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Abstract

Recently, V. Gregori, S. Morillas and A. Sapena have discussed [On
a class of completable fuzzy metric spaces, Fuzzy Sets and Systems
161 (2011), 2193-2205] the so-called strong fuzzy metrics when looking
for a class of completable fuzzy metric spaces in the sense of A. George
and P. Veeramani and state the question of finding a non-strong fuzzy
metric space for a continuous t-norm different from the minimum.
Later on, J. Gutiérrez Garcia and S. Romaguera solved this question
[Examples of non-strong fuzzy metrics, Fuzzy Sets and Systems 162
(2011), 91-93] by means of two examples for the product and the
Lukasiewicz t-norm, respectively. In this direction they posed to find
further examples of non-strong fuzzy metrics for continuous t-norm
that are greater than the product but different from minimum. In this
paper we obtain an example of this kind. On the other hand, P. Tirado
established in [Contraction mappings in fuzzy quasi-metric spaces and
[0,1]-fuzzy posets, Fixed Point Theory 13:273-283, 2012] a fixed point
theorem in fuzzy metric spaces which was successfully used to prove
the existence and uniqueness of solution for the recurrence equation
associated to the Probabilistic Divide and Conquer Algorithms. Here
we generalize this result by using a class of continuous t-norms known
as w -Yager t-noms.
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Politécnica de Valencia, under grant PAID-06-12-SP20120471
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1 Introduction

[. Kramosil and J. Michalek introduced in [9] their celebrated notion of fuzzy
metric space (KM-fuzzy metric space, in the sequel) which constitutes a re-
formulation of the concept of probabilistic metric spaces to the fuzzy setting.
In particular, they showed the equivalence between KM-fuzzy metric spaces
and Menger spaces. Sherwood proved in [10] that every Menger space has
a completion which is unique up to isometry, so one can easily deduce that
every KM-fuzzy metric space has a completion which is unique up to isom-
etry. Later on, A. George and P. Veeramani gave a slight modification of
KM-fuzzy metric space (GV-fuzzy metric space, in the sequel). However it is
well known [4] that, contrarily to the KM-case, there exist GV-fuzzy metric
spaces that are not completable. Motivated by this fact, Gregori, Morillas
and Sapena have discussed in [3] the so-called strong GV-fuzzy metrics when
looking for a class of completable GV-fuzzy metric spaces. In particular, they
state the question of finding a non-strong GV-fuzzy metric space for a contin-
uous t-norm different from the minimum. Answering that question, Gutiérrez
Garcia and Romaguera presented in [5] two examples of non-strong GV-fuzzy
metrics for the product and the Lukasiewicz t-norm, respectively. In this di-
rection they became interested in finding further examples for continuous
t-norms that are greater than the product but different from minimum.

In this paper we obtain an example of this kind by means of a class of contin-
uous t-norms known as Hamacher t-norms ([7]). On the other hand, another
class of celebrated continuos t-norms known as Yager t-norms ([12]) is used
to generalize a fixed point theorem in KM-fuzzy metric spaces. Several basic
results in this paper were presented by the authors at the 10th International
Conference of Numerical Analysis and Applied Mathematics, ICNAAM 2012

([1])-

Throughout this paper the letters w and N will denote the set of nonneg-
ative integer numbers and the set of positive integer numbers, respectively.

Recall that by a metric on a nonempty set X we mean a nonnegative real
valued function d on X x X such that for all z,y,z € X : (i) x = y if and



only if d(z,y) = 0; (ii) d(z,y) = d(y,z); (ili) d(z,y) < d(z,2) +d(z,y). If d
satisfies the conditions (i), (ii) and (iii’) d(x,y) < max{d(z, z),d(z,y)} then,
d is called an ultrametric.

A t-norm is a binary operation * : [0,1] x [0,1] — [0, 1] that satisfies
the following conditions: (i) * is associative and commutative; (ii) t* 1 = x
for every x € [0,1]; (ili) » * # < y * z whenever r < y and =z < z, for
r,x,y,z € [0,1]. If, in addition, * is continuous, then * is called a continuous
t-norm.

Paradigmatic examples of continuous t-norms are the minimum, denoted
by A, the usual product, denoted by - and the Lukasiewicz t-norm, denoted
by *r, where = *;, y = max{x + y — 1,0}. They satisfy the following well-
known inequalities: z*x,y < x-y <z Ay. In fact,  xy < 2 Ay for each
t-norm *.

Definition 1 [9]. A KM-fuzzy metric on a (non-empty) set X is a pair (M, %)
such that * is a continuous t-norm and M is a fuzzy set on X x X x [0, 00)
such that for all z,y,z € X: (KM1) M(x,y,0) = 0; (KM2) M(z,y,t) =1
for all t > 0 if and only if z = y; (KM3) M(z,y,t) = M(y,x,t) for all
t > 0; (KM4) M(z,z,t+s) > M(x,y,t) * M(y, z,s) for all t,s > 0; (KM5)
M (z,y, ) is left continuous on [0, c0).

A triple (X, M, %) where X is a (non-empty) set and (M, *) is a KM-fuzzy
metric on X, is said to be a KM-fuzzy metric space. It is well known that
condition (KM4) implies that M (x,y, ) is non-decreasing for all =,y € X.

Definition 2 [2]. A GV-fuzzy metric on a (non-empty) set X is a pair (M, *)
such that * is a continuous t-norm and M is a fuzzy set on X x X x (0, co) such
that for all x,y,z € X; t,s > 0: (GV1) M(z,y,t) > 0; (GV2) M(z,y,t) =1
if and only if x = y; (GV3) M(z,y,t) = M(y,z,t); (GV4) M(z,z,t+ s) >
M(z,y,t) % M(y, z,s); (GV5) M(z,y,_) is continuous on (0, c0).

A triple (X, M, *) where X is a (non-empty) set and (M, %) is a GV-fuzzy
metric on X, is said to be a GV-fuzzy metric space. Obviously, each GV-fuzzy
metric can be considered as a KM-fuzzy metric by defining M (x,y,0) = 0
for all z,y € X, so if (X, M,x) is a GV-fuzzy metric space we have that
M (z,y, ) is non-decreasing for all z,y € X.



2 Hamacher t-norms and non-strong fuzzy
metrics

A special type of GV-fuzzy metrics has been recently considered in [3] under
the name of strong fuzzy metric, whose definition is given as it follows.

Definition 3 [3]. Let (X, M,*) be a GV-fuzzy metric space. Then (M, %)
is said to be strong if it satisfies the following additional axiom: M (z, z,t) >
M(z,y,t) *« M(y,z,t) for all z,y,z € X and all t > 0.

Note that this definition can be also given in the KM-sense. Note that a
KM-fuzzy metric is strong if and only if it is a non-Archimedean fuzzy metric
in the sense of [6].

Remark 1. Clearly (see for instance [3]), if d is a metric on a set X, then the
GV-fuzzy metric (My, *) is strong for every continuous t-norm * such that
« < -, where My is defined by My(x,y,t) =t/(t+d(z,y)), for all z,y € X and
t > 0. In Section 3 of [3] the authors observed that, however, the GV-fuzzy
metric (Mg, A) is strong if and only if d is an ultrametric. Then, they posed
the natural question of finding a non-strong GV-fuzzy metric (M, *) where
x is not A. Gutiérrez Garcia and Romaguera solved this questions by means
of two examples. Here we give one of them.

Example 1. Let X = {z,y,2}, s =-and M : X x X x (0,00) — [0, 1] de-
fined for each t > 0 as: M(z,z,t) = M(y,y,t) = M(z,z,t) = 1; M(z,z t2
M(z,x,t) = M(y,2,t) = M(z,y,t) = 755 M(2,y,t) = M(y xt) timz,

then (M, -) is a non-strong GV-fuzzy metric on X.

Then, they posed the natural question of finding further examples for
continuous t-norms that are greater than the product but different from
minimum. The following example solves this question. First we recall some
well-known facts and definitions.

In [7] (see also [8, page 106]) H. Hamacher presented a family of con-
tinuous t-norms (*x)acp,) given by: xxyy =0 ifxr =y=X=0
and  zx\y= Lt therwise. Note that z-y < f h
MY = sy Otherwise. Note that 2y < z %,y for cac
A € [0,1]. In particular for A = 1 we have the following equality: zx;y = z-y.

In the sequel xy, A € [0, 00) will be called a Hamacher t-norm.




Example 2. Let X = {x,y,2}, ¥ = x15, le axpb = 1+a2fg_ab for all

a,b € [0,1], and M : X x X x (0,00) — [0,1] defined for each ¢ > 0
as: M(x,z,t) = M(y,y,t) = M(z,2,t) = 1; M(x,z,t) = M(z,z,t) =
M(y,z,t) = M(z,y,t) = 5 M(z,y,t) = M(y,z,t) = ﬁ It is easy
to check that (M, ) satisfies (GV1)-(GV3) and (GV5). With respect to
(GV4), we have:

(t + 5)* t? + s + 2st
M t prm— =
(z,9,¢+5) (t+s+3)?2 2+s2+2st+6t+6s5+9
and ; ot
M(z,z,t)« M(z,y,s) = P i 7
t+3 s+3 2ts+6t+6s5s+9
S0
M(z,y,t+s)— M(x,z,t) % M(z,y,s) >0 <
t2 + 52 + 2st 2ts >0
2+ s2+2st+6t+6s+9 2As+6t+65s+9
Since

12+ 52 + 2st 2ts
2+ s2+2st+6t+65+9 2bs+6t+65+9
6t3 + 6st2 + 912 + 65%t + 65 + 952 -0
(t? + s + 2st + 6t + 6s + 9)(2ts + 6t + 65 +9) —

it follows M(x,y,t +s) > M(x, z,t) * M(z,y,s). Moreover,

t
M(as,z,t—{—s):t_i_::j_g2Sig:M(y,z,s)zM(m,y,t)*M(y,z,s),
and

t
M(y, 2t +8) = ——— > 2 M(z,2,5) > M(y,,1) + M(z,2,5).

t+s+3 " s+3
Consequently, (M, *) is a GV-fuzzy metric. However, for each ¢t > 0 we have:

I S t? _ bt
(32 246t+9 T 24+6t+2 t+3 t+3

M(z,y,t) M (z, z,t)xM(z,y, t).



It follows that (M, ) is non-strong.

Remark 2. It is possible to generalize the above example, showing that
for X = {x,y,2}, (My,*n/n41) is a non-strong GV-fuzzy metric on X,
where, for each n € N, %,/,41 is the Hamacher t-norm for A, = nLH, and
M, : X x X x (0,00) — [0,1] is defined for each t > 0 as: M, (z,z,t) =
M, (y,y,t) = M,(z,2,t) = 1; My(x,z,t) = Mn(z,a:,Q = M,(y,z,t) =

M,(z,y,t) = m; M, (z,y,t) = M,(y,z,t) = m It is tedious

but not hard to show that, indeed, (M,, *,/n+1) is non-strong.

We conclude this section solving the following question which arises in a
natural way in light of Remark 1 above: is there any * > - such that (Mg, )
is strong 7. We answer in the positive, because for each A € [0, 1), (Mg, *,)
is strong.

Indeed, we want to prove that My(z,y,t) > My(x, z,t) x\ My(z,y,t), for
all z,y,z € X and t > 0, i.e.,

t t t
>
t+d(z,y) ~ t+d(z,2) */\ t+d(z,y)

2
At +d(x,2)(t+d(z,y) + (1 = N2+ td(z, 2) + td(z,y))’

that is equivalent to prove:

4td(z,y) < At+d(z, 2))(t+d(z, y))+H2+td(z, 2)+td(z, y) =N +td(z, 2)+td(2, y)),

which is, indeed, satisfied because, obviously we have (t+d(z, 2))(t+d(z,y)) >
2+ td(z, 2) + td(z,y).

3 Yager t-norms and fixed point theorems in
fuzzy metric spaces

Recall that a sequence {z, }, in a KM-fuzzy metric space (X, M, %) converges
to a point € X if lim,, o, M(x,x,,t) =1, for all ¢ > 0. A sequence {z,},
in a KM-fuzzy metric space (X, M, *) is called a Cauchy sequence if for each
e € (0,1), t > 0 there exists ny € N such that M(z,,zmy,t) > 1 — ¢ for all
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n,m > ng. A KM-fuzzy metric space (X, M, ) is called complete provided
that every Cauchy sequence in X is convergent.

In this section we generalize a fixed point theorem established in [11]

which was used to prove the existence and uniqueness of solution for the
recurrence equation associated to the Probabilistic Divide and Conquer Al-
gorithms. This is made by using a class of continuous t-norms known as
Yager t-norms.
This class of continuous t-norms (see for instance [12] and [8]), that cover
the full ranges of these operations, are defined for all x,y € [0,1] by zx,y =
1 —min{1,[(1 — z)"* + (1 — 3)/*]*} where « is a parameter whose range
is (0,00). A particular continuous t-norm is obtained for each value of the
parameter a. It is easy to see that x %4, y >  *,, y whenever a; < aw, with
x,y € [0,1]. In particular = %,, y >  *,,y whenever n; < ny, with ny,ny € w
and x,y € [0,1]. A subclass of Yager continuous t-norms is {*4}acw. In
particular we have that g is A and *; is the Lukasiewicz t-norm. We will
call these subclasses as the w-Yager continuous t-norms.

Theorem 1. Let (X, M, ) be a complete KM-fuzzy metric space such that
% > %, for some o € w. If f is a self map on X such that there is k € (0, 1)
satisfying M (fx, fy,t) > 1 —k+ kM (z,y,t) for all x,y € X, then f has a
unique fized point.
Proof. Fix x € X. We first show that M(f"z, f" 'z, t) > 1 — k™ for all
n € Nand ¢ > 0.

Indeed, for n = 1 we have

M(fx, f>x,t) >1—k+kM(x, fz) > 1— k.

So
M(f*w, foe,t) > 1—k+kM(fz, f*x,1)
> 1—k+k(1-k)
= 1-k.

Now assume that the inequality holds for n — 1, with n > 3. Then
M(frx, f" o t) > 1—k+EM(f" 2, f"z,1)

> 1—k+k(1—-k"h

1— k"



Next we show that (f"x), is a Cauchy sequence in (X, M, x).
Indeed, for each n,m € N (we assume without loss of generality that
m = n + j for some j € N), we obtain

M(f"x, fMz,t) = M(f"x, f"Px,t)

M(frx, f" o, t)5) « M(f" Mo, f722,t/5) % o« M e, g t/5)
(1—E™) % (1 — k") % ox (1 — k7Y
(1 — ™) %o (1 — E" ) 5y kg (1 — B0,

AVAR VARV

Given € > 0, there is ng € N such that

i kn/a < gl/a.

n=ng
Therefore, for n,m > ngy, with n = m + 7, it follows that:

k,n/oz + k.(nJrl)/Oé 4.+ k,(nﬁ’j*l)/a < El/a,
and hence
M(fra, frat) > (1= k) % (1 — K™Y kg oo e (1 — K771

- 1— (kn/a + k(nJrl)/a + .+ k(nJrjfl)/a)a
> 1—e¢.

Consequently (f"x), is a Cauchy sequence in (X, M, ). Then, there is
y € X such that (f"x), converges to y with respect to ;.

Since

M(f"y, f"a,t) > 1—k+kM(y, f"z,t), and
lim M(y, f"z,t) 1
n—oo

?

it is follows that



lim M(f™y, f"Hot) =1,

n—o0

therefore (f"x), converges to fy, so fy =1y.

Finally, suppose that z € X satisfies fz = z, then:
My, z,t) = M(fy, fz,t) > 1 —k+kM(y, z,t),
SO
(1—k)M(y,z,t) > (1 —k),
and, thus
M(y, z,t) =1,

for all £ > 0. We conclude that z = y. We have shown that y is the unique
fixed point for f.H

In the light of this facts a natural question arises: Given a continuous
t-norm x, is it possible to find some n € w such that * > x,?7. If the answer
is in the positive way, the previous theorem can be generalized to any con-
tinuous t-norm. Unfortunately this is not the case as the following example
shows. First we recall well-known facts and definitions.

A prominent subset of [0,1]? is the diagonal {(z,z) : = € [0,1]}. To
simplify notations, for a given continuous t-norm x, its diagonal section will
be denoted 6, : [0,1] — [0, 1], specified by d.(x) = = * x. For each continu-
ous t-norm x, its diagonal section 9, is a non-decreasing function satisfying
0,(0) = 0, 0,(1) = 0, and d,(x) < z, for all x € [0,1]. Obviously, J, is con-
tinuous. Let us write, for convenience: D = {§ € [0,1]%! : § is continuous
non-decreasing and § < idy ), 6(0) =0, (1) = 1}

In [8, Proposition 7.17] we can find the following characterization of di-
agonal sections of continuous t-norms.

Proposition 1. For § € D the following are equivalent: i) There exists
a continuous t-norm x with 6, = 0. 1) § is continuous and the restriction

9



0[0,1\6~ 1 (w€[0,1[|6(z)==}) 1S Strictly increasing.

The following example shows that we can find a continuous t-norm for
which the condition of the previous theorem is not satisfied.

Example 3. We have for each n € w, 0., (z) = max{0,2"z + 1 — 2"} for
all z € [0,1], or equivalently 4., (z) = max{0, (v — £21)2" + £ for all

an on
z € [0,1]. Note that 4., (457) = 5. Let 6 € D given in the following way:
4n — 1 nttoom 4 —1 471 -1
é(z) = (z — yr ) 3 + T Vo € | TR ], new
Note that 6(*5) = 252, 5(4;}51) = 2*;-::51. It is easy to see that d,, (x) >

d(z) for all z € (%, 1), n € w. From the previous proposition there exists
a continuous t-norm * such that d, = d. Obviously there does not exist any
n € w such that * > x,,.
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