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H I G H L I G H T S
� We developed GPU-based iterative algorithm to reconstruct images.

� Iterative algorithms are capable to reconstruct images from under sampled set of projections.
� The computer cost of the implementation of the developed algorithm is low.
� The efficiency of the algorithm increases for the large scale problems.
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In X-ray computed tomography (CT) iterative methods are more suitable for the reconstruction of images
with high contrast and precision in noisy conditions from a small number of projections. However, in
practice, these methods are not widely used due to the high computational cost of their implementation.
Nowadays technology provides the possibility to reduce effectively this drawback. It is the goal of this
work to develop a fast GPU-based algorithm to reconstruct high quality images from under sampled and
noisy projection data.
1. Introduction

In medicine, the diagnosis based on computed tomography
(CT) is fundamental for detection of abnormal tissues by different
attenuation on X-ray energy, which frequently is not clearly
distinguished for radiologists. In CT imaging, a set of projections
taken with a scanner is used to reconstruct the internal structure
of an object. The intensity of X-ray beam that passes through some
object is observed to decrease. By moving source and detector, it is
possible to obtain a set of projections. A single k-th projection at
the angle r can be defined as an integral of image intensities f(x,y)
along the line l and is given by the formula:

Pk,r ¼
Z
l
f ðx,yÞdl ð1Þ

The reconstruction problem consists of determining the values
of the function f(x,y) from the set of the experimental projection
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data. Presently, the reconstruction process in clinical scanners is
based on analytical algorithms which use the inverse Fourier
transform. Filtered Back Projection algorithm (FBP) is one of the
widely used algorithms and is well described in literature (i.e. in
Gonzales and Woods, 2008). However, in CT, it is common to find
under sampled set of no equally spaced projections. In these cases,
images reconstructed with the conventional FBP algorithm are
highly degraded due to insufficient and noisy projections. On the
other hand, iterative methods do not require complete data
collection and do provide the optimal reconstruction in noisy
conditions in the image (Wang et al., 2008). These methods allow
reconstructing images with higher contrast and precision in noisy
conditions from a small number of projections than the methods
based on the Fourier transform (Crawford and Herman, 2007;
Nuyts et al., 1998; Wells et al., 2000).

Although widely used in nuclear medicine (gamma-camera,
single photon emission computed tomography (SPECT), positron
emission tomography (PET)), iterative reconstruction has not yet
penetrated in CT. The main reason for this is that data sets in CT
are much larger than in nuclear medicine and iterative reconstruc-
tion then becomes computationally very intensive. Acceleration of
iterative reconstruction is an active area of research. Stone et al.
(2008) describe the accelerated reconstruction algorithm on
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graphical processing units (GPUs) for advanced magnetic reso-
nance imaging (MRI). They reconstruct images of 1283 voxels in
over 1 min. Johnson and Sofer (1999) propose a parallel computa-
tional method for emission tomography applications that is cap-
able of exploiting the sparsity and symmetries of the model and
demonstrate that such a parallelization scheme is applicable to the
majority of iterative reconstruction algorithms. The time needed
for the reconstruction of thick-slices images (128�128�23 in
voxels) is over 3 min. Pratx et al. (2009) show results of iterative
reconstruction using GPU in PET. The required time on a single
GPU to reconstruct an image of 1603 voxels is 8.8 s. Multi GPU
implementation of tomographic reconstruction (Jang et al., 2009)
accelerates reconstruction of images 350�350�9 up to 67 s on a
single GPU and 32 s on four GPUs.

It seems that the resolution of an image to be reconstructed
remains to be a problem. In our previous work we have reported
some results on using Extensive Toolkit for Scientific computation
(PETSc) and binary format of input data to facilitate the program-
ming task and accelerate the whole process of reconstruction
(Flores et al., 2011, 2012). In this research, our aim is to take
advantage of the massive computing power of GPU in order to
reconstruct the CT images with higher resolution without losing
quality. We present a description and validation of our algorithm.
Table 1
The main characteristics of the system matrix.

Matrix size
(pixels)

Generation
time (sec)

#Nonzero
elements

Matrix size in
binary format
(MB)

Loading time
(s) of the
matrix

ASCII Binary

(256�100)�
(256�256)

11.3 7,872,591 91 9.41 2.3

(256�200)�
(256�256)

22.4 15,745,104 181 28.3 4.2

(256�400)�
(256�256)

45.4 31,490,052 361 42.7 5.4

(512�100)�
(512�512)

72.5 31,496,952 361 76.0 7.8

(512�200)�
(512�512)

203.2 62,993,644 721 171.1 15.4

(512�400)�
(512�512)

446.4 125,986,768 1500 297.1 28.3

Fig. 1. LSQR solver uses input data in binary format to reconstruct the image.
2. Mathematical aspects

Fundamentally, the iterative methods of image reconstruction
from projections are schemes for solving a linear system:

Ax¼ p, ð2Þ
where the system matrix A simulates computer tomography
functioning and its elements depend on the projection number,
the angle at which the projections are taken and may not be
square, x is a column matrix whose values represent intensities of
the image, the column matrix p corresponds to the projections
collected by a scanner.

For a given angle, we assume that the number of projections
ranges from 1 to m. If there are k different angles, then in Eq. (2) p
is a column matrix with mxk elements, x is a column matrix with
n2 elements and A is a mkxn2 rectangular matrix:

ð3Þ

p¼ p11…pm1…pmk

� �T
, x¼ x11…x12…xnn½ �T :

Many properties of a reconstructed image depend on the
approximations when calculating the system matrix. In this work
we use Siddon algorithm to calculate elements of the matrix in a
rectangular grid (Siddon, 1985). It has been found that Siddon
algorithm gives a good approximation of the system matrix (Mora,
2008). The main characteristics of the matrices used in the
experiment are summarized in Table 1.

In practice, A is a rectangular nonsymmetrical sparse matrix
and therefore it is recommendable to store only nonzero elements.
The system (2) may be over determined or undetermined. Over
determined systems contain more information on the image and,
consequently, the reconstructed image is less noisy. The dimen-
sions of A grow proportionally to the resolution of the image to be
reconstructed and the number of projections, increasing therefore
the computational cost. The input matrix A and the right hand side
vector p are generated previously and can be stored in two
formats: as a plain text (ASCII format) or in a binary format. In
our experiment the input data is used in binary format, which
allows reducing the memory storage (up to three times) and
loading time of the input data.

2.1. Algorithm

We implemented the Least Square QR method (LSQR) to solve
the system (2) by minimizing: min‖Ax−P‖2 (Paige and Saunders,
1982). The matrix A is normally large and sparse and is used only
to compute products of the form Av and ATu for various vectors v
and u. LSQR is an iterative algorithm. The process exits if the
following stopping criterion is met:

‖Ax−p‖
‖p‖

≤rtol: ð4Þ

In Eq. (4), ‖Ax−p‖, ‖p‖ are norms of residual and right-hand
side vector respectively, rtol is a given tolerance. In our experi-
ments rtol¼0.1. The input data is stored in binary format. Fig. 1
illustrates the following main steps of the reconstruction process:
�
 CT projections are collected by a scanner.

�
 The system matrix, that simulates the scanning process, is

generated previously by Siddon algorithm.

�



Table 2
The reconstruction time of images on CPU and GPU on euler cluster.

System matrix (rows x columns) CPU (s) GPU (s)

(256�100)� (256�256) 2.7 4.4
(256�200)� (256�256) 5.3 4.6
(256�400)� (256�256) 10.5 4.7
(512�100)� (512�512) 12.3 5.1
(512�200)� (512�512) 24.4 5.3
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In binary format these data are used by LSQR solver to find the
solution of the system (2) that represents the reconstructed image.

In a previous work, we have analyzed the efficiency of the LSQR
solver in parallel image reconstruction on CPU (Flores et al., 2012).
A speed up of 1.8 has been achieved to reconstruct images of
512�512 pixels. In this paper we attempt to develop an algorithm
suitable for GPU parallelization in order to take advantage of the
massive computing power of GPUs.

2.2. GPU implementation

Computer graphic cards, such as the NVIDIA GeForce series and
the GTX series, are conventionally used for display purpose on
desktop computers. Special GPUs card dedicated for scientific
computing, like the NVIDIA Tesla M2050 card is used in this paper
to carry out the experiment. Such a GPU card has a total number of
448 cuda cores with 3GB ECC memory, shared by all processor
cores. Utilizing such a GPU card with tremendous parallel comput-
ing ability can considerably elevate the computation efficiency of
our algorithm.

NVIDIA also introduced CUDATM, a general purpose parallel
computing architecture—with a new parallel programming model
and instruction set architecture—that leverages the parallel com-
pute engine in NVIDIA GPUs to solve many complex computational
problems in a more efficient way than on a CPU. CUDA comes with
a software environment that allows developers to use C or Cþþ as
high-level programming languages and overcome the challenge to
develop application software that transparently scales its paralle-
lism to leverage the increasing number of processor cores.

We also use CUBLAS and CUSPARSE libraries that allow the user
to access the computational resources of NVIDIA Graphical Proces-
sing Unit (GPU). The CUBLAS library is an implementation of BLAS
(Basic Linear Algebra Subprograms) on top of the NVIDIAsCUDATM

runtime. To use the CUBLAS library, the application must allocate
the required matrices and vectors in the GPU memory space, fill
them with data, call the sequence of desired CUBLAS functions,
and then upload the results from the GPU memory space back to
the host. The CUBLAS library also provides helper functions for
writing and retrieving data from the GPU.

The NVIDIAs CUDATM CUSPARSE library contains a set of basic
linear algebra subroutines used for handling sparse matrices and is
designed to be called from C or Cþþ. These subroutines include
operations between vector and matrices in sparse and dense
format, as well as conversion routines that allow conversion
between different matrix formats.CUBLAS and CUSPARSE are
written using the CUDA parallel programming model and take
advantage of the computational resources of the NVIDIA graphics
processor (GPU).
Fig. 2. Reconstruction time on CPU and GPU from different number of projections:
set1¼256�100, set2¼256�200, set3¼256�400, set4¼512�100, set5¼512�200.
3. Results and discussions

For experimental purposes we used real projections and reference
images acquired from the Hospital Clinico Universitario in Valencia.
The reference images have been reconstructed with Filtered back-
projection method (FBP) from a complete set of projections collected
by the scanner with 512 sensors in the range 0–180 with 0.91 spacing.
To be able to reconstruct the image with the iterative method we
complete the given set up to 360 degrees using the symmetry of
the system matrix. So, we consider a complete set as a set of
projections that corresponds to 512 sensors and 400 angles. With
the purpose to analyze the capacity of iterative algorithms in parallel
reconstruction of images from less number of projections from the
initial set the following subsets of equally spaced (with the angle steps
0.91, 1.81, and 3.61) projections have been derived: set1¼256�100,
set2¼256�200, set3¼256�400, set4¼512�100, set5¼512�200.

The results have been measured on a GPU node of the cluster
system Euler that belongs to the Alicante University in Spain.
The GPU computing node consists of 2xCPU Intel Xeon X5660,
each with 6 cores of 2,80 GHz and 3xGPU NVIDIA TESLA M2050
with 448 cores and 3GB memory each of them. In Euler, it is used
Grid Engine function, general purpose Distributed Resource Man-
agement (DRM) tool. The scheduler component in Grid Engine
supports a wide range of different computational scenarios. Grid
Engine is a facility for executing Unix-like batch jobs (shell scripts
or binaries) on a pool of cooperating CPUs. Jobs are queued and
executed remotely according to defined policies.

For the images of 256�256 and 512�512 pixels reconstructed
from different number of projections, the solving time of the
system (2) on one CPU and GPU is given in Table 2 and shown in
Fig. 2. In the system matrix, the number of rows is obtained by
multiplying the number of used sensors and angles and corre-
sponds to the number of the projections used to reconstruct the
image; the number of columns corresponds to the size of the
reconstructed image (256�256 and 512�512 pixels).

The results show the efficiency of the algorithm based on a GPU
parallel computing ability. It can be seen that the usage of GPUs
becomes more efficient for large scale problems.

Finally, Fig. 3 shows the images reconstructed in parallel from
different number of equally spaced projections. It is needed to be
mentioned that usually post processing procedure (as filtering) is
applied to the reconstructed image in order to improve the quality.
In this work we present the images right after the reconstruction
stage without any filtering.



Fig. 3. Reconstructed images (512�512 pixels): (a) FBP reconstruction; (b), (c), and (d) iterative reconstruction from 400, 200 and 100 angles at the iteration when a given
tolerance is achieved. Number of iterations is data dependent, for example, images (b), reconstructed from a complete set, are taken at iteration 12.
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4. Conclusions

The GPU-based iterative algorithm of image reconstruction
presented in this paper shows that the algebraic methods are
capable to reconstruct images with low computational cost.

CUDA parallel programming model with CUBLAS and CUS-
PARSE libraries allows overcoming the challenge to solve complex
computational problems and take advantage of the computational
resources of the NVIDIA graphics processor (GPU).

We expect more significant results in undergoing work of 3D
image reconstruction when a huge amount of computing is
involved.
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