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Abstract 

 

In this work, three ultrafiltration (UF) membranes with different molecular weight cut-offs 

(MWCOs) and made of different materials were fouled with several whey model solutions 

that consisted of bovine serum albumin (BSA) (1 % w/w), BSA (1 % w/w) and CaCl2 

(0.06 % w/w in calcium) and whey protein concentrate (WPC) with a total protein content 

of 45 % w/w at three different concentrations (22.2, 33.3 and 44.4 g·L-1). The influence of 

MWCO and membrane material on the fouling mechanism dominating the UF process was 

investigated. Experiments were performed using two flat-sheet organic membranes and a 

ceramic monotubular membrane whose MWCOs were 5, 30 and 15 kDa, respectively. 

Hermia’s models adapted to crossflow UF, a combined model based on complete blocking 

and cake formation equations and a resistance-in-series model were fitted to permeate flux 

decline curves. The results demonstrated that permeate flux decline was accurately 



2 
 

predicted by all the models studied. However, the models that fitted the best to permeate 

flux decline experimental data were the combined model and the resistance-in-series 

model. Therefore, complete blocking and cake formation were the predominant 

mechanisms for all the membranes and feed solutions tested.    

 

Keywords: Ultrafiltration; whey model solutions; mathematical models; fouling 

mechanisms. 

 

1. Introduction 

 

Ultrafiltration (UF) membranes have been widely used in dairy industries for several 

applications such as preconcentration of milk, milk dehydration, fractionation of whey, 

purification of whey proteins, enrichment of micellar casein for the manufacture of milk, 

etc. [1, 2].  

 

However, one of the major problems in the UF processes applied in dairy industry is 

membrane fouling. Among the different substances that are present in milk and whey, 

proteins are the main responsible for membrane fouling [3]. The most important 

consequence of fouling is the gradual permeate flux decline during filtration time. This 

effect depends on different parameters, such as operating conditions of the UF process 

(crossflow velocity, transmembrane pressure, feed concentration and temperature), 

interactions between foulants and the membrane surface or membrane characteristics 

(hydrophilicity, pore size and porosity) [1, 4]. 
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According to the literature, membrane fouling mechanisms can be divided in several types. 

When the solute molecules are smaller than or similar to the membrane pore size, these 

molecules can penetrate inside the membrane pores, reducing their effective radius 

gradually (adsorptive fouling) or causing the entire pore to be completely blocked (pore 

blocking mechanism) [5, 6]. If solute molecules are much higher than membrane pores, 

they are deposited on membrane surface. In some cases, the deposited fouling layer may 

form a cake layer [7, 8].  

 

Because of the technical and economical importance of permeate flux decline, determining 

the optimum operating conditions to minimize fouling and obtaining a model to predict 

permeate flux decline with time are key steps in UF processes. Previous studies found in 

the literature have developed permeate flux decline models for UF processes [9-13]. 

Among them, empirical models are the most often used due to their high prediction 

accuracy because they describe experimental results by fitting a mathematical equation to 

the data obtained without considering any theoretical parameter (examples of these models 

are those provided by regression analysis) [14]. However, as the theoretical description of 

fouling phenomena and mechanisms is not reflected on the mathematical equation 

proposed by this type of models, the relationship between permeate flux decline and the 

fouling mechanism involved in the UF process cannot be explained with empirical models. 

On the other hand, theoretical models are able to explain the fouling phenomena during 

membrane filtration, although they are less accurate. For those reasons, semi-empirical 

models, which use simplified forms of scientific laws and include a certain number of 

parameters with physical meaning are more appropriate to provide accurate predictions of 

the permeate flux decline and also to describe the fouling mechanism at the same time [5, 

15, 16]. 
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Although several mathematical models can be found in the literature to explain the fouling 

mechanisms affecting UF membranes [9, 13, 17, 18], Hermia’s models [19] applied to 

dead-end filtration and their adaptations to crossflow UF are widely used to fit the 

experimental data of different UF processes. Previous studies found in the literature have 

demonstrated that Hermia’s models can accurately predict permeate flux decline at 

different experimental conditions. Mohammadi and Esmaeelifar [20] analyzed the fouling 

mechanisms involved in the UF of wastewaters from a vegetable oil factory working at 3 

bar and 0.5 m/s with a 30 kDa polysulfone membrane. Their results demonstrated that 

fouling was due to the cake layer formation mechanism, achieving a value of R2 of 0.99. 

Vincent Vela et al. [15] investigated the fouling mechanisms involved in PEG UF using a 

ceramic membrane of 15 kDa. They obtained that intermediate blocking model was 

dominant for a transmembrane pressure of 3 bar and a crossflow velocity of 1 m/s and in 

the case of 4 bar and 2 m/s, with values of R2 of 0.980 and 0.979, respectively. Salahi et al. 

[5] studied the UF of oily wastewaters using a polyacrylonitrile membrane of 20 kDa at 

different transmembrane pressures (1.5, 3 and 4.5 bar) and crossflow velocities (0.25, 0.75 

and 1.25 m/s). For all the experimental conditions tested, the cake layer formation model 

followed by the intermediate blocking model were the models that fitted the best, with 

values of R2 ranging from 0.9852 to 0.9999 in the case of the cake layer formation model 

and ranging from 0.8710 to 0.9321 for the intermediate blocking model. Kaya et al. [21] 

applied conventional Hermia’s models to predict the fouling mechanism of two 

nanofiltration membranes (0.4 and 1 kDa) using a paper machine circulation wastewater as 

feed solution. The best fitting accuracy (R2 = 0.985) was obtained for the cake layer 

filtration mechanism followed by the intermediate blocking mechanism (R2 = 0.982) at a 

transmembrane pressure of 8 bar.  
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De la Casa et al. [22] combined two fouling mechanisms of Hermia’s models. They 

proposed two different combinations: the first one considers that only a fraction of 

membrane surface pores (α) is completely blocked (complete blocking model equation) 

while part of the foulant molecules may pass through the membrane and be adsorbed on 

the pore walls that were previously unblocked (1-α) (standard blocking model equation). 

The second combination takes into account that a cake layer of foulant molecules (cake 

layer formation model equation) can be formed on the previously deposited molecules that 

have previously completely blocked the pores (complete blocking model equation). The 

combined models were fitted to the experimental data obtained during the microfiltration 

of 0.25 g·L-1 BSA solutions at a transmembrane pressure of 1 bar and a crossflow velocity 

of 3.28 m·s-1. 

 

On the other hand, the resistance-in-series model is one of the most widely used empirical 

models due to its high accuracy. Choi et al. [23] applied a resistance-in-series model to 

batch microfiltration of BSA. They considered that total resistance was the sum of the 

membrane resistance, the cake layer resistance and the fouling resistance. This last one 

represented the foulant deposits inside the membrane pores. Flux decline predicted by the 

model was in a good agreement with the experimental data obtained. Carrère et al. [24] 

used a resistance-in-series model to predict permeate flux decline of lactic acid 

fermentation broths crossflow filtration at a transmembrane pressure of 2 bar and a 

crossflow velocity of 4 m·s-1. Their model considered four different resistances (the 

membrane resistance, the resistance of the adsorbed molecules on the membrane surface, 

the resistance due to concentration polarization and the cake layer resistance). They 

obtained a good agreement between predicted and experimental data.  
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The aim of this work was to investigate the fouling mechanisms that affect different UF 

membranes (two polymeric membranes of 5 and 30 kDa and a ceramic monotubular 

membrane of 15 kDa) using several whey model solutions (BSA (1 % w/w), BSA (1 % 

w/w) and CaCl2 (0.06 % w/w in calcium) and whey protein concentrate (WPC) with a 

protein content of 45 % at three different concentrations (22.2, 33.3 and 44.4 g·L-1)) as 

feed solutions during the fouling step. For this purpose, several models were fitted to the 

experimental data obtained during the UF of whey model solutions: Hermia’s models 

adapted to crossflow UF, a resistance-in-series model and a combined model based on the 

complete blocking and cake layer formation fouling mechanisms. As a novelty, the last 

model was developed for this work based on the Hermia’s equations adapted to crossflow 

for the two fouling mechanisms considered. The influence of both membrane MWCO and 

material on the dominating fouling mechanism was investigated. The values of model 

parameters were estimated for the models with the highest fitting accuracy. Different 

equations that relate model parameters with operating conditions such as the membrane 

roughness and the particle size and the protein concentration of the feed solutions were 

developed. 

 

2. Modelling 

 

2.1. Hermia’s models 

 

The models developed by Hermia [19] are based on classical constant pressure dead-end 

filtration equations. They consider four main types of membrane fouling: complete 

blocking, intermediate blocking, standard blocking and cake layer formation. These 
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models can be adapted to consider a crossflow configuration [15, 25, 26]. Adapted models 

to crossflow ultrafiltration incorporate the flux associated with the back-transport mass 

transfer, which is evaluated at the steady-state [27]. The general equation for Hermia’s 

models adapted to crossflow ultrafiltration is shown in Eq. 1: 

 

  ( ) n
ss JJJK

dt

dJ −−=− 2  Eq. 1 

 

where J is the permeate flux, K is a model constant and Jss is the permeate flux when the 

steady-state is achieved. 

 

According to the value of the parameter n, four different models can be distinguished, 

based on four different fouling mechanisms: complete blocking (n = 2), intermediate 

blocking (n = 1), standard blocking (n = 1.5) and cake layer formation (n = 0).  

 

In the complete blocking model, a solute molecule that settles on the membrane surface 

blocks a pore entrance completely, but it cannot penetrate inside the pores. This model 

assumes that a monomolecular layer is formed on the membrane surface. 

 

The intermediate blocking model is similar to the complete blocking one because it 

considers that fouling takes place on the membrane surface and not inside the pores. 

However, intermediate blocking model allows solute molecules to deposit on previously 

settled ones.  
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The standard blocking model takes into account that all the membrane pores have the same 

length and diameter and the solute molecules are smaller than the membrane pore size. 

Therefore, these molecules can penetrate inside the pores. 

 

When the solute molecules are larger than the membrane pores, they may accumulate on 

the membrane surface forming a permeable cake layer. This is the basis of the cake layer 

formation model. 

 

2.2. Combined model 

 

A combined model based on the crossflow Hermia’s equations for complete blocking and 

cake layer formation was used to predict the permeate flux decline along the whole 

filtration curve. According to other authors [9, 22, 25], typical variation of permeate flux 

with time involves two fouling mechanisms: a pore blocking during the first minutes of 

operation that causes a rapid flux decline and a long term flux decline due to the 

accumulation of foulant molecules on the membrane surface that results in a cake layer 

formation.  

 

Therefore, the decline in the permeate flux is the sum of the decline due to the complete 

blocking model and the decline due to the cake layer formation one. Therefore, two model 

constants have been taken into account: Kc for the complete blocking model and Kg for the 

cake layer formation model. The combined model also considers that only a fraction of 

membrane pores are completely blocked (α). Thus, the general equation of the combined 

model is Eq. 2: 
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 ( ) model formation layer  cakemodel  blocking  completemodel  combined 1 JJJ αα −+=  Eq. 2 

 

2.3. Resistance-in-series model 

 

Resistance-in-series model is based on the Darcy’s law that relates the permeate flux with 

the transmembrane pressure and the total hydraulic resistance (Eq. 3): 

 

  
R

P
J

·µ

∆
=  Eq. 3 

 

where ∆P is the transmembrane pressure, µ is the feed solution viscosity and R is the total 

hydraulic resistance. 

 

The total hydraulic resistance can be expressed as the sum of different resistances that take 

place during the UF process. In this model, the membrane resistance, the cake layer 

resistance and the adsorption and concentration polarization resistances were considered 

(Eq. 4). 

 

  ( )gam RRR·

P
J

++

∆
=
µ

 Eq. 4 

 

where Rm is the new membrane resistance, Ra is the resistance due to adsorption on 

membrane surface and inside its pores and concentration polarization and Rg is the cake 

layer resistance. In addition, Ra can be fitted using an exponential equation [23, 24]. 

Therefore, the general equation for the resistance-in-series model is Eq. 5: 
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( )( )( )gam Rbtexp'RR·

P
J

+−−+

∆
=

1µ
 Eq. 5 

 

where R’a is the steady-state adsorption and concentration polarization resistance and b is 

the fouling rate due to adsorption. 

 

3. Experimental 

 

3.1. Materials 

 

BSA, BSA and CaCl2 and WPC solutions were used as feed solutions to perform the 

fouling experiments. All these products were supplied in powder form, and were dissolved 

in deionized water until the desired concentration was achieved for each feed solution. 

Mean particle size of the feed solutions was determined using a Zetasizer Nano ZS90 

(Malvern Instruments Ltd., United Kingdom). BSA (prepared by heat shock fractionation, 

lyophilized powder, 98 % purity, A3733) was provided by Sigma-Aldrich (Germany), 

CaCl2 (95 % purity) was purchased from Panreac (Spain) and WPC with a total protein 

content of 45 % was supplied by Reny Picot (Spain). The composition of the WPC 45 % is 

shown in Table 1. The following methods were used to estimate the amount of each 

component in the WPC: bicinchoninic acid method (BCA, Sigma-Aldrich, Germany) for 

total protein determination [28], 3,5-dinitrosalicylic acid (DNS, Sigma-Aldrich, Germany) 

reaction to estimate the amount of lactose [29], method of incineration in a muffle furnace 

at 540 ºC for ash content estimation according to the AOAC method 930.30 [30] and 

cationic chromatography using a “790 Personal IC” chromatograph equipped with a 

Metrosep C 2 150 column (both supplied by Metrohm, Switzerland) to determine the 
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amount of individual cations. Fat content was measured by a MilkoScan FT120 (Gerber 

Instruments, Switzerland).  

 

BSA and WPC are the most widely used compounds to prepare whey model solutions for 

UF experiments [1, 31, 32]. In addition, CaCl2 was previously used to study the effect of 

salts on protein fouling [33-35]. 

 

3.2. Membranes 

 

Three UF membranes of different materials and MWCOs were used in the experiments: a 

monotubular ZrO2-TiO2 INSIDE CéRAMTM membrane of 15 kDa (TAMI Industries, 

France), a flat-sheet polyethersulfone (PES) membrane of 5 kDa (Microdyn Nadir, 

Germany) and a flat-sheet permanently hydrophilic polyethersulfone (PESH) membrane of 

30 kDa (Microdyn Nadir, Germany). The ceramic membrane was 20 cm long with an 

internal diameter of 0.6 cm and an external diameter of 1 cm and its effective area was 

35.5 cm2. Both polymeric membranes had an effective area of 100 cm2.  

 

The membranes selected in this work were widely used for treating wastewaters from 

different industrial fields, such as dye industries [36], pulping plants [37], surface water 

[38], activated sludge plants [39] and dairy model solutions [40, 41], obtaining in all cases 

high rejection values. 

 

3.3. Experimental set-up  
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A VF-S11 UF plant (Orelis, France) was used to perform the fouling experiments in a total 

recirculation mode. The main parts of the plant are a 10 L feed tank, a temperature 

regulating system, a variable speed volumetric pump to control the crossflow velocity, two 

manometers at both sides of the membrane module to measure the transmembrane pressure 

and a balance (0.001 g accuracy). This experimental set-up is described in [40]. 

 

3.4. Experimental procedure 

 

Prior to each fouling experiment, a permeability test with deionized water was performed 

in order to determine the values of Rm for each membrane used. These values were 

obtained from the Darcy’s law above mentioned (Eq. 3).  

 

Different feed solutions, which contained BSA (1 % w/w), BSA (1 % w/w) and CaCl2 

(0.06 % w/w in calcium) and WPC (22.2, 33.3 and 44.4 g·L-1), were considered in the 

fouling tests. Experimental conditions during the fouling step were a transmembrane 

pressure of 2 bar, a crossflow velocity of 2 m·s-1 and a temperature of 25 ºC. The pH 

values of the feed solutions prepared were in the range 5.97-6.5. The duration of the 

fouling tests was 2 h. Those conditions were selected according to previous studies on 

whey ultrafiltration [42] because they are commonly used in whey UF. Those conditions 

also resulted in severe membrane fouling and thus, clear differences among model 

predictions can also be achieved. During the experiments, the permeate flux was 

monitored.  

 

After the fouling step, membranes were rinsed with deionized water during 30 min at a 

temperature of 25 ºC, a transmembrane pressure of 1 bar and a crossflow velocity of 2.18 
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m·s-1 (for the polymeric membranes) and 4.20 m·s-1 (for the ceramic membrane). This 

difference in the values of crossflow velocity was due to the higher membrane roughness 

of the ceramic membrane in comparison to the polymeric ones. NaCl solutions at a salt 

concentration of 5 mM, 50 ºC and the same operating conditions of transmembrane 

pressure and crossflow velocity as those used in the rinsing step were used to clean the 

membranes during 60 min. After the cleaning procedure, a last rinsing with deionized 

water was performed again. Further description of the rinsing/cleaning protocols can be 

found in [40]. Finally, to recover the initial membrane permeability if the cleaning 

procedure with NaCl was not completely effective, the ceramic membrane was cleaned 

with NaClO aqueous solutions (10 % w/v, Panreac, Spain) at 45 ºC and a pH of 11 and the 

polymeric membranes were cleaned with NaOH aqueous solutions (98 % purity, Panreac, 

Spain) at 45 ºC and a pH of 11. 

 

Mathematical models were fitted to the experimental data using the MathCad® Genfit 

algorithm. The Genfit algorithm minimizes the overall difference between experimental 

results and the predicted ones by means of an optimized version of the Levenberg-

Marquadt method. Fitting accuracy of each model was evaluated in terms of the regression 

coefficient (R2) and the standard deviation (SD). 

 

3.5. AFM measurements 

 

Membranes roughness was measured by using a Multimode Atomic Force Microscope 

with a NanoScope V controller (Veeco, Santa Barbara, CA, USA) in a tapping mode of 

imaging at room conditions and recorded images are shown in Fig. 1. Membrane 

roughness of samples of 5 µm × 5 µm was measured and the results were presented as the 
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Root Mean Square roughness (Rq). It takes into account the standard deviation of the 

surface height values in a certain area, according to Eq. 6 [43]: 

 

  
( )

p

avgi

q
N

ZZ
R

∑ −
=

2

 Eq. 6 

 

Where Zi is the height value currently measured, Zavg is the average of the height values 

and Np is the number of points in the selected area. 

 

4. Results and discussion 

 

The values of the mean particle size of the feed solutions were 3.497±0.078, 4.386±0.705 

and 132.000±8.283 nm for the BSA, BSA and CaCl2 and WPC solutions, respectively. The 

values of the Rm for the membranes used in the experiments were 9.453·1012, 5.001·1012 

and 3.794·1012 m-1 for the membranes of 5, 15 and 30 kDa, respectively.  

 

Figs. 2 to 6 show the experimental permeate flux decline observed for all the membranes 

tested during the UF of different feed streams. In Figs. 2-6 permeate flux predictions by 

means of the three models that showed the highest accuracy (highest R2 and lowest SD, see 

Tables 2-6) are represented for each membrane and feed solution considered. Comparing 

the permeate flux obtained at different WPC concentrations for the same membrane, it can 

be observed that it decreased as WPC concentration increased for all the membranes tested 

because the fouling became more severe when WPC concentration increased. In addition, 

for all the feed solutions tested, the PESH 30 kDa membrane showed the lowest permeate 

flux decline in comparison with the PES 5 kDa membrane and the ceramic 15 kDa 
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membrane. For example, permeate flux decline was 21.45, 45.60 and 50.97 % for the 30, 5 

and 15 kDa membranes, respectively, for the most severe fouling conditions (WPC 45 % at 

44.4 g·L-1).  The reason for that is the hydrophilic nature of the 30 kDa membrane. 

According to other authors [44, 45], the best antifouling properties (high rejection 

coefficient, low permeate flux decline and low total filtration resistance) corresponds to the 

most hydrophilic membranes. Rahimpour and Madaeni [44] tested several PES membranes 

during the crossflow filtration of non-skim milk. Their results demonstrated that the 

hydrophilic PES membranes had a lower permeate flux decline (about 16 %) than the 

unmodified hydrophobic PES membrane (about 40 %).  

 

In addition, membrane fouling is also related to the surface roughness. Evans et al. [46] 

demonstrated that rougher surfaces favour the entrapment of foulant molecules. This 

phenomenon can be observed for all the membranes tested comparing permeate flux 

decline with the Root Mean Square roughness values (Rq) for each membrane tested. The 

highest flux decline was achieved for the 15 kDa membrane (Rq = 17.900 nm), followed by 

the 5 kDa membrane (Rq = 0.487 nm and hydrophobic) and the 30 kDa membrane (Rq = 

1.657 nm and hydrophilic) [41]. This pattern was in accordance with the results obtained 

by García-Ivars et al. [45]. They demonstrated that PES 30 kDa membranes with high 

hydrophilicity and low surface roughness had the lowest permeate flux decline during 

several fouling/rinsing cycles compared with other modified and unmodified PES 

membranes with higher surface roughness and hidrophobicity. 

 

Tables 2 to 6 show the fitting accuracy for the Hermia’s models adapted to crossflow, the 

combined model and the resistance-in-series model for all the membranes and feed 

solutions tested. All the models fitted with almost the same accuracy to the experimental 
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data, with the only exception of the standard blocking model. The fitting accuracy of the 

standard blocking model (n = 1.5) was very low for all the experimental data considered in 

this work. Therefore, this model was not considered. This can be explained by the fact that 

solute molecules were larger than the membrane pores, as in the case of the BSA and BSA 

and CaCl2 feed solutions [4]. In the case of WPC 45 % feed solutions, at the pH values of 

the solutions prepared in this work (5.97), the lowest molecular weight proteins tend to 

form dimers that are larger than the pore size of the membranes [47, 48]. Therefore, they 

cannot penetrate inside the porous structure. In Tables 2-6, the models with the best fitting 

accuracy are highlighted in bold for each membrane and feed solution tested. As it can be 

observed in Table 2, the combined model was the best for all the membranes when BSA 

was used as feed solution. When BSA and CaCl2 solutions were ultrafiltered (see Table 3), 

the combined model had the highest fitting accuracy for the polymeric membranes (5 and 

30 kDa). However, the resistance-in-series model had a slightly higher value of R2 for the 

15 kDa ceramic membrane fouled with BSA and CaCl2. In the case of WPC 45 % 

solutions (Tables 4-6), the model that fitted the best to the experimental data was the 

resistance-in-series model for all the membranes, except for the 5 kDa membrane when 

WPC 45 % at the highest concentration (44.4 g·L-1) was tested. In this last case, the best 

model was the combined one. However, in some cases it is difficult to select the best fitting 

model between the combined and the resistance-in-series one, such as in the case of the 15 

kDa membrane using BSA (Table 2). According to other authors [9, 22], the decrease in 

permeate flux with time can be divided in two stages: first, a rapid flux decline due to a 

pore blocking phenomena and, after that, a slow decrease until the steady-state is achieved 

due to the formation of a cake layer. These two stages are those that are considered in the 

combined model. The resistance-in-series model takes into account both fouling 

mechanisms as well as it considers the resistance due to adsorption of solute molecules on 
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the membrane surface and inside its pores and the resistance caused by the cake layer. 

Therefore, according to both models, both mechanisms (pore blocking and cake layer 

formation) must be considered to explain membrane fouling when whey model solutions 

(BSA, BSA and CaCl2 and WPC solutions) are ultrafiltered.  

 

The values of model parameters for the best fitting models are shown in Table 7. When 

BSA was used as feed solution, the values of the pore blocking parameter, α, indicate that 

cake layer formation was the predominant fouling mechanism for all the membranes 

tested. This result is also in agreement with the individual analysis of Hermia’s models 

adapted to crossflow in the case of BSA solutions (see Table 2). The reason can be that 

solute molecules (67 kDa) are much larger than the pores of the 5, 15 and 30 kDa 

membranes, thus solute molecules are accumulated on the membrane surface, forming a 

layer on it. Regarding the values of the cake layer formation model parameter, Kg, and the 

complete blocking model parameter, Kc, for the 5, 15 and 30 kDa membranes and BSA 

solutions (Table 7), both parameters decreased when the MWCO increased. It is important 

to note that one of the hypotheses of the Hermia’s complete blocking model is that the pore 

entrance is completely blocked or sealed when one solute molecule arrives at the 

membrane surface. Therefore, both models (complete blocking and cake layer formation) 

consider membrane fouling mechanisms that are external and occur on the membrane 

surface [49]. According to Brião and Tavares [49], these external membrane fouling 

mechanisms are related to the difference between the solute molecule size and the 

membrane pore size. This difference is higher as the MWCO decreases. Thus, a greater 

amount of particles can be deposited on the membrane surface and a tighter bound cake 

layer may be formed on the membrane with the lowest MWCO (5 kDa). On the other hand, 

according to the membrane material, hydrophilic membranes usually have better 
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antifouling properties than those made of hydrophobic materials [44-46]. As the 30 kDa 

membrane was a PESH membrane, the fouling was less severe using the same feed 

solution and experimental conditions as in the case of the 5 kDa PES membrane. In 

addition, as it was above mentioned, the lower the membrane roughness is, the less severe 

the membrane fouling is. For the membranes tested in this work, the roughness of the 

PESH 30 kDa membrane is very low and similar to that of the hydrophobic PES 5 kDa 

membrane. However, the surface roughness of the ceramic 15 kDa membrane is much 

greater. Therefore, the combination of high hydrophilicity and low surface roughness 

favour the low permeate flux decline observed for the 30 kDa membrane.  

 

When BSA and CaCl2 solutions were used as feed solutions, the best fitting accuracy was 

obtained with the combined model for the polymeric membranes (5 and 30 kDa). In this 

case, comparing the values of the parameters when BSA solutions were used and those 

calculated for BSA and CaCl2 solutions, it can be observed that the values of both 

parameters considered in this model (Kc and Kg) increased to a large extent when BSA and 

CaCl2 were fed simultaneously. Therefore, fouling was more severe when CaCl2 was 

added to the feed solutions. Calcium salts have been demonstrated to act as bridging agents 

between proteins, agglomerating them [33, 34]. Almécija et al. [33] investigated the effect 

of calcium salts on the UF of whey solutions. They reported that the percentage of 

membrane blocked pores during UF increased as the concentration of calcium salts 

increased in the feed solution. Ang and Elimelech [34] studied the fouling of reverse 

osmosis membranes using BSA and calcium solutions. They demonstrated that, when 

calcium concentration increased, permeate flux decline was greater because the 

electrostatic repulsion among BSA molecules is diminished. De la Casa et al. demonstrated 

that Hermia’s models parameters increased as the membrane fouling was more severe 
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during the microfiltration of BSA [22]. According to their work, permeate flux reduction 

and thus, membrane fouling, was greater at values of pH near the isoelectric point of the 

protein, when protein agglomeration occurs as well. Comparing the values of the Hermia’s 

cake layer formation parameter, they observed that these values increased as membrane 

fouling was more severe (at pH 7). On the other hand, comparing the values of the model 

parameters Kc and Kg for the 5 and 30 kDa when BSA and CaCl2 solutions were fed, it can 

be observed that both parameters decreased as membrane MWCO increased. It indicates a 

lower permeate flux decline and thus, less severe membrane fouling in the case of the 30 

kDa membrane. This pattern is in agreement with that obtained for BSA solutions.  

 

The resistance-in-series model was the model with the highest fitting accuracy when WPC 

45 % solutions at a concentration of 22.2 and 33.3 g·L-1 were used as feed for all the 

membranes tested and also for the 15 and 30 kDa membranes using WPC 45 % solutions at 

44.4 g·L-1. Comparing the values for the model parameters R’a and Rg, it can be observed 

that they increased as the MWCO decreased for all the membranes tested. The increase in 

model parameters with the membrane MWCO is in agreement with the results previously 

commented for the other feed solutions. In addition, for the 15 and 30 kDa membranes, the 

values of R’a and Rg increased when WPC concentration increased from 22.2 to 44.4 g·L-1, 

indicating greater membrane fouling as feed concentration increased. For the 5 kDa 

membrane, Rg also increased when WPC concentration increased from 22.2 to 33.3 g·L-1. 

However, the value of R’a was similar for both WPC concentrations. This can be due to the 

fact that, because of the great difference between the proteins size and the membrane pore 

size, the possibility of adsorption inside the pores is lower in the case of the membrane 

with the lowest MWCO (5 kDa) in comparison with the other membranes. Thus, the value 

of R’a is similar independently of the WPC concentration.    
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In order to generalize the values of the model parameters for different membranes, feed 

solutions and protein concentrations in the feed solution; the model parameters for the two 

best fitting models (resistance-in-series and combined models) were correlated to three 

independent variables (membrane surface roughness, mean particle size of the feed 

solution and protein concentration in the feed solutions) using a multiple regression 

analysis from Statgraphics®. The developed equations that relate the values of model 

parameters (Table 7) to the three independent variables and their combinations at a 

confidence interval of 95 % (p-values lower than 0.05) are Eqs. 7-12. The accuracy of 

these equations (Eqs. 7-12) in terms of R2 was 0.973, 0.926, 0.988, 0.974, 0.984 and 0.971, 

respectively. 

 

bqqqa C·R··.R··.r··.R··.·.'R 10211101213 103599105894103944102129103301 +++−=  Eq. 7 

 

 272544 104054105061108912102078 bqq C··.R··.R··.·.b −−−− −+−=  Eq. 8 

 

210211101313 100202102637106114103991106602 bqqg C··.R··.r··.R··.·.R +++−=  Eq. 9 

 

 bqbqqc C·R·.C·.R·.r·.R·..K 2156302021051300484162336192 22
+−++−=  Eq. 10 

 

r·R··.

C·R··.C··.r··.C··.R··.·.K

q

bqbbqg

5

62624879

108251

106044107127103632107732105284109981

+

+−−−++−=

   Eq. 11 
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r·R··.C·R··.r··.R··.C··.·.a qbqqb
43252321 100892105044106083104252107834104907 −−−−−− −−−−−=

   Eq. 12 

These equations can be used to predict the best conditions resulting in the lowest possible 

fouling and thus, in the highest steady-state permeate flux. In the case of the resistance-in-

series model, which was one of the most accurate for the experimental data obtained for all 

the membranes and feed solutions tested, the general model equation (Eq. 5) indicated that 

the highest steady-state permeate flux was obtained when R’a and Rg had a value of 0. 

Therefore, an optimization analysis was performed by means of the Microsoft Excel Solver 

tool in order to determine the values of the independent variables in Eqs. 7-9 that made R’a 

and Rg equal to 0. These values were a membrane surface roughness of 1.605 nm, a 

particle size of 1.374 nm and a protein concentration in the feed solution of 1.647 g·L-1. As 

it was above mentioned, the lower the protein concentration in the feed solution and its 

particle size are, the less aggregates are formed and thus, the lower the membrane fouling 

is. In addition, rougher surfaces allow solute molecules to deposit on them, favouring 

membrane fouling [45, 46]. 

 

5. Conclusions 

 

The models studied in this work can predict with high accuracy the experimental permeate 

flux for all the membranes tested when different whey model solutions that contained BSA 

(1 % w/w), BSA (1 % w/w) and CaCl2 (0.06 % w/w in calcium) and WPC with a total 

protein concentration of 45 % w/w (22.2, 33.3 and 44.4 g·L-1) were ultrafiltered at 2 bar 

and 2 m/s. By fitting experimental data to all these models, the predominant fouling 

mechanisms were confirmed for all the membranes and feed solutions tested. Only the 

Hermia’s standard blocking model did not show a very accurate fitting to the experimental 
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data, because solute molecules were much higher than membrane pore size, thus they 

cannot penetrate inside the membrane porous structure.  

 

According to the accuracy of models fitting, the resistance-in-series model and the 

combined model achieved the highest R2 and lowest SD for all the feed solutions and 

membranes tested. This indicates that both cake layer formation and pore blocking 

contributed to membrane fouling. 

 

The combination of high hydrophilicity and low surface roughness resulted in a membrane 

with better antifouling behaviour. Thus, the 30 kDa membrane showed the lowest permeate 

flux decline and the lowest values of model parameters for all the feed solutions tested.  
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Nomenclature 

 

List of symbols 

 

b Fouling rate due to adsorption (s-1) 

Cb Protein concentration in the feed solution (g·L-1) 

K  Hermia’s model constant (units depending on n)  

Kc Complete blocking model constant (s-1) 
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Kg Cake layer formation model constant (s·m-2) 

J Permeate flux (m3·m-2·s-1) 

Jmodel Permeate flux predicted by each model (m3·m-2·s-1) 

Jss Steady-state permeate flux (m3·m-2·s-1) 

n Hermia’s model parameter (dimensionless) 

Np Number of points within the selected area (dimensionless) 

∆P Transmembrane pressure (bar) 

r Mean particle size (nm) 

R Total hydraulic resistance (m-1) 

Ra Resistance due to adsorption on membrane surface and inside its pores and 

 concentration polarization (m-1) 

R’a Steady-state adsorption resistance 

Rg Cake layer resistance (m-1) 

Rm   New membrane resistance (m-1) 

Rq Root Mean Square Roughness (nm) 

t Filtration time (s) 

Zavg Average of the height values of the sample (nm) 

Zi Value of height currently measured (nm) 

 

Greek letters 

 

α  Fraction of membrane pores completely blocked (dimensionless) 

µ  Feed solution viscosity (kg·m-1·s-1) 

 

Abbreviations 
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BSA  Bovine serum albumin 

MWCO Molecular weight cut off 

PES Polyethersulfone 

PESH Permanently hydrophilic polyethersulfone 

UF  Ultrafiltration 

WPC Whey protein concentrate 
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Fig. 1. AFM images for the membranes of (a) 5 kDa, (b) 15 kDa and (c) 30 kDa. 
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Fig. 2. Permeate flux predictions for the best fitting models during the ultrafiltration of BSA 

solutions at 2 bar, 2 m·s
-1

 and 25 ºC (lines: estimated results; symbols: experimental data). 

The highest fitting accuracy corresponded to the combined model (R
2
 of 0.972, 0.993 and 

0.976 for the 5, 15 and 30 kDa membranes, respectively). 

 

 



1.4

1.6

1.8

2.0

2.2

0.6

0.8

1.0

1.2

1.4

1.6

0 25 50 75 100 125

J 
·1

0
5

(m
3
·m

-2
·s

-1
)

J 
·1

0
 5

(m
3
·m

-2
·s

-1
)

t (min)

5 kDa

15 kDa

30 kDa

n = 0

Resistance-in-series

Combined

 
Fig. 3. Permeate flux predictions for the best fitting models during the ultrafiltration of BSA 

and CaCl2 solutions at 2 bar, 2 m·s
-1

 and 25 ºC (lines: estimated results; symbols: 

experimental data). The highest fitting accuracy corresponded to the combined model (R
2
 of 

0.983 and 0.968 for the 5 and 30 kDa membranes, respectively) and to the resistance-in-series 

model (R
2
 of 0.993 for the 15 kDa membrane). 
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Fig. 4. Permeate flux predictions for the best fitting models during the ultrafiltration of WPC 

45 % (22.2 g·L
-1

) solutions at 2 bar, 2 m·s
-1

 and 25 ºC (lines: estimated results; symbols: 

experimental data). The highest fitting accuracy corresponded to the resistance-in-series 

model (R
2
 of 0.982, 0.969 and 0.991 for the 5, 15 and 30 kDa membranes, respectively). 
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Fig. 5. Permeate flux predictions for the best fitting models during the ultrafiltration of WPC 

45 % (33.3 g·L
-1

) solutions at 2 bar, 2 m·s
-1

 and 25 ºC (lines: estimated results; symbols: 

experimental data). The highest fitting accuracy corresponded to the resistance-in-series 

model (R
2
 of 0.952, 0.971 and 0.968 for the 5, 15 and 30 kDa membranes, respectively). 
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Fig. 6. Permeate flux predictions for the best fitting models during the ultrafiltration of WPC 

45 % (44.4 g·L
-1

) solutions at 2 bar, 2 m·s
-1

 and 25 ºC (lines: estimated results; symbols: 

experimental data). The highest fitting accuracy corresponded to the combined model (R
2
 of 

0.971 for the 5 kDa membrane) and to the resistance-in-series model (R
2
 of 0.979 and 0.980 

for the 15 and 30 kDa membranes, respectively). 



Table 1.  

Composition of WPC 45 % powder. 

Component Value  

Total proteins (%) 38.16 ± 0.51 

Lactose (%) 42.33 ± 0.16 

Fat (%) 9.00 ± 0.45 

Ash (%) 6.15 ± 0.07 

Ca (%) 0.87 ± 0.08 

Na (%) 1.34 ± 0.13 

K (%) 1.57 ± 0.01 

 

 

 

Table 2.  

Models fitting accuracy for the ultrafiltration of BSA solutions at 25 ºC, 2 bar and 2 m·s
-1

: 

values of R
2
 and SD. 

MWCO (kDa) Model R
2
 SD 

5 

Complete blocking (n = 2) 0.922 0.025 

Intermediate blocking (n = 1) 0.948 0.020 

Cake formation (n = 0) 0.962 0.016 

Combined model 0.972 0.013 

Resistance-in-series model 0.964 0.017 

15 

Complete blocking (n = 2) 0.981 0.014 

Intermediate blocking (n = 1) 0.904 0.033 

Cake formation (n = 0) 0.991 0.008 

Combined model 0.993 0.007 

Resistance-in-series model 0.992 0.008 

30 

Complete blocking (n = 2) 0.936 0.018 

Intermediate blocking (n = 1) 0.957 0.015 

Cake formation (n = 0) 0.970 0.012 

Combined model 0.976 0.010 

Resistance-in-series model 0.971 0.012 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 3.  

Models fitting accuracy for the ultrafiltration of BSA and CaCl2 solutions at 25 ºC, 2 bar and 

2 m·s
-1

: values of R
2
 and SD. 

MWCO (kDa) Model R
2
 SD 

5 

Complete blocking (n = 2) 0.950 0.022 

Intermediate blocking (n = 1) 0.971 0.016 

Cake formation (n = 0) 0.980 0.013 

Combined model 0.983 0.012 

Resistance-in-series model 0.980 0.013 

15 

Complete blocking (n = 2) 0.975 0.024 

Intermediate blocking (n = 1) 0.969 0.026 

Cake formation (n = 0) 0.977 0.022 

Combined model 0.991 0.012 

Resistance-in-series model 0.993 0.012 

30 

Complete blocking (n = 2) 0.922 0.017 

Intermediate blocking (n = 1) 0.941 0.015 

Cake formation (n = 0) 0.953 0.013 

Combined model 0.968 0.010 

Resistance-in-series model 0.965 0.011 

 

 

 

Table 4.  

Models fitting accuracy for the ultrafiltration of WPC 45 % solutions (22.2 g·L
-1

) at 25 ºC, 2 

bar and 2 m·s
-1

: values of R
2
 and SD. 

MWCO (kDa) Model R
2
 SD 

5 

Complete blocking (n = 2) 0.976 0.014 

Intermediate blocking (n = 1) 0.975 0.014 

Cake formation (n = 0) 0.966 0.017 

Combined model 0.980 0.014 

Resistance-in-series model 0.982 0.013 

15 

Complete blocking (n = 2) 0.954 0.032 

Intermediate blocking (n = 1) 0.967 0.028 

Cake formation (n = 0) 0.958 0.031 

Combined model 0.966 0.028 

Resistance-in-series model 0.969 0.028 

30 

Complete blocking (n = 2) 0.973 0.010 

Intermediate blocking (n = 1) 0.965 0.012 

Cake formation (n = 0) 0.962 0.012 

Combined model 0.982 0.008 

Resistance-in-series model 0.991 0.006 

 

 

 

 

 

 

 

 

 



Table 5.  

Models fitting accuracy for the ultrafiltration of WPC 45 % solutions (33.3 g·L
-1

) at 25 ºC, 2 

bar and 2 m·s
-1

: values of R
2
 and SD. 

MWCO (kDa) Model R
2
 SD 

5 

Complete blocking (n = 2) 0.936 0.022 

Intermediate blocking (n = 1) 0.941 0.021 

Cake formation (n = 0) 0.938 0.021 

Combined model 0.943 0.032 

Resistance-in-series model 0.952 0.020 

15 

Complete blocking (n = 2) 0.957 0.036 

Intermediate blocking (n = 1) 0.967 0.032 

Cake formation (n = 0) 0.949 0.039 

Combined model 0.965 0.032 

Resistance-in-series model 0.971 0.031 

30 

Complete blocking (n = 2) 0.962 0.015 

Intermediate blocking (n = 1) 0.958 0.016 

Cake formation (n = 0) 0.948 0.017 

Combined model 0.962 0.015 

Resistance-in-series model 0.968 0.014 

 

 

 

Table 6.  

Models fitting accuracy for the ultrafiltration of WPC 45 % solutions (44.4 g·L
-1

) at 25 ºC, 2 

bar and 2 m·s
-1

: values of R
2
 and SD. 

MWCO (kDa) Model R
2
 SD 

5 

Complete blocking (n = 2) 0.952 0.032 

Intermediate blocking (n = 1) 0.969 0.027 

Cake formation (n = 0) 0.964 0.029 

Combined model 0.971 0.025 

Resistance-in-series model 0.969 0.026 

15 

Complete blocking (n = 2) 0.962 0.036 

Intermediate blocking (n = 1) 0.969 0.031 

Cake formation (n = 0) 0.943 0.040 

Combined model 0.969 0.032 

Resistance-in-series model 0.979 0.030 

30 

Complete blocking (n = 2) 0.965 0.013 

Intermediate blocking (n = 1) 0.959 0.014 

Cake formation (n = 0) 0.950 0.016 

Combined model 0.968 0.012 

Resistance-in-series model 0.980 0.009 

 

 

 

 

 

 

 

 

 



Table 7. 

Values of model parameters for the best fitting models. 

MWCO 

(kDa) 
Feed solution 

Resistance-in-series model Combined model 

R’a ·10
-13

 

(m
-1

) 

b·10
4
 

(s
-1

) 

Rg·10
-13

 

(m
-1

) 

Kc 

(s
-1

) 

Kg·10
-6

 

(s·m
-2

) 

α 

(dimensionless) 

 

5 

BSA - - - 83.519 2.050 0.349 

BSA + CaCl2 - - - 112.731 7.287 0.312 

WPC 45 % 

(22.2 g·L
-1

) 
1.877 6.392 2.792 - - - 

WPC 45 % 

(33.3 g·L
-1

) 
1.759 5.306 3.212 - - - 

WPC 45 % 

(44.4 g·L
-1

) 
- - - 65.898 40.590 0.442 

 

15 

BSA - - - 30.042 2.012 0.288 

BSA + CaCl2 1.253 4.250 1.015 - - - 

WPC 45 % 

(22.2 g·L
-1

) 
1.789 3.664 1.713 - - - 

WPC 45 % 

(33.3 g·L
-1

) 
2.633 4.278 1.945 - - - 

WPC 45 % 

(44.4 g·L
-1

) 
3.474 5.394 2.409 - - - 

 

30 

BSA - - - 7.757 1.212 0.312 

BSA + CaCl2 - - - 11.913 3.119 0.287 

WPC 45 % 

(22.2 g·L
-1

) 
0.487 2.951 1.330 - - - 

WPC 45 % 

(33.3 g·L
-1

) 
0.696 2.941 1.506 - - - 

WPC 45 % 

(44.4 g·L
-1

) 
0.836 2.020 1.978 - - - 

 


