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Abstract

Biomedical data may be composed of individuals generated from distinct, mean-
ingful sources. Due to possible contextual biases in the processes that generate data,
there may exist an undesirable and unexpected variability among the probability
distribution functions (PDFs) of the source subsamples, which, when uncontrolled,
may lead to inaccurate or unreproducible research results. Classical statistical
methods may have difficulties to undercover such variabilities when dealing with
multi-modal, multi-type, multi-variate data. This work proposes two metrics for
the analysis of stability among multiple data sources, robust to the aforementioned
conditions, and defined in the context of data quality assessment. Specifically, a
global probabilistic deviation (GPD) and a source probabilistic outlyingness (SPO)
metrics are proposed. The first provides a bounded degree of the global multi-source
variability, designed as an estimator equivalent to the notion of normalized standard
deviation of PDFs. The second provides a bounded degree of the dissimilarity of
each source to a latent central distribution. The metrics are based on the projection
of a simplex geometrical structure constructed from the Jensen-Shannon distances
among the sources PDFs. The metrics have been evaluated and demonstrated their
correct behaviour on a simulated benchmark and with real multi-source biomedical
data using the UCI Heart Disease dataset. The biomedical data quality assessment
based on the proposed stability metrics may improve the efficiency and effectiveness
of biomedical data exploitation and research.
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1 Introduction

Biomedical data may be generated from different sources. Multi-centre data repositories
are a well-known example. Other examples include data generated from different users,
or groups of data at different levels of granularity through a sensible hierarchy, e.g., a ge-
ographical location. Hereafter multi-source data is defined as data comprising individuals
generated from distinct, meaningful, originating sources, belonging each individual to a
single, clearly identified, source.

Compiling data from multiple sources may ensure a good sample representation from
a broader and more representative population. In fact, obtaining a representative and
significant sample is usually the objective of multi-centre studies [1].

However, due to possible contextual biases in the processes that generate data, multi-
source data may also entail an unexpected or undesired variability among its sources,
which can lead to contradictory or unreproducible results [1]. As a consequence, two
situations may arise: 1) data consumers do not consider such variability, leading their
results to poor hypotheses, models, or wrong decisions; 2) data consumers are aware
about the possible variability but the complexity of data either hinders such discovery or
they do not have the proper discovery methods. Regarding to 2), Sáez et al. [2] showed
that classical statistical tests may have difficulties or be not suitable at all when dealing
with specific data features, such as in multivariate, multi-type and multi-modal data.
In any of the cases, one could perfectly draw hypothesis or obtain acceptable models
from data assuming that data is stable among sources —i.e., modelling and evaluation
made with data from all sources. However, it may not be assured that these results will
either maintain the same effectiveness when used or evaluated at a single source or be
generalisable at all to other sources.

This variability among sources is in fact a variability among their data probability
distribution functions (PDFs)1. Ideally, biomedical research studies, such as clinical trials
or population studies, would expect PDFs to be stable among the different sources in order
to draw generalizable conclusions. However, if this stability is not achieved, data fail to
meet user expectations what, by definition [3], results in a lack of data quality. The
variability among sources has been addressed by some authors in the biomedical data
quality domain [4] [5]. Nevertheless, it has mainly been related to semantic, structural or
element agreement among sources. In this work, the variability among sources’ PDFs is
studied as a spatial stability data quality dimension [6]. The study of the stability of data
sources may help data consumers understand their data, detect problematic or biased
sources, detect patterns among the sources or, more generally, take better decisions in the
research process.

In this work, a method for obtaining representative measurements of the data source
stability is presented. It contributes to the state-of-the art with two metrics of a spatial
stability data quality dimension, designed as a descriptive statistical method to assess
multi-source variability, and being robust to the aforementioned features where classical
statistical tests may not be suitable. The first metric measures the degree of global
multi-source variability —i.e. global probabilistic deviation (GPD)— and the second the

1Note that semantic or structural consistence among data sources is not discussed here, which is out
of the scope of this work.
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degree of outlyingness of single sources —i.e., source probabilistic outlyingness (SPO),
being both designed to be comparable among different domains or datasets. The calculus
of metrics is based on the projection of a D-dimensional simplex constructed from the
pairwise PDF distances among sources. Additionally, this method provides the basis for a
source clustering and for the spatial visualization of data source variability. The method
is evaluated with simulated and real data using the UCI Heart Disease dataset [7] [8].

The rest of the paper is organized as follows. Section 2 reviews different stability
problems found in biomedical studies, the statistical methods usually employed to detect
such variabilities, and settles the work in the context of data quality. Section 3 describes
the simplex geometrical structure and some of their properties. Section 4 describes the
spatial stability methods presented in this work. The experiments to evaluate the method
and the results are described in Section 5. Finally, Sections 6 and 7 describe the discussion
and conclusions of the work.

2 Background

2.1 Variability in biomedical data

The outcomes of biomedical research and healthcare practice depend on taking decisions
based on the available information [4]. The data behind such information is registered
by humans or devices based on observations of facts, at any stage of the healthcare
process, and under an environment or context. As a consequence, the interpretation
of such observations may be different according to different contexts [4]. In addition,
latent contexts (e.g., the socio-economic profile of a geographical location) can have a
direct influence on the original facts, independent on its interpretation. In other words,
contextual biases in the processes that generate data may have associated an undesired
or unexpected variability among the data-generating sources.

Many examples in the literature can be used to illustrate these types of variabilities.
Markus et al. [9] found differences in the interpretation of a common dataset of Doppler
embolic signals among different centres, even using the same equipments. Verwey et
al. [10] and Mattson et al. [11] found diagnostic variabilities among centres in several multi-
centre studies evaluating the use of cerebrospinal fluid biomarkers for Alzheimer’s disease.
Verwey et al. recommended the standardization of procedures and homogenization of
assays to reduce such variability. Such reduction was proved by Dargaud et al. [12] in the
use of a thrombin generation test in clinical trials. However, Pagiani et al. [13] encountered
that even using a common acquisition protocol, differences were still found among centres
in diffusion tensor magnetic resonance imaging findings. On the other hand, as a single but
relevant example of how the context can cause such variations, Jarman et al. [14] showed
that some hospital characteristics have a direct interaction with the ratio of hospital death
rates.

According to the type or purpose of the study, detecting and measuring multi-source
variabilities are generally addressed by means of classical statistical methods. In clinical
trials, the coefficient of variation or, its non-parametric equivalent, the quartile coefficient
of dispersion are generally used to measure variabilities among some numerical indicators
obtained from each source. These methods have some possible drawbacks. Summarizing
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in one scalar indicator the original distribution of what is measured on each source may in
some cases entail an information loss. Whilst the coefficient of variation may be affected
by the scale or type of the analysed variable (e.g., a mean near 0 on a non-ratio scale),
the quartile coefficient of dispersion may miss additional information about the shape of
variable PDF. One advantage of the quartile coefficient of dispersion is that is unit-free,
and so is comparable among different problems.

Classical statistical tests used to contrast differences among two or more univariate
data samples include One-way Analysis of Variance (ANOVA) for Gaussian data, Kruskal-
Wallis test for non-Gaussian data, and χ2 test for categorical. These tests are not designed
to deal with multivariate or multi-type data. In addition, both the two-sample equivalent
of One-way ANOVA, the Student’s t-test, and the Kruskal-Wallis test have problems with
multi-modal data [2]. Though, it is also expected in ANOVA, which is suited to unimodal
and homoscedastic Gaussian data.

Another method to test differences on samples composed by numerical and categorical
data is the N-way ANOVA. It evaluates the effect of multiple factors, the categorical
variables, on a dependent numerical variable. Hence, it is not suited to measure the
variability in the joint distributions of numerical and categorical variables.

Finally, the Multivariate ANOVA (MANOVA) test is suited when having more than
one dependent variable. Analogous to One-way ANOVA, variables must be numerical,
Gaussian and homoscedastic. While MANOVA may be useful under these assumptions,
the contrast is made on linear combinations of the variables, where such a collinearity
may not exist among these.

The stability metrics developed in this work are based on information-theoretic meth-
ods to measure PDF distances. As an alternative to classical statistical tests, information-
theoretic methods are able provide more information about the variability between data
distributions where the assumptions of the classical tests are not met (see Section 2.3).

The method presented in this work does not intend to replace the aforementioned
tests for their specific use scenarios. Its purpose is to provide a metric for the stability
among different sources of data and the degree of outlyingness of single sources, being 1)
suitable to multivariate, multi-type and multi-modal data, and 2) bounded and therefore
comparable among different problems. Additionally, it intends to 3) pose an alternative
to the classical statistical tests for those cases where the aforementioned conditions of
data hinder or impede their use.

2.2 Data source stability in the context of Data Quality

The variability among sources has been addressed by several authors as a data quality
problem from different perspectives. Cruz-Correia et al. [4] reviewed different issues as-
sociated to data integration and sharing among different health information systems or
organizations. They found structural and semantic interoperability as the major prob-
lems. Weiskopf et al. [5] carried out a systematic review on the methods and dimensions
of data quality assessment in the context of reuse of electronic health records (EHRs)
for research. From a set of 95 articles they derived five high-level dimensions and seven
assessment methods. From these, the concordance dimension, and the data source agree-
ment and distribution comparison methods can be related to our problem. They defined
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concordance as Is there agreement between elements in the EHR, or between the EHR and
another data source?. Hence, concordance can refer to the agreement among observa-
tions of a patient EHR, agreement among the same observation of a patient on different
information systems, or agreement among a set of EHRs with respect to a gold stan-
dard with the same information. Whilst the last two are related to the variability among
sources, only the last is related to the problem of comparing data probability distributions.
Though, they identified the method of comparison with a gold-standard distribution as
a method to assess the concordance dimension. However, any of the articles comprising
the systematic review neither intend to provide a stability metric among a set of sources
nor put attention on the heterogeneous features of biomedical data.

2.3 Dissimilarities between biomedical data distributions

Biomedical data usually show heterogeneous conditions. Concretely, biomedical data are
generally 1) multivariate (i.e., data have more than one variable), 2) multi-type (i.e., si-
multaneously continuous, discrete ordinal and non-ordinal variables), and 3) multi-modal
(i.e., data distributions are generated by more than one mode). In a previous work [2],
the authors studied the behaviour of different PDF dissimilarity metrics envisaging these
data features. The results of such study are summarized in Table 1.

Feature T KW KS JF JS EMD
Multivariate - - - Yes Yes Yes
Multi-Type - - - Yes Yes Yes
Multi-Modal - - Yes Yes Yes Yes
Bounded No No Yes No Yes Yes

Table 1: Ability of PDF distances or test statistics (columns) for dealing with specific fea-
tures of data (rows 1-3) and whether the distance is bounded (row 4). T: t-test statistic,
KW: Kruskal-Wallis statistic, KS: Kolmogorov-Smirnov statistic, JF: Jeffrey (Symmet-
ric Kullback-Leibler divergence), JS: Jensen-Shannon−1/2, EMD: Earth Mover’s Distance.
The ‘-’ means that the corresponding distance is not designed for the corresponding fea-
ture.

The results showed that the aforementioned data features may complicate the appli-
cation of classical statistical or data analysis methods for the assessment of differences
among data samples. Specifically, the results confirmed that classical statistical tests
may have difficulties on multi-modal data, or may not be not suitable at all on mul-
tivariate or multi-type data. Information-theoretic distances, including the Jeffrey and
Jensen-Shannon distances, and the Earth Mover’s Distance (EMD) [15] resulted the most
suitable distances to all conditions. Information-theoretic are distances which derive from
the Shannon’s entropy theory, while EMD derives from the digital imaging field as a
measure to calculate the minimum cost of transforming one histogram into another.

Regarding to the information-theoretic distances, when the probability mass in any re-
gion of the support in any of the compared distributions tends to zero, the Jeffrey distance
(symmetrized version of Kullback-Leibler divergence) tends to infinite. In contrast, the
Jensen-Shannon distance (JSD), square root of the Jensen-Shannon divergence [16] [17],
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is a metric bounded between zero and one, and it was smoothly convergent to one on that
situation. In fact, such bounds facilitate the distance comparison on different problems.

On the other hand, the EMD allows setting specific costs to the flow of probability
density between regions (or bins) of the support. Based on these costs, the EMD can be
bounded too, however, it requires knowing a priori the bounds of the probability support
of all the involved variables. In contrast, the JSD bounds are approached based on the
degree of overlapping between the compared distributions (as the overlap decreases the
distance tends to its upper bound), being the distance defined only by what is measured,
avoiding external configurations. As a consequence, and although both EMD and JSD
could be suitable for the purpose of the spatial stability method, the JSD was chosen for
its direct generalization for comparability.

3 Simplices and properties

Generally speaking, a simplex is the generalization of a triangle to D dimensions, D ∈ N.
A D-simplex, ∆D, is composed by v1, ..., vn : n = D + 1 vertices, which form the convex
hull of the simplest polytope in RD. Simplices can be regular or irregular. Some properties
of these that will be required in the development of the stability metrics are described
next.

A simplex is regular when the distances among their vertices are equal. Consequently,
the length of the segment formed from the centroid of the simplex to each vertex is
also equal. The angle γ between any pair of these segments depends on the number of
dimensions and is [18]:

γ(D) = arccos(− 1/D) (1)

The simplex when all the distances between its vertices are one will be defined further
on as 1-regular (1R) simplex. In any D, any pair of vertices and the centroid of the simplex
form a triangle. Thus, according to the law of sines, the distance d(v, O) = d1R(D)
between any vertex and the centroid on 1-regular simplices in D dimensions is defined as:

d1R(D) =
1

2 sin(γ(D)/2)
, (2)

where d1R(1) = 1/2 as a continuity convention in D = 1 (two vertices). See Section 1 of
the Supplementary Material for details.

On the other hand, a simplex is irregular when at least one of its vertices is at a
different distance from the centroid with respect to the others. Consequently, the distances
between vertices do not have to be equal. In that case, if it is defined as a simplicial
space upper-bounded by a 1-regular simplex —i.e., the simplicial space containing all the
possible simplices where the maximum distance among vertices is one—, the distance of
any vertex to the centroid of the irregular simplex will be bounded by:

dmax(D) = 1−
1

D + 1
, (3)

which is larger than d1R(D) for the same D. See Section 2 of the Supplementary Material
for details.
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4 Methods

The spatial stability method provides two metrics of the data source stability: 1) the
global probabilistic deviation (GPD — Ω), and 2) the source probabilistic outlyingness
(SPO — O). The GPD measures the degree of global multi-source variability. The SPO
of a single source is understood as a measure of the distance of its PDF to a latent central
distribution of all the sources. These metrics are obtained based on the simplex where
each vertex represents a data source, and its edge lengths the pairwise PDF distance
between the data of the sources represented by the adjacent vertices. A stability plot
visualization of the data source stability can be derived as a by-product of the process.
Figure 1 shows the procedure to obtain these outcomes. In the rest of the section, the
different steps of the procedure are described. The procedure input is a multi-source
dataset X = (X1, ..., XS), where Xs is the sub-sample of data corresponding to source s
and S is the total number of sources.

X

{Ω, Ο}

Figure 1: Steps of the method to obtain the stability metrics: global probabilistic de-
viation (GPD — Ω), and source probabilistic outlyingness (SPO — O). Each step is
described in its corresponding subsection in Section 4.

4.1 Estimation of PDF densities

The objective of this step is to obtain the set P of representative PDFs of the data of each
data source as P = (P1, ..., PS), Ps : p(Xs). Depending on the characteristics of the data
or the problem, different preprocessing or density estimation methods may be chosen. In
low dimensional problems, histograms or, a smoothing method for the numerical case,
kernel density estimations [19, 20](KDE) may be used. In higher dimensional problems
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data can be embedded into a lower-dimensional representation using dimensionality re-
duction methods such as Principal Component Analysis (PCA) or non-linear manifold
embeddings, such as ISOMAP [21]. As a consequence, the estimation of the probability
distribution functions becomes easier, being as much of the original information conserved.
Depending on the layout of data it is important to choose between linear and non-linear
dimensionality reduction methods, as linear methods (such as PCA) may fail on project-
ing non-linear continuities of data points on the original higher-dimensional space. In
addition, in the mixed multi-type case, i.e. when numerical and non-ordinal categorical
variables coexist, a special density estimation may be required when histograms become
noisy or sparse. In that case, a solution may be obtained using non-linear dimensionality
reduction methods which allow defining a distance metric among the values of categorical
data (e.g., using ISOMAP). In any case, this stage of the method is flexible to the use of
different density estimation methods, thus, the selection of the proper density estimation
method is out of the scope of this work.

The output of this step is the set P of PDFs with:

P = (P1, ..., PS), Ps : p(Xs) (4)

4.2 Calculus of pairwise PDF distances

In this step the pairwise PDF distances among all sources are calculated. These distances
correspond to the magnitude of the edges of the simplex under construction. Hence,
being S the number of sources, the number of distances to be calculated and, therefore,
the number of edges of the simplex, corresponds to the binomial coefficient

(

S
2

)

= S!
2!(S−2)!

.

According to the results introduced in Section 2.3, the pairwise PDF distance d(Ps, Ps′)
between PDFs Ps and Ps′ is calculated based on the square root of the Jensen-Shannon
divergence as:

d(Ps, Ps′) = JSD(Ps||Ps′)
1/2 =

(

1

2
KLD(Ps||M) +

1

2
KLD(Ps′||M)

)1/2

, (5)

where M = 1
2
(Ps + Ps′), and KLD(P ||Q) is the Kullback-Leibler divergence between

distributions P and Q. The Jensen-Shannon divergence is defined in the [0, 1] interval
when using the base 2 logarithm to calculate the Kullback-Leibler divergence (Equation
6).

KLD(P ||Q) =
∑

i

log2

(

P (i)

Q(i)

)

P (i) (6)

The discrete Kullback-Leibler divergence in Equation 6 allows computing the non-
parametric Jensen-Shannon divergence on D-dimensional histograms by computing for
each bin (i) in the common support the corresponding discrete Kullback-Leibler summa-
tions. However, the Jensen-Shannon divergence can also be calculated analytically for
some families of continuous distributions based on analytical forms of Kullback-Leibler
divergence for d-dimensional Gaussians (Equation 7) or approximations for mixtures of
Gaussians [22].
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KLD(P ||Q) =

1
2

(

tr
(

Σ−1
Q ΣP

)

+ (µQ − µP )
⊤ Σ−1

Q (µQ − µP )− d− loge

(

detΣP

det ΣQ

))

loge(2)
(7)

The output of this step is the S-by-S symmetric dissimilarity matrix Y :

Y = (Y11, ..., YSS), Yss′ : d(Ps, Ps′) (8)

4.3 Euclidean embedding using multidimensional scaling

The Information Geometry field states that probability distributions lie on a Riemannian
manifold which inner product is given by the Fisher information metric corresponding to a
specific family of distributions [23]. The geodesic distance between the points representing
probability distributions in such a statistical manifold can be approximated by means of
PDF distances, such as the Jensen-Shannon. In this work, only the distances among a
set of distributions are known. They are not restricted to a specific family, hence, it
can be considered that they lie on a statistical manifold of unknown configuration (i.e.,
inner product and thus dimensionality). To the purpose of this work, a simplex must be
constructed from such probabilistic distances in a RD space. To this end, multidimensional
scaling (MDS) [24, 25] is used, which calculates an Euclidean embedding of a inter-point
dissimilarity matrix.

Given a dissimilarity matrix Y = (Y11, ..., YSS), the objective of MDS is to obtain the
V = (V11, ..., VSD) coordinates of the set S of points in a R

D Euclidean space. This is
done by finding the best approximation of ||Vs − Vs′|| ≈ Yss′, where || · || is the Euclidean
norm between points Vs and Vs′. This approximation can be generally solved by the
minimization of a loss function, such as Kruskal’s Stress-1 (Equation 9) [26]. The special
case of D = S− 1 is known as full-dimensional scaling, which solution is a D-simplex and
it can be found in a unique global minima [27].

Stress-1 =

√

∑

ss′(||Vs − Vs′|| − Yss′)2
∑

ss′(Yss′)2
(9)

Modern MDS methods can be classified into metric and non-metric [25]. In metric
MDS the resultant inter-point distances are related to the input dissimilarities by a con-
tinuous function, while in non-metric the objective is to preserve the rank order among the
dissimilarities. Both methods compute iteratively the best approximation minimizing the
Stress functions, starting from an initial configuration of points. If such initialization is
obtained using classical scaling, based on eigendecompositions, the resultant coordinates
will likely be ordered monotonically by their significance with respect to the approxima-
tion.

To the purpose of the spatial stability metrics, the PDF dissimilarities should be ap-
proximated as better as possible, while maintaining the [0, 1]-bounds. Full-dimensional
scaling provides a perfect embedding when the input dissimilarities are Euclidean, how-
ever, this is not ensured for all types of dissimilarities, such as the Jensen-Shannon
distance. On the other hand, according to the Whitney Embedding theorem [28], any
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M-dimensional smooth manifold can be isometrically embedded into an R2M Euclidean
space. Hence, an MDS embedding of the PDF distances in this work may lead to a perfect
Euclidean embedding if the Whitney theorem holds, even if M is unknown. In fact, in all
the embeddings carried out for the evaluation of this work (Section 5), a zero Stress was
obtained. As a consequence, we can conclude that maintaining the [0, 1]-bounds cannot
be considered an issue in this work.

The output of this step is the S-by-D coordinates matrix V :

V = (V11, ..., VSD), (10)

where Vsd is the dth significant coordinate of source s.

4.4 PDF simplex building

Each of the points obtained in the previous step represents a source PDF, and the eu-
clidean distances among them keep the corresponding pairwise PDF distance. These S
points and the

(

S
2

)

edges represent the vertices and edges of a D-dimensional simplex.
This simplex and its centroid stand as the basis of the proposed method.

Given that the pairwise PDF distances are upper limited by one, the distances be-
tween vertices are so. It makes the corresponding simplicial projection meeting the next
properties:

Property 1. For a specific number of sources S = D + 1, whatever the PDF distances
among them, the maximum possible simplicial projection (i.e., when the distances of all
vertices to the centroid are maximum) is a D-dimensional 1R simplex.

Property 2. In the case of a D-dimensional 1R simplex, the maximum distance between
any vertex and the simplex centroid is d1R(D) (Equation 2).

Property 3. In the general D-dimensional case (irregular simplices) the maximum dis-
tance between any vertex and the simplex centroid will be bounded by dmax(D) (Equation
3).

Properties 1 and 2 define the theoretical maximum inter-source dissimilarity state,
thus defining an upper bound of global multi-source variability. It is straightforward
that the lower bound occurs when all distributions are equal and thus all points are the
same. On the other hand, in Property 3, dmax(D) establishes the limit for the cases where
d(Ps, P

′

s) = 0 : s, s′ ∈ {1, ..., S − 1} and d(Ps, PS) = 1 (the distance among all the sources
except one is 0, and the distances between this one and the formers are 1).

The output of this step is the D-dimensional simplex ∆D:

∆D = (V, C), (11)

where V correspond to the coordinates of the vertices and and C to the simplex
centroid (Equation 12), both defined in RD.

C =

N
∑

s=1

Vs

N
, (12)
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4.5 Calculus of metrics

The purpose of this step is to calculate the GPD and the SPO metrics based on the simplex
obtained in the previous step. This simplex represents a projection of the sources’ PDFs
keeping the dissimilarities among them. As a consequence, it can be affirmed that the
simplex centroid may represent a latent central point with respect to all PDFs, and two
definitions can be derived:

Definition 1. The centroid C of ∆D represents a latent central tendency of the original
measured population.

Definition 2. The distance of a vertex Vs to the centroid C, d(Vs, C), represents the
deviation of a data source with respect to the central tendency of the population.

As a consequence, the closer the PDFs vertices are to the centroid, the more stable
the dataset is, while the larger the more unstable. The resultant simplex is bounded by
an 1R simplex, as described in the previous step. Additionally, the larger the distance of
a vertex from the centroid, the more outlying a source is with respect to the latent central
tendency. The stability metrics proposed on this work are based on such definitions.

4.5.1 Global probabilistic deviation

The standard deviation is a measure of the variability of a sample with respect to its
central tendency. If the sources’ PDFs are considered as individuals of a population and
the centroid as its central tendency, the notion of standard deviation can be directly
applied to obtain a measure of the variability of the PDFs. In fact, as the PDF points are
embedded in a RD Euclidean space where the triangle inequality holds, their distances to
the centroid can be considered as PDF distances to a latent central distribution. Hence,
the derived standard deviation among S PDFs can be defined as:

Std(P1, ..., Ps) =

∑S
s=1 d(Vs, C)

S
, (13)

where d(Vs, C) is the Euclidean distance between the vertex Vs and the centroid C. Note
that as distances are always positive, the resultant deviation is given in the original units.

However, despite the pairwise PDF distances are [0, 1]-bounded independently of the
number of dimensions D, the distances between each vertex and the centroid are neither
defined in the same space for different D nor [0, 1]-bounded. It causes the standard
deviation measurement of Equation 13 neither to be comparable when the number of
sources S (and therefore D) is different, nor [0, 1]-bounded. This situation would not
permit the deviation to be comparable among different domains. Using property 2 of
section 4.4, the solution comes by normalizing the standard deviation by the maximum
deviation on D dimensions given the upper multi-source variability bound, i.e. d1R(D).
In fact, that upper bound distance is the upper bound of the standard deviation on D
(even if the simplex is irregular, the upper standard deviation tends to this value). That
makes comparable and bounded the measurement, and leads to the definition of the GPD
metric:
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Definition 3. The global probabilistic deviation metric Ω among a set of datasets X =
(X1, ..., XS) is defined as:

Ω(X1, ..., XS) =
Std(P1, ..., Ps)

d1R(D)
(14)

4.5.2 Source probabilistic outlyingness

The distance d(Vs, C) gives a degree of how far a source is from the central tendency of the
population (Definition 2). However, as well as in the GPD metric, that distance is defined
in different spaces according to D, thus making the distance neither comparable nor [0, 1]-
bounded. Analogously to the GPD metric, a normalization factor is required. In this case
it is the distance between a single vertex and the centroid what must be normalized.
Hence, using Property 3, the normalization factor is given by dmax(D), leading to the
definition of the outlyingness metric:

Definition 4. The source probabilistic outlyingness metric O of a dataset Xs with respect
to the central tendency among the datasets X1, ..., XS is defined as:

O(Xs) =
d(Vs, C)

dmax(D)
(15)

4.6 Stability plot visualization

Although the objective of this work is to provide metrics for the data spatial stability, it
must be mentioned that this method also provides the means to visualize the variability
or interdependences among data sources. In fact, the visualization of complex scientific
datasets using aggregated data is of special research interest [29].

Concretely, the simplex coordinates calculated by MDS serve as a D-dimensional vi-
sualization of the data stability, where the dth coordinate is the dst important in terms
of conserving the real distance. Due to the obvious restriction that visualizations can be
provided up to three dimensions, the most accurate visualization is obtained taking the
first two or three simplex coordinates. In the next sections some examples are provided.

5 Evaluation

The stability metrics presented in this work have been first evaluated for scalability on
different simulated conditions. Second, real multi-source biomedical data have been used
with the purpose of completing the evaluation on real data variables and compare results
with other classical statistical methods. In this section the evaluation experiments and
their results are presented.

5.1 Evaluation of scalability

In this evaluation the GPD (Ω) and the SPO (O) metrics were tested for scalability against
variations in the number of sources, variables, and distributional dissimilarities. The
GPD and SPO were measured and plotted at each iteration. Using the Jensen-Shannon
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distance in combination with non-parametric PDF estimations, the stability metrics are
constructed to be robust against different variable types and multi-modality (as based in
previous work [2]). As a consequence, to simplify the interpretation of these experiments
unimodal Gaussian variables and analytical parametric Jensen-Shannon distances were
used.

5.1.1 Different number of sources

New data sources were iteratively added at the same pairwise distance with respect to the
previous sources. This leads to regular simplicial projections, thus, the SPO is the same
for all sources at each iteration. Measurements were taken for different source pairwise
distances. Results are shown in Figure 2.

2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

No. of sources

Ω

 

 

d(P
s
,P

s’
)=0.5

d(P
s
,P

s’
)=0.6

d(P
s
,P

s’
)=0.7

d(P
s
,P

s’
)=0.8

d(P
s
,P

s’
)=0.9

d(P
s
,P

s’
)=1

(a) Global probabilistic deviation (Ω)

2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

No. of sources

O

 

 

d(P
s
,P

s’
)=0.5

d(P
s
,P

s’
)=0.6

d(P
s
,P

s’
)=0.7

d(P
s
,P

s’
)=0.8

d(P
s
,P

s’
)=0.9

d(P
s
,P

s’
)=1
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Figure 2: Results on different number of sources. Measurements were taken for different
inter-source pairwise PDF distances, given by d(Ps, Ps′).

The GPD metric keeps stable as the number of sources increases. The effect of nor-
malization can be observed, where the maximum GPD is one in the case all sources are at
the maximum pairwise distance, i.e., one. In fact, it results as a very interesting property
of the GPD metric that, due to the normalization by d1R(D), in the case all pairwise
distances are the same the metric is equivalent to that distance.

On the other hand, the outlyingness metric shows a non-linear negative tendency
which converges in all pairwise distances. As the number of sources at the same pairwise
distance increases, the distance of vertices to the centroid does so until convergence.
However, according to Property 3, in the case that pairwise distances are not the same
among all sources, i.e. an irregular simplex, an independent source may be at a larger
distance from the centroid than in the regular maximum case. Such irregular maximum
corresponds to the normalization factor for outlyigness. Hence, as an expected property
of the metric, when a source is at a large distance to a group of sources which are close
among each other, the former will be more likely an outlier when the number of sources
in the latter group increases.
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5.1.2 Different number of variables

Given two multivariate Gaussian sources their number of variables is increased. The
means of the first variable are at a fixed distance between the two sources, while the rest
of the variables are equal (covariance matrices were diagonal with Σij = 1). Hence, the
purpose is to evaluate whether the variability caused by the first variable is maintained
as new variables are included. Measurements were taken for different mean distances.
Results are shown in Figure 3, where, as in the case of two sources the GPD and SPO
are equivalent, only one plot series is shown representing both.

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

No. of variables

Ω
/O

 

 
µ

1s
−µ

1s’
=0.25

µ
1s

−µ
1s’

=0.50

µ
1s

−µ
1s’

=1.00

µ
1s

−µ
1s’

=2.00

µ
1s

−µ
1s’

=3.00

Figure 3: Results on different number of variables, where µ1s−µ1s′ indicates the Euclidean
distance between means of the first variable of sources s and s′.

Results show the scalability of the metrics with the number of variables, as metrics
keep stable as the number of variables increases. Hence, given a dissimilarity in a variable
subspace, both GPD and SPO will theoretically be stable independently of the size of the
full variable space.

5.1.3 Irregular source dissimilarities

In the general case differences among data sources will be irregular. That is, some sources
may be close to each other, while others may show a higher outlyingness due, e.g., to
sample biases. In this test this situation was evaluated. Using three bivariate Gaussian
data sources with equal and diagonal covariance matrices, their means were iteratively
and irregularly separated starting from an equal state until a convergence of the stability
metrics. Concretely, sources 1 and 2 were smoothly separated from each other while source
3 equally separated from both with a larger velocity, expecting a larger outlyingness on
it. Results are shown in Figure 4.

Figure 4(b) shows the stability metrics obtained during the iterative source separation,
where figure 4(a) illustrates the PDFs in an intermediate state of the evaluation. It can
be observed that as sources separate each other, the GPD does so until convergence, as
well as the SPO metric of each source. Regarding to the source outlyingness, P1 and
P2 are always at the same distance to the simplex centroid, hence showing the same
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(a) Compared distributions in a intermediate it-
eration.
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Figure 4: Results on a iterative irregular inter-source separation.

outlyingness. However, as P3 is separated at a larger velocity it gets to large distance
to the centroid which, once P1 and P2 have also achieved a larger probabilistic pairwise
distance, is reduced. This is due to the repositioning of the simplex centroid, related
to the increase of the edge length between P1 and P2, associated to their bounded PDF
distance.

5.2 Evaluation on real data (UCI Heart Disease)

The UCI Heart Disease [7] [8] is a publicly available multi-source dataset concerning heart
disease diagnosis. It contains 76 variables acquired at four different healthcare locations
namely the Cleveland Clinic Foundation, OH; the Hungarian Institute of Cardiology,
Budapest; the University Hospital, Zurich, Switzerland; and the V.A. Medical Center,
Long Beach, CA.

Only 14 of the variables are actually used in research studies, seven numerical and
seven categorical. To facilitate the evaluation of this work, data has been cleansed to
remove missing data while keeping the maximum possible number of non-missing variables
and individuals. This process is described in Table 2. Although in general only the
Cleveland sub-dataset is used in research experiments due to its higher quality and number
of individuals, in these experiments all datasets have been used with the purpose to assess
the stability among all the sources.

The stability metrics have been evaluated on this dataset as follows. First they have
been univariately measured, in both numerical and categorical variables, comparing the
results with classical statistical univariate tests. Second, they have been measured for
each combination of variables, containing pairs of numerical, categorical and mixing types.
Finally, the stability metrics have been measured using all the variables.

For this evaluation, the discrete Jensen-Shannon distance (Equations 5 and 6) was used
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Original (14 variables) Cleansed (11 variables)
Source Individuals Total missing values Individuals Total missing values

Cleveland 303 6 303 0
Hungarian 294 782 261 0
Switzerland 123 284 45 0
VA 200 699 129 0

All 920 1771 738 0

Table 2: Data cleansing of the UCI Heart Disease dataset carried out in this work

as the reference PDF distance. In the case of numerical variables, their corresponding
discrete PDFs were obtained from their KDE estimations using Matlab [30]. Gaussian
kernels and automatic bandwidth selection [31] were used.

5.2.1 Univariate evaluation

For each variable, the GPD and SPO metrics were measured. Additionally, depending
on whether the variable was numerical or categorical the classical ANOVA and χ2 tests
were performed reporting the corresponding p-values. Note that in the numerical case the
ANOVA makes the assumption that variables are unimodal Gaussians, what may not be
true. Results are shown in Table 3, which have been ordered by their GPD. Additionally,
Figures 6, 7 and 8 show the probability distributions and 2D simplicial projections of the
different variables.

GPD (Ω)
p-value SPO (O)

ANOVA χ2 Cleveland Hungarian Switzerland V.A.
trestbps .1156 .3001 - .0908 .0733 .1174 .0959

fbs .1550 - 3e-10 .0219 .1364 .1048 .2431
exang .2228 - 8e-13 .1768 .1871 .1609 .2031
sex .2299 - 2e-10 .2201 .1549 .1562 .2195
cp .2827 - 1e-16 .1895 .3016 .2563 .1759
age .3054 6e-37 - .0863 .4426 .1433 .3252

thalach .3642 5e-37 - .3897 .2019 .3497 .2480
restecg .3709 - 2e-56 .4847 .2725 .1668 .2874
oldpeak .4635 4e-10 - .3377 .3912 .3924 .3925
num .6302 2e-38 - .4491 .6203 .5528 .4360
chol .6737 2e-92 - .4030 .3915 .9706 .4353

Table 3: Results of univariate evaluation on the UCI Heart Disease dataset. The variability and
outlyigness measurements (columns) are shown for each variable (rows). Variables are sorted by the their
GPD metric. The ANOVA or χ2 p-value is shown according to whether the variable is numerical or
categorical.

It can be observed that the GPD metric and the p-values of statistical tests are in
general inversely proportional (Spearman correlation of −.7182, combining ANOVA and
χ2 p-values), i.e. the larger the GPD measurement the more significant the differences are
found by the tests. This reinforces the consistence of the metric, which in addition shows
its independence with respect to the type of variable. However, such correlation must be
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interpreted with caution. First, the behaviour of p-values do not need to be linear, and
depends on the number of individuals or outliers (see Figure 5 for further details). As an
example, the trestbps variable, shows a large p-value. As it can be observed (Figure 6(a)),
its PDFs are quite similar except an outlier in the V.A. sample. Removing such outlying
individual largely reduces the p-value to .1272, while the GPD and the V.A. SPO are
only reduced to .1062 and .0739, respectively. On the other hand, statistical tests may
not be accurate on multi-modal distributions, where the stability metrics are robust. Such
problem can be observed in the oldpeak variable 8(a)), where ANOVA provides a p-value
larger than its numerical predecessors.
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Figure 5: Comparison of the behaviour of the ANOVA p-value and the GPD (Ω) with
different number of individuals. Two simulated Gaussian distributions with equal stan-
dard deviation were incrementally separated, where n random points were generated in
each case. Probability density functions for GPD were estimated using KDE.

The results also show how outlying sources can be identified by the SPO metric. First,
in the age variable, the respectively younger and older patients of Hungarian and V.A.
datasets have their effect on their SPO metrics (Figure 7(b)). Regarding to the chol
(serum cholesterol) variable, the Switzerland dataset showed an extreme outlyingness,
probably caused by a wrong codification of the missing values: while in the Heart Disease
dataset missing values are coded with −9, these seem to be coded with 0 (Figure 8(c)). In
the thalach (maximum heart rate achieved) variable the projection shows the dissimilarity
found among all sources (Figure 7(c)). Finally, the num variable corresponds to the heart
disease diagnosis, and is the dependent variable for the data mining purposes of the
dataset (note that studies with the Heart Disease dataset generally group positive values
into a single positive class). However, it can be observed that there are large differences
among the datasets. Specifically, the Hungarian dataset do not have patients with a value
larger than 1, and Switzerland has very few healthy patients (0 value) in comparison with
the others (Figure 8(b)).
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5.2.2 Bivariate evaluation

Results of bivariate evaluation are shown in Table 4. As described in 5.1.2, a low number
of individuals makes histograms or density estimations to be more noisy due to data
sparsity, thus, the low number of individuals on the evaluated dataset makes the GPD
metric to tend being slightly higher in this bivariate test. However, these measurements
are comparable among them, which permits discovering interactions of pair of variables
(concretely of their joint probability) with respect to the data source. It can be observed
that the large univariate variability of chol is reflected in all of its joint GPDs. On the
other hand, the combinations including the dependent variable,num in this case, should
take special attention by researchers as variability may indicate possible conflicts when
developing predictive models based on the multiple datasets.

sex cp trestbps chol fbs restecg thalach exang oldpeak num

age .4123 .4515 .3516 .7562 .3416 .4992 .4917 .3999 .4006 .5469
sex - .3622 .2871 .7084 .2939 .4392 .4163 .2995 .5197 .6456
cp - - .3687 .7160 .3550 .4939 .4703 .3344 .5568 .6714
trestbps - - - .6893 .2125 .4194 .3988 .2683 .2927 .4945
chol - - - - .7005 .8357 .7367 .7065 .7080 .7797
fbs - - - - - .4138 .4198 .2947 .5042 .5928
restecg - - - - - - .5287 .4420 .5950 .7063
thalach - - - - - - - .4022 .4580 .5789
exang - - - - - - - - .4919 .6277
oldpeak - - - - - - - - - .5512

Table 4: Results of bivariate evaluation on the UCI Heart Disease dataset. Each cell shows the GPD
(Ω) of the joint probability of the variables in the corresponding row and column.

5.2.3 Multivariate evaluation

The stability metrics were measured using all the available variables to assess the general
stability of the complete dataset. To illustrate this example the PCA dimensionality
reduction method with dummy coding of categorical variables was used. PCA was applied
to the full dataset containing data from the four sources. The first three components
were used for the analysis. Figure 9(a) shows dataset projection on these three first
components, where the source of each individual is identified. It can be observed that
there is a clear dissimilarity on the distributions of each source. The stability metrics were
calculated on these distributions. Figure 9(b) shows a 2-dimensional simplicial projection
of the 3-simplex obtained with the method, which yielded the stability metrics shown in
Table 5. The observed dissimilarity among the sources is reflected on the metrics. The
2-dimensional sphere in Figure 9(b) represents the upper variability bound defined by
the 1R-simplex where all the pairwise dissimilarities are maximum —in such situation all
points would be located in the sphere. Thus, the obtained simplex and metrics reflect
a large variability among all sources, without a clear cluster of data sources defining
an approximate centroid of the problem. The most outlying source corresponds to the
Switzerland sub-dataset. That may be due to the data quality problems present in the
dataset, such as the apparently wrong codification of missing values, the low number of
individuals after the cleansing procedure, as well as the difference in the target variable.
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GPD (Ω)
SPO (O)

Cleveland Hungarian Switzerland VA
4 sources .5840 .4753 .4647 .5195 .4477

Table 5: Results of multivariate evaluation on the UCI Heart Disease dataset

6 Discussion

6.1 Significance

The common methods to assess the variability of multi-source biomedical data are gen-
erally suited to univariate measurements, and most take parametric or homoscedasticity
assumptions on them. The evaluation results of the stability metrics developed in this
work show that these metrics are a robust alternative to classical methods on multi-type,
multi-modal and multivariate data, or a complementary tool when classical assumptions
are met.

The GPD metric theoretically aims to increase as the global pairwise dissimilarity
among the PDFs of data sources increases. That was validated by the evaluation results.
Thus, the purpose to measure the degree of variability of multi-source data is accom-
plished. This is analogous to classical methods, but with the advantage of being suited
to multi-type, multi-modal and multivariate data. Additionally, it has been shown that
the GPD keeps stable as the sample size decreases in comparison with the p-values of
classical statistical methods such as ANOVA Figure 5.

The SPO metric provides additional information about the outlyigness of each data
source with respect to a latent central tendency of all the sources’ distributions. To our
knowledge such information is not provided by any classical test. On numerical data,
ANOVA provides the sum-of-squares measurement as a measurement of the variability
between groups. That is conceptually equivalent to the intermediate PDF dissimilarity
matrix obtained during spatial stability calculus. The PDF dissimilarity matrix, however,
is bounded and suited to the aforementioned features of data distributions.

Regarding to data quality, Weiskopf et al. [5] identified some methods to measure the
concordance of datasets based on comparisons with gold standard equivalent repositories.
The stability metrics permit measuring such degree of dataset concordance without re-
quiring an additional gold standard dataset. Hence, the GPD metric provides the degree
of concordance among datasets, while the SPO metric provides the degree of concordance
of specific datasets with respect to a latent reference to all the datasets. Hence, the GPD
and SPO can be defined as a composite measurement method of a spatial stability data
quality dimension. The spatial stability can therefore be assessed under data quality
assurance protocols.

One of the most practical use cases where the proposed methods can be used is the
initial data understanding and data preparation stages of multi-source biobanks based
research. It includes data mining or clinical trials. The GPD metric can be used to find
global dissimilarities among data sources’ PDFs. Large values could be caused by a low
overall probabilistic concordance, or by outlying specific sources, due to possible centre or
user biases. Such source outlyingness would be measured by the SPO metric. Researchers
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could decide to remove anomalous sources from their study or take the appropriate deci-
sions to correct possible biases. As an example, in the development of predictive models
outlying sources may reduce the global effectiveness and generalisation of models. Re-
searchers may even consider detected variabilities as an outcome of their studies. In
addition, the spatial stability plot may help to visually identify patterns among a large
number of sources, with the possibility to use the intermediate PDF dissimilarity matrix
as the input of subgroup discovery algorithms such as hierarchical clustering.

6.2 Limitations

Using the spatial stability metrics may require some attention under some situations, as
well as in most actual data mining methods. Results showed that metrics are scalable to
the number of variables. This is true according to the theoretical definition of metrics.
However, in practice, the curse of dimensionality may affect to the metrics. Hence, as
the number of variables increases, the probabilistic space becomes sparser. Specifically,
the sparsity of a low number of data points —i.e., individuals— across the probabilistic
space may cause the PDF estimations to be inaccurate —e.g., sparse, unsmoothed or
‘peaky’ PDFs—, leading to anomalous PDF distances. Such a variance of PDF distance
estimators related to dimensionality has been discussed in other studies [32].

Nevertheless, as in most data mining tasks, the curse of dimensionality can be relaxed
using proper dimensionality reduction methods or selecting a subset of appropriate study
variables. In this work, PCA was used in the multivariate evaluation experiment. How-
ever, other non-linear methods or methods with a more intelligent treatment of categorical
variables may be more suitable with multi-modal or categorical data. E.g., if distances
among categories can be specified, the ISOMAP algorithm could be used to generate a
dimensionality reduced manifold conserving distances between data points.

On the other hand, even when no dimensionality reduction is required, the PDF es-
timation method may also imply some variance on the PDF distances and, thus, to the
stability metrics. The estimation of categorical histograms is straightforward. However,
numerical data can be estimated using both histograms or other smoothing methods such
as KDE, which may require tuning specific parameters such as the bin size (in the case of
histograms) or kernel bandwith (in the case of KDE). As a consequence, an inadequate
parametrization may lead to inaccurate PDFs. With the purpose to accurately estimate
PDFs, parameters can be selected manually, where the optimum values are selected by a
user, or automatically, using different methods to select them [31, 33]. In this work, the
KDE bandwidth was selected using the latter approach, simulating a totally automatic
spatial stability assessment. The automatic method provided reliable estimations. How-
ever, the use of other method or some manual adjustments on the kernel bandwidths may
have provided slightly different results. Nevertheless, in the proposed method to obtain
the stability metrics, the PDF estimation step is flexible to the use of different estimation
methods suited to specific purposes or based on semantic knowledge about the problem.

Other aspect avoided in this work but which may be present on real multi-source
biomedical data is the patient overlap. Weber [34] showed that the patient overlap among
different sources may limit the effectiveness of tools oriented to multi-site datasets. Thus,
if it is to happen, it should be considered before applying any method. However, if the
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number of individuals is sufficiently high in comparison with those overlapping patients,
that problem may be of little significance.

6.3 Future work

Some of the classical methods, such as ANOVA or χ2 tests, have associated p-values indi-
cating the statistical significance on the difference between the univariate measurements.
They allow taking decisions based on the rejection of a null hypothesis. The stability
metrics do not currently provide such a p-value, hence, its interpretation aimed to deci-
sion making may require further understanding. The GPD can be considered a estimator
equivalent to the notion of normalized standard deviation of PDFs. As a descriptive
estimator, further work can be carried out to characterize its measurements on differ-
ent contexts and problems. First, the GPD behaviour can be characterized according
to different changes on different types of distributions, similarly to the previous work [2]
discussed in Section 2.1. Second, the GPD outcomes can be associated to evaluation
indicators of different target problems combining multi-source data. As an example, it
may help understanding which GPD thresholds are sufficient to maintain acceptable error
bounds in predictive modelling combining multi-centre data. On the other hand, it is also
left for future work studying the possibility to provide confidence intervals on the stability
metrics.

Nowadays many biomedical studies still count with low sample sizes, what may lead to
the aforementioned limitations, specially in high dimensions. Hence, further work should
be carried out with the purpose to characterize this effect to obtain possible calibrations
or error bounds for the metrics. Additionally, such work may be combined with the study
of the proper dimensionality reduction methods suited to the analysed data.

It may also be noted that as the Jensen-Shannon distance was used in this work as PDF
distance for its symmetry, smoothness and bounds, that distance is at a small constant to
the Hellinger distance [2, 35]. Hence, each of them may be used interchangeably for the
proposed metrics. Further studies may identify specific features for their selection.

Other interesting capabilities of the method emerge as future work aimed to the data
preparation procedures. The method can be used to assess the stability of other data
quality features such as missing data. The GPD and SPO metrics represent additional
features of the dataset which may improve the development of models or hypotheses on
multi-source data. In an environment with a large number of sources, such a large set of
hospitals in a country, or a large number of users in a hospital, the simplicial projection
can be used to obtain a clustering of these sources, as well as to provide 2D or 3D
visualizations of the source dissimilarities. Hence, further visual analytics methods for
data source spatial stability will be studied to provide more informative visualizations
(e.g., considering sample sizes or other source features) and interactive control panels.
Finally, measuring the stability metrics through a set of temporal batches can provide a
temporal monitoring of the inter-source variability as well as help to detect and monitor
source biases.

Further discussions can be made deriving the application of the developed stability
metrics to other purposes. Data source stability, as studied in this work, can be classified
as a representation learning problem. Representation learning [36] aims to find latent
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prior knowledge, namely ‘priors’, about data to facilitate the data understanding and
model development on data mining problems. Hence, the GPD or SPO metrics may be
used to represent such a prior knowledge of data. For instance, in a multi-source dataset
each source outlyingness can be included as an additional variable to compensate possible
dissimilarities on sources when developing data models. Similarly, the metalearning field
of study [37] aims to find metaknowledge about models or data to guide the search of the
most appropriate model for a specific problem. Thus, the stability metrics could be used
to characterize particular datasets, where their effectiveness as a metaknowledge feature
to choose apropriate models could be studied.

7 Conclusions

When multi-source data samples are expected to represent the same, or a similar popula-
tion, variabilities among the sources’ PDFs may hinder any data exploitation or research
processes with such data. This work constructs stability metrics for assessing such vari-
abilities. As an objective, the metrics should be robust to multi-type, multi-modal and
multi-dimensional data as well as bounded and comparable among domains. The here
developed method based on simplicial projections from PDF distances have demonstrated
capabilities to accomplish these hypothesis, providing metrics for measuring the global
probabilistic deviation of data, the source probabilistic outlyingness of each data source,
and a interpretable stability plot visualization of the inter-source variability. The metrics
can be used as a complementary or alternative method to classical univariate statisti-
cal tests, with the advantages of being independent to the type of variable, dealing with
multi-modal distributions, and providing additional visualizations. Additionally, the GPD
metric, Ω, stands as an estimator equivalent to the notion of the normalized standard de-
viation of a set of PDFs, a concept that may be used in several different purposes.

In practice, the spatial stability metrics can be used as part of data quality assurance
protocols or audit processes. The GPD and SPO metrics conform a spatial stability data
quality dimension to assess the multi-source probabilistic concordance of data, and with-
out the need of a gold standard reference dataset. Hence, the stability metrics may help
assuring the quality of —increasingly larger— biobanks-based research studies involved
with multi-center, multi-machine or multi-user data.
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(a) Resting blood pressure (in mmHg)
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(b) Fasting blood sugar > 120 mg/dl (0 = false; 1 = true)
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(c) Exercise induced angina (0 = no; 1 = yes)
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(d) Sex (0 = female; 1 = male)

Figure 6: Univariate probability distributions and 2-simplex stability plots for variables
trestbps, fbs, exang and sex. The 2-dimensional sphere represents the upper variability
bound where all the pairwise dissimilarities would be maximum.
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(a) Chest pain type (1 = typical angina; 2 = atypical angina; 3
= non-anginal pain; 4 = asymptomatic)
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(b) Age (in years)
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(c) Maximum heart rate achieved
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(d) Resting electrocardiographic results (0 = normal; 1 = ST-T
wave abnormality; 2 = left ventricular hypertrophy)

Figure 7: Univariate probability distributions and 2-simplex stability plots for variables
cp, age, thalach and restecg. The 2-dimensional sphere represents the upper variability
bound where all the pairwise dissimilarities would be maximum.
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(a) ST depression induced by exercise relative to rest
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(b) Angiographic disease status (0 = healthy; > 1 = sick)
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(c) Serum cholesterol (in mg/dl)

Figure 8: Univariate probability distributions and 2-simplex stability plots for variables
oldpeak, num and chol. The 2-dimensional sphere represents the upper variability bound
where all the pairwise dissimilarities would be maximum.
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(a) The UCI Heart Disease dataset on its three first PCA com-
ponents. Data sources are identified.

−0.5 0 0.5

−0.5

0

0.5

cleveland

hungarian switzerland

va

(b) 2-simplex stability plot of stability

Figure 9: Visualizations of multivariate stability on the UCI Heart Disease dataset.
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