Document downloaded from:

http://hdl.handle.net/10251/50582

This paper must be cited as:

Lucas Alba, S.; Meseguer, J. (2014). Models for logics and conditional constraints in
automated proofs of termination. En Artificial Intelligence and Symbolic Computation.
Springer Verlag (Germany). 9-20. doi:10.1007/978-3-319-13770-4 3.

The final publication is available at

http://dx.doi.org/10.1007/978-3-319-13770-4_3

Copyright
Pyng Springer Verlag (Germany)



Models for Logics and Conditional Constraints
in Automated Proofs of Termination
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Abstract. Reasoning about termination of declarative programs, which
are described by means of a computational logic, requires the definition of
appropriate abstractions as semantic models of the logic, and also han-
dling the conditional constraints which are often obtained. The formal
treatment of such constraints in automated proofs, often using numeric
interpretations and (arithmetic) constraint solving, can greatly benefit
from appropriate techniques to deal with the conditional (in)equations at
stake. Existing results from linear algebra or real algebraic geometry are
useful to deal with them but have received only scant attention to date.
We investigate the definition and use of numeric models for logics and
the resolution of linear and algebraic conditional constraints as unifying
techniques for proving termination of declarative programs.
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1 Introduction

The operational semantics of sophisticated rule-based programming languages
such as CafeOBJ [7], Maude [3], or Haskell [8] is often formalized in a proof-
theoretic style by means of a computational logic, and the corresponding lan-
guage interpreters better understood as inference machines [15]. The notion of
operational termination [11] was introduced to give an account of the termina-
tion behavior of programs of such languages [12]. An interpreter for a logic £
(for instance the logic for Conditional Term Rewriting Systems (CTRSs) with
inference system in Figure 1) is an inference machine that, given a theory S
(e.g., the CTRS R in Example 1) and a goal formula ¢ (e.g., a one-step rewrit-
ing s — t for terms s and t) tries to incrementally build a proof tree for ¢ by
using (instances of) the inference rules % € Z(L) of the inference system
Z(L) of L. Then, S is operationally terminating if for any ¢ the interpreter ei-
ther finds a proof, or fails in all possible attempts (always in finite time). In this
setting, practical methods for proving operational termination involve two main
issues (see [13] and also [17] for CTRSs): (1) the simulation of the (one-step)
rewrite relations — and —* associated to a CTRS R and defined by means of the
inference system in Figure 1; and (2) the use of (automatically generated) well-
founded relations 1 to abstract rewrite computations and guarantee the absence



Si — t;
(Refl) t—"t (Cong) f(s1y---y8iy---58K) = f(S1,c-sliye-v, k)
for all k-ary symbols f and 1 <i <k

s —u u—"t s1 ="t ... sy = tn
*

(Tran) s—="t (Repl) L=
foreachrule f - r < s —t1-+-8n, = tn

Fig. 1. Inference rules for the CTRS logic (all variables are universally quantified)

of infinite ones. Here, (1) amounts at dealing with abstractions for sentences like
Va(Bi1 A+ A B, = A) which simulate the use of the aforementioned inference
rules; and (2) often involves the comparison of expressions s and ¢ using 1, pro-
vided that a number of semantic conditions (e.g., rewriting steps s; —% t; for
some terms s; and t;) hold. Abstractions can be formalized as semantic models
M = (D, Fp, IIp) of L (see Section 2), where D is a domain and Fp and IIp are
interpretations of the function symbols F and predicates II of L, respectively.
For instance, relations — and —* (which are predicates in the corresponding
logic) are typically interpreted as orderings on D, often a numeric domain like N
or [0, +00). In this paper we introduce the idea of using conditional expressions
to restrict such domains in logical models (Section 3). This is often useful.

Example 1. Consider the following CTRS R:

or(0,z) -z (1) or(not(z),z) - 1  (6) and(z,not(z)) - 0  (11)
or(z,0) =z (2) and(0,z) -0  (7) and(not(z),z) = 0 (12)
or(l,z) -1 (3) and(z,0) -0  (8) not(l) - 0  (13)
or(z,1) -1 (4 and(l,z) -z (9) not(0) -1 (14)
or(z,not(z)) =1  (5) and(z,1) -z (10)

implies(z,y) = 1 < not(z) — 1 (15)
implies(z,y) > 1<y —1 (16)
implies(z,y) = 0<x — 1,y —» 0 17

f(x) — f(0) < implies(implies(z, implies(z,0)),0) — 1 (18)

We failed to prove operational termination of R by using the ordering-based
techniques introduced in [13] and also with the more advanced techniques in
[14]. However, below we provide a very simple proof of operational termination
based on the use (within [13]!) of a bounded domain [0,1] which can be easily
implemented by using conditional constraints.

As an interesting specialization of this general idea, Section 4 introduces convex
matriz interpretations as a new, twofold extension of the framework introduced
by Endrullis et al. [5] for TRSs, where rather than using vectors x of natural
numbers (or non-negative numbers, as in [2]), we use convex sets satisfying a
matrix inequality Az > b. Section 5 discusses existing approaches to deal with
the obtained numeric conditional constraints: Farkas’ Lemma and results from
Algebraic Geometry. Section 6 compares with related work. Section 7 concludes.



2 DModels of Logics for Proofs of Termination

In this paper, X denotes a set of variables and F denotes a signature: a set of
function symbols {f, g, ...}, each with a fixed arity given by a mapping ar : F —
N. The set of terms built from F and X is T (F, X). A CTRS R = (F, R) consist
of a signature F and a set R of rules { — r < s1 — t1,--+,8, — t,, where
Lir,sisti, o, Sn,ty € T(F,X). For s, t € T(F,X), we write s =g t (s =% t)
if there is a proof for s — ¢ (s —* t) with the inference system in Figure 1.

Given a (first order) logic signature X = (F,IT) where F is a signature of
function symbols and I7 is a signature of predicate symbols, the formulas ¢ of a
(first order) logic £ over X' are built up from atoms P(t1,...,t;) with P € IT
and t1,...,t, € T(F,X), logic connectives (e.g., A, =, =) and quantifiers (V,3)
in the usual way; Formy is the set of such formulas. A theory S of L is a set
of formulas, S C Formy, and its theorems are the formulas ¢ € Formy for
which we can derive a proof using the inference system Z(L£) of £ in the usual
way (written S F ¢). Given a logic £ describing computations in a (declarative)
programming language, programs are viewed as theories S of L.

Ezample 2. In the logic of CTRSs, with binary predicates — and —*, the theory
for a CTRS R = (F, R) is obtained from the inference rules in Figure 1 after
specializing them as (Cong)ys, for each f € F and ¢, 1 <14 < ar(f) and (Repl),
for all p: ¢ — r <= ¢ € R. Then, inference rules % become implications
BiA---AB, = A. For instance, for (Tran), (Cong)not, (Repl)(1y, and (Repl)(15):

Vs,t,u (s > uAu—"t=s—"t) (19)

Vs,t (s — t = not(s) — not(t)) (20)

Va (or(0,2) — x) (21)

Vz,y (not(z) = 1 = implies(z,y) — 1) (22)

For analysis and verification purposes we often need to abstract £ into a numeric
setting (e.g., arithmetics, linear algebra, or algebraic geometry) where appropri-
ate techniques are available to prove properties of interest. This amounts at
giving a (numeric) model of £ that satisfies S.

An F-algebra is a pair A = (D, Fp), where D is a set and Fp is a set of
mappings f4 : D¥ — D for each f € F where k = ar(f). A X-model is a triple
M = (D, Fp, IIp) where (D, Fp) is an F-algebra, and for each k-ary P € II,
Py € IIp is a k-ary relation Py, C D*. Given a valuation mapping o : X — D,
the evaluation mapping [ |2 : T(F,X) — D (also [JM if A is part of M) is the

unique homomorphism extending a. Finally, [JM : Formy — Bool is given by:

P(ty,...,t:)]M = true if and only if ([t1)M, ..., [tx]M) € Pa;

La A PJM = true if and only if [p]M = true and Ew]ﬁ" = true;
[ = Y]M = true if and only if [p]M = false or [Y]M = true;
[~ M = true if and only if [p]A1 = false;

[

[

M

alr—al

3 )M = true if and only if there is a € D such that [¢]
M

alz—a

= true;

S N

Va oM = true if and only if for all a € D, [¢] | = true;



We say that M satisfies ¢ € Formy if there is o € X — D such that [p]M = true.
If [¢]M = true for all valuations «, we write M = ¢. A closed formula, i.e., a
formula whose variables are all universally or existentially quantified, is called a
sentence. We say that M is a model of a set of sentences S C Formy (written
MES) if for all p € S, M | . And, given a sentence ¢, we write S |= ¢ if
and only if for all models M of S, M = ¢. Sound logics guarantee that every
provable sentence ¢ is true in every model of S, i.e., S+ ¢ implies S = .

In practice, F-algebras A can be obtained if we first consider a new set of
terms T (G, X') where the new symbols g € G have ‘intended’ (often arithmetic)
interpretations over an (arithmetic) domain D as mappings g from D into D. The
use of the same name for the syntactic and semantic objects stresses that they
have an intended meaning. We associate an expression ey € 7 (G, {z1,...,x%}) to
each k-ary symbol f € F, where x1,...,x; € A are different variables: we write
[f1(z1,...,2,) = ey; and homomorphically extend it to [] : T(F, X) — T(G, X).
Then, for all ai,...,ar € D, we let fa(ai,...,ar) = [efla,, for aq given by
ag(z;) =a; forall 1 <i<k.

Ezample 3. For R in Example 1, F = {0,1,0r,and,not,implies,f}, where
ar(0) = ar(l) = 0, ar(f) = 1, and ar(or) = ar(and) = ar(implies) = 2. Let
G = {0,1, max, min, - — _} with ar(0) = ar(1l) = 0 and ar(maz) = ar(min) =
ar(-— _) = 2. We define an F-algebra over the reals R as follows:

[0]=0 [and](z,y) = min(z,y) [or](z,y) = max(z,y) [f](z) =0
1] =1 [not](z) =1—2x [implies](z,y) = max(1l — z,y)

We define a model M = (D, Fp, IIp) if each P € IT is interpreted as a predicate
Py € IIp, and each ¢ € Formy as a formula o, where o o = Paq([t1], - - -, [tx])
if o =P(t1,....,tk); ppm = pm @ Yaif o = x @ ¢ for & € {A, =} and pp =
Oxm if o = Oy for O € {—,V,3}. The goal is proving that M = S holds.
Ezample 4. We can interpret both — and —* as ‘=" (intended to be the equality
among real numbers). Then, the sentences in Example 2 become

Vs, t,bu e R(s=uAu=t=s=t) (23)
Vs,teR(s=t=1—-s=1—1) (24)

Vo € R (max(0,2) = x) (25)

Ve,y eR(1—z=1= mazx(l —z,y) =1) (26)
)

Unfortunately, (25) and (26) do not hold in the intended model due to the (big
algebraic domain R. For instance, max(0,—1) = 0 # —1, i.e., (25) is not true.

Example 4 shows that the appropriate definition of the domain of a model is
crucial to satisfy a set of formulas. The next section investigates this problem.

3 Domains for algebras and models revisited

In proofs of termination, domains D for numeric F-algebras A usually are infinite
(subsets of) n-dimensional open intervals which are bounded from below: N™ or



[0,4+00)™ for some n > 1. Furthermore, considered orderings often make the
corresponding ordered sets total (like [0, 4+00) ordered by >g), or nontotal but
with subsets B C D bounded by some value zp € D (like [0,+00)™ ordered
by the pointwise extension of the usual ordering > over the reals, which is a
complete lattice). More general domains can be often useful, though.

Ezample 5. (Continuing Example 4) Although (23) and (24) always hold
(under the intended interpretation of ‘=" as the equality), satisfiability of other
sentences may depend on the considered domain of values: if D = [0, 1], then
(25) and (26) hold; if D = N, then only (25) holds. The use of D = [0, 1] can be
made explicit in (25) and (26) by adding further constraints:

VreR(z>0A1>x= max(0,z) =x) (27)
Ve,y e R(z >0A1>zAy>0A1>yAl—2z=1=maz(l —=z,y) =1) (28)

Thus, we need to deal with conditional constraints for using such more general
domains. Also to handle max expressions [6, 16].

Ezample 6. We can ezpand the definition of maz in (27) and (28) into:

VeeER(z>0AN1>2A0>2=0==x) (29)
VieR(z>0A1>xzAz>0=z=1) (30)

Ve,y eR(z>20AN1>2Ay>0A1>yAl—z=1Al-z>y=1—2z=1) (31)
Ve, y eR(z>0AN1>2Ay>0A1>yAl—ax=1Ay>1—-z=y=1) (32)

where (30) clearly holds true and we do not longer care about it.

3.1 Conditional domains for term algebras and models

Given a set D and a predicate x over D, we let D, = {« € D | x(z)} be the
restriction of D by x. An F-algebra A = (D, Fp) yields a restricted F-algebra
Ay = (Dy, Fb, ), where for each f € F, f4, is the restriction of f4 to Di, if for
all k-ary symbols f € F, this algebraicity or closedness condition holds:

Vi, ...,y N x@) | = x(faler,... 2) (33)

i<i<k
guaranteeing that if f4 is given inputs in D,, the outcome belongs to D, as well.

Remark 1. Algebraicity is a standard requirement for algebraic interpretations.
Most times, however, the imposition of simple requirements on the shape of the
numeric expressions ey used to define f4 (see Section 2) makes this task easy
and often avoids any checking. A well-known example is taking D = [0, 400)
and requiring e to be a polynomial whose coefficients are all non-negative.

The relations Pry C DF interpreting k-ary predicates P € IT can be restricted
to Ppm, = Py D’; to yield a new interpretation of P in M, = (D, Fp, , Ilp, ).
For practical purposes, in this paper we only consider simple restrictions of F-
algebras and models, where D is obtained as the solution of linear constraints.



Definition 1 (Convex polytopic domain). Given a matriz A € R™*" and
b € R™, the set of solutions of the inequality Ax > b is a convex polytope
D(A,b) = {x € R™ | Ax > b}. We call D(A,b) a convex polytopic domain.

Ezample 7. For A = (=1,1)T and b = (—1,0), we have D(A,b) = [0,1]. If
A= (1) and b = (0), then D(A4,b) = [0, +00).

Example 8. Continuing Example 3, we obtain an F-algebra Ajp; =
([0,1], Fio,17) as the restriction to [0, 1] of the F-algebra over R defined there.
The constraints (25) and (26) are written in the restricted model as follows

YV € [0, 1] (maz(0,z) = x) (34)
Vz,y € [0,1] (1 —z=1= maz(l —z,y) = 1) (35)

After encoding memberships like z € [0,1] as inequalities x > 0 A1 > z and
expanding the definition of max, we obtain (29) — (32).

In sharp contrast with Example 4, restricting the model at hand to [0, 1] leads to
a model for R in Example 1 which is useful to prove its operational termination.

Ezample 9. According to [13], R in Example 1 is operationally terminat-
ing if there is a relation = on terms such that —* C 2>, and a well-
founded ordering 3 satisfying = o 3 C 3 such that, for all substitutions o, if
o(implies(implies(x, implies(z, 0)),0)) —% o(1) holds, then o(F(z)) 2 o(F(0)) for
the rule (dependency pair3) F(x) — F(0) <= implies(implies(x, implies(z, 0)),0) —
1 (where F is a fresh symbol). Let M = ([0, 1], ]-"[' 0,1]" I[g,1)) where F' = FU{F},
]-"[’0,1] is Fo,1) as in Example 8 extended with [F|(z) = =, and I} 1) given by
—10,1]={0,1]= (=[0,17) (i-e., the equality on [0, 1]). M is a model of R; by sound-
ness, if s —* t holds for s, € T(F, X), we have [s] =,1] [t]. Let 2 be as follows:
for all s,t € T(F,X), s 2 t holds if and only if [s] =[ 1] [t]. Then, —* C 2, as
desired.

Now, consider the ordering >; over R given by « >; y if and only if z —y > 1;
it is a well-founded relation on [0, 1] (see [10]). We let 1 be the (well-founded)
relation on T (F,X) induced by >; as before. Again, for all substitutions o, if
o(implies(implies(z, implies(z, 0)), 0)) =% o(1) holds, then, by soundness,

[o(implies(implies(z, implies(x, 0)), 0))] =0,1] [0(1)] (36)
holds as well. We also have
Vz € [0, 1]([implies(implies(z, implies(x,0)), 0)] =0, [1] = [F(z)] >1 [F(0)]) (37)
because, for all z > 0,
[implies(implies(z, implies(x, 0)), 0)] = maxz(1 — max(1 — z, maz(1l — x,0)),0)
= maz(l — max(l —z,1 —x),0)

(

(
=max(l— (1 —1z),0)

maz(

az(x,0)

=T

3 For the purpose of this paper, the procedure to obtain this new rule is not relevant.
The interested reader can find the details in [13].



and hence [implies(implies(z, implies(x,0)),0)] =[o,1) [1] holds only if z = 1 =
[1]. Combining (36) and (37), we conclude that, for all substitutions o, if
o(implies(implies(z, implies(z, 0)),0)) —% o(1) holds, then [F(z)]/M =1 >; 0 =
[F(0)]™, as desired. This proves operational termination of R in Example 1.

In the following section we discuss an interesting application of convex polytopic
domains to improve the well-known matrix interpretations [5, 2].

4 Convex matrix interpretations

A convex matriz intepretation for a k-ary symbol f is a linear expression Fjx1 +
-+« + Fpxy + Fo, where Fy, ..., F), € R™*" are (square) matrices, Fy € R™ and
Z1,..., ¢ € R™ which is closed on D(A,b), i.e., that satisfies

k
Vaqi,...z, € R" (/\sz >b= A(Fix1 + - + Frxe, + Fy) >b> (38)
i=1

An F-algebra A = (D, Fp) is obtained if D = D(A,b), and each k-ary symbol
f € Fis given fa(xy,...,x5) = Fizy + -+ + Frz, + Fy that satisfies (38).
The following ordering > is considered: © = (21,...,2n) > (Y1,.--,Yn) = y if
x; > y; for all 1 <4 <n. Given § > 0, the (strict) ordering >; is also used: & =
(1, Zn) >5 W1,y Yn) =y ifz1 —y1 >0 and (za,...,2n) > (Y2, -, Yn)-

Remark 2. Convex matrix interpretations include the usual matrix interpreta-
tions in [5,2] if A = I,,x,, and b =0 € R™.

In contrast to (N, >) and ([0, +00), >), that are total orders, and also to (N",>)
and ([0, +00)™, >), that are not total, but are complete lattices, (D(A,b), >) does
not need to be total or a complete lattice. This has some interesting advantages.

Ezample 10. Consider the CTRS R [17, Example 7.2.45]:

a—>a<b—rc—a (39) c—»d<ed—re—zx (41)
bod<d—xe—a (40)

According to [13], R is operationally terminating if there is a relation > such
that —* C >, and J is a well-founded ordering such that = o 17 C 1 and for
the dependency pair a* — a* < b — x,¢ — z (for a* a new symbol), we have
that, for all substitutions o, if b —* o(z) and ¢ —* o(z), then af 3 af. With
11
A= 110 and b= (1,0,0)7, together with:
01

we have [al, [a?], [0], [c], [d], [e] € D(A,b), as required by (38). It can be proved
that (D(A,b), Fpap), [pcap)), where =, —=* € II are both interpreted (in



IIpap)) as > is a model of R. For s,t € T(F,X), we let s 2 t if and only
if [s] > [t]. Thus, —* C 2 holds. The ordering >; on D(A,b) is well-founded
because [0, 4+00) is bounded from below (see [10]). Thus, for s,t € T(F,X), we
define s Ot if and only if [s] >1 [t]. Now, since —* C 2, we only have to prove
that [b] > [2] A [c] > [z] = [a¥] >1 [@F], i.e.,

wveen([3] 212 1] 1= (D Bl (2] = 6] 1)

which can be written as a universally quantified conjunction of two formulas:

14+ 2221 A1 20N >20AN1>221 AN0>22AN0> 21 A1 2> 20=>1>11 (43)
T14+22>1A21 >20A22>0A1>21 A0>22A0> 21 A1 >20=02>0 (44)

The crucial point is that the conditional part of the implications does not hold
because no & € D(A, b) satisfies (1,0)7 > x and (0,1)T > z (see Example 11).

The following sections discuss existing mathematical techniques that can be used
to automatically deal with the conditional constraints obtained so far.

5 Conditional polynomial constraints

In this section, we explore well-known results from linear algebra [20] and alge-
braic geometry [18] to deal with conditional polynomial constraints.

5.1 Conditional constraints with linear polynomials

Farkas’ Lemma provides a (universal) quantifier elimination result for linear
(conditional) sentences (cf. [20]).

Theorem 1 (Affine form of Farkas’ Lemma). Let Az > b be a linear system
of k inequalities and n unknowns over the real numbers with non-empty solution
set S and let ¢ € R™ and 8 € R. Then, the following statements are equivalent:

1. x> p forallx €S,
2. 3\ € RE such that ¢ = ATX and ATb > 3.

By condition (1) in Theorem 1 proving Vz (Ax > b = ¢I'x > j3) can be recast
as the constraint solving problem of finding a nonnegative vector A such that ¢
is a linear nonnegative combination of the rows of A and [ is smaller than the
corresponding linear combination of the components of b. Note that if Az > b
has no solution, i.e., S in Theorem 1 is empty, the conditional sentence trivially
holds. Thus, we do not need to check S for emptiness when using Farkas’ result.

Ezample 11. Sentences (43) and (44) can be proved using Theorem 1. This
proves operational termination of R in Example 10.



Example 12. After encoding the equality as the conjunction of > and <, we
transform sentences (29), (31) and (32) into:

Ve ER(z>0A1>2A0>2=0>x)
Ve eER(z>0A1>2A0>2=2>0)

45
46

(45)
(46)
Ve, y ER(z >0AN1>2Ay>0AN1>yAl—az=1A1—-z>y=1—2>1) (47)
Ve, y ER(z >0AN1>2zAy>0AN1>yAl—z=1A1—-z>y=1>1—2x) (48)
Ve,y eR(z>20AN1>2Ay>0A1>yAl—az=1Ay>1—ax=y>1) (49)
Vz,y eR(z>20AN1>2Ay>0A1>yAl—az=1Ay>1—ax=1>y) (50)

which are conditional linear sentences provable using Farkas’ Lemma.

5.2 Conditional constraints with arbitrary polynomials

Given polynomials hy, ..., hy € R[Xq,. .., X,], the semialgebraic set defined by
hi, .. hy is Wr(h) = Wr(hy, ..., hyp) = {x € R™ | hy(x) > OA- - -Ahy,(z) > 0}.
A well-known representation theorem establishes that a polynomial which is
positive for all tuples (z1,...,z,) € Wr(h) can be written as a linear combina-
tion of hq, ..., h, with ‘coeflicients’ s that are sums of squares of polynomials
(s € S_R[X]?) [18, Theorem 5.3.8]. If we can write a polynomial f as a linear
combination of hq, ..., A, with ‘coefficients’ that are sums of squares, this pro-
vides a certificate of non-negativeness of f on Wg(hq,...,hy): sums of squares
are non-negative, all h; are non-negative on values in Wg(hy,...,h,,) and the
product and addition of non-negative numbers is non-negative. Explicitly:

Theorem 2. Let R[X] := R[Xy,...,Xn], h1,..., i € R[X], Wg(h) =
Wg(hi,...,hm) and S C R such that Wg(h1,...,hy) C S™. Let 5; € Y R[X]?
foralli, 0 <i<m.If for allzy,...,x, €S, f > s0+ > vy 8- hy, then, for all
(1, xn) € Wr(h1,... . hm), f(z1,...,2,) > 0.

Example 13. Consider the constraint X; > X5 A Xp > X2 = X; > X3 from
[16, page 51]. With sp = (X2 — X3)?, s1 = 1 and sy = 2X2, we have:

X1 — X3 = (X3 — X2)? + (X1 — X3) +2X5 - (X2 — X3)

witnessing that the constraint holds.

6 Related work

The material in Section 2 can be thought of as a generalization and extension
of the intepretation method for proving termination of Term Rewriting Systems
(see, e.g., [17, Section 5]). The interpretation method uses ordered algebras which
are algebras A with domain D including one or more ordering relations >p, >p,
etc., satisfying a number of properties (stability, monotonicity, etc.). Such rela-
tions are used to induce relations >, > on terms which are then used to compare
the left- and right-hand sides ¢ and r of rewrite rules £ — r. The targeted rules



in such comparisons and the conclusions we may reach depend on the considered
approach for proving termination (see [17, Sections 5.2 and 5.4], for instance).
In our setting, orderings are introduced as interpretations of computational re-
lations (e.g., — and —*), and we do not require anything special about them
beyond their ability to provide a model of the theory at hand. For instance, where
the interpretation method requires monotonicity, we just expect the relation to
provide a model of rules (Cong), which encode the monotonicity of the rewrite
relation. The advantage is that we do not need reformulations of the framework
when other logics are considered; in contrast, the interpretation method requires
explicit adaptations. For instance, in Context-Sensitive Rewriting [9] rewritings
are propagated to selected arguments of function symbols only. Thus, (Cong)
may have no specialization for some arguments ¢ of some symbols f. Whereas
this requires specific adaptations of the interpretation method (see, e.g., [21]),
we can apply our methods without any change. Furthermore, although our prac-
tical examples involve CTRSs, our development does not really depend on that
and applies to arbitrary declarative languages.

With regard to existing approaches to deal with conditional constraints in
proofs of termination, the following result formalizes the transformational ap-
proach to deal with polynomial conditional constraints in [6, 16].

Proposition 1. [16, Proposition 3] Let prem and conc be two polynomials with
natural coefficients, where conc is not a constant. Let p1,...,Pm+1,4q1s- - - Gm+1
be arbitrary polynomials with natural coefficients. If

conc(pm+1) — conc(Gm1) — prem(p1, ..., Pm) + prem(qr, ..., qm) >0

is valid over the natural numbers, then p1 > @1 A+ APm > @m = Dmt1 = G+l
1s also valid over the natural numbers.

This result holds if prem and conc have non-negative real coefficients, and vari-
ables range over nonnegative real numbers. When linear polynomials are used
this technique is subsumed by Farkas’ lemma.

Proposition 2. Let C € R>o[Y] and P € R>o[Y1, ..., Y] be linear applications
with C' nonconstant, i.e., C =~Y withy > 0 and P = >, m;Y;. Let p;,q; €
R>o[X1,...,X,] be linear polynomials for all i, 1 < i < m+ 1, ie., p; =
pio + 251 pi X and ¢ = qio + 377 4 X Let A = (pij = Gij)mn. b =
(q10 = P105 - - - @mo _me)T; c= (pm+1,1 —dm+1,15- - - apm+17n_Qm+1,n)T and 8 =

Gmt1,0—Pm+1,0- If for all Xq, ..., Xo 20, C(prs1) —C(gms1) = P(p1, - -, Pm)+
P(qi,...,qm) >0, then there is X\ € R such that ¢ > ATX and 8 < ATb.

Remark 3. Regarding mechanization, Nguyen et al.’s technique has a drawback
with respect to those in Section 5. Given a rule £ — r < /\ZL:1 s; — t;, Nguyen et
al.’s technique requires that both [s;] and [¢;] are polynomials with non-negative
coefficients only. This is because [s;] and [t;] are handled separately by poly-
nomials conc and prem. But in an implementation, [s;] and [¢;] are parametric
polynomials where the coeflicients are parameters rather than numbers (see [4,

10



10] for instance). Thus, we need to constrain them to be non-negative in order to
use the technique. In contrast, we do not restrict the coefficients of polynomials
in any way. Hence, the coefficients of the parametric polynomials could be neg-
ative numbers without any problem. For instance, this is crucial to synthesize
D(A,b) = [0,1] used in the examples above, where A and b require negative
numbers.

Farkas’ Lemma is used in proofs of termination of imperative programs in [19].

7 Conclusion

We have provided a generic, logic-oriented approach to abstraction in proofs of
termination of programs in declarative languages, which is based on defining ap-
propriate models for logics. We have used numeric domains defined as restrictions
of ‘big’ numeric sets by means of predicates that can be handled as conditional
constraints. We have introduced conver domains and used them to extend the
powerful matrixz interpretation method for proving termination of TRSs in two
directions: the use of conver domains and the application to other logics (e.g.,
CTRSs). We have shown the usefulness of these general purpose ideas by ap-
plying them to prove operational termination of CTRSs: R in Example 1 could
not be handled within the recently introduced 2D DP framework for proving
operational termination of CTRSs [13] or its extensions [14]; but the weakness
was not in the framework itself, but in the available algebraic interpretations: we
can prove R operationally terminating now due to the use of a convex domain
like [0,1]. And powerful tools like AProVE do not find a proof of operational
termination of R in Example 10 by using transformations. In contrast, we found
a simple proof with convex matrix interpretations and the techniques in [13].

We have shown that existing, powerful techniques to deal with numeric
constraints provide an appropriate framework for implementing the previous
techniques. We have implemented most of these techniques as part of our tool
MU-TERM [1]. In particular, the use of Farkas’ Lemma for dealing with linear con-
ditional constraints obtained from linear polynomial interpretations and matrix
interpretations plays a central role in the implementation of the 2D DP frame-
work for operational termination of CTRSs [13] which is presented in [14]. In [10,
Example 13], we advocate the use of negative coefficients in proofs of termina-
tion of CSR using polynomial interpretations. The implementation, though, was
tricky (see [10, Sections 6.1.3 and 7]). This paper is a step forward because: (1)
our treatment is valid for arbitrary polynomials. We do not need to provide spe-
cial results as [10, Observation 1] to deal with polynomials of some specific form
(quadratic, cubic, ...); (2) we avoid the introduction of disjunctive constraints
which lead to an exponential blowup and to an expensive constraint solving pro-
cess; and (3) we admit negative numbers everywhere. They are treated as any
other number and there is no need to ‘assert” which of the coefficients could be
negative in order to handle them apart (see [10, Section 7] and [10, Example 20]).
However, much work is necessary to make fully general use of these techniques
in practical applications. We plan to address these issues in the near future.
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