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Abstract 

This paper deals with a variant of flowshop scheduling, namely, the hybrid or flexible 
flowshop with sequence dependent setup times. This type of flowshop is frequently 
used in the batch production industry and helps reduce the gap between research and 
operational use. This scheduling problem is NP-hard and solutions for large problems 
are based on non-exact methods. An improved genetic algorithm (GA) based on 
software agent design to minimise the makespan is presented. The paper proposes 
using an inherent characteristic of software agents to create a new perspective in GA 
design. To verify the developed metaheuristic, computational experiments are 
conducted on a well-known benchmark problem dataset. The experimental results 
show that the proposed metaheuristic outperforms some of the well-known methods 
and the state-of-art algorithms on the same benchmark problem dataset. 
 

Keywords: Hydrid flowshop, sequence dependent setup times, agent, genetic 

algorithm, makespan. 

 

1. Introduction 

Among the production scheduling systems, the flowshop scheduling (FS) problem is one of the 

most distinguished environments Gupta and Stafford (2006). In FS, all jobs follow the same 

operational order (processing route) and need to be processed at every stage. This problem 

could be considered as the foundation of several other interesting formulations. 

Since the publication of the Arthanari and Ramamurthy (1971) seminal paper until the recent 

review of Ribas et al. (2010), the hybrid flowshop scheduling (HFS) problem has been of 

continuing interest for researchers and practitioners. When using several unrelated machines 

in parallel during HFS production stages it is important not to confuse the hybrid flowshop with 

the flowshop with multiple processors (FSMP), or the flexible flow line (FFL) problems. In these 

two latter problems, the machines available at each stage are identical. In all shop scheduling 
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problems, the purpose is to discover a production sequence for the jobs on the machines such 

that a certain criteria, or a set of selected criteria, are optimised. 

In HFS scheduling, the task of creating a feasible schedule is quite complicated. The search 

space of feasible schedules grows exponentially, as there are certain increases in the number 

of different jobs that must be processed and the number of facilities that can perform the 

process of each product. The HFS with two stages (with one machine in the first stage, and 

several machines in the second stage) is NP-hard Gupta (1988). Moreover, Hoogeveen et al. 

(1996) demonstrated that this problem remained NP-hard even if pre-emption is allowed. 

The majority of papers assume that setup time is negligible, or part of the job processing time. 

But explicit setup times must be included in scheduling decisions in order to address a more 

realistic variant of hybrid flowshop scheduling problems. This inclusion avoids the adverse 

effect on the solution quality of using multiple scheduling applications. Several explicit setup 

times can be considered; however, the issue of sequence dependent setup time (SDST) is 

gaining increasing attention among researchers. The resultant problem is called the sequence 

dependent setup time (SDST) hybrid (flexible) flowshop; and with the makespan criterion it is 

denoted as FF/STsd/Cmax Allahverdi et al. (2008). An explicit mathematical model for the 

problem is developed in Andrés, (2001). 

This problem is more complex than HFS and belongs to the NP-hard set of problems. 

This paper presents an innovative solution based on the genetic algorithm (GA) method, yet 

designed and developed under the agent software paradigm. Both approaches have provided 

successful proposals for similar problems. Both are now combined to create a new GA with 

features not seen in the traditional GA. 

This paper is structured as follows: Section 2 reviews the SDST hybrid flowshop literature. 

Section 3 discusses the proposed agent-based genetic algorithm and we present the new 

genetic algorithm in detail. In Section 4, an experimental analysis is carried out, along with a 

complete calibration using the design of experiments (DoE) approach. A comparative analogy 

between our algorithm and other effective algorithms in the literature is presented. Finally, 

Section 5 concludes the paper and introduces some directions for future work. 

 

2. Literature review of HFS problem with makespan criterion 

To focus the literature review we analyse the most relevant contributions related to HFS and 

minimising makespan. Firstly, we discuss the cases that do not consider SDST, and secondly, 

those that consider SDST. A comprehensive analysis of general HFS problems for this criterion 

is found in Hejazi and Saghafian (2005).  

The term ‘hybrid flowshop’ was first used by Gupta (1988) in a shop with two stages, being 

multiprocessor-only in the first stage, and where it was demonstrated to be NP-hard. 

Hundreds of contributions have subsequently analysed the progress of the HFS problem state.  



During the last year, several interesting literature reviews and surveys have analysed and 

classified various proposals regarding the HFS problem. The HFS problem is commented in the 

works of Vignier et al. (1995) and Vignier et al. (1999). In Vignier et al. (1999) the work is split 

into two parts. The first part is focused on two-stage flowshop problems, and the second stage 

on the general k-stage problem. The authors do not identify any solved problems related to 

makespan and average flow time Kis and Pesch (2005) and provide an extended literature 

review about exact methods in HFS. The authors focus on branch and bound (B&B) and 

constraint propagation techniques. An interesting classification of resolution methods is 

offered in Quadt and Kuhn (2007). Ribas et al. (2010) recently classified papers according to 

HFS characteristics and production limitations. This represents a new approach to the 

classification of papers in the HFS environment. Papers are also classified according to the 

proposed solution approach. 

Heuristic and metaheuristic solution approaches are dominant, but some exact methods are 

often used for simple cases. Branch and bound (B&B) and dynamic programming techniques 

are the main actors on the stage of the exact techniques. In Gupta and Tunc (1991), Brah and 

Hunsucker (1991), Rajedran and Chaudhuri (1992) or Lee et al. (1993) various B&B solutions 

for minimising makespan are defined. Some authors develop dynamic programming 

algorithms to solve the problem optimally with makespan criterion. A two-machine flowshop 

scheduling problem where machines are not always available is studied in Lee (1997) and 

extended in Lee (1999). A two-stage HFS problem with one machine in the first stage, and two 

different machines in parallel in the second stage, is discussed in Riane et al. (2002).  

When problems grow in complexity or data volume, authors usually propose approximate 

methods. For a basic review of HFS under the makespan criterion, several useful papers can be 

found. Early papers by Shen and Chen (1972) and Sriskandarajah and Sethi (1989) present two 

heuristics based on the Johnson algorithm; while Gupta (1988) introduces a new heuristic 

based on the longest processing time index. Over the last decade, metaheuristic and 

evolutionary approaches have been proposed that are used alone, or in combination with 

traditional heuristics. The authors of Haouari et al. (1997) propose two approximate methods 

developed in two phases. The first solution is generated using a longest remaining work rule. 

This schedule is improved using techniques based on simulated annealing and tabu search. 

Both solutions are encoded with the list used in the first phase. In Portmann et al. (1998) an 

improvement on the B&B proposed by Brah et al. (1991) is analysed. From the definition of 

improved levels, the authors present a metaheuristic using a GA in the B&B procedure to 

improve the values of the upper bound in certain stages. In Nowicki et al. (1998) a tabu search 

with graph representation is introduced. In Riane et al. (1998), a problem of scheduling n jobs 

on a three-stage HFS of a particular structure (one machine in the first and third stages, and 

two dedicated machines in stage two) is discussed. The objective is to minimise the makespan. 

The authors propose two heuristic procedures to cope with realistic problems. More recently, 

bio-inspired methods have gained relevance. GAs are proposed in Serifoglu and Ulusoy (2004) 

and Gao et al. (2006).  

A particular case within HFS problems is reached when SDST constraint is included. This 

constraint corresponds to quite common situations in industry, and reduces the gap between 

theoretical and realistic models by considering events as common as changing colours, 



formats, etc., in production processes. This may be one of the least treated aspects historically, 

yet considerable interest has been generated in recent years. It should be noted that the 

proposals submitted by different authors are usually based on approximate methods.  

During the last century some innovative works began to address the problem of HFS with 

SDST. In Yoshida and Hitomi (1979) flowshop problems were developed to consider setup 

times separate from processing times. Gupta and Darrow (1986) present several heuristics for 

the case of SDST two-machine flowshops. Gupta and Tunc (1994) discuss the two-stage HFS 

scheduling problem where the setup and removal times for each job at each stage are 

separated from the processing times. Four heuristic algorithms are developed for the case 

where there is one machine at stage one and the number of identical parallel machines at the 

second stage is less than the total number of jobs. In Aghezzaf et al. (1995a) and Aghezzaf et 

al. (1995b) a two-step heuristic algorithm is proposed for minimising makespan in the textile 

industry. A two-stage flowshop is solved in Andrés et al. (1998) using a genetic algorithm. The 

proposed GA defines the sequence in the first step and allocates jobs to machines in the 

second step. During these early years, the problem was addressed by relatively simple 

instances. Yang and Liao (1999) review static scheduling research in which setup time, or cost, 

is of main concern in the problem studied, and FHS is one of the reviewed cases.  

During the first years of this century the complexity of the problem has grown and the 

methods have tended towards the use of pure or hybrid metaheuristics. Some relevant 

examples that focus on minimising the makespan are presented below. Allahverdi et al. (2008) 

present an extended survey regarding setup time consideration, with and without sequence 

dependency. The authors also analyse HSF problems.  

Kurz and Askin (2004) highlight the difficulty in solving integer programming directly, and 

several heuristics are developed, based on greedy methods, flow line methods, and insertion 

heuristics for the travelling salesman problem, as well as the random keys genetic algorithm. 

Zandieh et al. (2006) propose an immune algorithm, and show that their algorithm 

outperforms the RKGA of Kurz and Askin (2004). Group scheduling within the context of a 

problem is introduced in Logendran et al. (2006). A search algorithm that uses short-term 

memory is recommended for problems of all sizes and levels of flexibility.   

Ruiz and Maroto (2006) analyse a gap between theory and practice in the context of HFS. The 

authors introduce a new GA considering SDST and machine eligibility issues that are usual in 

the ceramic tile industry. New iterated greedy (IG) algorithms are proposed by Ruiz and Stutzle 

(2008) for minimising makespan and minimising total weighted tardiness. The first IG 

algorithm is a straightforward adaption of the IG principle, while the second incorporates a 

simple descent local search. Ruiz et al. (2008) propose a formulation along with a mixed 

integer modelisation and several heuristics for scheduling jobs in stages, where at each stage, 

there is a known number of unrelated machines. The authors also consider anticipatory and 

non-anticipatory SDST along with machine lag, release dates for machines, machine eligibility, 

and precedence relationships among jobs. Yaurima et al. (2009) present a GA for the HFS with 

unrelated machines, SDST, and availability constraints. The proposed GA is a modified and 

extended version of the algorithm for a problem without limited buffers. The GA takes into 

account additional limited buffer constraints and uses a new crossover operator and stopping 



criteria. In Behnamian et al. (2009) the authors consider problems with the objectives of 

minimising the makespan and sum of the earliness and tardiness of jobs, and present a multi-

phase method. In the first phase, the population is decomposed using a GA into several sub-

populations to obtain a good approximation of the Pareto front. In the second phase, non-

dominant solutions are unified as one large population base for a local search. Finally, in phase 

three, the gaps between the non-dominated solutions and the improved Pareto front are 

covered using a hybrid metaheuristic. In work carried out by Naderi et al. (2010), the authors 

propose two advanced algorithms that specifically deal with parallel machines and setup 

characteristics of the addressed problem. The first algorithm is a dynamic dispatching rule 

heuristic, and the second is an iterated local search metaheuristic.  

In the above literature there is almost no work on hybrid flowshops considering SDST. We can 

consider that even today it is possible to improve on current results. For this reason, we have 

developed a GA for this complex problem. 

 

3. MAGSA algorithm 

This section describes the multi-agent genetic scheduling algorithm (MAGSA). Section 2 shows 

that as problems become more complicated, metaheuristic solutions are more often used. In 

particular, metaheuristic solutions are dominant for bio-inspired problems, one of the most 

common being genetic algorithms. However, the task of improving the results obtained with 

genetic algorithms is difficult using the traditional scheme. The idea of revising the 

methodology based on new and interesting approaches is an attractive idea. The 

implementation framework and results obtained from the software agent paradigm suggest 

that this is a promising line of work. 

Proposals based on multi-agent systems come mainly from the theories of distributed artificial 

intelligence (DAI) and have produced some interesting results Shen et al. (2006), Toptal and 

Sanbucuoglu (2010). Researchers who have developed proposals for the sequencing problem 

have done so primarily under the consideration that contributions would be made within the 

presented agent system architecture, and using the tools that the proposed agent ‘society’ 

system would use for sequencing tasks Kutanoglu and Wu (1999), Ng et al. (2006)). Other 

authors have used the characteristics of these systems to tackle more complex issues such as 

the integration of planning and sequencing Lim and Zhang (2004), Sanjay and Young (2008). 

However, few authors have tried to apply the very essence of the agent (autonomy, sociability, 

responsiveness, initiative, and rationality) to the design of methods already available (AG, Ant 

Systems, etc.). In other words, the development of agent-based systems, rather than multi-

agent systems. 

With the aim of creating a genetic algorithm consisting of individuals with features that are 

richer than traditional individuals, we start from the structure presented by Zhong et al. 

(2004), which is a proposal for a ‘multiagent genetic algorithm for a global numerical 

optimisation’. This proposal performs an adaptation of the representation and the genetic 

operators in order to enable it to address a problem that is as radically different as sequencing. 



As a starting point, and with the general idea of providing genetic algorithms with a greater 

affinity to the behaviour of natural systems, and taking the agent concept as a reference, we 

propose to enhance MAGSA: 

 The generation of new individuals based on local competition as occurs in nature, and not 

global competition as proposed in most genetic algorithms. 

 Strengthen the learning ability so that the dynamic adjustment of certain parameters can be 

made based on the circumstances of a changing environment. 

 Encourage the differentiation of individuals with a customised application of genetic 

operators.  

To achieve this, we modified the traditional functional layout of genetic algorithms with the 

proposal of Figure 1 that introduces a genetic learning stage, a grid-shaped structure for the 

population, and an application of genetic operators in the characteristic way. This is explained 

in more detail in the section below. 

 

Figure 1. Functional structure of MAGSA 

 

 

a. Population structure, encoding, and initialisation 

 

A genetic algorithm works on individuals with chromosomes, which are a representation or 

codification of the solutions to the problem. In this case, we have chosen an ordinal genetic 

representation. As shown in Figure 2, the individuals are identified by sequences so each 

element of the sequence is associated with a numeric identifier that represents a particular 

job. 

 

Figure 2. Ordinal representation of a chromosome 

From a sequence it is possible to calculate a hybrid flowshop using a simple rule. In this case, 

jobs are selected in the sequence order, and each job is assigned to a machine before the end 

of each its operations. Another task is not assigned until all previous operations have been 

assigned. 

A proposal by Zhong et al. (2004) has been followed for the population and a square lattice has 

been defined that is made of individuals who can only communicate with their neighbours. 

These neighbours have been designed as agents, which we will term agent-solutions. Each 

agent-solution includes self-interest and a logic of action to achieve its interests. Additionally, 

we have designed an agent-manager that will act as a controller and ensure the rules of the 

algorithms are respected. 

 



 

Figure 3. Model of the agent lattice 

This lattice, along with the permitted connection types, reduces the communication of each 

agent-solution to a small area (contiguous neighbours), so that their relationships can be 

considered as local. The population maintains a constant size with a 6x6 lattice, and 

preliminary studies have shown this to offer a good balance between evolution (convergence 

and pressure) and computation time. 

The generation of the population consists of establishing the lattice by creating the individuals. 

Each individual must contain a sequence or chromosome from which a solution that 

characterises it can be obtained. The lives of the individuals have the same duration as the 

algorithm, meaning that the agent-solution does not die until the algorithm ends. However, 

the content of the chromosome can change often. 

The sequence value is generated independently by each individual using a greedy algorithm 

that aims to reduce the accumulated setup time. To simplify this process, the algorithm is 

calculated considering only one randomly chosen operation. From the goodness of the 

solutions, the agents learn which is the most interesting operation with regard to setup time. If 

the bottleneck switch (BS) is activated, agents can take advantage of the experience of each 

individual and share information with each other to facilitate the selection of the stage as a 

benchmark. 

 

b. Genetic operators 

 

i. Crossover  

The MAGSA algorithm uses two operators, selected from those that are considered able to 

offer the best results, and has again left it to the agents to use their acquired knowledge to 

select which operator to apply. Future work may increase the number of operators. 

One of the selected crossover operators is called ‘similar block 2-point order crossover 

(SB2OX)’, which was used by Ruiz and Maroto (2006) with great success. The other operator is 

an adaptation of the ‘neighbourhood competition operator (NCO)’ used Zhong et al. (2004), 

whose implementation has not been tested for the problem of the hybrid flowshop with 

sequence dependent setup times.  

The NCO operator needs only one parent (S2BOX needs two parents), which is selected by 

local competition between five individuals, the individual on which it is operating and four 

neighbours. The winning individual has the chromosome that achieves the smallest makespan 

solution. Once selected: 

1. Two crossover points are chosen at random as shown in Figure 4. Two values are 

obtained using a uniform distribution between 1 and the size of the sequence. 

 



Figure 4. NCO crossover operator - step one 

2. All the genetic information that is not between cut-off point 1 and cut-off point 2, is 

transferred from father to son. 

3. The genetic information found between the two cut-offs constitutes a partial sequence 

that is transferred from father to son, in such a way that the position of the genes in 

the child corresponds to the reverse of their position in the partial sequence of the 

father's genes. Figure 5 shows the final step. 

 

Figure 5. NCO crossover operator - step three 

There are two steps to a crossover operation: 

 Determine if an agent is to be crossed. 

 Decide which of the two operators to apply. 

Agents can be crossed only for a given percentage of occasions. This probability is related to 

the crossover factor that each agent-solution maintains with an individualised value. There are 

four possible initial values (0.2, 0.4, 0.6, and 0.8) that are randomly assigned among the 

individuals at the moment of their creation. The agents can vary this value if the parameter 

crossover factor switch (CFS) is enabled, otherwise it will keep the initial value. If the factor can 

evolve, each time an agent-solution is considered for a cross, the crossover factor is reduced 

by 0.05 units regardless of whether the cross is actually performed – and so reducing the 

possibilities that this operator is applied. If the chromosome value is changed, the crossover 

factor is reinitiated. To avoid values that are too low, a parameter called the minimum 

crossover factor (MCF) has been defined.  

The selection of a crossover operator is based on a variable with uniform distribution, 

controlled by each agent-solution and termed the crossover operator distribution. This variable 

is initially fixed with a 50% distribution, which is the likelihood of using one of the two 

operators. Each individual modifies the probability distribution after evaluating the solutions 

obtained in a set of crossover operations. Increases or decreases by a value of 0.01 can be 

made in the value of the crossover operator distribution to improve the probability of the 

operator that has achieved best results in the makespan. In any case, the value of the 

crossover operator distribution ranges from a minimum of 0.1 to a maximum of 0.9. It is 

possible to prevent the agent-solution changing the value of the variable specified by inhibiting 

the learning process with the crossover operator switch (COS) parameter (enable, disable).   

 

ii. Mutation 

The mutation operator is usually much simpler than the crossover operator, and normally 

achieves its purpose with a simple operation. The proposed mutation operator is based on an 



exchange of positions. It is a proximity-based mutation operator which given the position of a 

chromosome or gene whose location in the sequence is ‘i’ selects a gene ‘j’ that is located 

randomly between [i +1, i +3]. In calculating the location of the gene j, it is assumed that the 

sequence is cyclical, and if there are n jobs then the position n +1 of the sequence is position 1. 

An example can be seen in Figure 6.  

 

 

Figure 6. Mutation operator 

After applying the crossover operator to an individual there is an opportunity to apply the 

mutation operator on the individual according to a global random factor, meaning a factor 

whose value is unique and shared by all the solution-agents. This is termed the mutation factor 

(MF). If an individual is selected to apply the mutation operator, it tries to perform the 

operation with all of its genes. Each gene has a probability 1/n of being chosen. 

 

 

iii. Genetic learning 

Genetic learning is the name given to the proposed stage of the genetic algorithm during 

which an exploratory analysis is made in the vicinity of a given solution. This activity is 

developed in each generation for each of the agent-solutions that make up the matrix base. 

The activity consists in generating an initial population from the sequence of a given agent-

solution, as shown in Figure 7, and applying the MAGSA simplified algorithm. 

 

Figure 7. Base matrix with learning matrix 

The objective is to run one genetic algorithm inside another, both algorithms being very 

similar. Figure 8 summarises the stages into which genetic learning, or the simplified MAGSA 

process, is divided.  

 

Figure 8. Genetic learning schema 

The approach is based on a short run and considerable freedom of action. This approach 

implies the removal of some of the constraints imposed in the main process. 

 

c. Generational schemes and restart 

 

Once the agent-solutions have been created and arranged in a square 6x6 lattice, each is 

characterised by the genetic information associated with the given chromosome, and the 



population evolves in line with the schema shown in Figure 1. All of the agent-solutions in the 

lattice are selected sequentially until the round is completed. On each agent an attempt is 

made to apply a crossover operator, then a mutation operator, and finally the genetic learning 

process. At the end of each round it is verified if the value of the makespan of the best solution 

found in the population is an improvement on the best value reached in the previous round. If 

a certain number of rounds are completed (determined by the factor termed ‘not 

improvement bound’ (NIB)) without any improvements being produced, then a global 

regeneration of the population occurs.   

The regeneration of the population means exploring each of the agent-solutions and if: 

1. The makespan of the solution of the agent-solution is greater than the value of the 

"makespan_bound" then a new sequence is always generated as a substitution. 

2. If the above constraint is not satisfied, then a draw is made in which the agent-solution has 

a 70% chance of winning. If the agent-solution wins, then a new sequence is generated to 

substitute the current sequence. Otherwise, no change is made to the current agent-

solution. 

If a new chromosome is generated, then the same algorithm that was applied to generate the 

initial population is used. 

Finally, it is worth noting that although any of the genetic operators, including the genetic 

learning process, can generate a new chromosome. However, no automatic replacement of 

the old chromosome is made. In general, a new chromosome only substitutes the old 

chromosome under the following conditions: 

1. A verification is made as to whether the makespan obtained with the sequence of the new 

solution generated with the genetic learning process of the current agent-solution differs 

from all its neighbours. If the value of the makespan is found to be repeated, then the 

found solution is discounted, and no generational change is made.   

2. If the filter mentioned in the previous point has been passed, verification is made that the 

value of newly generated solution is less or equal to the ‘makespan_bound’. The value of 

the ‘makespan_bound’ is obtained by multiplying the value of the makespan by the ‘range 

factor’ (RF).  

3. If the previous constraint has been satisfied, then a verification is made as to whether the 

value of the makespan of the new solution is repeated in the historic set of the best values 

obtained with the population. To achieve this, a list containing the 500 values nearest the 

best current makespan is used to indicate the values previously obtained (dark colour) in 

order to avoid repetitions.  

 



Figure 9. List of the best 500 values 

d. Algorithm implementation 

To implement the MAGSA algorithm it is necessary to combine two fundamental elements: a 

programming language and an agent platform. 

The MAGSA algorithm has been implemented using the JAVA programming language for its 

development (specifically, the open source development environment ECLIPSE version 3.4, 

available at http:\www.eclipse.org\platform. The Java programming language was selected 

because most of the agent platforms that we have found are being developed in Java. This 

choice opens the possibility of future changes in the agent platform with less time investment. 

The selected agent platform was JADE, version 3.5. This platform is one of the most complete 

in terms of functionality, and meets international standards for developing agent applications. 

 

4. Experimental analysis 

 

a. Explained variance  

In any process of configuration and analysis of an algorithm it is necessary to establish 

explained variance, or the endogenousity of the model. In this case, we used as a comparative 

measurement the percentage increase over the optimal, or the lowest known level of the 

average result (IPSOVEP) of a given problem or instance. This measurement can be expressed 

as: 

 

 

The variable ‘Current_result’ is the value of the makespan obtained with a given instance of 

the algorithm under evaluation. The variable ‘The_best_result’ represents the value of the best 

known makespan for this instance. Therefore, positive values for IPSOVEP imply that the 

algorithm has a makespan that is worse than the benchmark used, and negative values for 

IPSOVEP imply that the model has been improved. 

b. Data 

In this work the use of a standard dataset has been seen as fundamental. Its function is to help 

verify the quality of the results produced by the MAGSA algorithm with a set of instances. We 

propose the use of a database originally published in Vallada et al. (2003), and which is an 

adaptation of the dataset used in Taillard (1993). This dataset, adapted for the flowshop or 

hybrid flowshop with sequence dependent setup times, was subsequently made available to 

the scientific community so that researchers could test various proposals and offer improved 

results. 

IPSOVEP =
Current _ result -The_best _ result

The_best _ result
*100



For the experiment we used a subset of the selected databank and which has been classified 

into 16 experimental sets, and although the nomenclature is explained in the original 

reference, it is based on the combination of three characteristics: (A) four types of sequence 

dependent setup times were considered, corresponding to 10%, 50%, 100%, and 125% of the 

average process time (termed SSD10, SSD50, SSD100 and SSD125); (B) consideration of two 

cases in relation with the numerical distribution of the machines per stage (P13 - randomly 

distributed between 1 and 3 machines per stage; and P3 - a constant number of three 

machines per stage); and (C) combination of two load levels in the workshop (20 to 50 pieces). 

In relation with these characteristics, we have denominated the following: P13_SSD10_20, 

P13_SSD10_50, P3_SSD10_20, P3_SSD10_50, P13_SSD50_20, P13_SSD50_50, P3_SSD50_20, 

etc. Given that each set consists of 15 instances, we then have a total of 240 instances (or 

instances).  

Following a subdivision made in the experimental set, the IPSOVEPT variable will take into 

account the average IPSOVEP for a single complete experimental set.  

c. Factors and parametric calibration  

In this section we discuss experiments carried out to correctly calibrate the MAGSA algorithm 

using the design of experiments (DoE) approach. Two steps have been defined to explore two 

behaviours. In the first step, learning processes have been disabled and the algorithm in this 

state is termed MAGSA-1. The objective in implementing this first step is to create an 

environment where agents do not learn, and where agents cannot develop a differentiated 

behaviour. This is achieved by disabling some parameters (‘bottleneck switch’ (BS), ‘crossover 

factor switch’ (CFS) and ‘crossover operator switch’ (COS)). A full factorial experimental design 

has been achieved for MAGSA-1 where all possible combinations of the following factors have 

been tested: 

 Not improvement bound (NIB): 2 levels (50 and 200). 

 Mutation factor (MF): 2 levels (0.1, and 0.3). 

 Range factor (RF): 2 levels (1.05, and 1.2). 

All the cited factors result in a total of 23=8 different combinations. For each combination we 

aim to solve a full set of 240 problems with two replicas (with three running) for a total of 5760 

runs. 

We will now comment on the results for the SSD50_P3_50 experiment where we have 15 

instances with three machines per stage, setup times that are 50% of processing times, and 50 

jobs per order. In this case, all simple factors are significant, but any double interaction is 

relevant. To choose the best levels for the studied factors we can use value plots to graphically 

see which level is best for the genetic algorithm. The averages for the three factors are plotted 

in Figure 10. Due to minimum values being established, 50, 0.3, and 1.2 are selected for NIB, 

MF, and RF respectively.  

 

Figure 10. Values for simple factors for the SSD50_P3_50 experiment 



The remaining graphics for all other experimental sets are not shown here. After obtaining the 

best values for the parameters for all 16 experimental sets, the results shown in Table 1 are 

displayed. Only the values highlighted have been identified as statistically significant, the other 

values have been freely selected. 

Experiment  NIB MF RF Experiment  NIB MF RF 
SSD10_P13_20 50 0.1 1.2 SSD10_P3_20 50 0.1 1.2 

SSD10_P13_50 50 0.1 1.2 SSD10_P3_50 50 0.1 1.2 

SSD50_P13_20 200 0.3 1.05 SSD50_P3_20 50 0.3 1.2 

SSD50_P13_50 200 0.3 1.05 SSD50_P3_50 50 0.3 1.2 

SSD100_P13_20 50 0.1 1.2 SSD100_P3_20 50 0.3 1.2 

SSD100_P13_50 50 0.1 1.2 SSD100_P3_50 50 0.3 1.2 

SSD125_P13_20 200 0.1 1.2 SSD125_P3_20 50 0.1 1.2 

SSD125_P13_50 200 0.1 1.2 SSD125_P3_50 50 0.1 1.2 

Table 1. MAGSA-1 algorithm calibration for 16 experimental sets 

The resulting algorithms for all 16 experimental sets differ considerably. More precisely, when 

NIB is significant, some 50 iterations without improved makespans are suggested, in other 

words, frequent re-starts are better. However, this factor is only significant for P3 cases. The 

range factor (RF) is probably the most relevant factor and this fact suggests that the algorithm 

works better when RF is 1.2, that is, the algorithm works better when the generational 

schemes are easily changed (relaxing the 2nd condition due to a high value of the 

makespan_bound parameter). The mutation factor (MF) is not usually relevant, only 4 out of 

16 times, and it must be considered for future proposals.   

In the second step, the parameters associated with the learning processes are enabled and the 

factor minimum crossover factor (MCF) is calibrated. This algorithm has been termed MAGSA-

2. In this way, a test regarding the agent contribution, represented by MAGSA-1 and MAGSA-2, 

is easily carried out.   

In case of MAGSA-2, the established values of the MAGSA-1 factors remain the same and only 

the ‘minimum crossover factor’ (MCF) factor with two levels (0.2 and 0.4) has been analysed 

after enabling the ‘bottleneck switch’ (BS), ‘crossover factor switch’ (CFS), and ‘crossover 

operator switch’ (COS) parameters. We aim to solve a full set of 240 problems with two 

replicas (total three) and a two-level factor for a total of 1440 runs. The results of the statistical 

analysis show that the MCF factor is only significant for P3 cases where 0.4 is the best value.   

All experiments were performed in a cluster of four PC computers with Intel Core 2 2.66 GHz 

processors and two GB of main memory. The resulting experiments were analysed using a 

multifactor analysis of variance (ANOVA) technique. With regards to the suitability of ANOVA 

models for the data it can be said that all three hypotheses (normality, homogeneity of 

variance, and independence of the residuals) were accepted in all experiments. All the 

experiments were carried out at a 95% confidence level. 

d. Comparative analysis 

To make a comparative analysis that enables an assessment of the goodness of the proposal 

we have expanded the work presented in Ruiz and Maroto (2006). In this way, we compare the 



proposal through implementations of MAGSA-1 and-MAGSA-2 with ten other methods. The 

condition of termination in all cases is 5000 iterations. 

The first included method is the genetic algorithm, termed GAH, which was introduced in Ruiz 

and Maroto (2006), for the same type of problem as MAGSA. The other methods – which have 

been adapted to fit the problem constraints – follow below. The simulated annealing 

procedure Osman and Potts (1989) which was adapted by replacing just the makespan 

calculation has been termed SAOPH. The initialisation of the algorithm based on tabu search 

Wildmer and Hertz (1989) was modified by adapting the NEH heuristic to this problem (NEHH); 

in the same way, the evaluation of the solution for each step of the algorithm was performed 

with the calculation functions of the adapted makespan. The adaptation of this algorithm has 

been termed SpiritH and the original NEH heuristic of Nawaz et al. (1983) was also adapted. 

The change was made by addressing the allocation and the makespan calculation for the 

problem was amplified rather then being handled in a standard flowshop. The NEH heuristic 

adapted for the problem has been termed NEHH. The genetic algorithm Reeves (1995) was 

adapted by modifying the evaluation function, as well as the initialisation (now handled by the 

NEHH heuristic instead of the standard NEH heuristic), and has been termed GAReevH. In a 

similar way, we modified the genetic algorithms of Chen et al. (1995), Murata et al. (1996) and 

Ponnanbalam et al. (2001) and these are referred to as GAChenH, GAMITH, and GAPACH, 

respectively, and for which we simply changed the individual evaluation functions. The 

algorithms based on ant colonies, M-MMASH and PACOH Rajendran and Ziegler (2004), were 

also used.  

Tables Table 2 and Table 3 show the average results obtained for all the experimental sets for 

each of the 12 implemented algorithms. Tables Table 2 show the results for the case of the 

hybrid flowshop with sequence dependent setup times with one and three machines per stage 

(case P13), and Table 3 shows where the workshop always has three machines available per 

stage (case P3). In both tables, a grey background highlights the best result, and the dotted 

background indicates the second best result.   

P13 Case GAH SOAPH SpiritH GAReevH NEHH GAChenH GAPACH GAMITH M-MMASH PACOH MAGSA-1 MAGSA-2 

SSD10_P13_20 0.147 1.093 2.853 0.697 2.590 3.030 8.297 2.710 2.067 1.577 0.021 0.042 

SSD10_P13_50 0.220 1.607 2.797 0.730 2.633 3.790 10.393 5.050 2.097 1.653 0.851 0.443 

SSD50_P13_20 0.593 3.690 6.510 2.527 6.023 6.717 17.230 7.003 5.457 5.110 0.830 0.876 

SSD50_P13_50 0.793 3.637 6.110 2.293 18.283 8.910 21.423 10.527 4.317 3.737 0.920 0.996 

SSD100_P13_20 1.190 6.170 9.957 4.557 8.893 11.063 25.743 9.907 8.403 8.267 1.215 1.275 

SSD100_P13_50 0.823 5.377 8.023 3.303 6.873 13.907 31.877 15.087 6.277 6.283 0.726 0.728 

SSD125_P13_20 1.333 7.427 11.043 4.853 9.610 12.117 28.593 11.753 9.270 8.473 1.377 1.171 

SSD125_P13_50 0.713 5.877 9.177 3.600 7.877 15.977 35.563 15.920 7.460 7.120 0.760 0.506 

Table 2. ISOVEPT for evaluated methods in case P13 

Three aspects are striking. Firstly, the relative differences between the algorithms are very 

similar in all the experimental sets. However, the NEHH algorithm shows a sharp drop in 

SDD50_P13_50, and so becomes the second worst algorithm after GAMITH. On some 

occasions, algorithms with very similar results change positions in the ranking, such as 



GAChenH and GAMITH. The second noteworthy aspect in the experimental sets with long 

setup times (SSD100 and SSD125) is that the most competitive algorithms (i.e. all except 

GAPACH, GAChenH, and GAMITH) show better results in cases of 50 pieces than in cases of 20 

pieces. The third noteworthy aspect is that the GAH, MAGSA-1, and MAGSA-2 algorithms are 

found to be among the three best algorithms in all cases, except for the SSD10_P13_50 

experimental set, in which the GAReeVH algorithm is in third position, and MAGSA-1 is in 

fourth position. This domination clearly differentiates these algorithms from the other 

algorithms.   

From the point of view of implementing the GAH, MAGSA-1, and MAGSA-2 algorithms for the 

calculation of production programs it can be said that none offers a clear advantage and that 

they form a more or less homogeneous set with respect to the quality of their production 

programs.  

  

Figure 11. IPSOVEPT values for the algorithms for the P13 case 

P3 Case GAH SOAPH SpiritH GAReevH NEHH GAChenH GAPACH GAMITH M-MMASH PACOH MAGSA-1 MAGSA-2 

SSD10_P3_20 2.143 6.810 10.943 3.197 7.643 7.023 17.113 12.747 7.027 6.963 1.774 1.398 

SSD10_P3_50 1.720 10.487 11.200 2.700 5.413 4.730 18.293 11.603 4.817 4.957 0.128 0.170 

SSD50_P3_20 3.103 9.587 12.353 5.100 10.367 8.247 18.513 10.897 9.807 9.600 2.824 2.439 

SSD50_P3_50 1.900 10.270 10.170 3.263 6.250 4.383 17.007 11.203 5.743 5.650 1.777 1.721 

SSD100_P3_20 3.300 11.883 12.987 6.200 12.673 8.703 20.133 12.073 12.673 12.647 2.665 2.584 

SSD100_P3_50 2.460 10.113 10.227 4.103 7.093 4.933 17.097 11.573 7.093 7.093 2.226 1.977 

SSD125_P3_20 3.670 12.313 14.110 7.187 14.263 8.960 21.030 13.387 13.747 13.447 3.263 2.633 

SSD125_P3_50 2.913 10.367 10.773 4.707 7.817 5.813 17.790 11.990 7.193 7.213 2.547 2.179 

Table 3. ISOVEPT for evaluated methods in case P3 

In general, there are three notable aspects. Firstly, as in the case of P13, the relative 

differences between the algorithms are very similar in all the experimental sets. However, the 

NEHH algorithm shows a sudden worsening for sets with 20 pieces, which significantly 

increases its IPSOVEPT value and causes it to lose positions in the algorithm rankings – 

although it escapes last position. On some occasions, algorithms with very similar results have 

changed positions in the ranking – although not to the same degree as in the P13 case. Now 

only SpiritH and GAMITH change the positions. The second notable aspect is that in the 

SSD100 and SSD125 cases, all of the algorithms have a better IPSOVEPT for 50 pieces than 20 

pieces. The SSD50 case maintains the trend except for the algorithms SOAPH and GAMITH. 

Moreover, SSD50 also maintains this trend, except for the SOAPH, SpritH, and GAPACH 

algorithms. The third noteworthy aspect is that algorithms GAH, MAGSA-1, and MAGSA-2 are 

found among the three best algorithms, usually with a clear difference with respect to the 

others. The GAPACH algorithm was, in all cases, by far the worst.  

In this case, the MAGSA-1 and MAGSA-2 algorithms are always the best two performers. 

Therefore, we can confirm that for the analysed experimental sets, it is always best to use the 

MAGSA-1 or MAGSA-2 algorithms to produce new predictive production programs. However, 



for the P3 case, the domination of MAGSA-2 over MAGSA-1 is always significant, as it is the 

best in seven of the eight experimental sets.  

 

Figure 12. Value of IPSOVEPT of the algorithms for the P3 case 

In the P3 type of problem, a multiagent system that incorporates the features from the 

proposal implemented with MAGSA-2 supposes an advantage that enables a better 

performance than the best known GAH algorithm in all cases. Although the type P13 and P3 

problems are both of NP-complete complexity, it is worth noting that that when scheduling a 

workshop in which one or more stages are bottlenecks and there is only one machine (case 

P13), the task is more easily achieved than in a better balanced workshop (P3 case).  

It should be emphasised that in the execution of algorithms, MAGSA-1 improved on 57 

occasions the best known value for the makespan. For its part, MAGSA-2 improved the best 

value on 37 occasions. Of the 120 instances used in the P3-type problem, MAGSA-1 achieved 

the best makespan for 46 instances, and MAGSA-2 for 25 instances. The best values obtained 

by running MAGSA-1 and MAGSA-2, and the corresponding Cmax value associated with the 

instances, are shown in the Annex I. 

 

5. Conclusions 

 

This paper proposes a method for the problem of the hybrid flowshop with sequence 

dependent setup times. After establishing the framework of the problem, a new genetic 

algorithm has been designed to provide a solution to this problem that is based on software 

agents. 

To identify the possible contribution of the software agents, the process has been separated 

into two stages, which although working almost simultaneously, have provided two different 

algorithms, MAGSA-1 and MAGSA-2. The MAGSA-1 algorithm is based on multiagent 

technology, but does not incorporate all the features of agents in ‘society’ and so does not 

take advantage of ‘teamwork’. However, MAGSA-2 does incorporate features that enable the 

advantages of teamwork in a society to be exploited. 

After designing and implementing the algorithms, a thorough experimental analysis was made 

in two phases. In the first phase, an adjustment of all the parameters was made (where 

necessary) in both algorithms. The same values were always and deliberately used for MAGSA-

2 as MAGSA-1, except for those values that are peculiar to MAGSA-2 and have been 

specifically configured. In the second phase, the most competitive versions of MAGSA-1 and 

MAGSA-2 were compared with some of the best algorithms found in the literature for this type 

of problem. 

In the parametric adjustment phase, despite the fact that the experimental plan was simple, 

the number of runs was very high. It is worth highlighting that in this stage, MAGSA-1 



established a new minimum makespan value for 106 instances, and MAGSA-2 for 41 instances, 

from a dataset total of 240. 

In the comparative analysis phase, the algorithms GAH, MAGSA-1, and MAGSA-2 were 

identified as the most competitive for the P13 and P3 type problems. Although in the case of 

P13 type problems, there was no clear predominance for any of the three algorithms in any of 

the analysed experimental sets. In the case of P3-type problems, the MAGSA-2 algorithm was 

predominant in all the experimental sets. At this stage, the MAGSA-2 algorithm, and to a lesser 

extent the MAGSA-1 algorithm, proved to be highly competitive. Moreover, the MAGSA-2 

algorithm achieved the highest average result in 9 of the 16 experimental sets, and always for 

the most complex cases, while the MAGSA-1 algorithm achieved the best result on three 

occasions. 

As a final conclusion, the results obtained for MAGSA-1 and MAGSA-2 have made an 

interesting contribution to predictive algorithms for production scheduling in hybrid flowshops 

with sequence dependent setup times.  
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ANNEX I 

In the following tables are shown the best know values of Cmax corresponding to the instances 
used in the experimental phase. When the proposed algorithms overcome the previous known 
Cmax value both previous, in first position, and new Cmax value are provided. In other case, 
only the previous known value is included. Cells with gray background have a value of Cmax 
that has been overcome by using the algorithm SMAGA-2. 

  
MAGSA-1 P13  P3 

instances SSD10_P13_20 SSD50_P13_20 SSD100_P13_20 SSD125_P13_20  SSD10_P3_20 SSD50_P3_20 SSD100_P3_20 SSD125_P3_20 

ta002 1029 1197 1410 1497  351 459 / 458 564 609 / 599 

ta004 1178 1247 1340 1396 / 1389  352 461 / 455 571 610 

ta006 1314 1392 1557 1635  348 440 538 / 535 588 

ta008 1074 / 1068 1146 1232 / 1230 1294 / 1281  332 429 531 586 

ta010 1038 / 1034 1177 1335 / 1332 1409  322 412 509 / 502 555 

ta012 1439 1567 1818 1983  541 / 539 652 / 647 798 / 794 858 

ta014 1326 1508 1704 1790  461 580 717 782 / 755 

ta016 1347 / 1346 1515 1804 1945  509 637 769 827 

ta018 1426 / 1417 1654 1967 2128  513 621 / 617 760 831 

ta020 1316 / 1315 1477 1677 1795  533 646 794 861 / 856 

ta022 1897 2199 2571 2750  786 / 784 928 1113 / 1108 1206 / 1202 

ta024 1890 / 1876 2097 2471 2652  782 926 1112 1209 

ta026 1849 / 1848 2115 2486 / 2474 2668  859 999 1184 / 1175 1264 / 1257 

ta028 1886 / 1876 2138 2490 2699  869 1020 1204 1293 

ta030 1724 / 1712 1992 / 1989 2353 2521  878 1012 1191 1269 

Table 4. The new best know values of Cmax for instances with 20-jobs (P13 and P3 cases) obtained after running 
MAGSA-1 

MAGSA-1 P13  P3 

instances SSD10_P13_50 SSD50_P13_50 SSD100_P13_50 SSD125_P13_50  SSD10_P3_50 SSD50_P3_50 SSD100_P3_50 SSD125_P3_50 

ta032 2593 2887 3274 3447  678 955 1256 1362 

ta034 2726 / 2721 3049 / 3040 3420 / 3406 3693 / 3673  680 977 / 973 1275 / 1239 1368 

ta036 2772 3316 / 3299 3925 / 3874 4312 / 4277  700 / 695 951 1248 / 1226 1372 

ta038 2692 2977 3410 / 3406 3647 / 3611  656 / 645 932 / 922 1248 / 1233 1387 / 1384 

ta040 2710 / 2700 3026 3480 / 3476 3722 / 3693  684 965 / 957 1248 1370 / 1362 

ta042 3002 3570 / 3528 4334 / 4280 4612 / 4593  867 1215 / 1209 1555 1732 

ta044 2992 / 2971 3636 / 3628 4400 / 4334 4784 / 4697  837 1174 / 1171 1570 1732 

ta046 2924 3469 / 3465 4224 / 4141 4489 / 4473  940 1288 1658 1801 

ta048 3002 3535 / 3526 4248 / 4213 4627 / 4598  947 1284 / 1276 1614 1778 

ta050 2998 / 2994 3474 4062 / 4057 4354 / 4314  926 1261 / 1254 1612 1760 

ta052 3419 / 3376 4030 4910 5379 / 5337  2168 / 1314 1658 2106 2331 / 2324 

ta054 3201 3895 / 3889 4726 / 4718 5248 / 5231  1324 1718 2145 / 2135 2352 

ta056 3383 4092 5122 / 5103 5534 / 5486  1325 / 1320 1713 2172 / 2157 2373 

ta058 3421 4101 5118 / 5092 5512  1284 1678 / 1670 2100 / 2085 2307 

ta060 3444 4164 5049 / 5046 5594 / 5516  1316 1704 2159 / 2157 2370 

Table 5. The new best know values of Cmax for instances with 50-jobs (P13 and P3 cases) obtained after running 
MAGSA-1 



MAGSA-
2 

P13  P3 

instances SSD10_P13_20 SSD50_P13_20 SSD100_P13_20 SSD125_P13_20  SSD10_P3_20 SSD50_P3_20 SSD100_P3_20 SSD125_P3_20 

ta002 1029 / 1028 1197 1410 1497  351 459 / 455 564 / 556 609 

ta004 1178 1247 / 1245 1340 / 1338 1396 / 1386  352 461 571 / 565 610 

ta006 1314 1392 1557 1635  348 440 538 / 537 588 / 569 

ta008 1074 / 1067 1146 1232 1294 / 1281  332 429 531 586 

ta010 1038 / 1034 1177 / 1175 1335 / 1332 1409  322 / 319 412 509 / 503 555 / 549 

ta012 1439 1567 1818 1983  541 652 / 649 798 858 

ta014 1326 / 1325 1508 1704 1790  461 580 717 782 

ta016 1347 / 1344 1515 1804 1945  509 637 / 636 769 827 

ta018 1426 / 1417 1654 1967 2128  513 / 512 621 / 617 760 / 757 831 

ta020 1316 1477 1677 1795  533 646 794 861 / 849 

ta022 1897 / 1889 2199 / 2193 2571 2750  786 / 784 928 1113 / 1110 1206 

ta024 1890 / 1877 2097 / 2088 2471 2652  782 926 1112 1209 / 1201 

ta026 1849 / 1845 2115 2486 / 2481 2668 / 2665  859 999 1184 / 1168 1264 

ta028 1886 / 1865 2138 / 2137 2490 2699  869 1020 1204 / 1202 1293 / 1289 

ta030 1724 / 1707 1992 / 1977 2353 2521  878 1012 1191 / 1185 1269 / 1262 

Table 6. The new best know values of Cmax for instances with 20-jobs (P13 and P3 cases) obtained after running 
MAGSA-2 

MAGSA-2 P13  P3 

instances SSD10_P13_50 SSD50_P13_50 SSD100_P13_50 SSD125_P13_50  SSD10_P3_50 SSD50_P3_50 SSD100_P3_50 SSD125_P3_50 

ta032 2593 2887 / 2859 3274 / 3247 3447 / 3445  678 / 674 955 / 953 1256 / 1226 1362 / 1339 

ta034 2726 / 2718 3049 / 3020 3420 3693 / 3608  680 977 / 970 1275 / 1240 1368 / 1363 

ta036 2772 3316 / 3298 3925 / 3916 4312 / 4261  700 / 693 951 / 939 1248 / 1232 1372 / 1330 

ta038 2692 2977 / 2969 3410 / 3394 3647 / 3629  656 / 648 932 / 926 1248 / 1218 1387 / 1355 

ta040 2710 / 2703 3026 3480 / 3418 3722 / 3657  684 965 / 952 1248 1370 

ta042 3002 / 3001 3570 / 3527 4334 / 4218 4612 / 4474  867 1215 / 1205 1555 1732 / 1708 

ta044 2992 / 2962 3636 / 3595 4400 / 4352 4784 / 4737  837 1174 1570 / 1544 1732 / 1722 

ta046 2924 / 2911 3469 / 3463 4224 / 4130 4489 / 4446  940 1288 / 1280 1658 / 1644 1801 

ta048 3002 3535 / 3525 4248 / 4126 4627 / 4508  947 / 943 1284 / 1280 1614 1778 

ta050 2998 / 2997 3474 / 3440 4062 / 3985 4354 / 4291  926 1261 / 1259 1612 / 1592 1760 

ta052 3419 / 3371 4030 4910 / 4894 5379 / 5329  2168 / 1313 1658 / 1657 2106 / 2105 2331 / 2298 

ta054 3201 3895 / 3890 4726 5248 / 5228  1324 / 1321 1718 / 1713 2145 2352 

ta056 3383 / 3378 4092 5122 / 5046 5534 / 5483  1325 1713 2172 / 2154 2373 / 2362 

ta058 3421 4101 / 4094 5118 / 5051 5512  1284 / 1278 1678 / 1669 2100 2307 

ta060 3444 4164 5049 / 5041 5594 / 5474  1316 1704 2159 2370 

Table 7. The new best know values of Cmax for instances with 50-jobs (P13 and P3 cases) obtained after running 
MAGSA-2 
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