

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

http://dx.doi.org/10.1016/j.eswa.2012.01.158

http://hdl.handle.net/10251/50841

Elsevier

Gómez Gasquet, P.; Andrés Romano, C.; Lario Esteban, FC. (2012). An agent-based
genetic algorithm for hybrid flowshops with sequence dependent setup times to minimise
makespan. Expert Systems with Applications. 39(9):8095-8107.
doi:10.1016/j.eswa.2012.01.158.

 Elsevier Editorial System(tm) for Expert Systems With Applications
 Manuscript Draft

Manuscript Number:

Title: An agent-based genetic algorithm for hybrid flowshops with sequence dependent setup times to
minimise makespan

Article Type: Full Length Article

Keywords: Hydrid flowshop, sequence dependent setup times, agent, genetic algorithm, makespan.

Corresponding Author: Mr Pedro Gomez-Gasquet, Ph.D.

Corresponding Author's Institution: Universidad Politécnica de Valencia

First Author: Pedro Gomez-Gasquet, Ph.D.

Order of Authors: Pedro Gomez-Gasquet, Ph.D.; Pedro Gomez-Gasquet, Ph.D.; Carlos Andrés, Ph.D.;
Francisco Cruz Lario-Esteban, Ph.D.

> This paper deals with a variant of flowshop scheduling, namely, the hybrid or flexible flowshop with
sequence dependent setup times. > An improved genetic algorithm (GA) based on software agent
design to minimise the makespan is presented. > Computational experiments are conducted on a well-
known benchmark problem dataset.

Highlights

An agent-based genetic algorithm for hybrid flowshops with sequence

dependent setup times to minimise makespan

Pedro Gómez-Gasqueta*, Carlos Andrésb, Francisco-Cruz Larioa

a Centro de Investigación de Gestión e Ingeniería de la Producción, Universitat Politècnica de

València, Cno. de Vera s/n, Valencia, 46022, Spain. {pgomez, fclario}@cigip.upv.es

b Research Group in Reengineering , Operations management, Group work and Logisitics

excellence, Universitat Politècnica de València, Cno. de Vera s/n, Valencia, 46022, Spain.

candres@doe.upv.es

*Corresponding author. Address: Centro de Investigación de Gestión e Ingeniería de la

Producción, Universitat Politècnica de València, Cno. de Vera s/n, Valencia, 46022, Spain.

Tel.: +34 963 879 680; fax: +34 963 879 682

E-mail address: pgomez@cigip.upv.es

Abstract

This paper deals with a variant of flowshop scheduling, namely, the hybrid or flexible
flowshop with sequence dependent setup times. This type of flowshop is frequently
used in the batch production industry and helps reduce the gap between research and
operational use. This scheduling problem is NP-hard and solutions for large problems
are based on non-exact methods. An improved genetic algorithm (GA) based on
software agent design to minimise the makespan is presented. The paper proposes
using an inherent characteristic of software agents to create a new perspective in GA
design. To verify the developed metaheuristic, computational experiments are
conducted on a well-known benchmark problem dataset. The experimental results
show that the proposed metaheuristic outperforms some of the well-known methods
and the state-of-art algorithms on the same benchmark problem dataset.

Keywords: Hydrid flowshop, sequence dependent setup times, agent, genetic

algorithm, makespan.

1. Introduction

Among the production scheduling systems, the flowshop scheduling (FS) problem is one of the

most distinguished environments Gupta and Stafford (2006). In FS, all jobs follow the same

operational order (processing route) and need to be processed at every stage. This problem

could be considered as the foundation of several other interesting formulations.

Since the publication of the Arthanari and Ramamurthy (1971) seminal paper until the recent

review of Ribas et al. (2010), the hybrid flowshop scheduling (HFS) problem has been of

continuing interest for researchers and practitioners. When using several unrelated machines

in parallel during HFS production stages it is important not to confuse the hybrid flowshop with

the flowshop with multiple processors (FSMP), or the flexible flow line (FFL) problems. In these

two latter problems, the machines available at each stage are identical. In all shop scheduling

*Manuscript
Click here to view linked References

mailto:fclario%7d@cigip.upv.es
mailto:candres@doe.upv.es
mailto:pgomez@cigip.upv.es
http://www.palgrave-journals.com/jors/journal/v60/n6/full/2602625a.html#bib1
http://ees.elsevier.com/eswa/viewRCResults.aspx?pdf=1&docID=12759&rev=0&fileID=122026&msid={2790954B-677E-4078-8634-32CEEBF4144E}

problems, the purpose is to discover a production sequence for the jobs on the machines such

that a certain criteria, or a set of selected criteria, are optimised.

In HFS scheduling, the task of creating a feasible schedule is quite complicated. The search

space of feasible schedules grows exponentially, as there are certain increases in the number

of different jobs that must be processed and the number of facilities that can perform the

process of each product. The HFS with two stages (with one machine in the first stage, and

several machines in the second stage) is NP-hard Gupta (1988). Moreover, Hoogeveen et al.

(1996) demonstrated that this problem remained NP-hard even if pre-emption is allowed.

The majority of papers assume that setup time is negligible, or part of the job processing time.

But explicit setup times must be included in scheduling decisions in order to address a more

realistic variant of hybrid flowshop scheduling problems. This inclusion avoids the adverse

effect on the solution quality of using multiple scheduling applications. Several explicit setup

times can be considered; however, the issue of sequence dependent setup time (SDST) is

gaining increasing attention among researchers. The resultant problem is called the sequence

dependent setup time (SDST) hybrid (flexible) flowshop; and with the makespan criterion it is

denoted as FF/STsd/Cmax Allahverdi et al. (2008). An explicit mathematical model for the

problem is developed in Andrés, (2001).

This problem is more complex than HFS and belongs to the NP-hard set of problems.

This paper presents an innovative solution based on the genetic algorithm (GA) method, yet

designed and developed under the agent software paradigm. Both approaches have provided

successful proposals for similar problems. Both are now combined to create a new GA with

features not seen in the traditional GA.

This paper is structured as follows: Section 2 reviews the SDST hybrid flowshop literature.

Section 3 discusses the proposed agent-based genetic algorithm and we present the new

genetic algorithm in detail. In Section 4, an experimental analysis is carried out, along with a

complete calibration using the design of experiments (DoE) approach. A comparative analogy

between our algorithm and other effective algorithms in the literature is presented. Finally,

Section 5 concludes the paper and introduces some directions for future work.

2. Literature review of HFS problem with makespan criterion

To focus the literature review we analyse the most relevant contributions related to HFS and

minimising makespan. Firstly, we discuss the cases that do not consider SDST, and secondly,

those that consider SDST. A comprehensive analysis of general HFS problems for this criterion

is found in Hejazi and Saghafian (2005).

The term ‘hybrid flowshop’ was first used by Gupta (1988) in a shop with two stages, being

multiprocessor-only in the first stage, and where it was demonstrated to be NP-hard.

Hundreds of contributions have subsequently analysed the progress of the HFS problem state.

During the last year, several interesting literature reviews and surveys have analysed and

classified various proposals regarding the HFS problem. The HFS problem is commented in the

works of Vignier et al. (1995) and Vignier et al. (1999). In Vignier et al. (1999) the work is split

into two parts. The first part is focused on two-stage flowshop problems, and the second stage

on the general k-stage problem. The authors do not identify any solved problems related to

makespan and average flow time Kis and Pesch (2005) and provide an extended literature

review about exact methods in HFS. The authors focus on branch and bound (B&B) and

constraint propagation techniques. An interesting classification of resolution methods is

offered in Quadt and Kuhn (2007). Ribas et al. (2010) recently classified papers according to

HFS characteristics and production limitations. This represents a new approach to the

classification of papers in the HFS environment. Papers are also classified according to the

proposed solution approach.

Heuristic and metaheuristic solution approaches are dominant, but some exact methods are

often used for simple cases. Branch and bound (B&B) and dynamic programming techniques

are the main actors on the stage of the exact techniques. In Gupta and Tunc (1991), Brah and

Hunsucker (1991), Rajedran and Chaudhuri (1992) or Lee et al. (1993) various B&B solutions

for minimising makespan are defined. Some authors develop dynamic programming

algorithms to solve the problem optimally with makespan criterion. A two-machine flowshop

scheduling problem where machines are not always available is studied in Lee (1997) and

extended in Lee (1999). A two-stage HFS problem with one machine in the first stage, and two

different machines in parallel in the second stage, is discussed in Riane et al. (2002).

When problems grow in complexity or data volume, authors usually propose approximate

methods. For a basic review of HFS under the makespan criterion, several useful papers can be

found. Early papers by Shen and Chen (1972) and Sriskandarajah and Sethi (1989) present two

heuristics based on the Johnson algorithm; while Gupta (1988) introduces a new heuristic

based on the longest processing time index. Over the last decade, metaheuristic and

evolutionary approaches have been proposed that are used alone, or in combination with

traditional heuristics. The authors of Haouari et al. (1997) propose two approximate methods

developed in two phases. The first solution is generated using a longest remaining work rule.

This schedule is improved using techniques based on simulated annealing and tabu search.

Both solutions are encoded with the list used in the first phase. In Portmann et al. (1998) an

improvement on the B&B proposed by Brah et al. (1991) is analysed. From the definition of

improved levels, the authors present a metaheuristic using a GA in the B&B procedure to

improve the values of the upper bound in certain stages. In Nowicki et al. (1998) a tabu search

with graph representation is introduced. In Riane et al. (1998), a problem of scheduling n jobs

on a three-stage HFS of a particular structure (one machine in the first and third stages, and

two dedicated machines in stage two) is discussed. The objective is to minimise the makespan.

The authors propose two heuristic procedures to cope with realistic problems. More recently,

bio-inspired methods have gained relevance. GAs are proposed in Serifoglu and Ulusoy (2004)

and Gao et al. (2006).

A particular case within HFS problems is reached when SDST constraint is included. This

constraint corresponds to quite common situations in industry, and reduces the gap between

theoretical and realistic models by considering events as common as changing colours,

formats, etc., in production processes. This may be one of the least treated aspects historically,

yet considerable interest has been generated in recent years. It should be noted that the

proposals submitted by different authors are usually based on approximate methods.

During the last century some innovative works began to address the problem of HFS with

SDST. In Yoshida and Hitomi (1979) flowshop problems were developed to consider setup

times separate from processing times. Gupta and Darrow (1986) present several heuristics for

the case of SDST two-machine flowshops. Gupta and Tunc (1994) discuss the two-stage HFS

scheduling problem where the setup and removal times for each job at each stage are

separated from the processing times. Four heuristic algorithms are developed for the case

where there is one machine at stage one and the number of identical parallel machines at the

second stage is less than the total number of jobs. In Aghezzaf et al. (1995a) and Aghezzaf et

al. (1995b) a two-step heuristic algorithm is proposed for minimising makespan in the textile

industry. A two-stage flowshop is solved in Andrés et al. (1998) using a genetic algorithm. The

proposed GA defines the sequence in the first step and allocates jobs to machines in the

second step. During these early years, the problem was addressed by relatively simple

instances. Yang and Liao (1999) review static scheduling research in which setup time, or cost,

is of main concern in the problem studied, and FHS is one of the reviewed cases.

During the first years of this century the complexity of the problem has grown and the

methods have tended towards the use of pure or hybrid metaheuristics. Some relevant

examples that focus on minimising the makespan are presented below. Allahverdi et al. (2008)

present an extended survey regarding setup time consideration, with and without sequence

dependency. The authors also analyse HSF problems.

Kurz and Askin (2004) highlight the difficulty in solving integer programming directly, and

several heuristics are developed, based on greedy methods, flow line methods, and insertion

heuristics for the travelling salesman problem, as well as the random keys genetic algorithm.

Zandieh et al. (2006) propose an immune algorithm, and show that their algorithm

outperforms the RKGA of Kurz and Askin (2004). Group scheduling within the context of a

problem is introduced in Logendran et al. (2006). A search algorithm that uses short-term

memory is recommended for problems of all sizes and levels of flexibility.

Ruiz and Maroto (2006) analyse a gap between theory and practice in the context of HFS. The

authors introduce a new GA considering SDST and machine eligibility issues that are usual in

the ceramic tile industry. New iterated greedy (IG) algorithms are proposed by Ruiz and Stutzle

(2008) for minimising makespan and minimising total weighted tardiness. The first IG

algorithm is a straightforward adaption of the IG principle, while the second incorporates a

simple descent local search. Ruiz et al. (2008) propose a formulation along with a mixed

integer modelisation and several heuristics for scheduling jobs in stages, where at each stage,

there is a known number of unrelated machines. The authors also consider anticipatory and

non-anticipatory SDST along with machine lag, release dates for machines, machine eligibility,

and precedence relationships among jobs. Yaurima et al. (2009) present a GA for the HFS with

unrelated machines, SDST, and availability constraints. The proposed GA is a modified and

extended version of the algorithm for a problem without limited buffers. The GA takes into

account additional limited buffer constraints and uses a new crossover operator and stopping

criteria. In Behnamian et al. (2009) the authors consider problems with the objectives of

minimising the makespan and sum of the earliness and tardiness of jobs, and present a multi-

phase method. In the first phase, the population is decomposed using a GA into several sub-

populations to obtain a good approximation of the Pareto front. In the second phase, non-

dominant solutions are unified as one large population base for a local search. Finally, in phase

three, the gaps between the non-dominated solutions and the improved Pareto front are

covered using a hybrid metaheuristic. In work carried out by Naderi et al. (2010), the authors

propose two advanced algorithms that specifically deal with parallel machines and setup

characteristics of the addressed problem. The first algorithm is a dynamic dispatching rule

heuristic, and the second is an iterated local search metaheuristic.

In the above literature there is almost no work on hybrid flowshops considering SDST. We can

consider that even today it is possible to improve on current results. For this reason, we have

developed a GA for this complex problem.

3. MAGSA algorithm

This section describes the multi-agent genetic scheduling algorithm (MAGSA). Section 2 shows

that as problems become more complicated, metaheuristic solutions are more often used. In

particular, metaheuristic solutions are dominant for bio-inspired problems, one of the most

common being genetic algorithms. However, the task of improving the results obtained with

genetic algorithms is difficult using the traditional scheme. The idea of revising the

methodology based on new and interesting approaches is an attractive idea. The

implementation framework and results obtained from the software agent paradigm suggest

that this is a promising line of work.

Proposals based on multi-agent systems come mainly from the theories of distributed artificial

intelligence (DAI) and have produced some interesting results Shen et al. (2006), Toptal and

Sanbucuoglu (2010). Researchers who have developed proposals for the sequencing problem

have done so primarily under the consideration that contributions would be made within the

presented agent system architecture, and using the tools that the proposed agent ‘society’

system would use for sequencing tasks Kutanoglu and Wu (1999), Ng et al. (2006)). Other

authors have used the characteristics of these systems to tackle more complex issues such as

the integration of planning and sequencing Lim and Zhang (2004), Sanjay and Young (2008).

However, few authors have tried to apply the very essence of the agent (autonomy, sociability,

responsiveness, initiative, and rationality) to the design of methods already available (AG, Ant

Systems, etc.). In other words, the development of agent-based systems, rather than multi-

agent systems.

With the aim of creating a genetic algorithm consisting of individuals with features that are

richer than traditional individuals, we start from the structure presented by Zhong et al.

(2004), which is a proposal for a ‘multiagent genetic algorithm for a global numerical

optimisation’. This proposal performs an adaptation of the representation and the genetic

operators in order to enable it to address a problem that is as radically different as sequencing.

As a starting point, and with the general idea of providing genetic algorithms with a greater

affinity to the behaviour of natural systems, and taking the agent concept as a reference, we

propose to enhance MAGSA:

 The generation of new individuals based on local competition as occurs in nature, and not

global competition as proposed in most genetic algorithms.

 Strengthen the learning ability so that the dynamic adjustment of certain parameters can be

made based on the circumstances of a changing environment.

 Encourage the differentiation of individuals with a customised application of genetic

operators.

To achieve this, we modified the traditional functional layout of genetic algorithms with the

proposal of Figure 1 that introduces a genetic learning stage, a grid-shaped structure for the

population, and an application of genetic operators in the characteristic way. This is explained

in more detail in the section below.

Figure 1. Functional structure of MAGSA

a. Population structure, encoding, and initialisation

A genetic algorithm works on individuals with chromosomes, which are a representation or

codification of the solutions to the problem. In this case, we have chosen an ordinal genetic

representation. As shown in Figure 2, the individuals are identified by sequences so each

element of the sequence is associated with a numeric identifier that represents a particular

job.

Figure 2. Ordinal representation of a chromosome

From a sequence it is possible to calculate a hybrid flowshop using a simple rule. In this case,

jobs are selected in the sequence order, and each job is assigned to a machine before the end

of each its operations. Another task is not assigned until all previous operations have been

assigned.

A proposal by Zhong et al. (2004) has been followed for the population and a square lattice has

been defined that is made of individuals who can only communicate with their neighbours.

These neighbours have been designed as agents, which we will term agent-solutions. Each

agent-solution includes self-interest and a logic of action to achieve its interests. Additionally,

we have designed an agent-manager that will act as a controller and ensure the rules of the

algorithms are respected.

Figure 3. Model of the agent lattice

This lattice, along with the permitted connection types, reduces the communication of each

agent-solution to a small area (contiguous neighbours), so that their relationships can be

considered as local. The population maintains a constant size with a 6x6 lattice, and

preliminary studies have shown this to offer a good balance between evolution (convergence

and pressure) and computation time.

The generation of the population consists of establishing the lattice by creating the individuals.

Each individual must contain a sequence or chromosome from which a solution that

characterises it can be obtained. The lives of the individuals have the same duration as the

algorithm, meaning that the agent-solution does not die until the algorithm ends. However,

the content of the chromosome can change often.

The sequence value is generated independently by each individual using a greedy algorithm

that aims to reduce the accumulated setup time. To simplify this process, the algorithm is

calculated considering only one randomly chosen operation. From the goodness of the

solutions, the agents learn which is the most interesting operation with regard to setup time. If

the bottleneck switch (BS) is activated, agents can take advantage of the experience of each

individual and share information with each other to facilitate the selection of the stage as a

benchmark.

b. Genetic operators

i. Crossover

The MAGSA algorithm uses two operators, selected from those that are considered able to

offer the best results, and has again left it to the agents to use their acquired knowledge to

select which operator to apply. Future work may increase the number of operators.

One of the selected crossover operators is called ‘similar block 2-point order crossover

(SB2OX)’, which was used by Ruiz and Maroto (2006) with great success. The other operator is

an adaptation of the ‘neighbourhood competition operator (NCO)’ used Zhong et al. (2004),

whose implementation has not been tested for the problem of the hybrid flowshop with

sequence dependent setup times.

The NCO operator needs only one parent (S2BOX needs two parents), which is selected by

local competition between five individuals, the individual on which it is operating and four

neighbours. The winning individual has the chromosome that achieves the smallest makespan

solution. Once selected:

1. Two crossover points are chosen at random as shown in Figure 4. Two values are

obtained using a uniform distribution between 1 and the size of the sequence.

Figure 4. NCO crossover operator - step one

2. All the genetic information that is not between cut-off point 1 and cut-off point 2, is

transferred from father to son.

3. The genetic information found between the two cut-offs constitutes a partial sequence

that is transferred from father to son, in such a way that the position of the genes in

the child corresponds to the reverse of their position in the partial sequence of the

father's genes. Figure 5 shows the final step.

Figure 5. NCO crossover operator - step three

There are two steps to a crossover operation:

 Determine if an agent is to be crossed.

 Decide which of the two operators to apply.

Agents can be crossed only for a given percentage of occasions. This probability is related to

the crossover factor that each agent-solution maintains with an individualised value. There are

four possible initial values (0.2, 0.4, 0.6, and 0.8) that are randomly assigned among the

individuals at the moment of their creation. The agents can vary this value if the parameter

crossover factor switch (CFS) is enabled, otherwise it will keep the initial value. If the factor can

evolve, each time an agent-solution is considered for a cross, the crossover factor is reduced

by 0.05 units regardless of whether the cross is actually performed – and so reducing the

possibilities that this operator is applied. If the chromosome value is changed, the crossover

factor is reinitiated. To avoid values that are too low, a parameter called the minimum

crossover factor (MCF) has been defined.

The selection of a crossover operator is based on a variable with uniform distribution,

controlled by each agent-solution and termed the crossover operator distribution. This variable

is initially fixed with a 50% distribution, which is the likelihood of using one of the two

operators. Each individual modifies the probability distribution after evaluating the solutions

obtained in a set of crossover operations. Increases or decreases by a value of 0.01 can be

made in the value of the crossover operator distribution to improve the probability of the

operator that has achieved best results in the makespan. In any case, the value of the

crossover operator distribution ranges from a minimum of 0.1 to a maximum of 0.9. It is

possible to prevent the agent-solution changing the value of the variable specified by inhibiting

the learning process with the crossover operator switch (COS) parameter (enable, disable).

ii. Mutation

The mutation operator is usually much simpler than the crossover operator, and normally

achieves its purpose with a simple operation. The proposed mutation operator is based on an

exchange of positions. It is a proximity-based mutation operator which given the position of a

chromosome or gene whose location in the sequence is ‘i’ selects a gene ‘j’ that is located

randomly between [i +1, i +3]. In calculating the location of the gene j, it is assumed that the

sequence is cyclical, and if there are n jobs then the position n +1 of the sequence is position 1.

An example can be seen in Figure 6.

Figure 6. Mutation operator

After applying the crossover operator to an individual there is an opportunity to apply the

mutation operator on the individual according to a global random factor, meaning a factor

whose value is unique and shared by all the solution-agents. This is termed the mutation factor

(MF). If an individual is selected to apply the mutation operator, it tries to perform the

operation with all of its genes. Each gene has a probability 1/n of being chosen.

iii. Genetic learning

Genetic learning is the name given to the proposed stage of the genetic algorithm during

which an exploratory analysis is made in the vicinity of a given solution. This activity is

developed in each generation for each of the agent-solutions that make up the matrix base.

The activity consists in generating an initial population from the sequence of a given agent-

solution, as shown in Figure 7, and applying the MAGSA simplified algorithm.

Figure 7. Base matrix with learning matrix

The objective is to run one genetic algorithm inside another, both algorithms being very

similar. Figure 8 summarises the stages into which genetic learning, or the simplified MAGSA

process, is divided.

Figure 8. Genetic learning schema

The approach is based on a short run and considerable freedom of action. This approach

implies the removal of some of the constraints imposed in the main process.

c. Generational schemes and restart

Once the agent-solutions have been created and arranged in a square 6x6 lattice, each is

characterised by the genetic information associated with the given chromosome, and the

population evolves in line with the schema shown in Figure 1. All of the agent-solutions in the

lattice are selected sequentially until the round is completed. On each agent an attempt is

made to apply a crossover operator, then a mutation operator, and finally the genetic learning

process. At the end of each round it is verified if the value of the makespan of the best solution

found in the population is an improvement on the best value reached in the previous round. If

a certain number of rounds are completed (determined by the factor termed ‘not

improvement bound’ (NIB)) without any improvements being produced, then a global

regeneration of the population occurs.

The regeneration of the population means exploring each of the agent-solutions and if:

1. The makespan of the solution of the agent-solution is greater than the value of the

"makespan_bound" then a new sequence is always generated as a substitution.

2. If the above constraint is not satisfied, then a draw is made in which the agent-solution has

a 70% chance of winning. If the agent-solution wins, then a new sequence is generated to

substitute the current sequence. Otherwise, no change is made to the current agent-

solution.

If a new chromosome is generated, then the same algorithm that was applied to generate the

initial population is used.

Finally, it is worth noting that although any of the genetic operators, including the genetic

learning process, can generate a new chromosome. However, no automatic replacement of

the old chromosome is made. In general, a new chromosome only substitutes the old

chromosome under the following conditions:

1. A verification is made as to whether the makespan obtained with the sequence of the new

solution generated with the genetic learning process of the current agent-solution differs

from all its neighbours. If the value of the makespan is found to be repeated, then the

found solution is discounted, and no generational change is made.

2. If the filter mentioned in the previous point has been passed, verification is made that the

value of newly generated solution is less or equal to the ‘makespan_bound’. The value of

the ‘makespan_bound’ is obtained by multiplying the value of the makespan by the ‘range

factor’ (RF).

3. If the previous constraint has been satisfied, then a verification is made as to whether the

value of the makespan of the new solution is repeated in the historic set of the best values

obtained with the population. To achieve this, a list containing the 500 values nearest the

best current makespan is used to indicate the values previously obtained (dark colour) in

order to avoid repetitions.

Figure 9. List of the best 500 values

d. Algorithm implementation

To implement the MAGSA algorithm it is necessary to combine two fundamental elements: a

programming language and an agent platform.

The MAGSA algorithm has been implemented using the JAVA programming language for its

development (specifically, the open source development environment ECLIPSE version 3.4,

available at http:\www.eclipse.org\platform. The Java programming language was selected

because most of the agent platforms that we have found are being developed in Java. This

choice opens the possibility of future changes in the agent platform with less time investment.

The selected agent platform was JADE, version 3.5. This platform is one of the most complete

in terms of functionality, and meets international standards for developing agent applications.

4. Experimental analysis

a. Explained variance

In any process of configuration and analysis of an algorithm it is necessary to establish

explained variance, or the endogenousity of the model. In this case, we used as a comparative

measurement the percentage increase over the optimal, or the lowest known level of the

average result (IPSOVEP) of a given problem or instance. This measurement can be expressed

as:

The variable ‘Current_result’ is the value of the makespan obtained with a given instance of

the algorithm under evaluation. The variable ‘The_best_result’ represents the value of the best

known makespan for this instance. Therefore, positive values for IPSOVEP imply that the

algorithm has a makespan that is worse than the benchmark used, and negative values for

IPSOVEP imply that the model has been improved.

b. Data

In this work the use of a standard dataset has been seen as fundamental. Its function is to help

verify the quality of the results produced by the MAGSA algorithm with a set of instances. We

propose the use of a database originally published in Vallada et al. (2003), and which is an

adaptation of the dataset used in Taillard (1993). This dataset, adapted for the flowshop or

hybrid flowshop with sequence dependent setup times, was subsequently made available to

the scientific community so that researchers could test various proposals and offer improved

results.

IPSOVEP =
Current _ result -The_best _ result

The_best _ result
*100

For the experiment we used a subset of the selected databank and which has been classified

into 16 experimental sets, and although the nomenclature is explained in the original

reference, it is based on the combination of three characteristics: (A) four types of sequence

dependent setup times were considered, corresponding to 10%, 50%, 100%, and 125% of the

average process time (termed SSD10, SSD50, SSD100 and SSD125); (B) consideration of two

cases in relation with the numerical distribution of the machines per stage (P13 - randomly

distributed between 1 and 3 machines per stage; and P3 - a constant number of three

machines per stage); and (C) combination of two load levels in the workshop (20 to 50 pieces).

In relation with these characteristics, we have denominated the following: P13_SSD10_20,

P13_SSD10_50, P3_SSD10_20, P3_SSD10_50, P13_SSD50_20, P13_SSD50_50, P3_SSD50_20,

etc. Given that each set consists of 15 instances, we then have a total of 240 instances (or

instances).

Following a subdivision made in the experimental set, the IPSOVEPT variable will take into

account the average IPSOVEP for a single complete experimental set.

c. Factors and parametric calibration

In this section we discuss experiments carried out to correctly calibrate the MAGSA algorithm

using the design of experiments (DoE) approach. Two steps have been defined to explore two

behaviours. In the first step, learning processes have been disabled and the algorithm in this

state is termed MAGSA-1. The objective in implementing this first step is to create an

environment where agents do not learn, and where agents cannot develop a differentiated

behaviour. This is achieved by disabling some parameters (‘bottleneck switch’ (BS), ‘crossover

factor switch’ (CFS) and ‘crossover operator switch’ (COS)). A full factorial experimental design

has been achieved for MAGSA-1 where all possible combinations of the following factors have

been tested:

 Not improvement bound (NIB): 2 levels (50 and 200).

 Mutation factor (MF): 2 levels (0.1, and 0.3).

 Range factor (RF): 2 levels (1.05, and 1.2).

All the cited factors result in a total of 23=8 different combinations. For each combination we

aim to solve a full set of 240 problems with two replicas (with three running) for a total of 5760

runs.

We will now comment on the results for the SSD50_P3_50 experiment where we have 15

instances with three machines per stage, setup times that are 50% of processing times, and 50

jobs per order. In this case, all simple factors are significant, but any double interaction is

relevant. To choose the best levels for the studied factors we can use value plots to graphically

see which level is best for the genetic algorithm. The averages for the three factors are plotted

in Figure 10. Due to minimum values being established, 50, 0.3, and 1.2 are selected for NIB,

MF, and RF respectively.

Figure 10. Values for simple factors for the SSD50_P3_50 experiment

The remaining graphics for all other experimental sets are not shown here. After obtaining the

best values for the parameters for all 16 experimental sets, the results shown in Table 1 are

displayed. Only the values highlighted have been identified as statistically significant, the other

values have been freely selected.

Experiment NIB MF RF Experiment NIB MF RF
SSD10_P13_20 50 0.1 1.2 SSD10_P3_20 50 0.1 1.2

SSD10_P13_50 50 0.1 1.2 SSD10_P3_50 50 0.1 1.2

SSD50_P13_20 200 0.3 1.05 SSD50_P3_20 50 0.3 1.2

SSD50_P13_50 200 0.3 1.05 SSD50_P3_50 50 0.3 1.2

SSD100_P13_20 50 0.1 1.2 SSD100_P3_20 50 0.3 1.2

SSD100_P13_50 50 0.1 1.2 SSD100_P3_50 50 0.3 1.2

SSD125_P13_20 200 0.1 1.2 SSD125_P3_20 50 0.1 1.2

SSD125_P13_50 200 0.1 1.2 SSD125_P3_50 50 0.1 1.2

Table 1. MAGSA-1 algorithm calibration for 16 experimental sets

The resulting algorithms for all 16 experimental sets differ considerably. More precisely, when

NIB is significant, some 50 iterations without improved makespans are suggested, in other

words, frequent re-starts are better. However, this factor is only significant for P3 cases. The

range factor (RF) is probably the most relevant factor and this fact suggests that the algorithm

works better when RF is 1.2, that is, the algorithm works better when the generational

schemes are easily changed (relaxing the 2nd condition due to a high value of the

makespan_bound parameter). The mutation factor (MF) is not usually relevant, only 4 out of

16 times, and it must be considered for future proposals.

In the second step, the parameters associated with the learning processes are enabled and the

factor minimum crossover factor (MCF) is calibrated. This algorithm has been termed MAGSA-

2. In this way, a test regarding the agent contribution, represented by MAGSA-1 and MAGSA-2,

is easily carried out.

In case of MAGSA-2, the established values of the MAGSA-1 factors remain the same and only

the ‘minimum crossover factor’ (MCF) factor with two levels (0.2 and 0.4) has been analysed

after enabling the ‘bottleneck switch’ (BS), ‘crossover factor switch’ (CFS), and ‘crossover

operator switch’ (COS) parameters. We aim to solve a full set of 240 problems with two

replicas (total three) and a two-level factor for a total of 1440 runs. The results of the statistical

analysis show that the MCF factor is only significant for P3 cases where 0.4 is the best value.

All experiments were performed in a cluster of four PC computers with Intel Core 2 2.66 GHz

processors and two GB of main memory. The resulting experiments were analysed using a

multifactor analysis of variance (ANOVA) technique. With regards to the suitability of ANOVA

models for the data it can be said that all three hypotheses (normality, homogeneity of

variance, and independence of the residuals) were accepted in all experiments. All the

experiments were carried out at a 95% confidence level.

d. Comparative analysis

To make a comparative analysis that enables an assessment of the goodness of the proposal

we have expanded the work presented in Ruiz and Maroto (2006). In this way, we compare the

proposal through implementations of MAGSA-1 and-MAGSA-2 with ten other methods. The

condition of termination in all cases is 5000 iterations.

The first included method is the genetic algorithm, termed GAH, which was introduced in Ruiz

and Maroto (2006), for the same type of problem as MAGSA. The other methods – which have

been adapted to fit the problem constraints – follow below. The simulated annealing

procedure Osman and Potts (1989) which was adapted by replacing just the makespan

calculation has been termed SAOPH. The initialisation of the algorithm based on tabu search

Wildmer and Hertz (1989) was modified by adapting the NEH heuristic to this problem (NEHH);

in the same way, the evaluation of the solution for each step of the algorithm was performed

with the calculation functions of the adapted makespan. The adaptation of this algorithm has

been termed SpiritH and the original NEH heuristic of Nawaz et al. (1983) was also adapted.

The change was made by addressing the allocation and the makespan calculation for the

problem was amplified rather then being handled in a standard flowshop. The NEH heuristic

adapted for the problem has been termed NEHH. The genetic algorithm Reeves (1995) was

adapted by modifying the evaluation function, as well as the initialisation (now handled by the

NEHH heuristic instead of the standard NEH heuristic), and has been termed GAReevH. In a

similar way, we modified the genetic algorithms of Chen et al. (1995), Murata et al. (1996) and

Ponnanbalam et al. (2001) and these are referred to as GAChenH, GAMITH, and GAPACH,

respectively, and for which we simply changed the individual evaluation functions. The

algorithms based on ant colonies, M-MMASH and PACOH Rajendran and Ziegler (2004), were

also used.

Tables Table 2 and Table 3 show the average results obtained for all the experimental sets for

each of the 12 implemented algorithms. Tables Table 2 show the results for the case of the

hybrid flowshop with sequence dependent setup times with one and three machines per stage

(case P13), and Table 3 shows where the workshop always has three machines available per

stage (case P3). In both tables, a grey background highlights the best result, and the dotted

background indicates the second best result.

P13 Case GAH SOAPH SpiritH GAReevH NEHH GAChenH GAPACH GAMITH M-MMASH PACOH MAGSA-1 MAGSA-2

SSD10_P13_20 0.147 1.093 2.853 0.697 2.590 3.030 8.297 2.710 2.067 1.577 0.021 0.042

SSD10_P13_50 0.220 1.607 2.797 0.730 2.633 3.790 10.393 5.050 2.097 1.653 0.851 0.443

SSD50_P13_20 0.593 3.690 6.510 2.527 6.023 6.717 17.230 7.003 5.457 5.110 0.830 0.876

SSD50_P13_50 0.793 3.637 6.110 2.293 18.283 8.910 21.423 10.527 4.317 3.737 0.920 0.996

SSD100_P13_20 1.190 6.170 9.957 4.557 8.893 11.063 25.743 9.907 8.403 8.267 1.215 1.275

SSD100_P13_50 0.823 5.377 8.023 3.303 6.873 13.907 31.877 15.087 6.277 6.283 0.726 0.728

SSD125_P13_20 1.333 7.427 11.043 4.853 9.610 12.117 28.593 11.753 9.270 8.473 1.377 1.171

SSD125_P13_50 0.713 5.877 9.177 3.600 7.877 15.977 35.563 15.920 7.460 7.120 0.760 0.506

Table 2. ISOVEPT for evaluated methods in case P13

Three aspects are striking. Firstly, the relative differences between the algorithms are very

similar in all the experimental sets. However, the NEHH algorithm shows a sharp drop in

SDD50_P13_50, and so becomes the second worst algorithm after GAMITH. On some

occasions, algorithms with very similar results change positions in the ranking, such as

GAChenH and GAMITH. The second noteworthy aspect in the experimental sets with long

setup times (SSD100 and SSD125) is that the most competitive algorithms (i.e. all except

GAPACH, GAChenH, and GAMITH) show better results in cases of 50 pieces than in cases of 20

pieces. The third noteworthy aspect is that the GAH, MAGSA-1, and MAGSA-2 algorithms are

found to be among the three best algorithms in all cases, except for the SSD10_P13_50

experimental set, in which the GAReeVH algorithm is in third position, and MAGSA-1 is in

fourth position. This domination clearly differentiates these algorithms from the other

algorithms.

From the point of view of implementing the GAH, MAGSA-1, and MAGSA-2 algorithms for the

calculation of production programs it can be said that none offers a clear advantage and that

they form a more or less homogeneous set with respect to the quality of their production

programs.

Figure 11. IPSOVEPT values for the algorithms for the P13 case

P3 Case GAH SOAPH SpiritH GAReevH NEHH GAChenH GAPACH GAMITH M-MMASH PACOH MAGSA-1 MAGSA-2

SSD10_P3_20 2.143 6.810 10.943 3.197 7.643 7.023 17.113 12.747 7.027 6.963 1.774 1.398

SSD10_P3_50 1.720 10.487 11.200 2.700 5.413 4.730 18.293 11.603 4.817 4.957 0.128 0.170

SSD50_P3_20 3.103 9.587 12.353 5.100 10.367 8.247 18.513 10.897 9.807 9.600 2.824 2.439

SSD50_P3_50 1.900 10.270 10.170 3.263 6.250 4.383 17.007 11.203 5.743 5.650 1.777 1.721

SSD100_P3_20 3.300 11.883 12.987 6.200 12.673 8.703 20.133 12.073 12.673 12.647 2.665 2.584

SSD100_P3_50 2.460 10.113 10.227 4.103 7.093 4.933 17.097 11.573 7.093 7.093 2.226 1.977

SSD125_P3_20 3.670 12.313 14.110 7.187 14.263 8.960 21.030 13.387 13.747 13.447 3.263 2.633

SSD125_P3_50 2.913 10.367 10.773 4.707 7.817 5.813 17.790 11.990 7.193 7.213 2.547 2.179

Table 3. ISOVEPT for evaluated methods in case P3

In general, there are three notable aspects. Firstly, as in the case of P13, the relative

differences between the algorithms are very similar in all the experimental sets. However, the

NEHH algorithm shows a sudden worsening for sets with 20 pieces, which significantly

increases its IPSOVEPT value and causes it to lose positions in the algorithm rankings –

although it escapes last position. On some occasions, algorithms with very similar results have

changed positions in the ranking – although not to the same degree as in the P13 case. Now

only SpiritH and GAMITH change the positions. The second notable aspect is that in the

SSD100 and SSD125 cases, all of the algorithms have a better IPSOVEPT for 50 pieces than 20

pieces. The SSD50 case maintains the trend except for the algorithms SOAPH and GAMITH.

Moreover, SSD50 also maintains this trend, except for the SOAPH, SpritH, and GAPACH

algorithms. The third noteworthy aspect is that algorithms GAH, MAGSA-1, and MAGSA-2 are

found among the three best algorithms, usually with a clear difference with respect to the

others. The GAPACH algorithm was, in all cases, by far the worst.

In this case, the MAGSA-1 and MAGSA-2 algorithms are always the best two performers.

Therefore, we can confirm that for the analysed experimental sets, it is always best to use the

MAGSA-1 or MAGSA-2 algorithms to produce new predictive production programs. However,

for the P3 case, the domination of MAGSA-2 over MAGSA-1 is always significant, as it is the

best in seven of the eight experimental sets.

Figure 12. Value of IPSOVEPT of the algorithms for the P3 case

In the P3 type of problem, a multiagent system that incorporates the features from the

proposal implemented with MAGSA-2 supposes an advantage that enables a better

performance than the best known GAH algorithm in all cases. Although the type P13 and P3

problems are both of NP-complete complexity, it is worth noting that that when scheduling a

workshop in which one or more stages are bottlenecks and there is only one machine (case

P13), the task is more easily achieved than in a better balanced workshop (P3 case).

It should be emphasised that in the execution of algorithms, MAGSA-1 improved on 57

occasions the best known value for the makespan. For its part, MAGSA-2 improved the best

value on 37 occasions. Of the 120 instances used in the P3-type problem, MAGSA-1 achieved

the best makespan for 46 instances, and MAGSA-2 for 25 instances. The best values obtained

by running MAGSA-1 and MAGSA-2, and the corresponding Cmax value associated with the

instances, are shown in the Annex I.

5. Conclusions

This paper proposes a method for the problem of the hybrid flowshop with sequence

dependent setup times. After establishing the framework of the problem, a new genetic

algorithm has been designed to provide a solution to this problem that is based on software

agents.

To identify the possible contribution of the software agents, the process has been separated

into two stages, which although working almost simultaneously, have provided two different

algorithms, MAGSA-1 and MAGSA-2. The MAGSA-1 algorithm is based on multiagent

technology, but does not incorporate all the features of agents in ‘society’ and so does not

take advantage of ‘teamwork’. However, MAGSA-2 does incorporate features that enable the

advantages of teamwork in a society to be exploited.

After designing and implementing the algorithms, a thorough experimental analysis was made

in two phases. In the first phase, an adjustment of all the parameters was made (where

necessary) in both algorithms. The same values were always and deliberately used for MAGSA-

2 as MAGSA-1, except for those values that are peculiar to MAGSA-2 and have been

specifically configured. In the second phase, the most competitive versions of MAGSA-1 and

MAGSA-2 were compared with some of the best algorithms found in the literature for this type

of problem.

In the parametric adjustment phase, despite the fact that the experimental plan was simple,

the number of runs was very high. It is worth highlighting that in this stage, MAGSA-1

established a new minimum makespan value for 106 instances, and MAGSA-2 for 41 instances,

from a dataset total of 240.

In the comparative analysis phase, the algorithms GAH, MAGSA-1, and MAGSA-2 were

identified as the most competitive for the P13 and P3 type problems. Although in the case of

P13 type problems, there was no clear predominance for any of the three algorithms in any of

the analysed experimental sets. In the case of P3-type problems, the MAGSA-2 algorithm was

predominant in all the experimental sets. At this stage, the MAGSA-2 algorithm, and to a lesser

extent the MAGSA-1 algorithm, proved to be highly competitive. Moreover, the MAGSA-2

algorithm achieved the highest average result in 9 of the 16 experimental sets, and always for

the most complex cases, while the MAGSA-1 algorithm achieved the best result on three

occasions.

As a final conclusion, the results obtained for MAGSA-1 and MAGSA-2 have made an

interesting contribution to predictive algorithms for production scheduling in hybrid flowshops

with sequence dependent setup times.

Acknowledgements

This work has been carried out as part of the project DPI2008-06788-C02-01 (PERMACASI)

funded by the Spanish Ministry of Science and Innovation as part of the project PAID-06-10-

2396 (NegoSol-MAS) funded by the Vicerrectorado de Investigación of the Universidad

Politécnica de Valencia.

The translation of this paper was funded by Universidad Politécnica de Valencia, Spain.

References

Aghezzaf, E. A., Artiba, A., & Elmaghraby, S. E. (1995a). Hybrid FlowShop: an LP based

heuristic for planning level problems. ETFA Proceedings, 551-559.

Aghezzaf, E. A., Artiba, A., Moursli, O., & Tahon, C. (1995b). Hybrid Flowshops problems, a

decomposition based heuristic approach. International Conference on Industrial Engineering and

Prodcution Managemanent (IEPM´95). FUCAM/IFIP/INRIA Proceeding, 43-56.

Allahverdi, A.,Ng, C.T., Cheng, T.C.E., & Kovalyov, M. Y. (2008). A survey of scheduling

problems with setup times or cost. European Journal of Operational Research, 187, 985–1032.

Andres, C. (2001). Programación de la Producción en Talleres de Flujo Híbrido con Tiempos de

Cambio de Partida dependientes de la Secuencia. Phd dissertation, presented at Universidad

Politécnica de Valencia (Spain).

Andres, C., Abad, R., Ros, L. & Vicens, E. (1998). A Genetic Algorithm for Production

Scheduling in a two stage Hybrid flowshop with sequence dependent setup times. 16th

European Conference on Operation Research , Belgium.

Arthanari, T. S., & Ramamurthy, K. G. (1971). An extension of two machines sequencing

problem. Operations Research 8, 10–22.

Behnamian, J., Ghomi, S. M. T. F., & Zandieh, M. (2009). A multi-phase covering Pareto-

optimal front method to multi-objective scheduling in a realistic hybrid flowshop using a hybrid

metaheurístic. Expert Systems With Applications, 36(8), 11057-11069.

Behnamian, J., Ghomi, S. M. T. F., & Zandieh, M. (2010). Development of a hybrid

metaheuristic to minimise earliness and tardiness in a hybrid flowshop with sequence-dependent

setup times. International Journal of Production Research, 48(5), 1415-1438.

Brah, S. A. & Hunsucker, J. L. (1991). Branch and Bound Algorithm for the Flow-Shop with

Multiple Processors. European Journal of Operational Research, 51(1), 88-99.

Bang, J. Y. & Kim, Y. D. (2011). Scheduling algorithms for a semiconductor probing facility.

Computers & Operations Research, 38(3), 666-673.

Brah, S. A. (1996). A comparative analysis of due date based job sequencing rules in a flow

shop with multiple processors. Production Planning & Control, 7(4), 362-373.

Chen, C. L., Vempati, V. S. & Aljaber, N. (1995). An Application of Genetic Algorithms for

Flow-Shop Problems. European Journal of Operational Research, 80(2), 389-396.

Davoudpour, H. & Ashrafi, M. (2009). Solving multi-objective SDST flexible flow shop using

GRASP algorithm. International Journal of Advanced Manufacturing Technology, 44(7-8), 737-

747.

Gao, J., Gen, M., & Sun, L. Y. (2006). Scheduling jobs and maintenances in flexible job shop

with a hybrid genetic algorithm. Journal of Intelligent Manufacturing, 17(4), 493-507.

Gupta, J.N.D. & Darrow, W.P. (1986). The 2-machine sequence dependent flowshop scheduling

problem. European Journal of Operational Research, 24(3), 439-446.

Gupta, J.N.D. (1988)Two stage hybrid flow shop scheduling problem. Journal of Operational

Research Society, 39, 359–364.

Gupta, J.N.D. & Stafford Jr., E. F. (2006). Flowshop Scheduling research after five decades.

European Journal of Operational Research, 169, 699–711.

Gupta, J. N. D. & Tunc, E. A. (1994). Scheduling A 2-Stage Hybrid Flowshop with Separable

Setup and Removal Times. European Journal of Operational Research, 77(3), 415-428.

Gupta, J. N. D. & Tunc, E. A. (1991). Schedules for A 2-Stage Hybrid Flowshop with Parallel

Machines at the 2Nd Stage. International Journal of Production Research, 29(7), 1489-1502.

Haouari, M. & M'Hallah, R. (1997). Heuristic algorithms for the two-stage hybrid flowshop

problema. Operations Research Letters, 21(1), 43-53.

Hejazi, S. R. & Saghafia, S. (2005). Flowshop scheduling problem with makespan criterion: a

review. International Journal of Production Research, 43(14), 2895-2929.

Hoogeveen, J.A., Lenstra, J.K. & Veltman, B. (1996). Preemptive scheduling in a two-stage

multiprocessor flow shop is NP-hard. European Journal of Operational Research, 89, 172–175.

Hunsucker, J. L. & Shah, J. R. (1994). Comparative Performance Analysis of Priority Rules in

A Constrained Flow-Shop with Multiple Processors Environment. European Journal of

Operational Research, 72(1), 102-114.

Kia, H. R., Davoudpour, H. & Zandieh, M. (2010). Scheduling a dynamic flexible flow line

with sequence-dependent setup times: a simulation analysis. International Journal of Production

Research, 48(14), 4019-4042.

Kis, T. & Pesch, E. (2005). A review of exact solution methods for the non-preemptive

multiprocessor flowshop problem. European Journal of Operational Research, 164(3), 592-608.

Kutanoglu, E. & Wu, S. D. (1999). On combinatorial auction and Lagrangean relaxation for

distributed resource scheduling. IIE Transactions, 31(9), 813-826.

Kurz, M. E. & Askin, R. G. (2004). Scheduling flexible flow lines with sequence-dependent

setup times. European Journal of Operational Research, 159(1), 66-82.

Lee, C. Y. (1999). Two-machine flowshop scheduling with availability constraints. European

Journal of Operational Research, 114(2), 420-429.

Lee, C. Y. (1997). Minimizing the makespan in the two-machine flowshop scheduling problem

with an availability constraint. Operations Research Letters, 20(3), 129-139.

Lee, C. Y., Cheng, T. C. E., & Lin, B. M. T. (1993). Minimizing the Makespan in the 3-

Machine Assembly-Type Flowshop Scheduling Problem. Management Science, 39(5), 616-625.

Lim, M.K. & Zhang, Z. (2004). An integrated agent-based approach for responsive control of

manufacturing resources. The 27th Int. Conf. on Computers and Industrial Engineering, 46 (2),

221-232.

Logendran, R., deSzoeke, P. & Barnard, F. (2006). Sequence-dependent group scheduling

problems in flexible flow shops. International Journal of Production Economics, 102(1), 66-86.

Murata, T., Ishibuchi, H., & Tanaka, H. (1996). Genetic algorithms for FlowShop Scheduling

Problem. Computers and Industrial Engineering, 30(4), 1061-1071.

Naderi, B., Ruiz, R. & Zandieh, M. (2010). Algorithms for a realistic variant of flowshop

scheduling. Computers & Operations Research, 37(2), 236-246.

Naderi, B., Zandieh, M., Balagh, A. K. G. & Roshanaei, V. (2009). An improved simulated

annealing for hybrid flowshops with sequence-dependent setup and transportation times to

minimize total completion time and total tardiness. Expert Systems With Applications, 36(6),

9625-9633.

Nawaz, M., Enscore, E. E. & Ham, I. (1983). A Heuristic Algorithm for the M-Machine, N-Job

Flowshop Sequencing Problem. Omega-International Journal of Management Science, 11(1),

91-95.

Ng, C. T., Cheng, T. C. E., & Yuan, J. J. (2006). A note on the complexity of the problem of

two-agent scheduling on a single machine. Journal of Combinatorial Optimization, 12(4), 386-

393.

Nowicki, E. & Smutnicki, C. (1998). The flow shop with parallel machines: A tabu search

approach. European Journal of Operational Research, 106(2-3), 226-253.

Osman, I. H. & Potts, C. N. (1989). Simulated Annealing for Permutation Flowshop

Scheduling. Omega-International Journal of Management Science, 17(6), 551-557.

Ponnanbalam, S. G., Aravindan, P. & Chandrasekaran, S. (2001). Constructive and

Improvement Flow Shop Scheduling Heuristics: An extensive Evaluation. Production Planning

and Control, 12(4), 335-344.

Portmann, M. C., Vignier, A., Dardilhac, D., & Dezalay, D. (1998). Branch and bound crossed

with GA to solve hybrid flowshops. European Journal of Operational Research, 107(2), 389-

400.

Quadt, D. & Kuhn, H. (2007). A taxonomy of flexible flow line scheduling procedures.

European Journal of Operational Research, 178(3), 686-698.

Rajendran, C. & Chaudhuri, D. (1992). Scheduling in Normal-Job, Meta-Stage Flowshop with

Parallel Processors to Minimize Makespan. International Journal of Production Economics,

27(2), 137-143.

Rajendran, C. & Ziegler, H. (2004). Ant-colony algorithms for permutation flowshop

scheduling to minimize makespan/total flowtime of jobs. European Journal of Operational

Research 155(2), 426–438.

Reeves, C. R. (1995). A Genetic Algorithm for Flowshop Sequencing. Computers and

Operations Research, 22(1), 5-13.

Riane, F., Artiba, A., & Elmaghraby, S. E. (2002). Sequencing a hybrid two-stage flowshop

with dedicated machines. European Journal of Operational Research, 109(2), 321-329.

Riane, F., Artiba, A., & Elmaghraby, S. E. (1998). A hybrid three-stage flowshop problem:

efficient heurístics to minimize makespan. International Journal of Production Research, 40(17),

4353-4380.

Ribas, I, Leisten, R. & Framiñan, J.M. (2010). Review and classification of hybrid flow shop

scheduling problems from a production system and a solutions procedure perspective).

Computers and Operations research, 37 (8), 1439-1454.

Ruiz, R., Serifoglu, F. S., & Urlings, T. (2008). Modeling realistic hybrid flexible flowshop

scheduling problems. Computers & Operations Research, 35(4), 1151-1175.

Ruiz, R. & Stutzle, T. (2008). An Iterated Greedy heuristic for the sequence dependent setup

times flowshop problem with makespan and weighted tardiness objectives. European Journal of

Operational Research, 187(3), 1143-1159.

Ruiz, R. & Maroto, C. (2006). A genetic algorithm for hybrid flowshops with sequence

dependent setup times and machine eligibility. European Journal of Operational Research, 169,

781–800.

Sanjay, K.S. & Young, J.S. (2008). Bidding-based multi-agent system for integrated process

planning and scheduling: a data-mining and hybrid tabu-SA algorithm-oriented approach.

International Journal of Advanced Manufacturing Technology, 38(1), 163–175.

Serifoglu, F. S. & Ulusoy, G. (2004). Multiprocessor task scheduling in multistage hybrid flow-

shops: a genetic algorithm approach. Journal of the Operational Research Society, 55(5), 504-

512.

Shen, V. Y. & Chen, Y. E. (1972). A scheduling strategy for the flowshop problem in a system

with two classes of processors. Conference on Information and Systems Science. Proceedings,

645-649.

Shen, W., Wang, L. & Hao, Q. (2006). Agent-based distributed manufacturing process planning

and scheduling: a state-of-art survey. IEEE Transactions on Systems, Man, and Cybernetics –

Part C: Applications and review, 36 (4).

Sriskandarajah, C. and Sethi, S. P., 1989, “Scheduling Algorithms for Flexible Flowshops -

Worst and Average Case Performance”, European Journal of Operational Research, 43(2), pp.

143-160.

Taillard, E. (1993). Benchmarks for Basic Scheduling Problems. European Journal of

Operational Research, 64(2), 278-285

Toptal, A. & Sanbucuoglu, I. (2010). Distributed scheduling: a review of concepts and

applications. International Journal of Production Research, 48(18), 5235-5265.

Vallada, E, Ruiz, R., & Maroto, C. (2003). Synthetic and Real Benchmarks for Complex Flow-

shops Problems. Technical Report, Grupo de Investigación Operativa (GIO), Universitat

Politécnica de València.

Vignier, A., Billaut, J. C. & Proust, C. (1999). Hybrid flowshop scheduling problems: State of

the art. Rairo-Recherche Operationnelle-Operations Research, 33(2), 117-183

Vignier A., Billaut, J. C., & Proust, C. (1996). Solving k stage hybrid flowshop scheduling

problems. Multiconference of Computational Engieneering in Systems Applications

(CESA´96), 250-258. Lille (France).

Vignier A., Billaut, J. C. & Proust, C. (1995). Les Problemes d´ordennacement de type flow

shop hybride. Etat de l´art. Journées d´Etude: affectacion et ordennancement. CNRS / GdR

Automatique, GT3, 7-47, Tours.

Widmer, M. & Hertz, A. (1989). A New Heuristic Method for the Flow-Shop Sequencing

Problem. European Journal of Operational Research, 41(2), 186-193.

Yang, W.H. and Liao, C.J. (1999). Survey of Scheduling research involving setup times.

International Journal of Systems Science, 30(2), 143-155.

Yaurima, V., Burtseva, L., & Tchernykh, A. (2009). Hybrid flowshop with unrelated machines,

sequence-dependent setup time, availability constraints and limited buffers. Computers &

Industrial Engineering, 56(4), 1452-1463.

Yoshida, T. & Hotomi, K. (1979). Optimal 2-stage production scheduling with setup times

separated. AIIE transactions, 11 (3), 261 -263.

Zandieh, M., Ghomi, S. M. T. F., & Husseini, S. M. M. (2006). An immune algorithm approach

to hybrid flow shops scheduling with sequence-dependent setup times. Applied Mathematics

and Computation, 180(1), 111-127.

Zhong, W., Liu, J., Xue, M. & Jiao, L. (2004). A Multiagent Genetic Algorithm for Global

Numerical Optimization. IEEE Tranc. On Systems, Man And Cybernetics-Part B: Cybernetics,

34 (2), 1128-1141.

ANNEX I

In the following tables are shown the best know values of Cmax corresponding to the instances
used in the experimental phase. When the proposed algorithms overcome the previous known
Cmax value both previous, in first position, and new Cmax value are provided. In other case,
only the previous known value is included. Cells with gray background have a value of Cmax
that has been overcome by using the algorithm SMAGA-2.

MAGSA-1 P13 P3

instances SSD10_P13_20 SSD50_P13_20 SSD100_P13_20 SSD125_P13_20 SSD10_P3_20 SSD50_P3_20 SSD100_P3_20 SSD125_P3_20

ta002 1029 1197 1410 1497 351 459 / 458 564 609 / 599

ta004 1178 1247 1340 1396 / 1389 352 461 / 455 571 610

ta006 1314 1392 1557 1635 348 440 538 / 535 588

ta008 1074 / 1068 1146 1232 / 1230 1294 / 1281 332 429 531 586

ta010 1038 / 1034 1177 1335 / 1332 1409 322 412 509 / 502 555

ta012 1439 1567 1818 1983 541 / 539 652 / 647 798 / 794 858

ta014 1326 1508 1704 1790 461 580 717 782 / 755

ta016 1347 / 1346 1515 1804 1945 509 637 769 827

ta018 1426 / 1417 1654 1967 2128 513 621 / 617 760 831

ta020 1316 / 1315 1477 1677 1795 533 646 794 861 / 856

ta022 1897 2199 2571 2750 786 / 784 928 1113 / 1108 1206 / 1202

ta024 1890 / 1876 2097 2471 2652 782 926 1112 1209

ta026 1849 / 1848 2115 2486 / 2474 2668 859 999 1184 / 1175 1264 / 1257

ta028 1886 / 1876 2138 2490 2699 869 1020 1204 1293

ta030 1724 / 1712 1992 / 1989 2353 2521 878 1012 1191 1269

Table 4. The new best know values of Cmax for instances with 20-jobs (P13 and P3 cases) obtained after running
MAGSA-1

MAGSA-1 P13 P3

instances SSD10_P13_50 SSD50_P13_50 SSD100_P13_50 SSD125_P13_50 SSD10_P3_50 SSD50_P3_50 SSD100_P3_50 SSD125_P3_50

ta032 2593 2887 3274 3447 678 955 1256 1362

ta034 2726 / 2721 3049 / 3040 3420 / 3406 3693 / 3673 680 977 / 973 1275 / 1239 1368

ta036 2772 3316 / 3299 3925 / 3874 4312 / 4277 700 / 695 951 1248 / 1226 1372

ta038 2692 2977 3410 / 3406 3647 / 3611 656 / 645 932 / 922 1248 / 1233 1387 / 1384

ta040 2710 / 2700 3026 3480 / 3476 3722 / 3693 684 965 / 957 1248 1370 / 1362

ta042 3002 3570 / 3528 4334 / 4280 4612 / 4593 867 1215 / 1209 1555 1732

ta044 2992 / 2971 3636 / 3628 4400 / 4334 4784 / 4697 837 1174 / 1171 1570 1732

ta046 2924 3469 / 3465 4224 / 4141 4489 / 4473 940 1288 1658 1801

ta048 3002 3535 / 3526 4248 / 4213 4627 / 4598 947 1284 / 1276 1614 1778

ta050 2998 / 2994 3474 4062 / 4057 4354 / 4314 926 1261 / 1254 1612 1760

ta052 3419 / 3376 4030 4910 5379 / 5337 2168 / 1314 1658 2106 2331 / 2324

ta054 3201 3895 / 3889 4726 / 4718 5248 / 5231 1324 1718 2145 / 2135 2352

ta056 3383 4092 5122 / 5103 5534 / 5486 1325 / 1320 1713 2172 / 2157 2373

ta058 3421 4101 5118 / 5092 5512 1284 1678 / 1670 2100 / 2085 2307

ta060 3444 4164 5049 / 5046 5594 / 5516 1316 1704 2159 / 2157 2370

Table 5. The new best know values of Cmax for instances with 50-jobs (P13 and P3 cases) obtained after running
MAGSA-1

MAGSA-
2

P13 P3

instances SSD10_P13_20 SSD50_P13_20 SSD100_P13_20 SSD125_P13_20 SSD10_P3_20 SSD50_P3_20 SSD100_P3_20 SSD125_P3_20

ta002 1029 / 1028 1197 1410 1497 351 459 / 455 564 / 556 609

ta004 1178 1247 / 1245 1340 / 1338 1396 / 1386 352 461 571 / 565 610

ta006 1314 1392 1557 1635 348 440 538 / 537 588 / 569

ta008 1074 / 1067 1146 1232 1294 / 1281 332 429 531 586

ta010 1038 / 1034 1177 / 1175 1335 / 1332 1409 322 / 319 412 509 / 503 555 / 549

ta012 1439 1567 1818 1983 541 652 / 649 798 858

ta014 1326 / 1325 1508 1704 1790 461 580 717 782

ta016 1347 / 1344 1515 1804 1945 509 637 / 636 769 827

ta018 1426 / 1417 1654 1967 2128 513 / 512 621 / 617 760 / 757 831

ta020 1316 1477 1677 1795 533 646 794 861 / 849

ta022 1897 / 1889 2199 / 2193 2571 2750 786 / 784 928 1113 / 1110 1206

ta024 1890 / 1877 2097 / 2088 2471 2652 782 926 1112 1209 / 1201

ta026 1849 / 1845 2115 2486 / 2481 2668 / 2665 859 999 1184 / 1168 1264

ta028 1886 / 1865 2138 / 2137 2490 2699 869 1020 1204 / 1202 1293 / 1289

ta030 1724 / 1707 1992 / 1977 2353 2521 878 1012 1191 / 1185 1269 / 1262

Table 6. The new best know values of Cmax for instances with 20-jobs (P13 and P3 cases) obtained after running
MAGSA-2

MAGSA-2 P13 P3

instances SSD10_P13_50 SSD50_P13_50 SSD100_P13_50 SSD125_P13_50 SSD10_P3_50 SSD50_P3_50 SSD100_P3_50 SSD125_P3_50

ta032 2593 2887 / 2859 3274 / 3247 3447 / 3445 678 / 674 955 / 953 1256 / 1226 1362 / 1339

ta034 2726 / 2718 3049 / 3020 3420 3693 / 3608 680 977 / 970 1275 / 1240 1368 / 1363

ta036 2772 3316 / 3298 3925 / 3916 4312 / 4261 700 / 693 951 / 939 1248 / 1232 1372 / 1330

ta038 2692 2977 / 2969 3410 / 3394 3647 / 3629 656 / 648 932 / 926 1248 / 1218 1387 / 1355

ta040 2710 / 2703 3026 3480 / 3418 3722 / 3657 684 965 / 952 1248 1370

ta042 3002 / 3001 3570 / 3527 4334 / 4218 4612 / 4474 867 1215 / 1205 1555 1732 / 1708

ta044 2992 / 2962 3636 / 3595 4400 / 4352 4784 / 4737 837 1174 1570 / 1544 1732 / 1722

ta046 2924 / 2911 3469 / 3463 4224 / 4130 4489 / 4446 940 1288 / 1280 1658 / 1644 1801

ta048 3002 3535 / 3525 4248 / 4126 4627 / 4508 947 / 943 1284 / 1280 1614 1778

ta050 2998 / 2997 3474 / 3440 4062 / 3985 4354 / 4291 926 1261 / 1259 1612 / 1592 1760

ta052 3419 / 3371 4030 4910 / 4894 5379 / 5329 2168 / 1313 1658 / 1657 2106 / 2105 2331 / 2298

ta054 3201 3895 / 3890 4726 5248 / 5228 1324 / 1321 1718 / 1713 2145 2352

ta056 3383 / 3378 4092 5122 / 5046 5534 / 5483 1325 1713 2172 / 2154 2373 / 2362

ta058 3421 4101 / 4094 5118 / 5051 5512 1284 / 1278 1678 / 1669 2100 2307

ta060 3444 4164 5049 / 5041 5594 / 5474 1316 1704 2159 2370

Table 7. The new best know values of Cmax for instances with 50-jobs (P13 and P3 cases) obtained after running
MAGSA-2

Figure(s)
Click here to download high resolution image

http://ees.elsevier.com/eswa/download.aspx?id=122027&guid=599a335f-09da-48ef-869b-974fd8841447&scheme=1

*Highlights
Click here to download high resolution image

http://ees.elsevier.com/eswa/download.aspx?id=122032&guid=0205f25f-3252-40cb-9e05-1196636d792f&scheme=1

*Highlights
Click here to download high resolution image

http://ees.elsevier.com/eswa/download.aspx?id=122033&guid=3f122601-1d34-4ffb-bd07-3eff3605d0b9&scheme=1

*Highlights
Click here to download high resolution image

http://ees.elsevier.com/eswa/download.aspx?id=122034&guid=1c0cd508-b72f-405a-a9a1-a73dc04ed623&scheme=1

Figure(s)
Click here to download high resolution image

http://ees.elsevier.com/eswa/download.aspx?id=122035&guid=f85b274e-49f8-441a-93db-0e481b2e2c5a&scheme=1

Figure(s)
Click here to download high resolution image

http://ees.elsevier.com/eswa/download.aspx?id=122036&guid=09d9bbfa-4075-4e89-8002-45b6c8d8b695&scheme=1

Figure(s)
Click here to download high resolution image

http://ees.elsevier.com/eswa/download.aspx?id=122037&guid=9b39459f-e71b-442b-9dc3-8a6de7e59264&scheme=1

Figure(s)
Click here to download high resolution image

http://ees.elsevier.com/eswa/download.aspx?id=122038&guid=70d0c5b5-bab7-4860-98ff-e6d9a772816f&scheme=1

Figure(s)
Click here to download high resolution image

http://ees.elsevier.com/eswa/download.aspx?id=122039&guid=035d76ed-f6d4-44ed-8c38-c3cfb76aa2a7&scheme=1

Figure(s)
Click here to download high resolution image

http://ees.elsevier.com/eswa/download.aspx?id=122040&guid=48be50ba-7683-420e-98b2-1b5dfd02aa8f&scheme=1

Figure(s)
Click here to download high resolution image

http://ees.elsevier.com/eswa/download.aspx?id=122041&guid=f12623f9-f880-4623-b7f5-66a2d836a434&scheme=1

Figure(s)
Click here to download high resolution image

http://ees.elsevier.com/eswa/download.aspx?id=122042&guid=94a62b8c-33d1-40b7-80a7-b95bd4765047&scheme=1

