Document downloaded from:

http://hdl.handle.net/10251/50578

This paper must be cited as:

De La Prieta, F.; Heras Barbera, SM.; Palanca Camara, J.; Rodriguez, S.; Bajo, J.; Julian
Inglada, VJ. (2014). Real-time agreement and fulfilment of SLAs in Cloud Computing
environments. Al Communications. 1-24. doi:10.3233/AIC-140626.

The final publication is available at

http://dx.doi.org/10.3233/AIC-140626

C ight
opyng I0S Press

Real-Time Agreement and Fulfilment of
SLAs in Cloud Computing Environments

Fernando de la Prieta®*, Stella Heras® and Javier Palanca® and Sara Rodriguez® and Javier Bajod and

Vicente Julian®

2 Department of Computer Science, University of Salamanca, Plaza de la Merced s/n, 37008, Salamanca (Spain)
b Departamento de Sistemas Informdticos y Computacién, Universitat Politécnica de Valéncia, Camino de Vera s/n,

46022 Valencia (Spain)

¢ Departamento de Inteligencia Artificial, Facultad de Informdtica, Universidad Politécnica de Madrid, 28660

Boadilla del Monte, Madrid, (Spain)

A Cloud Computing system must readjust its resources by taking into account the demand for its services. This raises the need for
designing protocols that provide the individual components of the Cloud architecture with the ability to self-adapt and to reach
agreements in order to deal with changes in the services demand. Furthermore, if the Cloud provider has signed a Service Level
Agreement (SLA) with the clients of the services that it offers, the appropriate agreement mechanism has to ensure the provision
of the service contracted within a specified time. This paper introduces real-time mechanisms for the agreement and fulfilment
of SLAs in Cloud Computing environments. On the one hand, it presents a negotiation protocol inspired by the standard WS-
Agreement used in web services to manage the interactions between the client and the Cloud provider to agree the terms of
the SLA of a service. On the other hand, it proposes the application of a real-time argumentation framework for redistributing
resources and ensuring the fulfilment of these SLAs during peaks in the service demand.

Keywords: Cloud Computing, Service Level Agreements, Multi-Agent Systems, Virtual Organisations, Argumentation

1. Introduction

Nowadays, the Cloud Computing paradigm has
emerged as a key component of the Future Internet.
Concurrent research in the new area of Cloud Com-
puting is putting an end on the everlasting problem of
limited availability of computing resources. A Cloud
Computing system must readjust its resources by tak-
ing into account the demand for its services. At the
technological level, many difficulties have been over-
come with the use of virtualisation of hardware re-
sources [6]]. However, how to assign the physical in-
frastructure among virtual machines is a current topic
in some research fields [47]. This raises the need for
designing protocols that provide the individual compo-
nents of the Cloud architecture with the ability to self-
adapt and to reach agreements in order to deal with
changes in the demand of services. Furthermore, if the
Cloud provider has signed a Service Level Agreement
(SLA) with the clients of the services offered in the
platform, the appropriate agreement mechanism has
the added difficulty of ensuring the provision of the ser-
vice contracted within a specified time. Therefore, in

these environments there is a need for coordinating the
entities that make use of the available resources in the
Cloud and reaching agreements in a real-time fashion.

In order to solve this problem, recent research
has led to the advent of a new discipline of agent-
based Cloud Computing systems for the future Internet
[42]. The possibility of applying Multi-Agent Systems
(MAS), based on Virtual Organisation (VO) has many
advantages due to the ability of these systems to adapt
themselves in the presence of incomplete information
in an open environment. Thus, the infrastructure re-
sources will be managed in an elastic and intelligent
way. Moreover recent developments in argumentation-
based agreement models have provided the necessary
technology to allow agents to engage in real-time argu-
mentation processes to collaboratively solve problems
[30]. The use of argumentation techniques in the con-
text of Cloud Computing raises interesting challenges.
One is the hard constraints put on the efficiency of the
process. Another one is the fact that arguments pro-
vide useful justifications to the potential clients when
agreements are obtained. Therefore, mutual contribu-
tions in agreement technologies, multi-agent systems

and Cloud Computing can advance research in these
areas to the final establishment of the Future Internet.

This paper introduces real-time agreement mecha-
nisms for the agreement and fulfilment of SLAs in
Cloud Computing environments. On the one hand, it
presents a negotiation protocol inspired by the standard
WS-Agreement used in web services to manage the in-
teractions between the client and the Cloud provider to
agree the terms of the SLA of a service. On the other
hand, it proposes the application of a real-time argu-
mentation framework for redistributing resources and
ensuring the fulfilment of these SLAs during peaks in
the service demand.

At the external level, a Cloud Computing system is
composed of a set of Software, Platform and/or Infras-
tructure services which are offered to the users, com-
monly known as XaaS (X as a Service) [38]] (see Fig-
ure[T). The software and platform services can be con-
sidered as web applications that are deployed over the
Cloud platform and store their persistent data by us-
ing the services provided by the Cloud. In this study,
we use the term service to refer to each of these ap-
plications. Infrastructure services, on the other hand,
are a way of offering computational resources on the
Cloud. At the internal level, the system consists of a
set of physical machines (servers). These machines can
be available (or turned on) or unavailable (or turned
off). The available physical machines host abstractions
of hardware components called virtual machines. Both
physical and virtual machines are connected among
them through an internal network. The features and
topology of this network are out of the scope of this
work.

By definition, a Cloud Computing environment is a
high availability system, which means that the qual-
ity and availability of its services must be ensured in-
dependently of their demand. This means that each of
the services at the PaaS or SaaS level have to be de-
ployed in n virtual machines that are distributed among
m physical machines (m >2). In this way, the consump-
tion of virtual resources (and their associated physi-
cal ones) varies depending on the demand and hence,
the number of available virtual machines and physical
servers hosting them must be increased or decreased
accordingly; which is referred to as elasticity of the
Cloud system.

The latest generation of virtualisation environments
allows the resources available in the physical machines
to be dynamically allocated among the virtual ma-
chines according to the current needs [6]. Nowadays,
the greatest challenge in a Cloud environment is how

& External View

SN
’)

N ’/,, NN \

’ v, .

FITTSR ; < 7T T internal View

. Execution Resource

Fig. 1. External and internal view in a Cloud Computing environ-
ment

to efficiently redistribute the available resources of-
fered by physical machines among a variable set of
virtual machines, taking into account the demand for
the services offered by the system. This means, to
switch on or off virtual machines in a specific physical
server at any given moment, or even, to migrate virtual
machines in execution between physical servers. Fur-
thermore, Cloud providers can offer Software or Plat-
form services that are restricted to a maximum execu-
tion time, that is, the service must be provided before
a deadline is met. Commonly, companies sign SLAs
with their customers. Among other terms, these SLAs
specify a maximum acceptable time within the cus-
tomer must be provided with the service contracted
in the company. Therefore, if the Cloud provider has
signed a SLA with its Cloud customer, it must ensure
that the service(s) contracted will be provided within
a specific time. For instance, this can be the case of
customer support companies that have contracted their
storage or computing services with the Cloud provider.

In the next sections we present our Cloud Comput-
ing platform that is able to meet SLAs with its users:
Section [2] presents +Cloud, a new Cloud Computing
platform based on MAS; Section [3| explains the real-
time agreement processes performed by the agents of
this platform to deal with the problem of resource re-
distribution during a peak service demand; Section [4]
evaluates our proposal with different tests; finally Sec-
tion [3] introduces related work and future challenges
and summarises the results of this study. Table[d]shows
the list of acronyms used throughout this paper.

2. +Cloud Architecture

+Cloud is a platform based on the Cloud Computing
paradigm. This platform allows services to be offered

at the PaaS (Platform as a Service) and SaaS (Software
as a Service) levels. The SaaS services are offered to
the final users in terms of web applications, while the
PaaS services are offered as web services. Both PaaS
and SaaS layers are deployed using an internal layer,
which provides a virtual hosting service with automatic
scaling and functions for balancing workload. There-
fore, this platform does not offer a IaaS (Infrastructure
as a Service) layer. The internal layer is formed by the
physical environment which allows the abstraction of
resources shaped as virtual machines. Thus, since this
layer is internal to the system, +Cloud does not offer
this kind of service to its users. A more detailed de-
scription of each layer is provided below:

SaaS Layer. This layer hosts a wide set of Cloud
applications. +Cloud as environment offers a set
of native applications to manage the complete
Cloud environment: virtual desktop, user con-
trol panel and administration panel. At this level,
users have a personalised virtual desktop from
which they can access their applications in the
Cloud environment, and other more general third
party applications that use the services from the
PaaS layer in order to save its state, enabling the
elasticity of each application and the Cloud envi-
ronment in general.

PaaS Layer. The PaaS layer is oriented to offer ser-
vices to the upper layer, and is supported by the
lower IaaS layer. The PaaS layer provides services
through RESTful web services [33]] in an API
format. One of the more notable services among
the APIs is the identification of users and appli-
cations, a simple non-relational database service
and a file storage area that controls versions and
simulates a directory hierarchy. The components
of this layer are:

x the IdentityManager, which is the module of
+Cloud in charge of offering authentication ser-
vices to clients and applications;

x the File Storage Service (FSS), which provides
an interface for a container of files, emulat-
ing a directory structure in which the files are
stored with a set of metadata, thus facilitating
retrieval, indexing, search, etc;

x and the Object Storage Service (OSS), which

provides a simple and flexible schemaless database

service oriented towards documents.

The virtual and physical resources are managed dy-
namically. To this end, a virtual organisation of intel-
ligent agents that monitor and manage the platform

resources is used. This organisation implements an
argumentation-based agreement technology in order to
achieve the distribution of resources depending on the
needs of the whole system.

The redistribution of resources can be seen from two
points of view, from a micro level, and from a macro
level. At the micro level, the system performs the redis-
tribution of resources among virtual machines hosted
within a single host. That is, a physical server has a
set of available physical resources (processor, mem-
ory and disk) that have to be shared between different
virtual machines hosted in this server, leaving a min-
imal set of resources available to the host itself. At
this level, the main objective is to maximise the use of
resources and hence, to release those that are not re-
ally needed. At the macro level, however, the system
performs the global redistribution of resources within
the Cloud. This means that starts or stops virtual ma-
chines on physical servers, or even migrates machines
between physical servers. At this macro level, the goal
is to minimise the use of resources, so that the largest
number of machines remain disabled, but always keep-
ing the high availability of the system as a priority.
Thus, power consumption and cooling requirements
are reduced and the lifetime of physical machines is
extended, which in turn makes it possible to reduce the
maintenance cost of the Cloud environment as well.

In +Cloud, the elastic management of the available
resources is performed by a MAS based on VO, which
eases the design of the overall system [20]]. In the
+Cloud VO there is a set of agents that are especially
involved in the adaptation of the system resources in
view of the changing demand of the offered services.
In addition, one of the most innovative aspects of the
+Cloud framework is the fact that it provides the pos-
sibility of reaching agreements at two different levels:
at the external level, +Cloud allows temporal SLA’s
parameter negotiation between the system and its cus-
tomers using multi-agent interaction protocols; at the
internal level, +Cloud includes a computational case-
based argumentation framework that agents can use to
engage in an agreement process to make a decision
about the best resource redistribution to meet a SLA in
a peak service demand.

Figure [J] presents the different roles that +Cloud
agents can play. These are the following:

— Global Regulator (GR), in charge of agreeing the
redistribution of resources at a macro level within
its peers. This includes 1) the migration of vir-
tual machines between physical servers; 2) the
creation/destruction of physical resources (turn

8

SLA
Manager

g ® ® ()
. . Physical Resource 1

Local Local Network
Manager Resource Monitor
Monitor
pr- T~ Identity

’ VM \ Manager

|
\ / o T a
\ =~ Service Demand

’
by erviceA Monitor

-~
Pd
- / VM
I
8 Ser

. s -
Supervisor ~ ==

VM

Service B
-—- -

-

Manager Monitor Monitor

-

8

SLA
anager

Physical Resource N
Local Resource Network

™ -

Hardware Global
Manager Supervisor '

’
~o I
1Y \ (
\ \ :
) «Service A pFrvice
/ .y Stperviso
7’ e S
ol Service Demand
el Monitor

Global

Global

Hegulator_/vﬂegulator

Fig. 2. Virtual Organisations for Elastic Management of Cloud Resources

on/turn off physical servers), as well as virtual re-
sources (instantiating/stopping virtual machines);
or simply (3) the redistribution of the resources in
each physical server among its virtual resources.
The main objective of the agreement process is to
find a solution to deal with problems on the de-
mand of the services, respecting the SLAs. The
minimum amount of physical servers should be
used, so that less energy is consumed. There is
one agent playing this role in each physical server.
Global Supervisor (GS), in charge of supervising
and ensuring that the other agents of the VO work
correctly. If an error occurs, or if one of the agents
does not respond to its incoming messages, this
role should take the necessary actions to restore
the system to a stable state. Also, it may act as
a judge if GRs cannot agree on the redistribution
of a particular service. There is one agent playing
this role for each VO of +Cloud.

— Hardware Manager (HM), in charge of managing

the hardware that is in use and on standby at all
times. It is able to start and stop hardware, as well

as know the status for each system. There is one
agent playing this role for each VO of +Cloud.
Identity Manager (IM), in charge of supervising
the module of +Cloud that offers authentication
services to clients and applications. There is one
agent playing this role for each VO of +Cloud.
Local Resource Monitor (LRM), in charge of
knowing the usage level of the virtual resources
for each virtual machine. There is one agent play-
ing this role in each physical server. This agent
has all the knowledge about the physical resource
and its virtual machine. However, it does not have
any knowledge about other nodes in the Cloud en-
vironment.

Local Manager (LM), in charge of allocating the
resources of a single physical machine among its
virtual machines and its own physical machine.
There is one agent playing this role in each phys-
ical server. The knowledge that this agent needs
is provided by the LRM of the same physical
machine. It is able to redistribute the resources
among the virtual machines based on its own

knowledge and can also turn on or off the virtual
machine of a given service.

— Network Monitor (NM), in charge of monitoring
the network from the point of view of each sin-
gle physical machine. This information allows the
system to make better redistribution decisions in
an argumentation dialogue, in view of the network
load. There is one agent playing this role in each
physical server.

— Service Demand Monitor (SDM), in charge of
monitoring each service demand that is offered by
+Cloud, which means a service at the SaaS and
PaaS levels. There is one agent playing this role
per each kind of service. These agents are able to
offer information about the current and past de-
mands. Also, they incorporate a load balancer to
redirect the request to the different virtual ma-
chines which are offering a service at a specific
time.

— Service Supervisor (SS), responsible for making
decisions about each individual service. These
agents receive information from the SDM of the
service that they supervise, and must perform ac-
tions to ensure quality levels to fulfil the SLA con-
tracted, to fix possible errors, or to ensure the high
availability of the service. In +Cloud, this high
availability entails to have at least two virtual ma-
chines per service, located in two different physi-
cal machines. There is one agent playing this role
for each service and it is located at the same vir-
tual machine that hosts the SDM of the same ser-
vice.

— SLA Manager, in charge of offering a set of com-
munication facilitation services to other client
agents (representing the customers of the Cloud
system) using some knowledge about the require-
ments and capabilities of those agents. A client
agent can ask the SLA Manager to reach an agree-
ment about the offered services. The interaction
between the client agent and the SLA Manager is
divided into two stages: negotiation and execution
(see Section [3.1). There is one agent playing this
role for each service offered by the Cloud plat-
form.

3. RT Agreements in +Cloud
As pointed out before, the agents of the +Cloud plat-

form engage in agreement processes to provide ser-
vices. At the external level, customers negotiate with

the SLA manager the terms of the service contracted.
During the execution of the service, a peak in the de-
mand can give rise to an overload of one or more of the
virtual machines that provide this service. Therefore,
the system has to redistribute its virtual and physical
resources to cope with this problem and be able to ful-
fil the maximum time contracted in the SLA to provide
the service. As indicated, resource redistribution can be
done at the micro level (intra-machine) or at the macro
level (inter-machine). Therefore, at the internal level,
global regulators engage in argumentation processes to
decide the best redistribution to solve the overload of a
service. This section presents the operation of +Cloud
at both levels.

3.1. External RT Agreements: SLAs Negotiation

This section presents the needed interactions be-
tween the client and the Cloud provider to agree the
terms of the SLA of a service. These interactions fol-
low a negotiation protocol between an agent represent-
ing the client and the SLA manager. The negotiation
protocol provides more flexibility in order to adapt the
value of the service execution terms in the initial pro-
posal to a more suitable value for the client and the
service provider.

As explained in Section [2| a client agent can ask the
SLA Manager to reach an agreement on the quality of
the offered services. The interaction between the client
agent and the SLA Manager is divided into two stages:
negotiation and execution. In the first stage the client
and the SLA Manager negotiate the terms of the execu-
tion of the service that is going to fulfil the client’s re-
quest. Once the client agrees, the second stage starts. In
this stage the Service Supervisor executes the service,
taking into account the agreement established by the
SLA Manager and a valid identification provided by
the Identity Manager. Below, both stages are explained
with more detail.

3.1.1. Negotiation

The interaction between the client and the SLA
Manager is made through a negotiation protocol in-
spired by the standard WS-Agreement used in web ser-
vices [1]. To do that, the SLA Manager has a reposi-
tory with the service templates provided by the Cloud
Providers. These templates contain descriptions with
the information related with functional service param-
eters (e.g. Inputs, Outputs, Preconditions, and Effects)
and non-functional service parameters (e.g. service ex-
ecution time, which represents the SLA requested by

GetTemplate

. SLA
Client Manager

Template

A

Cancel

Analyge
NegotiationQuote (ty.qine, SeTVice)
tsﬁim —»
1
1
|
i Analygze
twain :
1
1
1 P e
! NegotiationProposal(tue.menews SUCCESSProbability)
| < -
- I
|
I
: twailz
Analyge 1
1

Agreement(teasmenes)

Ysor—
/N

Agreement(tuesginenen)

A

Fig. 3. Negotiation Protocol

the client). In order to offer this information to the
client, an OWL-S service description extended with the
non-functional parameter is used. This description in-
cludes the service execution time. The value of this pa-
rameter is represented by an average execution time.
For new services, this execution time is obtained by
measuring off-line the cost of the service. After that,
the SLA Manager makes online estimations of the ac-
tual execution time of the services provided and the ex-
pected execution time of each one is computed as the
average time of these estimations. The interactions of
the negotiation protocol between the client and SLA
Manager are shown in Figure Figure [3}

— The SLA Manager publishes the templates of the
services provided by the +Cloud platform.

— A client queries the agreement templates.

— Based on a suitable template, the client analyses
the service execution time ¢ and, considering the

value of this term, creates a new proposal pro-
viding the desired deadline (t;eadline) in abso-
lute time (date and hour) before which the service
should finish its execution. The offer is sent to the
SLA Manager. The query includes a template for-
matted as an OWL document, which contains a
set of service inputs, outputs and the deadline:

query = ({input}, {output}, deadline)

The client waits for an answer until a timeout
(taitl) is reached. If the client does not receive
an answer, it cancels the negotiation.

The SLA Manager analyzes the client’s template.
This process is temporal bounded. Basically, the
SLA Manager checks with the Service Supervi-
sors if the service requested by the client is avail-
able and if it can be provided before the client
deadline. Each service consists on a set of ele-
ments:

service = (serviceld, {input}, {output}, ser-
viceDuration, probability)

If the service can be provided on time, the SLA
Manager returns the same deadline. Otherwise, it
proposes a new deadline (¢;eadlineNew). In both
cases, the SLA Manager also returns the probabil-
ity of service execution success before the dead-
line. The success probability of a service is cal-
culated using the success probability of each ac-
tion that must be carried out in the service execu-
tion. The SLA Manager selects the service, taking
into account the success probability of the service
and its execution time. In order to guarantee that
required service is going to be provided on that
deadline, the SLA Manager schedules its service
execution. Then, it waits for an answer from the
client during a time (;wait2). If the SLA Manager
does not receive an answer, it removes the sched-
uled service execution.

The SLA Manager sends the service template
with its deadline to the client. If the client agrees
with the proposed plan (its deadline —SLA— and
the service probability of success is higher than a
client’s threshold) the client sends an agree mes-
sage. Finally, the Service Supervisor starts to ac-
cept requests within the agreement established by
the SLA Manager. Then, the SLA Manager no-
tifies the Identity Manager that this client is au-
thorised to use the service in the terms defined
by the SLA. In the case whereby the client does
not agree with the agreement proposed, the client

sends a message to the SLA Manager and it re-
moves the service from the schedule and, if pos-
sible, proposes a new one.

3.1.2. Execution

If the client accepts the proposed service parame-
ters, the Service Supervisor begins to accept requests
for these services and establishes a formal commit-
ment to force the execution of the service according
to the agreed terms. The most important requirement
is the value of the SLA, which implies that the ser-
vice must be served before that deadline. To ensure
that the deadline of each agreement is met, the Local
Manager agents act as hypervisors of the virtual ma-
chines running in the physical resources. These agents
schedule the computational resources according to the
agreements established by the SLA Manager.

Ensuring these temporal commitments is a complex
task since we can not predict which is going to be the
future workload demand because the arrival rate of ser-
vice requests is unknown in an open system. The Local
Managers need to predict when a service execution is
going to be finished in order to know if the temporal
commitment proposed by the SLA Manager is going to
be fulfilled. To do this, their scheduling algorithm im-
plements the Deadline Prediction Scheduler [32]]. This
scheduling algorithm uses resource booking to ensure
that a temporal commitment is accomplished. In or-
der to fulfil a temporal commitment, the Local Man-
agers need to guarantee that the task will have enough
time in the processor. The processor time is a valuable
resource and is directly related to the instant of time
when a task will finish its execution. Thus, if we make
a booking of the processor resource that could never be
diminished when we establish a temporal commitment,
we can ensure that the temporal commitment will be
fulfilled.

3.2. Internal RT Agreements: Resource Redistribution

In [30], a real-time argumentation framework that
agents can use to engage in an agreement process to
make a decision about a problem at hand within a
bounded period of time is presented. In this section,
we apply this framework to model the argumentation
dialogue among agents in the +Cloud platform at the
internal level. In this case, thus, the problem to solve
is to decide the best redistribution of resources to cope
with an overload in a service, taking into account the
SLA contracted with the client.

On the one hand, from the intra-machine perspec-
tive, the redistribution of resources is made by the Lo-

cal Manager agent based on information provided by
the Local Resources Monitor agent. Both agents are
located in the same physical machine and follow a
case-based reasoning approach to perform the resource
reallocation. The underlying process to reallocate re-
sources at this level is out of the scope of this paper.

On the other hand, when a Local Manager detects
that the physical server has insufficient resources to
meet the demand for the service, or when an Service
Supervisor notices that the quality of service is not ad-
equate to fulfil the SLA contracted, an inter-machine
redistribution of resources is necessary. Furthermore,
the Local Manager agent can detect that the physical
machine is underused. In that case, it may try to per-
form a redistribution to maximise the usage of its re-
sources or otherwise, turn off the physical machine to
save energy.

To deal with these situations, the Local Manager re-
ports the problem to the Global Regulator of its phys-
ical machine, which starts an agreement process with
the other Global Regulators of +Cloud in order to
decide the best option for redistributing physical re-
sources among existing virtual machines in the whole
Cloud platform. Several types of “solutions” can be
identified as potential outcomes for the agreement pro-
cesses established:

— Basic Solution, consists of redistributing resources
inside the same physical machine.

— Easy Solution, consists of instantiating a new vir-
tual machine of a particular service on a physical
machine that has sufficient resources to serve this
demand.

— Half Solution, consists of starting a new physical
machine, and instantiating a new virtual machine
for a particular service.

— Complex Solution, consists of migrating one or
more virtual machines (running) between phys-
ical machines, resulting in a redistribution of
global resources. This solution is only possible if
the network is not overloaded.

— Expensive Solution, consists of starting a new
physical machine and migrating virtual machines
from other physical machines to this new avail-
able server. This solution is only possible if the
network is not overloaded.

Any of these solutions entails an underlying argu-
mentation process between the Global Regulators of
the physical machines of the VO to reallocate virtual
and physical resources to solve the overload problem.
However, in this work we do not aim to discuss the best

mechanism to implement the solution agreed (the ac-
tual technical operations to put into action such solu-
tion), but to provide the agents of +Cloud with the abil-
ity of engaging in an argumentation dialogue to col-
laboratively decide which would be the best solution
to make before starting the process to actually imple-
ment it. Our hypothesis is that agents may make the
most of their experience and help each other to avoid
complex agreement processes that have a lower proba-
bility of ending in a successful allocation of resources
in view of similar previous experiences. In this sense,
our approach can be viewed as a model to guide the
subsequent implementation process and maximise its
success.

In the +Cloud platform, Global Regulators imple-
ment a real-time argumentation framework that allows
them to have an argumentation dialogue with their
peers and learn from the experience (saving the knowl-
edge acquired as cases in case-bases). Also, they use
a real-time argumentation process to manage their po-
sitions and arguments during the argumentation dia-
logue. By this process, agents exchange ACL messages
trying to reach an agreement about the best redistribu-
tion of resources to solve the service overload problem.
The full explanation about the reasoning process that
agents use to generate, select and evaluate their posi-
tions and arguments is outside of the scope of this pa-
per and can be found at [30]. This section summarises
the main components of the real-time argumentation
framework and the argumentation process that Global
Regulators use to exchange their positions and argu-
ments in +Cloud, illustrating the process with an ex-
ample.

3.2.1. Argumentation Framework

Our real-time argumentation framework defines three
types of individual knowledge resources that the agents
can use to manage arguments:

A case-base with domain-cases, that represent pre-
vious problems and their solutions. Agents can
use this knowledge resource to generate their po-
sitions and arguments. The position of an agent
represents the solution that this agent proposes,
by reusing the solution applied to solve a simi-
lar problem in the past. Also, agents increase their
domain knowledge at the end of each real-time
argumentation dialogue by adding new cases to
their domain-cases case-base.

A case-base with argument-cases, that store previ-
ous argumentation experiences and their final out-
come. Agents use this resource to select the best

position and argument to put forward in a specific
situation in view of how suitable a similar posi-
tion or argument was in a similar real-time argu-
mentation dialogue. Also, agents store the new ar-
gumentation knowledge gained in each real-time
agreement process, improving the agents’ argu-
mentation skills.

A set of argumentation-schemes, that represents

stereotyped patterns of reasoning [46]. Argumentation-

schemes consists of a set of premises from which
agents can draw specific conclusions. In this
sense, argumentation-schemes represent general
rules that hold in the domain under discussion
(e.g. regarding exceptional situations that force
agents to select a specific type of solution). In
addition, argumentation-schemes include a set of
critical questions that represent possible ways of
attacking the conclusion drawn from the scheme
(e.g. exceptions to the rule, other sources of infor-
mation that invalidate the rule, etc.).

In our proposal, arguments that agents exchange are
tuples of the form:

Definition 3.1 (Argument) Arg = (9,v,{S}), where ¢
is the conclusion of the argument (the solution pro-
moted by the argument), v is the value that the agent
wants to promote and S is a set of elements that justify
the argument (the support set).

Therefore, we follow the approach of value-based
argumentation frameworks [10], which assume that ar-
guments promote values and those values are the rea-
son that an agent may have to prefer one type of argu-
ment to another. Values in this work can be considered
as types of solutions. Then, an agent could prefer to
promote the quality of solutions and, for instance, pro-
pose an "EasySolution” over a ”BasicSolution”, since
it knows by experience that the former type of solu-
tions achieve more successful results, for instance, in
redistributing resources for a specific service. On the
other hand, another agent could prefer to promote more
economic solutions and, for instance, propose a ”Ba-
sicSolution” that redistributes the existing resources of
a physical machine without incurring the cost associ-
ated with booting a new machine or starting a migra-
tion. Moreover, in our argumentation framework we
take into account the preferences (ValPref) of each
agent over the set of values pre-defined in the system
to select among different arguments to propose. Fur-
thermore, the dependency relation between the propo-
nent’s and the opponent’s roles is also taken into ac-

count to evaluate arguments from other agents. In our
framework, we consider three types of dependency re-
lations (inherited from [16]):

1. Power, when an agent has to accept a request
from another agent because of some pre-defined
domination relationship between them (e.g. a hi-
erarchy defined over roles);

2. Authorisation, when an agent has committed it-
self to another agent for a certain service and a re-
quest from the latter leads to an obligation when
the conditions are met (e.g. once the SLA has
been signed, the SLA Manager is authorised to
demand the fulfilment of the SLA contracted of
the Service Supervisor); and

3. Charity, when an agent is willing to answer a re-
quest from another agent without being obliged
to do so (e.g. an altruistic agent that selflessly
shares its free resources).

Definition 3.2 (Support Set) A support set for an ar-
gument consists of a set of elements:

S = { {premises}, {domainCases}, {argumentCases},
{argumentationSchemes}, {distinguishingPremises},
{counterExamples}, {criticalQuestions} }

The support set S can consist of different ele-
ments, depending on the argument purpose. For ex-
ample, if the argument justifies a potential solution
for a problem, the support set is the set of features
(premises) that match the problem to solve, other ex-
tra premises that do not appear in the description of
this problem but that have been also considered to
draw the conclusion of the argument, and optionally,
any knowledge resource used by the proponent to
generate the argument (domain-cases, argument-cases
or argumentation-schemes). This type of argument is
called a support argument. On the other hand, if the ar-
gument attacks the argument of an opponent, the sup-
port set can also include any of the allowed attack
elements of our framework. These are distinguishing
premises, counter-examples, or critical questions. This
other type of argument is called an attack argument.

The following functions provide a formal definition
for the different types of attacks. First, let us assume
that we have a problem to solve denoted as P, a set of
cases denoted as C = {cy,cz,...,cp}, a set of premises
denoted as F; = {fi, f2,..., fu} such that f; € P rep-
resents a premise that describes the problem P and
fi € c; represents a premise that describes the case c¢;
(fi, f; € F;, thus, we represent both problems and the
problem description of cases with a set of premises), a

function value.,(f;) that returns the value of a premise
in a case ¢; € C (i.e. the actual data of that premise, do
not confuse with the notion of value promoted by argu-
ments), and a function conclusion(c;) that returns the
conclusion of the case ¢; (i.e. the solution promoted by
the case).

A distinguishing premise is either a premise that
does not appear in the description of the problem
to solve and has different values for two cases or a
premise that appears in the problem description and
does not appear in one of the cases.

Definition 3.3 (Distinguishing Premise) A distinguish-
ing premise f; with respect to a problem P between two
cases c1,cp € C is defined as:

3fieaiN Afi € P| 3f; € ca Avalue, (fi) # value., (f;)
orelse, 3f; € cy N3f; € P | value, (f;) = valuep(f;) N
Afi € e

A counter-example for a case is a previous case (i.e.
a domain-case or an argument-case), where the prob-
lem description of the counter-example matches the
current problem to solve and also subsumes the prob-
lem description of the case, but proposing a different
solution.

Definition 3.4 (Counter-Example) A counter-example
for a case c| € C with respect to a problem P is another
case ¢y € C such that:

Vfi € co NP | value.,(fi) = valuep(fi) NVf; € c1 |
(3fi € ca Avaluey,(c2) = valuey,(c1)) Aconclusion(cs) #
conclusion(cy)

Also, as pointed out before, critical questions repre-
sent potential attacks that can defeat the conclusion of
an argumentation-scheme.

The structure of domain-cases and the concrete set
of argumentation-schemes that an argumentation sys-
tem that implements our framework has depends on
the application domain. Table[T|shows an example of a
domain-case DC2 that a Global Regulator GR2 could
retrieve to generate its recommended solution "IR: In-
ternal Redistribution” for an overload problem in a
FSS (based on the example of Section [3.2.3). This
domain-case proposes redistributing resources inside
the same physical machine, which is a "BasicSolu-
tion” solution that promotes economy (a value that pro-
motes the lowest consumption of resources). The fea-
tures that characterise the previously solved problem
that DC2 represents are the following: service identi-
fier, service current demand, virtual machines associ-
ated, physical resources associated to these virtual ma-
chines, and resources usage.

Service FSS

Demand SD1

PROBLEM VMs VMI, VM2, VM3
Resources VMIR, VM2R, VM3R
Resources Usage VMIRU, VM2RU, VM3RU

Description Internal Redistribution
SOLUTION Solution Type Basic Solution
Value Economy
Table 1

Domain-case Example

Next, we provide an example of an argumentation-
scheme that changes the value preference order of
Global Regulator in case of an overload in a service
(inspired by Waltons’s argument for an exceptional
case [460]):

Major Premise: if the case of x is an exception,
then the value preference order can be waived and
changed by economy<quality in the case of x.
Minor Premise: the case of overload is an excep-
tion.

Conclusion: therefore the value preference order
can be waived and changed by economy<quality
in the case of network overload.

Thus, this scheme will change the social context of the
Global Regulator in charge of negotiating the redistri-
bution of resources to deal with the overload problem.
Concretely, the Global Regulator goes to prefer more
quality solutions instead of solutions that promote less
consumption of resources. Therefore, the Global Reg-
ulator GR2 could use this scheme to generate its posi-
tion and decide that the domain-case of Table [is not
appropriate to solve its current problem and use an-
other domain-case that supports its new social context.

However, the structure of argument-cases is generic
and domain-independent. Table [2] shows an argument-
case that represents a support argument SA1 in the con-
text of the example of Section[3.2.3]

Argument-cases store the information about a previ-
ous argument that an agent posed in a specific step of
a dialogue with other agents. Therefore, in argument-
cases we store a problem description that has a domain
context that consists of the premises that characterise
the argument. In addition, if we want to store an ar-
gument and use it to generate a persuasive argument
in the future, the features that characterise its social
context must be kept as well. The social context of the
argument-case includes information about the propo-
nent and the opponent of the argument. Moreover, we
also store the preferences (ValPref) of each agent or
group over the set of values pre-defined in the system.

Domain Context Premises U { VMloverloaded }
ID =GRI
Proponent Role = Global Regulator
PROBLEM ValPref = EC<QU
ID = GR2
O t = r
Social Context pponent Role = Global Regulator
ValPref = QU<EC
Dependency Relation = Authorisation
Conclusion = "Instantiate new VM”
Value = QU
SOLUTION Acceptability Status = Unaccepted
Received Attacks | Distinguishing Premises = 0
| Counter Examples = DC4
JUSTIFICATION ||-S2ses=
Dialogue Graph = ...
Table 2

Argument-case Example

Finally, the dependency relation between the propo-
nent’s and the opponent’s roles is also stored.

In the solution part of argument-cases, we store the
conclusion of the case, the value promoted, and the ac-
ceptability status of the argument at the end of the di-
alogue are stored. The last feature shows whether the
argument was deemed acceptable, unacceptable or un-
decided in view of the other arguments that were put
forward in the agreement process. Attacked arguments
remain acceptable if the proponent of the argument is
able to rebut the attack received, or if the opponent
that put forward the attack withdraws it. This feature is
used in the argument management process of our argu-
mentation framework to represent the potentially high
persuasive power of current arguments that are similar
to previous arguments that were attacked but remained
acceptable at the end of the agreement process.

Finally, the justification part of an argument-case
stores the information about the knowledge resources
that were used to generate the argument represented by
the argument-case (the set of premises, domain-cases,
argument-cases or argumentation-schemes). In addi-
tion, the justification of each argument-case has an as-
sociated dialogue-graph (or several), which represents
the dialogue where the argument was put forward. In
this way, the sequence of arguments that were put for-
ward in a dialogue is represented, storing the complete
conversation as a directed graph that links argument-
cases. This graph can be used later to improve the effi-
ciency of an argumentation dialogue, for instance, fin-
ishing a current dialogue that is very similar to a pre-
vious one that proposed a solution that ended up in an
unsuccessful redistribution of resources.

For instance, the argument-case of Table@] stores in-
formation about a support argument that a Global Reg-
ulator GR1 provided in the past to the Global Regulator
GR?2 to justify its position ”Instantiate new VM” for

an overload problem in the Virtual Machine VM1. This
position promotes the value preferred by GR1 (e.g.
quality of the service (QU)) and GR1 and GR2 had an
authorisation dependency relation between them. As
shown, the argument was unaccepted at the end of an
argumentation process where it was proposed, since a
counter-example DC4 was able to defeat it.

3.2.2. Real-Time Argumentation Process

In order to temporal bound the argumentation pro-
cess that Global Regulators follow, we have used the
approach presented in [30] (represented in Figure [4)).
Thus, the process can be divided into three phases: gen-
eration and selection of positions, where the Global
Regulator generates its potential positions and select
the best one to propose; evaluation of positions, where
the Global Regulator evaluates the positions generated
by other Global Regulators; and finally, argument man-
agement, where Global Regulators can either defend
their positions if they are attacked or else, attack other
different positions proposed by their peers. To defend
their positions, Global Regulators have to evaluate the
attack arguments received and generate and select the
best support argument to propose. To attack different
positions, Global Regulators have to ask the agent that
they want to attack for providing them with a support
argument for the position to attack. Then, Global Reg-
ulators can generate and select the best argument to at-
tack the support argument provided.

As represented in Figure[d} the function generatePo-
sitions generates the k first positions by using the algo-
rithm generatePositions. In the worst case, the function
has to check the whole case-base of domain-cases, in-
curring a temporal cost O(n) (where n is the number of
cases stored in the domain-cases case-base) for finding
and extracting similar domain-cases. Then, for each
domain-case extracted, the function reuses its solution
to generate a position. Again, in the worst case (in the
temporal sense), we can generate n positions. There-
fore, the generatePositions function has an asymptotic
temporal cost of O(n?). Also, the computeSF is a func-
tion that computes a support factor for each position.
With this factor, agents are able to evaluate the ex-
pected utility of a current position or argument in view
of how “persuasive” it was in a similar argumenta-
tion process in the past. As criteria for making this
evaluation, we consider different parameters computed
from the elements of those argument-cases stored in
the agent’s case-base that represent argumentation ex-
periences that are similar to the current one. In the
worst case, this function has to check the whole case-
base of argument-cases twice. Therefore, this process

has an asymptotic temporal cost of O(m?), where m is
the number of cases stored in the argument-cases case-
base. For the rest of functions of Figure[d we assume a
constant temporal cost that is negligible in terms of the
total temporal cost of the argumentation process. See
[30] for more details on this temporal cost evaluation.

Summarising, the asymptotic cost to execute the
process to generate and select positions in the worst
case is O(n* x m*) where n is the number of cases
stored in the domain-cases case-base and m is the num-
ber of cases stored in argument-cases case-base of the
Global Regulator. Therefore, to be able to make a de-
cision about the best solution to apply for the service
overload problem in a time restricted by the SLA con-
tracted, the maximum number of cases in the domain-
cases and the argument-cases case-base must be known
and fixed in advance. In this way, if the contents of
the Global Regulator’s case-bases contain the neces-
sary information to generate and select an appropriate
position, the agent will be able to generate at least one
solution on time (its position). In this sense, as shown
in Figure] the position generation and selection phase
is mandatory and the other two phases (position evalu-
ation and argument management) are optional and ex-
ecuted while the agent has still time to perform its tem-
poral bounded reasoning process.

Once the process to generate and select positions
has finished, agents of our framework can either re-
ceive attacks to their positions or decide to challenge
the positions of other agents. Thus, agents are able to
evaluate its position with regard to other positions. The
first step to evaluate an agent’s position is to check if
it is consistent with the positions of other agents (they
are the same). Agents do not attack consistent posi-
tions, but they can still generate support arguments if
their own positions are challenged. Another possibility
arises when a proponent agent has been able to gener-
ate the same position as another agent, but it has se-
lected a different position as more suitable to propose.
In that case, the proponent would accept the opponent’s
position if the latter has a power relation over the pro-
ponent and would try to attack the opponent’s position
otherwise. Finally, if the opponent’s position is not in
the set of positions generated by the proponent and the
opponent does not have a power or authorisation rela-
tion over the proponent, the proponent can try to gener-
ate an argument to attack the opponent’s position. Oth-
erwise, it accepts the opponent’s position.

In our real-time argumentation scenario the num-
ber of Global Regulators engaged in the argumenta-
tion process cannot be determined a priori. Therefore,

[c]
M
o °
oN = <<invoke>> A
SE L Generate Positions N
- 2
IR = Position Generation ™\ / o
TA%C and Selection 4 A
T 4.3 \ T
1T | O(n"m®) v (o)
(o] \
NO [e] \ Compute SF R
NN <ok Y
= o
PV Get position from P
0 A other agent T
S L |
I u [e]
TA e more postons> no Position Evaluation N
cl) T| cualuate Il Tmeout A
L
N O
N yes
S
Select other position
or argument
M o Argument
A A 7o more pﬁnons t:) Generation o
R N evaluate |l Timeou! -7
A
5a |
M E no attack yes o
= W N
E E Evaluate Argument Decide Support A
TN t
T (k /
\ Generate Attack /
o o
attacks Il attacks Il
Timeout Timeouf
-

Fig. 4. Real-Time Argumentation Process

the temporal cost of evaluating the positions of other
agents cannot be bounded. Thus, this phase has been
implemented as an anytime process. The agent has a
maximum time (a deadline based on the SLA of the
service to provide) to evaluate all positions generated
by other agents. Once this deadline is exceeded, the
agent stops the evaluation and proceeds to the next
phase of its reasoning process.

In the argument management process, agents gener-
ate arguments when they are asked to justify their po-
sitions (support arguments) or when they attack oth-
ers’ positions or arguments (attack arguments). A sup-
port argument has a support set that consists of the set
premises that describe the problem and of any of the
knowledge resources used to generate the position to
justify (domain-cases and argument-cases). Attack ar-
guments are generated when the proponent of a posi-
tion provides an argument to justify it and an opponent
wants to challenge the position or else, when an oppo-
nent wants to attack the argument of a proponent. If the
agent receives an attack, it must evaluate its current ar-
gument in view of the incoming attack argument. The
attack arguments that an agent can generate depend on
the elements of the support set of the attacked argu-

ment. On one hand, if the support set includes a set
of premises, the agent can generate an attack argument
with a distinguishing premise. On the other hand, if
the support set includes a domain-case or an argument-
case, the agent can check its case-bases to find counter-
examples to generate the attack. As for the case of gen-
erating positions, agents can generate several attack ar-
guments. Then, to select the best attack argument to put
forward in a specific step of the real-time agreement
process, the agent uses the information of its argument-
cases case-base and selects such one that is expected
to have higher persuasive power in view of the agent’s
previous experiences.

Similarly to the evaluation process, we cannot es-
timate the number of arguments that a Global Regu-
lator has to evaluate and the underlying attacks that
this agent can receive or generate (what is called ar-
gument management in Figure f). Therefore, we use
here an anytime process by which the Global Regula-
tor has been assigned a deadline to perform all inter-
actions with the rest of the agents. When this deadline
is finished, the argument management phase ends and
the agent must provide its final solution. Therefore, in
the worst case the agent has not enough time to argue.

Otherwise, if the allowed time is large enough, Global
Regulators can make an intensive use of its domain and
argumentation knowledge and engage in the argument
management phase proposing and defending all posi-
tions that they are able to generate.

The argumentation process finishes when the dead-
line specified is reached or no new positions or ar-
guments are proposed after a certain time. Then, the
Global Regulator that started the argumentation dia-
logue must report to the Local Manager the final solu-
tion agreed. Thus, if several positions and their under-
lying support arguments remain acceptable, the most
frequently proposed position is selected as the final so-
lution to propose. In case of draw, a random choice is
made.

3.2.3. Example

In order to illustrate how our argumentation frame-
work can be applied to manage the service overload
problem, this section describes the real-time argumen-
tation process among several Global Regulators (GRs)
by means of an example.

First, we assume that the SLA Manager has had
a previous negotiation process with the client of the
+Cloud platform and, as a result, a SLA has been
signed for a specific service contracted with the Cloud
provider (a file storage service, FSS, for instance). The
process starts when a Service Demand Monitor notices
an overload in the FSS that it controls. Then, the Ser-
vice Supervisor in charge of the virtual machines that
offer this service sends the load information about the
resources associated to these virtual machines to the
Local Manager of its physical machine. After that, the
Local Manager will analyse the demand of the service
and ask the Local Resource Monitor for information
about the physical resources load. With all of this in-
formation, the Local Manager has to make the best de-
cision to redistribute its virtual and physical resources
to cope with this overload problem and provide the ser-
vice within a maximum time (deadline) specified in the
SLA.

In this example, the Local Manager decides that the
redistribution of resources to deal with the peak of de-
mand implies an inter-machine configuration. There-
fore, it transfers the information to the GR of the same
physical machine, and then, the GR starts an argumen-
tation process with its peers in other physical machines
to decide which is the best solution to propose to its
service overload problem. GRs are connected among
them and that they are able to check the positions pro-
posed by other GRs. Furthermore, all agents are collab-
orative and follow the common objective of providing

the best solution by making the most of their individual
experiences. A GR that proposes a position, let us say
a proponent agent, tries to persuade any potential op-
ponent that has proposed a different position to change
its mind. In this way, the more justified position is se-
lected as the solution to propose to the Service Super-
visor, which in turn will transfer this recommendation
to the Local Manager.

In this example, we consider the following values
that GRs want to promote:

— Quality: agents that promote this value will se-
lect those solutions that improve the quality of the
servicd!]

— Economy: agents that promote this value will
select those solutions involving the lowest con-
sumption of resources.

For purposes of clarity, all agents belong to the same
VO, although the scenario could be extended to con-
sider agents that belong to different VOs (for instance,
those which group together agents that manage the
same type of services). In addition, agents can play dif-
ferent roles from the ones defined in +Cloud and even
act as representatives of a group (e.g in this agreement
process, GRs act as representatives of the other agents
of their physical machine). Thus, this is a complex sce-
nario that requires an argumentation framework that is
able to take into account the social context of agents to
properly manage the argumentation process.

In this setting, two agents that play the role of Global
Regulators, GR2 and GR3, are arguing with the Global
Regulator that started the agreement process, GR1, to
decide which is the best redistribution of resources
to deal with the FSS overload. The value preference
order of GR1 promotes economy (EC) over quality
(QU) (promotes saving resources over providing high
quality solutions, QU<EC). Also, the example com-
mands a dependency relation of charity (C) between
two Global Regulators, except for the case of GRI1,
which has an authorisation dependency relation (A)
over GR2 and GR3, which allows it to ask them for re-
sources to support the FSS service. GR2 prefers econ-
omy over quality (QU<EC) and GR3 prefers quality
over economy (EC<QU). Also, all agents have their
own knowledge resources (domain-cases case-base,
argument-cases case-base and argumentation-schemes
ontology to generate, select and evaluate positions and
arguments).

I'The notion of quality of service can have different meanings de-
pending on the SLA contracted (e.g. response time, client’s satisfac-
tion level, etc.)

The premises of the domain context would store
data about the overloaded resource and other domain-
dependent data about the current problem. For in-
stance, the premises that characterise the problem to
solve in this example are the following: service iden-
tifier (p; = {"Service” = FSS}), service current de-
mand (py = {"Demand” = SD1}), virtual machines
associated (p3 = {"VMs” = {VM1,VM2}}), physical
resources associated to these virtual machines (ps =
{"Resources” = {VM1R,VM2R}}), and resources us-
age (ps = {"ResourcesUsage” = {VM1RU,VM2RU }}).

In the first step of the argumentation process, GR1
will open the dialogue with its peers by conveying
them the problem information and the position gener-
ation & selection phase starts. Then, global operators
GR2 and GR3 will search their case-bases of domain-
cases (DC2 and DC3 respectively) to generate their po-
sitions. In this case, the solution consists of a descrip-
tion, the solution type and the value promoted with this
solution. To generate positions, each GR retrieves from
its domain case-base those cases that match with the
specification of the current problem and generates its
solution (or a list of potential solutions) by reusing the
solution(s) applied to the retrieved cases. Thus, with
the set of retrieved cases GRs could provide different
solutions for the same problem. Then, each GR can use
its case-base of argument-cases to select the best posi-
tion to propose, computing its support factor.

GRs have bounded the size of their case-bases to be
able to ensure that they can meet the deadline to gen-
erate and select positions. Figure [5] presents a poten-
tial domain-case that GR2 could retrieve to generate its
recommended solution ”IR: Internal Redistribution”
(since it has deemed it as similar enough to the current
problem). This DC2 proposes redistributing resources
inside the same physical machine, which is a ”Basic-
Solution” solution that promotes economy. Since GR2
has been able to generate a solution on time, it will en-
gage in the argumentation process proposing its posi-
tion, which entails to recommend the solution gener-
ated.

In the case of GR1 and GR3, they have found the
domain-case DC3 (each one in its own domain-cases
case-base), which proposes an alternative solution (e.g
"NVM: Instantiate a new VM) that promotes quality
and has the type of solution ”EasySolution”. Figure [6]
shows an example of this domain-case retrieved from
the case-base of GR3. Again, since GR1 and GR3 have
been able to generate a solution on time, they will en-
gage in the argumentation process proposing its posi-
tion. Note that if GR1 would not be able to generate its

GR2 Domain-Case - DC2

PROBLEM

Service FSS
POSGRy Demand sD1
PROBLEM
Service Fss VMs VM1, VM2, VM3
Demand SD1 Resources | VM1R, VM2R,
Domain VM3R
i i i Resources | VM1RU, VM2RU,
Resources VMI1R, VM2R Usage VM3RU
Resouces Usage | VM1RU, VM2RU SOLUTION

Description Internal Re-
distribution

Solution BasicSolution
Type
Vaiue Economy

Fig. 5. Domain-Case DC2

own position, it could still participate in the argumen-
tation process as initiator and wait for the final solution
agreed between the other agents.

GR3 Domain-Case - DC3
PROBLEM

PROBLEM

Service FSS VM1, VM2, VM3

Demand D1 - Resources | VM1R, VM2R,
VM3R

Resources VMIRU,
VM2overloaded,
VM3RU

VMs VM1, VM2
Resources VM1R, VM2R

Resouces Usage | VM1RU, VM2RU T

Description | Instantiate new
M

Solution EasySolution
Type
Value Quality

Fig. 6. Domain-Case DC3

Once the agents have proposed their positions, GR1
has to decide which between them could be the best
solution to apply. Therefore, while the deadline to pro-
vide a solution is not met, it starts the position eval-
uation phase for each position proposed by the other
GRs. In this example, since GR3 has proposed the
same position as GR1, GR1 asks GR2 to provide an ar-
gument for supporting its position. Assuming that GR2
is willing to collaborate and there is still time to enter
the argument management phase, it can put forward
the following support argument for its position:

Support argument of GR2:
SAGR2 = {IR,EC, < Premises,{DC2} >}

where the support set includes the premises of the
problem description and the domain-case used by GR2
(DC2) to generate its position.

DC2 and DC3 can be considered as counter-examples
for each other (assuming that VMIloverloaded sub-
sumes the feature VMI1RU pointing out a peak in the
usage of this resource). As both GR2 and GR3 have

a charity dependency relation between them, neither
GR2 nor GR3 are committed by default to accept the
argument of the other agent. Therefore, if asked for
supporting its position by GR2, GR3 could generate
the following argument:

Support argument of GR3:
SAGR3 = {NVM,QU, < Premises,{DC3} >}

However, our concrete domain application cen-
tralises the argumentation process in the initiator of the
dialogue. Then, GR1 has to evaluate the argument of
GR2 (since GR3 is considered a supporter of GR1’s
position). Now, let us suppose that GR1 is receiving
constant information about the resources load from its
local manager (which in turn receives it from the Lo-
cal Resource Monitor). Then, let us suppose that GR1
knows an extra premise that states that there is a current
overload in the virtual machine 1 (VM1Overloaded).
This new premise matches an argumentation schemes
of its ontology, S1, which changes its value prefer-
ence order in case of any overload in a virtual ma-
chine (see example in Section[3.2.T)). Thus, this scheme
will change the social context of the attack argument
that the GR1 is going to create. As the support set of
SAGR?2 contains a domain-case, GR1 will try to pro-
pose a counter-example or a distinguishing premise for
this case.

Thus, GR1 will check its case-base of domain-cases
to find counter-examples for DC2. Suppose that GR1
finds two counter-examples for DC2 (DCla and DC1b)
which subsume the problem description of each of
DC2 (but also including the new premise that states
the overload of VM), but providing different solutions
(e.g. “NVM = Instantiate a new VM” and “ER = Ex-
ternal Redistribution”). It could, therefore, generate the
following attack arguments:

AA1={NVM, QU, <Premises U {VMI1Overloaded},

S1,{DCla}>}

to undercut SAGR2 by attacking its support element
DC2 with the counter-example DC1a, which promotes
quality (QU) (as stated by S1).

AA2={ER, EC, <Premises U { VM1Overloaded},
{DCIb}>}

to undercut SAGR2 by attacking its support element
DC2 with the counter-example DC1b, which entails
a complex solution that migrates the overloaded VM1
to another physical machine with enough resources to
host it and promotes economy (EC) (assuming that the
cost of migrating an existing VM is lower than instan-
tiating a new one).

The argument management phase continues while
GR1 has time to generate more attacks to GR2. Then,
GR1 will try to find distinguishing premises and will
check that the problem description of the domain-case
DC2 matches the extended description of the prob-
lem (the original description plus the new premise
VMloverloaded). In this example, GR1 realises that
DC2 does not match with the extended description and
generates a new attack argument to GR2:

AA3 ={NVM, QU, <Premises U {VMIloverloaded},
{VMIoverloaded}>}

to undercut SAGR2 by attacking its support element
DC?2 with the distinguishing premise VM Ioverloaded.
Here, we assume that by attacking the argument of
GR2 with a distinguishing premise, GR1 supports its
initial position ““NVM” and then promotes quality
(QU).

Now, GR1 has to select the argument that it will
pose to attack the position of GR2. Note that, if we as-
sume that agents always observe their value preference
orders when putting forward arguments, GR1 would
prefer to pose AA1 and AA3 first than AA2 (since
GR1 has the new value preference order changed to
EC<QU by the argumentation-scheme S1). However,
it still has to decide which AA1 or AA3 it would select
to attack SAGR2. To do that, it checks its argument-
cases case-base to decide which is the best argument to
pose in view of its previous argumentation experience.
Now, let us suppose that GR1 finds a similar argument-
case for AA3 that was unaccepted at the end of an ar-
gumentation process where it was also in the excep-
tional situation of an overload in the VM1 (Table 2] of
Section @] shows an example). However, a counter-
example that also included this extra premise, let us
say DC4, was able to defeat the argument represented
by the argument-case. Therefore, GR1 can infer that
GR2 has enough pieces of evidence to defeat the dis-
tinguishing premise attack AA3. Thus, GR1 will put
forward AA1 to attack the position of GR2.

When GR2 receives the attack, it has to evaluate the
attack argument in view of its support argument. Then,
it will realise that SAGR2 does not defeat AA1 from its
point of view, since GR1 has an authorisation depen-
dency relation with it. Then, it would try to generate
more support arguments for its position. In case that it
cannot generate more support argument or, GR2 would
have to withdraw its position posgR2. If no more po-
sitions or arguments are generated (or if the deadline
is met during the argumentation process), GR1 (and
GR3) position would be selected as the best solution to
deal with the overload problem of service FSS.

If the deadline specified in the SLA is never met,
the argumentation process finishes when no new posi-
tions or arguments are proposed after a certain time.
Then, the GR that initiated the argumentation process
retrieves the active positions of the participants, and
the most accepted position (if several remain unde-
feated) is selected as the final solution to propose. In
case of a draw, the final solution will be the most fre-
quent position generated by the GRs during the argu-
mentation dialogue. Finally, once a position is selected
as the outcome of the argumentation process, each GR
that participated in the process sends it to the Local
Manager of its physical machine. In its turn, the GR
that initiated the argumentation process will convey the
agreed solution to the Global Supervisor of its VO. Fi-
nally, the Local Managers of the physical machines im-
plied in the recommended solution (supervised by the
Global Supervisor of their VO) would start the pro-
cess to implement it. This implementation could en-
tail with further negotiations that are out of the scope
of this paper. Also, at the end of the argumentation
process, all GRs update their domain-cases case-bases
with the new problem solved and their argument-cases
case-bases with the information about the arguments
proposed, with the attacks received, the final accept-
ability state, etc.

4. Evaluation

In this section, we evaluate our proposals with a real
example based on the problem introduced in Section
[3.2.3] where the argumentation framework solves an
overload in a service demand and hence, a lost in the
quality of service offered by the +Cloud environment.
We assume that the +Cloud platform is run by a com-
pany that has signed a SLA with a customer that has
contracted a File Storage Service (FSS). Among other
terms, this SLA specifies a maximum acceptable time
within the customer receives an answer for this service
(a deadline to save, search and retrieve files from the
virtual directory hosted in the platform). If the solu-
tion exceeds this time, the company can receive an eco-
nomic penalisation in its contract with the customer,
which is greater as much time from the contracted in
the SLA is exceeded.

This evaluation is focused on the real-time agree-
ment capabilities of +Cloud at the internal level, that
is, to ensure the fulfilment of the SLA contracted when
a peak of service demand occurs. The evaluation of
the negotiation protocol that allows to have real-time

agreements at the external level implies the participa-
tion of real customers and remains future work. Then,
our main objective with the present evaluation is to
assess the efficiency of the system that implements
the real-time argumentation framework. In order to do
that, we have run evaluation tests several times popu-
lating the +Cloud platform with two different types of
Global Regulators:

1. agents that implement our original case-based
argumentation framework [23]], where no real-
time considerations were taken into account in
the agents’ reasoning process to manage posi-
tions and arguments (noRT agents).

2. agents that implement the real-time case-based
argumentation framework proposed in [30]], which
follow a temporal bounded CBR cycle (TB-
CBR) to manage their positions and arguments
(RT agents). These type of agents are able to
provide answers within the specific time that the
SLA requires.

In the evaluation, the FSS has been subjected to a
stress test where the load is incremented lineally over
time and the system has to adapt itself to provide the
service without breaking its associated SLA. There-
fore, the Global Regulators of +Cloud implement the
argumentation framework to be able to argue and make
the best decision in order to solve the overload prob-
lem taking into account the temporal restrictions. Con-
cretely, the simulation has been performed by progres-
sively launching a set of threads, each of them contin-
uously sending requests to a specific webservice ex-
posed by the FSS. In other words, at the beginning of
the test, we started with just one thread and period-
ically one new thread was launched (each 0,25 sec-
onds), up to a maximum of 40 threads in parallel. The
average duration of the test is 30 seconds.

Each test was run several times with two different
webservices (at the SaaS layer) that make use of the
FSS (at the PaaS layer):

— GetFolderContents which is a simple method that
returns the content (files and directories) of a spe-
cific folder.

— Find which is a complex and recursive method
that looks for a pattern in a specific folder.

The +Cloud platform was reconfigured to the same
initial settings before running each test. The character-
ization of FSS during the test is shown in Figure[7|and
is described as follows:

— The FSS is deployed in two virtual machines
(VM1 and VM2). The virtual machine template
of this service has a virtual processor of 1 core,
512Mb of RAM memory. Tornado Phytorﬂ is
used as web server.

— Each virtual machine is deployed on a different
physical server (VM1R y VM2R).

— VMIR and VM2R host a known number of vir-
tual machines, and all the physical resources will
be shared among them. We assume that the reallo-
cation of the resources at the intra-machine level
is not possible. The Cloud environment has an un-
known number of physical servers. This is one
of the main advantages of our approach, which
allows to make decision with a partial knowl-
edge of the system state. Thus, there is no central-
ized algorithm with a complete knowledge about
the system configuration, which is unrealistic in
large-scale Cloud systems.

— The files are stored in a SAN (Storage Area Net-
work) based on GlusterF

— The load balancer of the FSS is allocated in an
additional virtual machine VMB. This virtual ma-
chine has a processor of 1 core, 256Mb of RAM
Memory and it uses a N gian] as inverse proxy.

— Finally, the FSS makes use of a database to store
elements of the virtual file system, such as re-
lations between files, metadata, permissions, etc.
This database is based on mongoDBE] and it is
hosted in an unknown number of virtual machines
with a processor of 1 core and 512Mb of RAM.

As in the example of Section [3.2.3] the adaptation
(in terms of implementing the resource reallocation)
starts when a Service Demand Monitor notices an over-
load in a FSS that it controls. The Service Supervisor
in charge of the virtual machines that offer this service
sends the load information about the resources associ-
ated to these virtual machines to the Local Manager of
the physical machine that hosts them. After that, the
Local Manager will analyse the demand of the service
and ask the Local Resource Monitor for information
about the physical and virtual resources load. The load
of the resources is extracted by means of the library
libvirt or system calls. This extraction process entails a
computational cost, since it implies the computation of
changes on the resources demand (mainly cpu, mem-

Zhttp://www.tornadoweb.org/
3ttp:/iwww.gluster.org/
“http://nginx.com/
Shttp://www.mongodb.org/

FSS mongoDB

Iy
/VM N L
4 AN
Load 7 So|
7
Balancer -~ lyy, H---%
-7 /
iy f - /
AN /
N N //
S . W
S
A, /
U] \ Data
Storage
T — s (GlUStErFS)

Fig. 7. FSS architecture during the test

ory and bandwith). However, the computational cost
depends on the frequency in which the measures are
taken. For example, if the measures are taken every 0,5
seconds, the CPU load average used in this process is
high (approximately 20%). However, if the measures
are take every 3 seconds, the load average is reduced to
less than 3%. Taking into account that with a frequency
of requests between 10 to 20 the cloud systems works
properly, we can state that this resource consumption
is acceptable. The memory load and the bandwidth are
negligible, and the storage need depends on the size of
the round-robin database.

With all this information, the Local Manager will
make the best decision to redistribute its virtual and
physical resources to cope with this overload prob-
lem. We assume that the Local Manager decides that
the redistribution of resources implies an inter-machine
configuration. Therefore, it notifies the problem to the
Global Regulator of its same physical machine. Then,
the Global Regulator starts an argumentation process
with its peers in other physical machines of its VO
to decide which is the best solution to solve the ser-
vice overload. Also, this agreement process is tempo-
ral bounded to allow the FSS to be readapted without
breaking the deadline specified in the SLA.

Each Global Regulator has its own knowledge re-
sources to generate a solution for the problem reported.
The argumentation module of each Global Regulator
includes a Domain-CBR engine that makes queries
to its domain-cases case-base and an Argumentation-
CBR engine that makes queries to its argument-
cases case-base. For the tests, a real database of 50
overload problems in the FSS solved in the past is
used as domain knowledge. Despite the small size of
this case-base, we have rather preferred to use ac-

tual data instead of a larger case-base with simulated
data. The argument-cases case-bases of each agent
are initially empty and populated with cases as the
agents acquire argumentation experience during the
experiments, reaching to a maximum number of 20
argument-cases that agents are able to learn with our
experimental settings. In each test, a Global Regulator
agent receives one problem to solve per run and con-
tacts its peers to report them the problem to solve. We
make the same assumptions as in Section[3.2.3} Global
Regulators are able to communicate among them, they
are collaborative and follow the common objective of
providing the best solution by making the most of their
individual experiences.

Figure[§]shows how the system behaves without any
kind of adaptation and without observing any deadline.
Therefore, as time passes, the number of concurrent
threads making requests to the FSS service, and hence
the service load, increases. Subsequently, the response
time for both webservices also increases, specially for
the Find webservice due to its higher complexity, until
it stabilises. We use the average response time for both
webservices in this test to fix the deadlines established
in different SLAs in the following tests.

In the first test, the percentage of FSS requests that
are served on time within the agreed SLA is evalu-
ated. In the context of this evaluation we use a sim-
plified version of a SLA, where the only commitment
that must be fulfilled is the response time to provide
the service in each request. Table [3|shows the percent-
age of times that different SLAs, which entail differ-
ent deadlines to provide the service, are fulfilled by us-
ing RT agents, noRT agents and, also, without any type
of adaptation (Global Regulators are not able to argue
to solve problems). All results show the the average
percentage of SLAs fulfilled including all the requests
done during all phases within the test (from the load in-
crement that overloads the service, the argumentation
process, the reallocation of resources and, finally, the
stabilisation of the service).

The results in Table [3| show that, firstly, the adap-
tation of the system is performed properly by allow-
ing Global Regulators to argue, since the percentage
of requests to the FSS that are served on time is much
higher when the adaptation is performed, indepen-
dently of the type of agents (RT or noRT) that are used
in the argumentation process. Secondly if we compare
the percentages between noRT and RT agents, the re-
sults show that the RT agents offer better solutions
for the adaptation of the system than the noRT agents.
Thus, this is the proof that validates our hypothesis that

real-time argumentation enhances the performance of
+Cloud when a service is overloaded during a peak of
demand. Furthermore, as less restrictive the deadline
established in the SLA is, as much percentage of re-
quests can be served on time in all cases. However, if
we go deeper in the data and the less and more restric-
tive SLAs of both webservices are excluded, the per-
centages of requests that are served on time are much
higher with RT agents than with noRT agents (about
30 units in the GetFolderContents webservice and 10
in the Find webservice). Finally, as expected, the adap-
tation of the system when the overloaded webservice is
simple, GetFolderContents in our case, gets better re-
sults than in the case of the more complex Find web-
service (which consumes more processing resources).

Once the initial hypothesis is proven, our evaluation
tests illustrate why RT agents get better adaptation re-
sults than noRT agents. For these tests, a deadline of
0.4s for the GetFolderContents webservice and of 1.8s
for the Find webservice is specified in the SLA con-
tracted for the FSS. On the one hand if the system runs
with noRT agents and an readaptation is needed, the
response time of the requests served after the adapta-
tion of the system is not linear. Figure [9]shows how, al-
though the average response time to provide the service
decreases after the adaptation, the distribution of this
time is scattered. This occurs since noRT agents are
able to argue, but without observing any restriction on
the deadline to provide the service. However, as shown
in Figure[10] if the system runs with RT agents the ar-
gumentation process is temporal bounded and tries to
fulfil the SLA agreed, resulting in a less scattered dis-
tribution of the response times.

Our proposal has been tested in different scenarios
and with different services (FSS, OSS, etc.). It allows
to reallocate the individual resources of an individual
virtual machine, migrate it, or even, create or destroy
the instances of a virtual machine. The real-time agree-
ment mechanism presented in this paper works prop-
erly with a substantial number of virtual machines as-
signed to the same service (tested up to 12 virtual ma-
chines), but it can be scaled up to a higher number of
instances, since all decisions regarding the redistribu-
tion of resources are taken in a decentralised way fol-
lowing a MAS approach.

5. Discussion

During the last years, Cloud Computing has emerged
as a new paradigm for hosting and service provision

°
2

Response time (sec.)
°

s

°

15
Elapsed time (sec.)

10,00

15,00

Elapsed time (sec.)

25,00

30,00

Fig. 8. Test performed without reallocation of the resources (Left: GetFolderContents; Right: Find)

Method getFolderContents Method Find

SLA no Adapt. noRT RT SLA no Adapt. noRT RT
SLA = [Resp. time = 0,3s.] 20,32% 3388% 75,39% SLA = [Resp. time = 1,4s.] 13,39% 39,56% 47,83%
SLA = [Resp. time = 0,4s.] 21,44% 53,86% 82,33% SLA = [Resp. time = 1,6s.] 23,15% 59,50% 72,04%
SLA = [Resp. time = 0,5s.] 31,52% 76,99% 87,99% SLA = [Resp. time = 1,8s.] 23,76% 69,40% 76,80%
SLA = [Resp. time = 0,6s.] 96,34% 97,22% 99,07% SLA = [Resp. time = 2,0s.] 24,45% 74,45% 78,08%

Table 3

Percentage of FSS requests that are served with no Adaption, noRT
agents and RT agents

4

°
&

Response time (sec.)
o
H

°

01

‘I -
36 = -
y
-

&
L

15
Elapsed time (sec.)

Elapsed time (sec.)

Fig. 9. Example of adaption using noRT agents (Left: GetFolderContents; Right: Find)

°
=

]
-
y, S
¥, d
7 i
F;4
71

3,
r 4

wewwws
ERRE8E

z

°

°
B

Response time (sec.)

e

e
ol

e

Response time (sec.)
SEEEEREEY

h

gt
"4
y .4

F

15
Elapsed time (sec.)

10,00

15,00 20,00

Elapsed time (sec.)

30,00

Fig. 10. Example of adaption using RT agents (Left: GetFolderContents, SLA=[resp. time:0.4s.]; Right: Find, SLA=[resp. time:1.8s.])

over the Internet. Cloud Computing tries to reduce the
user requirements and to provide a dynamic resource
management, where the resources increase only when
there is a rise in service demand [8, 9]. The efforts

on IT industry have been focused on the development
of many Cloud platforms (Google Appsﬂ Amazon

Ohttp://www.google.com/apps

ECSﬂ etc.) that try to offer different computational
services at different levels (software, platform and/or
infrastructure) following a Cloud approach. That is, of-
fering services with the same level of quality indepen-
dently of the demand [34]. Also, the number of open
source platforms has been rapidly increased, but these
majority of well-known open platforms tend to un-
derscore their ability to provide elastic infrastructure
services (through virtualised hardware), without tak-
ing high level services, such as platform and software,
into account [34]]. The competitive advantage associ-
ated with knowing and dominating this technology is
the key to understand the rapid increase of a technol-
ogy that as little as five years ago did not even exist.
On the other hand, the efforts on the academia are a set
of scattered research framed in many areas such as re-
sources allocation [28]], security [24]], interoperability
[12], etc. The majority of these works can be associated
with previous computational paradigms (grid comput-
ing, cluster computing, etc.) or related technologies
such as virtualisation that are being moved close to the
Cloud Computing paradigm.

Although at first glance this paradigm appears to
be simply a technological paradigm, reality shows that
its rapid progression is primarily motivated by eco-
nomic interests that surround the purely computational
or technological characteristics. This type of platform
will allow us to offer computational services following
a model comparable to the concept proposed by Util-
ity Computing [37], where computational services are
offered in a similar way to how traditional public utili-
ties (electricity, telephone, water, etc.) are. As a result,
Cloud service providers will be able to offer their de-
manded services through the Internet with a pay-per-
use model [[13]] [L8]. This new business model throws
the need to agree on the terms of the service between
the Cloud provider and the client through a SLA. This
has motivated the development of research work in this
area [13] [3]].

Recent research foresees the emergence of a new
discipline called agent-based Cloud Computing sys-
tems that try to join both computational paradigms,
Cloud Computing and MAS, to lead to an advanced
computational environment based on the computa-
tional strength of the former and the intelligence and
adaptation capabilities of the latter. Current litera-
ture reflects few references of studies that combine
both agents and Cloud Computing paradigms. Most

7https://aws.amazon.com/ec2/
8http://aws.amazon.com/

works in this area are focused either on the deploy-
ment of the system or the management of their re-
sources. Within the first group, the state of the art
reports MAS that mainly use the computational re-
sources of the Cloud environment, in terms of compu-
tational strength to perform simulations, or as a per-
sistence example [14]. In the second group, [39]] high-
lights three subgroups of applications: (i) combination
of resources among Cloud providers; (ii) planning and
coordination of shared resources; and (iii) establishing
contracts between users and Cloud service providers.
As the authors point out, it is possible to find stud-
ies that develop a Cloud service using agents for dif-
ferent specific purposes [26][15]. Some notable exam-
ples of Cloud providers combining resources include
works that share Cloud resources to offer Infrastructure
as a Service (IaaS) [21][40]]. Other works apply SLA
to distribute services [39]][4]], but they are designed as
individual services and not as a whole Cloud system.
However, the main difference between these systems
and our +Cloud platform is that they are not internally
and completely managed by a MAS (i.e. the manage-
ment of the virtual and physical resources in +Cloud
is performed in a distributed way following the MAS
paradigm).

In addition, MAS based on virtual organizations can
enhance Cloud environments with advanced capabil-
ities for automatic evolution and adaptation. A cloud
environment can support multiple services, protocols,
hardware platforms and operating systems. These envi-
ronments are flexible and designed to handle the mul-
tiple requirements on services and usage of their users.
By their very nature, virtual organizations of agents
can support different types of agents running on dif-
ferent types of operating systems or platforms. In this
way, a cloud infrastructure managed by agents can han-
dle different technologies, and manage several sen-
sors and actuators. Also, Cloud environments are dy-
namic. Thus, they must provide support for changing
levels of network traffic and processing capabilities,
and must be able to be configured in multiple ways to
generate optimal results. In this sense, organizations of
agents with deliberative capabilities can adapt process-
ing components, re-distribute the workload and even
add more nodes, virtual machines and/or computer sys-
tems to adapt the system to the needs of the network.
Therefore, our work addresses research within this area
and uses real-time agreements technology to reallocate
resources within the system in order to cope with the
changing demand.

Nowadays, most work reported in the reallocation
of resources literature is focused on saving energy

[91[8]][7], but few takes into account the need of ful-
filling a SLA in the reallocation process [19]. Cur-
rent main challenges in this area include resource mod-
elling, resource offering and treatment, resource dis-
covery and monitoring and the resource selection [[17].
However, current algorithms to redistribute resources
in Cloud systems present many weaknesses, such as
the need of a heuristic, or a centralized or semicen-
tralised approach [48]].

Moreover, to incorporate real-time performance is
one of the open issues that are still to be addressed in
Cloud environments. The main efforts in this line have
been focused on SaaS. Some approaches as Arithunﬂ
provide a real-time Cloud Computing platform and de-
liver pioneering real-time consumer and enterprise so-
lutions. Some authors focus on specific real-time is-
sues. Wei et al. [45] focus on multi-tenancy architec-
ture, scheduling, paralleled computing and propose a
framework for real-time service-oriented Cloud Com-
puting. Specifically, they propose a real-time archi-
tecture which solves the new challenges in Cloud
Computing. Liu et al. [29]] introduce a utility accrual
scheduling algorithm for real-time Cloud Comput-
ing services. The real-time tasks are scheduled non-
preemptively with the objective of maximising the total
utility. Yu et al. [49] proposed a task model that consid-
ers both the profit and penalty that a system may incur
when executing a task. These contributions pave the
way for an interesting new area of research in Cloud-
based multi-agent systems, real-time and SLAs, but so
far, there is only a limited number of proposals in the
literature.

Argumentation-based agreement technologies, as a
proficient research area within MAS-based agreement
models, can also contribute towards the achievement
of new challenges in agent-based Cloud Computing. In
recent years, the community of argumentation in MAS
has advanced research in many fields in the area of
applying argumentation theory to harmonise incoher-
ent beliefs among agents and to model the interaction
among a set of agents [36].

Case-Based Reasoning is another research area where
argumentation theory has produced a wide history of
successful applications [22]. According to the CBR
methodology, a new problem can be solved by search-
ing in a case-base for similar precedents and adapt-
ing their solutions to fit the current problem. This rea-
soning methodology has a high resemblance with the
way by which people argue about their positions (i.e.

http://www.arithum.com/

beliefs, action proposals, opinions, etc.), trying to jus-
tify them on the basis of past experiences. Many ar-
gumentation systems produce arguments by applying
a set of inference rules [11][35][25], which require to
elicit an explicit model of the domain. In the context of
dynamic open MAS, this model is difficult to specify
in advance. However, storing in cases the arguments
that agents put forward and reuse later this information
could be relatively simple.

The work done in the eighties and nineties about le-
gal CBR fostered the argumentation research in the Al
community [5][2]. Nowadays, the argumentation re-
search in CBR continues being very active and in addi-
tion to our framework, some approaches that integrate
CBR in MAS to help argumentation processes have al-
ready been proposed. However, these proposals tend to
be highly domain-specific (e.g. persuasion [27], sensor
networks [41]]) or centralise the argumentation func-
tionality in a mediator agent that manages the dialogue
between the agents of the system, as in the ProClaim
framework [43]. In addition, the agents of the AMAL
case-based argumentation framework presented in [31]]
can also learn during the argumentation dialogue by
storing in their case-cases the cases that they receive
from other agents. However, by contrast with our pro-
posal, they do not learn how to predict the expected ac-
ceptability of arguments, but only increase their own
knowledge with the knowledge that other agents share
with them.

Furthermore, as in our framework, argumentation
schemes have been used to model argumentation dia-
logues between agents. The ProClaim case-based argu-
mentation framework also uses argumentation schemes
to represent generalised patterns of reasoning. These
schemes are manually designed by experts (doctors)
in the application domain of this model (organ trans-
plantation) and characterise the space of possible ar-
guments that agents can generate. This implies that
agents have limited expressiveness, although the au-
thors state that this decision has been taken for security
reasons in the critical domains where the model oper-
ates. A similar approach was followed in [44]], where
agents dynamically construct alternative plans accord-
ing to the information acquired during the dialogue and
a set of argumentation schemes for deliberative dia-
logues. However, this is again a rule-based system that
assumes the existence of a predefined set of inference
rules based on these schemes.

However, the application of argumentation approaches
to Cloud Computing is a new research challenge, spe-
cially if the process entails real-time constraints, as

our work presents. In this work, we deal with one of
the main challenges for agent-based solutions to Cloud
software infrastructure, which states the advantages of
using agents to create intelligent and flexible Cloud
services [42]. These include Service Level Agreements
(SLAs) based on real-time agreement technologies and
load-balancing services based on MAS cooperation.

Acknowledgments

This work is supported by the Spanish government
grants CONSOLIDER-INGENIO 2010 CSD2007-00022,
TIN2011-27652-C03-01, and TIN2012-36586-C03-01.

Acronym Description
A Authorisation (agreement dependency relation)
C Charity (agreement dependency relation)
DC Domain Case
EC Economy (agreement objective)
FSS File System Storage (PaaS module)
GR Global Regulator (Role)
GS Global Supervisor (Role)
HM Hardware Manager (Role)
TaaS Infrastructure as a Service
LM Local Manager (Role)
LRM Local Resource Monitor (Role)
MAS Multi-Agent System
NM Network Monitor (Role)
0SS Object System Storage (PaaS module)
P Power (agreement dependency relation)
PaaS Platform as a Service
QU Quality (agreement objective)
RU Resource Unity
S Support set (agreement element)
SA Support Argument
SaaS Software as a Service
SD Service Demand
SDM Service Demand Monitor (Role)
SS Service Supervisor (Role)
VM Virtual Machine
VO Virtual Organizations
XaaS Something as a Service
Table 4

List of Acronyms

References

(1]

[2

—

[3

[t

[4]

[5

=

[6

=

[7

—

[8

[t}

[9

—

(10]

(11]

(12]

[13]

Alain Andrieux, Karl Czajkowski, Asit Dan, Kate Kea-
hey, Heiko Ludwig, Toshiyuki Nakata, Jim Pruyne,
John Rofrano, Steve Tuecke, and Ming Xu. Web
Services Agreement Specification (WS-Agreement).
http://www.ogf.org/documents/GFD.107.pdf, 2007.

V. Aleven and K. D. Ashley. Teaching case-based argumen-
tation through a model and examples, empirical evaluation of
an intelligent learning environment. In Artificial Intelligence in
Education, AIED-97, volume 39 of Frontiers in Artificial Intel-
ligence and Applications, pages 87-94. 10S Press, 1997.

M. Alhamad, W. Perth, T. Dillon, and E. Chang. Conceptual
sla framework for cloud computing. In 4th IEEE International
Conference on Digital Ecosystems and Technologies (DEST),
pages 606-610. IEEE Press, 2010.

M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz, A. Kon-
winski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Za-
haria. A view of Cloud Computing. Communications of the
ACM, 53(4):50-58, 2010.

K. D. Ashley. Reasoning with cases and hypotheticals in hypo.
International Journal of Man-Machine Studies, 34:753-796,
1991.

P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield. Xen and the art of
virtualization. In 9th ACM Symposium on Operating Systems
Principles (SOSP-03), pages 164—177. ACM Press, 2003.

A. Beloglazov, J. Abawajy, and R. Buyya. Energy-aware re-
source allocation heuristics for efficient management of data
centers for cloud computing. Future Generation Computer
Systems, 28(5):755-768, 2012.

A. Beloglazov and R. Buyya. Energy efficient allocation of vir-
tual machines in cloud data centers. In /0th IEEE/ACM Inter-
national Conference on Cluster, Cloud and Grid Computing,
pages 577-578. IEEE Computer Society, 2010.

A. Beloglazov and R. Buyya. Energy efficient resource man-
agement in virtualized cloud data centers. In 10th IEEE/ACM
International Conference on Cluster, Cloud and Grid Comput-
ing, pages 826-831. IEEE Computer Society, 2010.

T. Bench-Capon and G. Sartor. A model of legal reasoning with
cases incorporating theories and values. Artificial Intelligence,
150(1-2):97-143, 2003.

T. J. Bench-Capon. Specification and implementation of toul-
min dialogue game. In International Conferences on Legal
Knowledge and Information Systems, JURIX-98, Frontiers of
Artificial Intelligence and Applications, pages 5-20. IOS Press,
1998.

R. Buyya, R. Ranjan, and R. N. Calheiros. Intercloud: Utility-
oriented federation of cloud computing environments for scal-
ing of application services. In /0th international conference on
Algorithms and Architectures for Parallel Processing - Volume
Part I, ICA3PP’ 10, pages 13-31. Springer-Verlag, 2010.

R. Buyya, C. S. Yeo, and S. Venugopal. Market-oriented cloud
computing: Vision, hype, and reality for delivering it services
as computing utilities. In Department of Computer Science and
Software Engineering (CSSE), The University of Melbourne,
Australia. He, pages 10-1016, 2008.

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

C. Chen and K. Wang. Cloud Computing for agent-based urban
transportation systems. [EEE Intelligent Systems, 26:73-79,
2011.

Y. Y. Cheng, M. Low, S. Zhou, W. Cai, and C. S. Choo. Evolv-
ing agent-based simulations in the clouds. In 3rd International
Workshop on Advanced Computational Intelligence (IWACI),
pages 244-249, 2010.

F. Dignum and H. Weigand. Communication and Deontic
Logic. In R. Wieringa and R. Feenstra, editors, Information
Systems - Correctness and Reusability. Selected papers from
the IS-CORE Workshop, pages 242-260. World Scientific Pub-
lishing Co., 1995.

P. T. Endo, A. V. de Almeida Palhares, N. N. Pereira, G. E.
Goncalves, D. Sadok, J. Kelner, and J. Mangs. Resource allo-
cation for distributed cloud: concepts and research challenges.
Network, 25(4):42-46, 2010.

H. Erdogmus. Cloud computing: Does nirvana hide behind the
nebula? IEEE Software, 26(2):4-6, 2009.

J. O. Fit6, 1. Goiri, and J. Guitart. SLA-driven elastic cloud
hosting provider. In /8th Euromicro International Conference
on Parallel, Distributed and Network-Based Processing (PDP),
pages 111-118. IEEE Computer Society, 2010.

R. Fuentes-Fernandez, S. Hassan, J. Pavon, J. M. Galan, and
A. Lopez-Paredes. Metamodels for role-driven agent-based
modelling. Computational and Mathematical Organization
Theory, 18(1):91-112, 2012.

R. Grewa and P. Pateriya. A rule-based approach for effective
resource provisioning in hybrid cloud environment. Interna-
tional Journal of Computer Science and Informatics, 4:101—
106, 2012.

S. Heras, V. Botti, and V. Julian. Challenges for a CBR frame-
work for argumentation in open MAS. Knowledge Engineering
Review, 24(4):327-352, 2009.

S. Heras, J. Jordén, V. Botti, and V. Julidn. Argue to agree: a
case-based argumentation approach. International Journal of
Approximate Reasoning, 54(1):82-108, 2013.

M. Jensen, J. Schwenk, N. Gruschka, and L. Iacono. On tech-
nical security issues in cloud computing. In /EEE International
Conference on Cloud Computing, pages 109 —116. IEEE Press,
2009.

A. Kakas, N. Maudet, and P. Moraitis. Modular Representa-
tion of Agent Interaction Rules through Argumentation. Au-
tonomous Agents and Multi-Agent Systems, 11:189-206, 2005.
M. J. Kim, H. G. Yoon, and H. K. Lee. MAV: An intelligent
Multi-agent model based on Cloud computing for resource vir-
tualization. In Computers, Networks, Systems, and Industrial
Engineering, volume 365 of Studies in Computational Intelli-
gence, pages 99-111. Springer, 2011.

S. Kraus, K. Sycara, and A. Evenchik. Reaching agreements
through argumentation: A logical model and implementation.
Artificial Intelligence, 104:1-69, 1998.

W.-Y. Lin, G.-Y. Lin, and H.-Y. Wei. Dynamic auction mech-
anism for cloud resource allocation. In 10th IEEE/ACM Inter-
national Conference on Cluster, Cloud and Grid Computing,
CCGRID 10, pages 591-592, Washington, DC, USA, 2010.
IEEE Computer Society.

S. Liu, G. Quan, and S. Ren. On-line scheduling of real-time
services for cloud computing. In 6th World Congress on Ser-
vices, SERVICES ’10, pages 459-464. IEEE Computer Soci-
ety, 2010.

[30]

(31]

(32]

(33]

(34]

(35]

(36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

(47]

M. Navarro, S. Heras, and V. Julidn. Towards real-time agree-
ments. Expert Systems with Applications, page In Press, 2013.
S. Ontaién and E. Plaza. An Argumentation Framework
for Learning, Information Exchange, and Joint-Deliberation in
Multi-Agent Systems. Multiagent and Grid Systems Journal,
7(95-108):10S Press, 2011.

J. Palanca, M. Navarro, A. Garcia-Fornes, and V. Julian. Dead-
line prediction scheduling based on benefits. Future Genera-
tion Computer Systems, 29(1):61-73, 2013.

C. Pautasso, O. Zimmermann, and F. Leymann. Restful web
services vs. ”big”” web services: making the right architectural
decision. In Proceedings of the 17th international conference
on World Wide Web, WWW 08, pages 805-814, New York,
NY, USA, 2008. ACM.

J. Peng, X. Zhang, Z. Lei, B. Zhang, W. Zhang, and Q. Li.
Comparison of several cloud computing platforms. In 2nd In-
ternational Symposium on Information Science and Engineer-
ing, ISISE ’09, pages 23-27. IEEE Computer Society, 2009.
H. Prakken and G. Sartor. Modelling reasoning with precedents
in a formal dialogue game. Artificial Intelligence and Law,
6:231-287, 1998.

I. Rahwan and G. Simari, editors. Argumentation in Artificial
Intelligence. Springer, 2009.

J. W. Ross and G. Westerman. Preparing for utility computing:
The role of it architecture and relationship management. /BM
Systems Journal, 43(1):5-19, January 2004.

H. E. Schaffer. X as a service, cloud computing, and the need
for good judgment. IT Professional, 11(5):4-5, 2009.

K. M. Sim. Agent-based cloud commerce. In IEEE Interna-
tional Conference on Industrial Engineering and Engineering
Management, pages 717-721. IEEE Press, 2009.

A. Singh and M. Malhotra. Agent based framework for scala-
bility in cloud computting. International Journal of Computer
Science and Engineering Technology, pages 4145, April 2012.
L.-K. Soh and C. Tsatsoulis. A real-time negotiation model
and a multi-agent sensor network implementation. Autonomous
Agents and Multi-Agent Systems, 11(3):215-271, 2005.

D. Talia. Clouds meet agents: Toward intelligent cloud ser-
vices. IEEE Internet Computing, 16(2):78-81, 2012.

P. Tolchinsky, S. Modgil, K. Atkinson, P. McBurney, and
U. Cortés. Deliberation dialogues for reasoning about safety
critical actions. Autonomous Agents and Multi-Agent Systems,
In Press, 2011.

A. Toniolo, T. Norman, and K. Sycara. An empirical study of
argumentation schemes in deliberative dialogue. In 20th Eu-
ropean Conference on Artificial Intelligence, ECAI-12, num-
ber 242 in Frontiers in Artificial Intelligence and Applications,
pages 756-761. I0S Press, 2012.

W.-T. Tsai, Q. Shao, X. Sun, and J. Elston. Real-time service-
oriented cloud computing. In IEEE 6th World Congress on
Services, SERVICES’ 10, pages 473-478. IEEE Press, 2010.

D. Walton, C. Reed, and F. Macagno. Argumentation Schemes.
Cambridge University Press, 2008.

L. Wang, J. Tao, M. Kunze, A. Castellanos, D. Kramer, and
W. Karl. Scientific cloud computing: Early definition and ex-
perience. In 10th IEEE International Conference on High Per-
formance Computing and Communications (HPCC-08), pages
825-830. IEEE Press, 2008.

[48]

[49]

Y. O. Yazir, C. Matthews, R. Farahbod, S. Neville, A. Guitouni,
S. Ganti, and Y. Coady. Dynamic resource allocation in com-
puting clouds using distributed multiple criteria decision analy-
sis. In IEEE 3rd International Conference on Cloud Computing
(CLOUD,), pages 91-98. IEEE Computer Society, 2010.

Y. Yu, S. Ren, N. Chen, and X. Wang. Profit and penalty aware
(pp-aware) scheduling for tasks with variable task execution
time. In ACM Symposium on Applied Computing, SAC 10,
pages 334-339. ACM, 2010.

