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Abstract

A multiobjective optimisation engineering design (MOED) methodology for
PI controller tuning in multivariable processes is presented. The MOED pro-
cedure is a natural approach for facing multiobjective problems where several
requirements and specifications need to be fulfilled. An algorithm based on
the differential evolution technique and spherical pruning is used for this
purpose. To evaluate the methodology, a multivariable control benchmark is
used. The obtained results validate the MOED procedure as a practical and
useful technique for parametric controller tuning in multivariable processes.

Keywords: multiobjective optimisation, controller tuning, pid tuning,
multiobjective evolutionary optimisation, decision making.

1. Introduction

PI and PID controllers currently represent a reliable digital control solu-
tion because of their simplicity and efficacy [3]. They are often used in indus-
trial applications and there is ongoing research on new techniques for robust
tuning in single-input single-output (SISO) systems, as well as multiple-input
multiple-output (MIMO) systems. MIMO systems are very common in in-
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dustrial processes, and their complexity relies on the dynamic interaction
between inputs and outputs.

New PI-PID controller tuning techniques mainly search for a trade-off so-
lution among several control and operational requirements. Some approaches
state the design problem as an analytical /numerical optimisation procedure
(14, 51, 15, 2, 36], or as an evolutionary optimisation statement [24, 22, 23].
In both cases, a variety of specifications with several requirements and spec-
ifications must be faced. Such problems involving multiple objectives are
known as multiobjective problems (MOP).

In an MOP, the designer (control engineer) has to deal with a list of re-
quirements and searches for a solution with a desired trade-off (preferences)
among objectives. A traditional approach to handle preferences in an MOP is
to translate it into a single-objective problem using weighting factors. More
elaborate methods have been developed [30], such as goal programming, lex-
icographic methods, physical programming [55], and recently, global physical
programming [33, 45].

Multiobjective optimisation (MOO) can handle these issues in a simpler
manner because of its simultaneous optimisation approach. In MOO, all
of the objectives and constraints are significant from the designer’s point
of view. Consequently, each is optimised to obtain a set of optimal non-
dominated solutions. In this set of solutions, no solution is better than
the others in every objective - but each solution offers different balances
between design objectives. As a result, the decision maker (DM) can obtain
a better insight into the trade-off for different solutions and can analyse the
tendencies. This approach produces more information for selecting the most
preferable solution that meets the DM’s preferences.

The difficulty involved in the PI-PID tuning process based on optimisa-
tion increases when:

MIMO systems are considered instead of SISO systems.

The number of engineering requirements (objectives) increases.

e MOQO is required instead of single objective optimisation.

Constrained problems are treated instead of unconstrained problems.

It is, therefore, worthwhile searching for new algorithms and strategies
to tackle constrained MOO for PI-PID tuning in multivariable processes.



Therefore, this paper proposes an MOP statement for constrained MIMO
PI tuning that demonstrates its viability in an easy and intuitive way. This
is fulfilled by defining the MOO statement with well-known performance
indexes and a graphical visualisation of the Pareto front. This is a very im-
portant issue since the DM requires a useful and interpretable approximation
for the decision making stage.

The remainder of this paper is organised as follows: in Section 2 a review
of MOO is presented; in Section 3 a multiobjective optimisation engineer-
ing design (MOED) methodology for multivariable PI controller tuning is
explained. In Section 4 the MOED methodology is evaluated in a multivari-
able benchmark process. Finally, some concluding remarks are given.

2. Multiobjective optimisation review

An MOP, without loss of generality,! can be stated as follows:

525%11 J(@) = [J1(0),...,J,(0)] R (1)
where 6 € R" is defined as the decision vector and J(0) as the objective
vector (see Figure 1). A unique solution does not generally exist for an MOP
because no solution is better than the others for all the objectives. Let Op
be defined as the Pareto set, or set of solutions of the MOP, and Jp be
defined as the Pareto front or the projection of ®p in the objective space.
Each point in the Pareto front is said to be a non-dominated solution (see
Figure 2).

Definition 1. (Dominance relation): given a solution 8% with objective vec-
tor J(0Y) dominates a second solution 62 with objective vector J(602) if and

only if:

Vi€ [1,2,...m], Ji(8Y) < Ji(62)}
N
(Fgel2....m]: J,(0Y) < J,(6%)}

which is denoted as @ < 02,

LA maximisation problem can be converted to a minimisation problem taking into
account that max J;(0) = min(—.J;(0)) is applied.



0,

Figure 1: Pareto set (left) and Pareto front (right). Objective vector J(6%) is dominated
by J(62?)

Two useful vectors can be defined: the ideal solution J™" and the nadir
solution J™Me*:

Jz'deal _ Jmm — |: min J; (0), ..., Inin Jm(a)}
J(0)eTs J(0)eTp
nadir — Jmaz _ . 2
= | O, 10) N

MOO techniques search for a discrete approximation ©% of the Pareto
set ©p capable of generating a good quality description Jj of the Pareto
front Jp (see Figure 3). In this way, the DM has a set of solutions for
a given problem and more flexibility for choosing a particular or desired
solution. There are several widely used algorithms for calculating this Pareto
front approximation (normal boundary intersection method [7, 35], normal
constraint method [1, 44, 32, 31], and the successive Pareto front optimisation
[43]). Recently, multiobjective evolutionary algorithms (MOEAs) have been
used due to their flexibility in dealing with non-convex and highly constrained
functions [6, 5]. For this reason, MOEAs are considered in this work.

A general framework is required to successfully incorporate the MOO
approach into any engineering process. A multiobjective optimisation engi-
neering design (MOED) methodology is shown in Figure 4. It consists in
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Figure 2: Dominance concept. A given objective vector A dominates the objective vectors
with a better or equal cost value in all objectives (with, at least, one of them being better).
Two important points are defined: the ideal solution and the nadir solution (see Equation
2).

2 T T
15- . Dominated  + .
’ . *  Selutions (+)*
; *,} . ;* N
g 17 / T o
True Pareto front Solutions describing
0.5 (continous) J P a Pareto front
approximation J P
1 1 1 1 1
8.1 0.2 0.3 0.4 0.5 0.6

Jl

Figure 3: Pareto front concept (example of two objectives). Points are a possible Pareto
front approximation obtained by a particular optimisation algorithm.



three main steps:

MOP definition: at this stage the following are defined: the design concept
(how to tackle the problem at hand); the engineering requirements
(what it is important to optimise); and the constraints (which solutions
are not practical/allowed). The design concept implies the existence
of a parametric model that defines the parameter values (the decision
space) that leads to a particular design alternative and its performance
(34].

MOQO process: at this stage, the MOO statement, as well as the MOEA,
are defined. It is important to select an MOEA that assures reasonable
diversity, spread, and convergence to the Pareto front and is an efficient
constraint handling mechanism.

Decision making stage: finally, with the calculated approximation Jp,
the DM can analyse the trade-off along the Pareto front. The DM
will select the best vector solution according to his/her needs. A reli-
able tool or methodology is required for this final step, since it is not a
trivial task to perform an analysis on m-dimensional Pareto fronts.

Multiobjective Optimization Engineering Methodology

MOP Definition Multiobjective Optimization Process =p-| Decision Making Stage

I / becision

Objective -
Space
Definition

|
I
| |
N~ I . !
1 \\Pefinition / © ~ 1 L ! !
l | R q | I Designer's 1
| 1 volutionary Process | Analysis and | Preferences
| V= P oo g ©. || !, |Visualization 7 !
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1 -1 I
I solve..? ] E ~ER IR e @
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Figure 4: Multiobjective optimisation engineering methodology.

The MOED methodology for PI tuning the multivariable process is then
defined.



3. Multiobjective optimisation engineering design applied to mul-
tivariable PI controller tuning

MIMO systems are common in industry. Their complexity is due to their
coupling effects between inputs and outputs. Consider a Nx/N multivariable
process modeled by the following transfer matrix:

Gpu(s) ... Gpin(s)
G,(s) = : : (3)
Gpni(s) ... Gpnn(s)

The selected controller design concept must fulfill a set of requirements,
in accordance with the given process. Common choices for controlling MIMO
system are: decoupled PI-PID controllers [22]; centralised PI-PID controllers
[23]; state space feedback techniques [13, 40]; or predictive control [12, 47, 28].
The selection of one technique over another depends on the desired balance
between complexity and trade-off between design specifications.

3.1. MOP definition

In accordance with Figure 4, the first step is to define the design technique
(leading to the decision space definition), the operational constraints, and the
objective space (optimisation objectives).

Using MOEAs in the MOO process gives a greater flexibility to use any
type of parametric controller and define any type of performance objective.
In this work, a set of decoupled PI controllers is proposed to tackle the
control problem in a MIMO system. PI controllers are a simple but successful
solution, and they can be improved with complementary techniques (see [3]).
Equation (4) shows the structure of the chosen PI controller:

Gu(s) = ke (1 + Tls) E(s) (4)

where k. is the proportional gain, T} the integral time (secs), and FE(s)
the error signal. The decoupled PI controller G.(s) design has N SISO
controllers:

Gey(s) ... 0

0 ... Gey(s)



Therefore, the decision space is defined as:

ez[kclaT‘ila"'achaT‘iN] 6§R2N (6)

The non-convex optimisation developed by [2] will be used as guideline
for the SISO PI controllers. This optimisation procedure is analytical and
model oriented and does not require any time domain function computations

(simulations). It defines a given value of the maximum sensitivity func-

1
14Ge(gw)Gp (gw)

Ge(yw)
14+Ge (w)Gp (3w)

non-convex optimisation is then used, by increasing as much as possible the
integral gain k; = k./T; subject to the values of My and M, to obtain a
desired trade-off between load rejection and robustness.

The previous tuning procedure can be adapted for MOEAs and defining
as engineering control objectives k;, M, and M,. Such objectives give the
DM some insight regarding the trade-off for robustness, load rejection, and
set point response as in [2]. To apply this tuning procedure in a multivariable
process, an index to measure the overall MIMO system stability is required.
Here, the closed loop log modulus (L.,,) will be used as a robustness indicator.
This index leads to the well-known largest log modulus (BLT) tuning criteria
for diagonal PID controllers in MIMO processes [29]. The criteria is defined
as:

tion as a design constraint M, = max and/or the maximum

. A numerical

complementary sensitivity function M, = max

_Wis) 7)
1+ Wi(s)

where W(s) = —1 4 det (I + G,(s)G(s)). Therefore, the MOP at hand
is to find a trade-off solution 6, that is:

Len = 201log ’

J(O) = [_kila Msl, Mpl, ey _kiN7 MsN, MpN, Lcm] c %3N+1 (8)

The objective vector as defined by Equation (8) does not guarantee to
give the DM a useful Pareto front with a good degree of flexibility to select a
reliable and practical solution. It is well-known that certain practical limits
to My, M, and L., values are needed to guarantee a minimum of stability
margin. Therefore, the MOP statement must consider the following practical
limits:



ka +v1-ka/Tn < K

ken +vn - ken/Tin < Kyn
1.2< My, ..nv <20

1< My,

0 < Low < 2N 9)

Where v is the maximum value between the time delay process and 1.
Constraint k.+v-k./T; < K, is used to bound the maximum allowed control
action effort to the ultimate gain K. Constraints 1.2 < M, and 1 < M,
are used to avoid controllers with a sluggish performance, while constraints
M, < 2.0 and M, < 1.5 guarantee a minimum of stability margin [2]. The
empirical rule of keep L., < 2N [29] is accepted.

3.2. The MOO process

As constraints are considered in the MOP, a constraint handling mecha-
nism is used. According to the practical and empirical limits defined for J}
by Equation (9), any unfeasible solution is punished. In [8], a penalty func-
tion without penalty parameter is proposed. Such penalty function enforces
the following criteria:

1. Any feasible solution is preferred to any infeasible solution.

2. Between two feasible solutions, the solution with the better objective
function value is preferred.

3. Between two infeasible solutions, the solution with the smaller con-
straint violation is preferred.

Following these ideas, the MOO vector objective takes the form:

7
J(9) € RN+ if S 6u(0) =0
Onil)‘glN‘?(e) - 7 =
© offset + (Z (bk(O)) ‘R e RNTL otherwise
k=1
(10)



offset = max(J")- R

01(0) =m0,k + 28 gk + YN e
1; Tin
$2(0) = max{0,1.2 — My ..., 1.2 — M.y}
¢3(0) = max{0,1.0 — M, ..., 1.0 — M,n} (11)
$4(0) = max{0, My —2.0,..., M,y — 2.0}
¢5(0) = max{0, M, —1.5,..., M,y — 1.5}
¢6(0) = max{0, L., —2N}
7(0) max{0, —L¢p }

(12)

and R is a vector of 1s with dimension 1x7.

An extensive list of MOEAs are available for MOO. Some examples are
NSGA-II [10], MOGA [11], ev-MOGA [19], pae-MyDE [17], sp-MODE [37],
among others. They have been used for SISO PID tuning [20, 41, 42, 38, 50],
as well for MIMO tuning [53]. In this case, the differential evolution (DE)
algorithm [49, 48] was selected as the evolutionary technique. Multiobjective
optimisation algorithms based on DE have shown a remarkable performance
in a variety of multiobjective optimisation problems [21]. The DE algorithm
has two main operators: mutation and crossover.

Mutation: At generation k for each target (parent) vector 6|, a mutant
vector v'|; is generated according to Equation (13):

'Ui|k:0T1|k—|—F(9r2|k—9r3|k) (13)
Where 7 # ry # r3 # ¢ and F' is known as the scaling factor.

Crossover: For each target vector |, and its mutant vector v, a trial
(child) vector w'|, = [u}|, ubg, ..., u’|x] is created as follows:

il :{ Vil if rand(0,1) < Cr

il 0]k otherwise (14)

where j € 1,2,3...n and Cr is the crossover probability rate.
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For single objective optimisation, a child is selected over its parent (for the
next generation) if it has a better cost value. In MOO, a child is selected over
his parent if child < parent. The DE by itself is only capable of evolving its
population towards the Pareto front, and cannot improve diversity or spread
along the Pareto front. As a result, it is necessary to use a mechanism to
improve diversity.

The use of an external archive is very common and widely accepted in
MOEAs. It consists in using an evolutive population plus an external archive
where quality solutions are stored and usually used in the evolutionary strat-
egy itself. Several techniques have been used to maintain diversity and spread
solutions in this archive. In [27], a relaxed form of Pareto dominance, known
as e—dominance, is proposed. The main idea is to use an archiving strategy,
where instead of using the classical relation for dominance (Definition 1), the
following ideas are used:

e A solution dominates the solutions that are less fit for all the objectives.

e A solution dominates the solutions inside a distance that is less than a
parameter € (e-dominance concept).

Algorithms based on this approach include the e~-MOEA [9], e-~MyDE
[46], ev—MOGA [18, 19], pae—MyDE [17], and pae—ODEMO [16]. Pruning
techniques are commonly based on using some kind of measurement to select
individuals in less crowded areas. The crowding distance from [10] or a
based measurement are used in algorithms such NSGAII [10] or GDE3 [26].
Nevertheless, it is worthwhile to look for new techniques to deal with any
geometrical characteristic of the Pareto front, such as concavity, convexity,
disconnected segments, or mixed characteristics. In this work, a pruning
technique is employed, based on spherical relations in the objective space [39].
The technique shows a good flexibility in dealing with diverse geometries in
m-~dimensional Pareto fronts and achieves a well-spread set of solutions.

The basic idea of the spherical relations is to analyse the proposed solu-
tions in the current Pareto front approximation by using normalised spherical
coordinates from a reference solution (see Figure 5a). The spherical pruning
works over a non-dominated set of solutions. This can be interpreted as if
the designer stands at the ideal solution (or any desired solution) with a
given direction in the objective space. The DM will then be searching for
the closest non-dominated solution (Figure 5b).

11
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The spherical relations are compatible with any MOO algorithm or evolu-
tionary technique and will be merged together with the DE algorithm. Such
an approach, presented as sp-MODE in previous works, has been shown to
be effective in addressing control engineering problems [37, 42, 40].

3.3. Decision making stage

An m-dimensional Pareto front Jj is difficult to analyse without an ef-
fective visualization tool. If J} is not clearly displayed to the DM, it will be
complicated to perform a practical analysis in the Pareto front approxima-
tion, or select a solution with a desired trade-off. The graphical visualisation
is not a trivial task when the number of objectives is more than three.

The level diagram (LD) tool [4] is used because it is flexible in performing
a useful analysis on the obtained Pareto front Jj. LDs are based on the
classification of the J} approximation obtained. Each objective J,(0) is
normalised with respect to its minimum and maximum values. That is:

. J, () — Jmin
J0)=""L_"9 _4ell,...,m] 15
0) = e €l (15)
On each normalised objective vector J () a p-norm ||z|, is applied to
evaluate the distance to an ideal solution Ji ~ Jmin 2 The LD tool
displays a two-dimensional graph for every objective and every decision vari-

able. The ordered pairs (Jq(e), |J (O)HP) in each objective sub-graph and

<91, Hj(O)Hp) ,0e{1,2,...,n} in each decision variable sub-graph are plot-
ted. Therefore, a given solution will have the same y-value in every graphic.
This correspondence will help to evaluate general tendencies along the Pareto
front and compare solutions in accordance with the selected norm. A deeper
explanation of the LD tool capabilities can be found in [4].

A MIMO benchmark will next be considered to validate the MOED for
the multivariable PI controller tuning defined in this work.

4. Procedure validation

To show the applicability of the MOED proposal for multivariable PI
tuning, the well-known distillation column model defined by Wood and Berry
will be used [52]:

2Since J'al is not always available

13



—s _ —3s
Gpi(s) Gpia(s) 5T Taied

Gy(s) = - (16)

Gpai(s) Gpaa(s) fo6§s_+71 711134126;; :

As mentioned earlier, any kind of parametric controller can be tuned with
the MOED methodology, but for comparison purposes two PI controllers will
be used:

ke (1 + Tjﬁ) 0
Go(s) = (17)

4.1. Engineering design process

Given equations (16) and (17), the MOP at hand is to find a trade-off
solution @ = [k.1, Tj1 ke, Ti2] for the design objectives:

J(0) = [—ka /T, Ms1, M1, —kea/Tio, Mo, Mo, Loy, (18)

subject to:

ker + ke /Ty < Ky = 2.0

koo 4 3kea/Tio| < |Kuo| = | — 0.42]
1.2 < My s < 2.0 (19)

1< My,<15

0< L., <4

4.2. Multiobjective optimisation process

The MOO objective vector shown in Table 1 is in accordance with Equa-
tion (10). The optimisation process is performed with three different MOEAs:

e A DE algorithm without archiving strategy (NA); namely, a child will
be selected over his parent if child < parent. Parameter values F' = 0.5,
Cr = 0.8 are used (which are standard parameters in accordance with
[48]) and an initial population of 50 random decision vectors.

14



e A DE algorithm with spherical pruning (sp-MODE). Parameter values
F = 0.5, Cr = 0.8, a population of 50 solutions, and a spherical grid
resolution of 5 are used.

e The gamultiobj algorithm provided by MatLab(c) is used to calculate
a Pareto front for reference. This algorithm uses a controlled elitist
genetic algorithm (a variant of NSGA-II [10]). Diversity is maintained
by controlling the elite members of the population as the algorithm
progresses by using a crowding distance index. Default parameters are
used and the BLT solution [29] is used in its initial population.

The maximum allowable function evaluations (FEs) for each method is
bound to 6000, and 25 independent runs will be evaluated to analyse their
performance. Each execution from the sp-MODE and the NA strategy will
be compared with the Pareto front Jj|ga built with the executions of the
gamultiobj algorithm.

To evaluate the performance of each MOEA, the I, binary indicator [54,
25] is used. The indicator indicates the factor I.(A, B) by which an approx-
imation set A is worse than another set B with respect to all the objectives.
Using a comparison method (see Table 2) C. g(A, B) = E(I.(A, B), (B, A))
= {false,true} the Eps binary indicator is a compatible and complete oper-
ator 3 and this is useful to determine if two Pareto fronts are incomparable,
equal, or if one is better than the other [54].

The optimisation experiments were carried on an a standard PC, with a
Pentium(R) processor running at 3.40 GHz and 2 GB RAM. The results after
25 independent trials with each proposal are shown in Table 3 (performance
indicators) and Table 4 (non-dominated solutions attained).

As evidenced by the given results, the sp-MODE algorithm represents a
viable approach for generating the Pareto front. The sp-MODE algorithm
outperforms the gamultiobj algorithm, since I.(sp — MODE ,GA) < 1. Be-
sides, the sp-MODE algorithm has a better improvement over Jj|g4 than
the NA-strategy (I.(sp — MODE,GA) < I[(NA,GA)).

3Given a binary relation on approximation sets (-), the comparison method is com-
patible if C; g(A,B) — A- BV B - A. However, the comparison method is complete if
A-BVA-B— Crg(A, B).

15



J(0) € W if > 6n(6) =0
min J(0) = k=1

R4 7
o offset+ > ¢1(0)- R€R" otherwise
k=1
J(e) = [J1(0)7 J2(9)7 J3(0)7 J4(0)7 J5(0)7 J6(9)7 J7(0)} 0 = [k(:17 El? cha 7—‘12]
J1(0) = —ki = —ke/Tx Ka € [0.001, K]
JQ(O) = M, = max ‘m Ko € [Kug, —0001]

J3(0) = My, = max \m

Tq;LiQ S [0001, 40]

Ji(0) = —kip = —keo /T

. o 1
J5(6) = My, = max ‘m

- _ Gea(gw)
Jo(0) = My = max ‘m

Jo(8) = Loy = 20 log )HWT%] W (s) = —1det (I + G,(5)Ge(s))

offset = max(J" %) x R

$1(0) = max (0, ko + ke /T — 2.1, [key 4 3kea/Tia| — 0.42)
$2(8) = max (0, 1.2 — M,;, 1.2 — M,y)

$3(0) = max (0, 1.0 — My, 1.0 — M)

¢4(0) = max (0, Mg — 2.0, My — 2.0)

¢5(0) = max (0, M,,; — 1.5, My, — 1.5)

¢6(0) = max{0, L., — 4.0}

¢7(0) = max{0, — Lo}

Table 1: MOO statement for the multivariable PID controller approach.
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I.(A,B) <1

Every J(6°) € B is strictly
dominated by at least one
J(6%) € A.

I(ABY<1AI(B,A) > 1

Every J(6°) € B is weakly
dominated by at least one
J(0%) € Aand A # B.

I.(A,B) <1 —  Every J(6°) € B is weakly
dominated by at least one
J(6%) € A.
I.(A,B)=1ANI(B,A)=1 A=B.

I(A,B)> 1A L(B,A) > 1

L4

Neither A weakly dominates
B nor B weakly dominates

A.

Table 2: Comparison methods using the Eps indicator.

Eps Indicator

I.(NA,GA) I.(sp— MODE,GA)
Worst, 2.34E-001 1.01E-001
Pareto Best 7.74E-002 4.69E-002
Set Median  1.07E-001 7.55E-003
Reference  Mean 1.19E-001 7.53E-002
(676 Sol) Std 3.32E-002 1.44E-002

Table 3: Performance achieved by MOEAs.

NA sp-MODE
Worst 109
Best 48 243
Median 43 153
Mean 4.03E4001 1.56E-+002
Std 9.15E4+000 3.09E+001

Table 4: Number of solutions achieved by MOEAs.
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Fe T s To  5(0) 50) J5(0) J(0) 550) Jo0) Ji(0)
BLT [29] 03750  8.2900 -0.0750 23.6000 -0.0452 1.2953 1.1081 -0.0032 1.2513 0.9998 3.8599
WIB 22] 0.8485 326.3462 -0.0132 19130 -0.0026 1.6663 1.0178 -0.0069 2.0569 1.7259 0.6024
min|[J(0)[], | 04245 156135 -0.0397 7.0977 -0.0272 1.3090 1.0014 -0.0056 1.3090 1.1047 1.5054
win || J(O)[; | 0.3351 341079 -0.0476 8.9239 -0.0098 1.2263 1.0000 -0.0053 1.2496 1.0427 0.7488
min [|F(0)[lo | 0.7415 11.2697 -0.0431 54571 -0.0657 1.6220 1.0809 -0.0079 1.5097 1.2914 2.1913
J:(6) = 2.9922 | 0.7687  6.9516 -0.0408 5.1598 -0.1106 1.6989 1.2144 -0.0079 15316 1.3170 2.9922
J:(6) = 34956 | 0.8458  12.4453 -0.0858 17.6735 -0.0680 1.7434 1.1414 -0.0049 1.3092 1.0000 3.4956
J:(6) = 3.995 | 0.92480 8.7357 -0.0783 5.8147 -0.1059 1.8880 1.2790 -0.0135 1.6731 1.4436 3.9950

Table 5: Controllers selected for further evaluation.

4.8. Decision making stage

To validate the MOED method approach as a competitive and practical
solution for controller tuning, the Pareto front with 153 solutions (median
value in Table 4) is selected and used for controller evaluation.* In Figure 6
the Pareto set and Pareto front using the LD tool are shown respectively.

The controller selection procedure lies on the DM preferences and desired
specifications. To illustrate the tradeoff achieved by different solutions, six
controllers G, (s) were selected from the Pareto front for further evaluation
(see Table 5). The controllers with the lowest ||J (8)]|1, |J(0)]]2 and || (8)]|
norm are selected. An overall trade-off between objectives is expected using
these controllers.

The remaining controllers are selected according to DM preferences. Let’s
assume, for example, that the DM is interested in controllers over the A-line
in objective J;(0) (see Figure 6b) and decides to perform a further analysis
on three controller from such a geometric locus.

The controller resulting from the BLT tuning [29] (oriented to MIMO-
stability using the Ziegler-Nichols procedure), as well as the controller pro-
posed in [22] (WIB) that minimises the integral of the absolute error for a
specific test, are finally included.

These controllers will be tested in the multivariable model in three dif-
ferent experiments:

1. Set point change in controlled Variable 1; consequently, the perfor-
mance to reject the disturbance in controlled Variable 2 is evaluated.

2. Set point change in controlled Variable 2; consequently, the perfor-
mance to reject disturbance in controlled Variable 1 is evaluated.

4The best solution attained could be used for this analysis, but this will not be entirely
realistic, since it is not always possible to run an optimisation algorithm several times.

18



11 T T T T T 1.1 T T T T T T T
1+ + #i+ " 1t ++ gt + +oo
8 * :*++++$+++j ++++ *J MR T K + + { % " ++ +++ €+ ot ++fft Hﬁﬁ‘ %
= o009 Pt e e T R, P 0.9} o AR b N T SIS
—~ + e + halud
+ + + + ¥ + - + +
D + + ) + W e VIR S oy Lo ot
+ + #
= os8r * ESEIA S L J o8k S S |
= ++ +4
0.7 - 1 0.7 * 1
0.6 i i i + i i 0.6 L L+ L L L L L
0 0.2 0.4 0.6 0.8 1 0 5 10 15 20 25 30 35 40
61 : Proportional Gain 1 02 : Integral Time 1 (secs)
11— T T T T T 11 T T T T T T T
8 r + tor +4 4 %;u:**} jh#fr ++* * I ] e ﬂ**r Fet ; s P * f o+ ]
J— g TO# ! W}tﬁ L3 + 5 N b wht pt p he *
= o9} W el Worhte oL+ g 0.9F A A T T T ]
=~ T At " f FLEYY
) e PR e T e TR A
fa) + 5 + + +F + O
0.8F % ¥ * ] 0.8 T + ]
- + & + +
= + ¥ + +
0.71 * 1 0.71 : 1
0.6 ; ; ; + 4 ; 0.6 i+ ; ; ; ; ; ;
-0.12 -0.1 —-0.08 -0.06 -0.04 -0.02 0 0 5 10 15 20 25 30 35 40
93 : Proportional Gain 2 94 : Integral Time 2 (secs)
*
(a) ©p
8 ! ! ! . . .
= 1+ + + + # ++ ek + 1+ + i, R Tep B an. T T
= + R4 +W" ERE A I S i S, iy Sy
D os # PR 5 ¢ 0. 1 o8l P e N @Tt& 2 1
+ 4
= o6 \ P 0.6l ‘ i ,
—-0.15 -0.1 —-0.05 0 —-0.015 -0.01 -0.005 0
3 U Integral Gain U Integral Gain
T T T T T T T T T T T T T T
—~ S F v TR P e L gy o A e 1
B ol A v e me i B e T oo R A T AT ]
~— + + B + +
2 6 I I I i H I I 0.6 I I " I I I I
12 13 1.4 15 1.6 1.7 1.8 19 2 12 13 1.4 15 1.6 1.7 1.8 19 2
3 J,: Sensitivity Function Jg Sensitivity Function
T T T T T T T T T T
= o 1 1rd o o + o ERRE T
= Py + s N £ 4Ry *
5 ; I
it
D ; ;
2 0.6 ; ; 4l ;
- 11 1.2 13 1.4 15 1 11 12 13 1.4 15
U Complementary Sensitivity Function U Complementary Sensitivity Function
8 T T T T T T T LA
= 1r +H - + " 5. + SO
— + ++ MR 3.5 ék*%tn&“}%ﬁﬁrm*ﬁjw
D o8t o fo e W 1
n Pias
= 06 L L L+ L L L

0.5 1 15 2 25 3 35 4
S Biggest Log Modulus

(b) Jp

Figure 6: Pareto set and Pareto front used for analysis. ||J(8)|/o norm is used. A-line
indicates controllers that match a hypothetical preference of the DM.
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3. Simultaneous set point change in both controlled variables.

In all cases, the integral of the absolute error (IAE), the integral of the
absolute derivative of the control action (IADU), the settling time (ST) at
+2%, the rise time (RT) from 10% to 90%, the maximum deviation (MD),
and the overshoot (OS) will be evaluated. In Table 6 and in Figures 7,8 and 9
the obtained results for each controller are shown. Some expected behaviours
are noted:

e For controllers in the A-line (see J; at Figure 6b) the greater the L,
the greater the control action and the worse are the trade-offs. That
is evident since such controllers are incapable of performing well in all
the experiments. Notice how these controllers become more oscillating
as J7(0) increases (Figures 7b, 8b, and 9b).

e Controller WIB obtains the best value in IAE for Experiment 3; this
was expected since this controller was tuned to minimise TAE for the
same experiment. Notice how this outstanding performance has a lower
trade-off when single set-point change in controlled variable 1 is applied
(Figures 7a and 8a).

e Controllers with min ||J(6)||,, min ||J(8)|; and min || J(8)|/« have a
balanced trade-off between objectives, achieving good overall perfor-
mance (Figures 7b, 8b, and 9b).

It is important to remark that there are no bad controllers, just controllers
with different trade-offs between objectives. As we can see, performances dif-
fer. This analysis could assist in scheduling strategies where more than one
controller is used. As a final remark, it can be noticed that operational
aspects such saturation, initial states, and operational ranges are not con-
sidered. MOEA flexibility allows the use of time function computations to
incorporate operational aspects and re-define the MOO statement with more
meaningful objectives.

5. Conclusions

In this work, an MOED methodology for multivariable PI controller tun-
ing has been presented. The obtained results validate the methodology as a
practical approach. Thanks to the visualisation capabilities of the LD tool,
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it is easier to perform the controller selection procedure. As the simulations
reveal, the MOO approach is validated as a useful tool for control purposes.

With this approach, most of the optimisation procedure uses classical
control techniques supported with well-known performance objectives. The
continuous use of these objectives by the control engineer community ensures
practical bounds and quick interpretations for selecting suitable controllers.
The Pareto front enables us to have a better insight into the objective trade-
off and how it changes between solutions.

The MOP definition for the Wood and Berry distillation column will allow
further comparisons of MOEA performance. This MOP provides a useful
multiobjective constrained problem for controller tuning in the multivariable
process, and will help focus these algorithms for a specific class of engineering
design problem.
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TAE IADU ST RT MD 0S
BLT 454E+002  S8.71E-001  2.29E4+001  3.68E-+000 B 10.38%
Unit Step WIB 248E+003  2.02E+000 +2.00E+002 1.39E-+000 - 7.24%
Reference  min [|J(0)],  5.78E4+002  8.99E-001  5.81E4+001  4.02E+000 — 0.24%
Y1 min | J(0)],  1.57E+003 6.86E-001 1.40E+002  5.53E+001 E 0.00%
min|[J(8).  3.34E+002 1.76E+000 3.27E+001  1.50E+000 - 13.78%
Y1 J-(6) = 29922 3.32E+002 197E+000 2.18E+001  1.35E+000 = 24.43%
J:(6) = 34956  3.18E+002 228E+000  2.90E+001  1.27E+000 E 29.11%
J-(0) =3.995 3.16E4+002 2.7{E+000 1.99E4+001 1.11E-+000 - 30.04%
BLT 1.65E+003 1.02E-001  1.38E+002 — 6.70E-001 —
Unit Step WIB T.OIE1003  7.02E-002  6.78E+001 8.07E-001
Reference  min || J()]],  9.54E+002 5.34E-002 5.12E4-001 — 6.48E-001 —
Y1 min [|J(0)];  9.92E+002  5.43E-002  7.00E+001 5.36E-001
min|[J(0). 820E+002  6.97E-002  5.93E+001 8.4TE-001
Y2 J:(0) = 2.9922  8.59E+002  7.35B-002  6.35E+001 9.27E-001
J:(0) =3.4956 1.10E+003  1.63E-001  8.40E+001 — 8.94E-001 —
J-(0) =3.995 6.44E+002 1.72E-001  5.27E+001 — 9.79E-001 —
BLT 3.38E4+002  1.92E-001  4.58E-+001 — 1.82E-001 —
Unit Step WIB 4. 22E+003  1.58E-001  +2.00E+002 T.49E-001
Reference  min [|[J(0)],  5.63E+002 1.53E-001  7.27E-+001 — 1.36E-001 —
Y2 min || J(0)];  1.56E+003 1.53E-001  1.57E4+002 1.89E-001
min [ J(0)].  2.32E+002  1.54E-001  4.03E+001 9.63E-002
J:(6) = 29922 1.40E+002 1.57E-001  2.86E+001 8.68E-002
Y1 J:(0) = 34956 2.25E4+002  2.62E-001  3.85E4001 — 1.39E-001 —
J-(6) =3.995 147E+002  2.42E-001  2.61E+001 — 1.44E-001 —
BLT 3.26E+003 1.63E-001  1.73E+002  8.58E+001 — 0.00%
Unit Step WIB T.80E+003 1.24E-001  6.85E+001  2.05E+001 6.19%
Reference  min || J(0)],  1.85E+003 1.04E-001 6.78E+001  3.59E4001 — 0.00%
Y2 min || J(0)];  1.94E+003 1.04E-001 9.48E+001  3.72E4+001 — 0.00%
min ||J(0)] 1.38E+003 1.10E-001  3.84E4+001  2.34E4001 — 1.33%
J:(0) = 29922 1.43E+003  L.14E-001  5.91E+001  2.35E+001 2.11%
Y2 J:(0) = 34956 2.13E4003  1.84B-001  L.I11E+002  5.19E+001 — 0.00%
J(0) =3.995 9.00E4002 1.80E-001 4.75E+001 6.62E+000 — 2.57%
BLT 5.75E+002 1.0IE+000 3.23E+001  2.98E+000 — 26.57%
Unit Step WIB 2.35E4+002 1.95E+000 8.33E4+000 1.39E+000 8.04%
Reference  min || J()]],  541E+002  9.57E-001  5.03E+001  3.28E+000 B 13.84%
Y1,Y2 min||J(0)|;  6.35E+002 7.30E-001  8.3/E+001  4.68E+000 - 7.36%
min ||J(0)]  3.74E+002 1.78E+000 2.55E+001  1.50E+000 - 19.39%
Y1 J:(6) =2.9922  3.67E+002 1.99E+000 1.30E+001  1.35E+000 29.46%
J:(6) =3.4956 3.94E+002 2.33E+000  2.50E+001  1.27E+000 - 26.38%
J-(6) =3.995 3.86E+002 2.74E+000 2.53E+001 1.11E-+000 - 35.27%
BLT 1.81E+003  2.37E-001  2.01E4+001  4.77E+000 — 29.61%
Unit Step WIB 7.97E4002 6.91E-002 1.73E+001 _ 2.23E4000 - 6.91%
Reference  min [|J(0)|,  1.10E4003  1.19E-001  1.83E4001  4.59E+000 - 11.94%
Y1,Y2  min|J(0)], 1.07E4+003  1.23E-001  1.80E+001  5.28E+000 - 12.28%
min||J()]c 1.01E+003  1.48E-001  1.72E+001  3.61E+000 - 37.50%
Y2 J:(6) =2.9922  1.04E4+003  1.51E-001  1.67E+001  3.49E+000 - 43.74%
J:(6) = 34956 1.42E4+003  3.31E-001  1.61E4001  3.89E+000 55.55%
J(0)=3995 1.15E4+003  2.32E-001  2.97E+001  3.68E-+000 - 79.98%

Table 6: Controller performance in experimental setup. In bold appears the best value
and in talics the worst value in each experiment.
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