have larger leaves than citrus what reduces the sensible heat 

exchange between the leaf and the environment. It seems then that the type of crop 

evaluated with thermal imagery has an important influence in the results obtained. In 

citrus trees, with smaller leaves and lower values of stomatal conductance, assessing 

crop water stress by canopy temperature is more complicated and less precise than in 

Persimmon trees. In previous experiments carried out in Vitis vinifera, a species with 

large leaves and generally high degree of stomatal regulation in response to soil drying, 

Jones et al. (2002) and Möller et al. (2007) showed that canopy temperature allowed to 

precisely estimate either gs or stem water potential. 

 

4- Conclusions  

 

A routine for automatic canopy temperature extraction based on an unsupervised 

classification method of the color image has been developed and validated. This 

automatic process allows obtaining quickly canopy temperature data from experiments 

or commercial situations, drastically reducing the time consumed for images analysis 

eliminating in addition any subjectivity due to the operator analysis. Indeed, the 

procedure here developed might facilitate the adoption of the thermography for crop 

water stress detection and irrigation scheduling. At a commercial scale it is important to 

automate the information extraction process in order to be able to actuate on irrigation 
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controllers. The routine proposed might serve as a first step in order to finally 

incorporate canopy temperature determinations by thermography in the irrigation 

scheduling automation. 
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Legend for figures 

 

Fig. 1 Flux diagram of the whole automatic thermal image processing algorithm.  

Fig. 2 The additive color model Red, Green and Blue (RGB) in which red, green, and 

blue light are added together to reproduce a broad array of colors. 

Fig. 3 Classification non supervised in seven classes of a RGB image of a Persimmon 

tree. 

Fig. 4 Polygonal mask applied to a scene with sky and shadows. 

Fig. 1 Comparison of manual and automatic calculation procedures of average canopy 

temperatures (Tc) for a representative day where the coefficient of determination (r2) and 

the linear regression equations are shown. A) Persimmon (DOY 204). B) CN (DOY 

215). The solid lines in each figure represent the 1:1 relationship. 

Fig. 2 Tc calculated by different types of masks in a Persimmon tree. A) The mask is 

manually created by an operator. The operator draws the mask following the tree outline 

avoiding sky pixels selection. B) The mask is created automatically after sky and 

shadow detection. Pixels close to the tree outline are also selected. 

Fig. 3 Tc calculated by different types of masks in a CN tree. A) The mask is  manually 

created by an operator to select vegetation. B) The mask is created automatically in a 

scene where sky is absent. 

Fig 8 Linear equation and coefficient of determination (r2) between temperature canopy 

(Tc, C) and stem water potential (s, MPa) for two days in the Persimmon experiment 
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calculated by both automatic and manual method. Twelve trees were sampled by 

thermal imagery and s determinations. A) DOY 169. B) DOY 204. 

Fig 9 Linear equation and coefficient of determination (r2) between temperature canopy 

(Tc, C) and stem water potential (s, MPa) for two days in the CN experiment 

calculated by both automatic and manual method. 36 trees were sampled by thermal 

imagery and s measures. A) DOY 215. B) DOY 236. 
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Table 1. Values of midday stem water potential (s), stomatal conductance (gs), 

canopy temperature (Tc), temperature extracted from the sunlit leaves (TcSun) and 

temperature extracted from the shady leaves (TcShady) for each treatment in a 

representative day of the experiment in Clementina de Nules (DOY 237), Navel Lane 

Late (DOY 239) and Persimmon (DOY 226). Temperature measurement values of each 

treatment are average of 27 trees in Persimmon, 36 trees in Clementina de Nules and 24 

trees in Navel Lane Late.  

 

Irrigation 

treatment 
Ψs (MPa) 

gs  

(mmol m-2s-1) 
Tc(ºC) TcSun(ºC) TcShady(ºC) 

Clementina de Nules 

Control -1.14c 40.5 30.0b 30.2b 29.9b 

RDI-1 -1.42b - 30.4ab 30.7ab 30.5ab 

RDI-2 -1.61a 38.1 30.9a 31.1a 30.9a 

Navel Lane Late 

Control -0.94c 48.9 31.9 32.8 31.8 

RDI-1 -1.30b - 32.0 32.8 31.9 

RDI-2 -1.65a 46.2 32.1 33.0 32.1 

Persimmon 

Control -0.87b 174.2a 32.0b 32.4b 30.7b 

RDI -1.99a 94.3b 35.7a 36.2a 34.5a 

Mean values within each species, followed by different letters differ significantly at 

P<0.05 based on Dunnett´s t-test. 
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Fig. 1 Flux diagram of the whole automatic thermal image processing algorithm. 
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Fig. 2 The additive color model Red, Green and Blue (RGB) in which red, green, and 

blue light are added together to reproduce a broad array of colors  
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Fig. 3 Classification non supervised in seven classes of a RGB image of a Persimmon 

tree. 
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Fig. 4 Polygonal mask applied to a scene with sky and shadows. 
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Fig. 4 Comparison of manual and automatic calculation procedures of average canopy 

temperatures (Tc) for a representative day where the coefficient of determination (r2) and 

the linear regression equations are shown. A) Persimmon (DOY 204). B) CN (DOY 

215). The solid lines in each figure represent the 1:1 relationship. 
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Fig. 5 Tc calculated by different types of masks in a Persimmon tree. A) The mask is 

manually created by an operator. The operator draws the mask following the tree outline 

avoiding sky pixels selection. B) The mask is created automatically after sky and 

shadow detection. Pixels close to the tree outline are also selected. 
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Fig. 6 Tc calculated by different types of masks in a CN tree. A) The mask is  manually 

created by an operator to select vegetation. B) The mask is created automatically in a 

scene where sky is absent. 
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Fig 8 Linear equation and coefficient of determination (r2) between temperature canopy 

(Tc, C) and stem water potential (s, MPa) for two days in the Persimmon experiment 

calculated by both automatic and manual method. Twelve trees were sampled by 

thermal imagery and s determinations. A) DOY 169. B) DOY 204. 
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Fig 9 Linear equation and coefficient of determination (r2) between temperature canopy 

(Tc, C) and stem water potential (s, MPa) for two days in the CN experiment 

calculated by both automatic and manual method. 36 trees were sampled by thermal 

imagery and s measures. A) DOY 215. B) DOY 236. 

 


