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Abstract. The notion of operational termination captures nontermi-
nating computations due to subsidiary processes that are necessary to
issue a single ‘main’ step but which often remain ‘hidden’ when the
main computation sequence is observed. This highlights two dimensions
of nontermination: one for the infinite sequencing of computation steps,
and the other that concerns the proof of some single steps. For condi-
tional term rewriting systems (CTRSs), we introduce a new dependency
pair framework which exploits the bidimensional nature of conditional
rewriting (rewriting steps + satisfaction of the conditions as reachabil-
ity problems) to obtain a powerful and more expressive framework for
proving operational termination of CTRSs.

Keywords: Conditional term rewriting, dependency pairs, program analysis,
operational termination.

1 Introduction

Assume that we have an interpreter for a logic L, i.e., an inference machine
that, given a theory S and a goal formula ¢, will try to incrementally build a
proof tree for . Intuitively, we call S terminating if for any ¢ the interpreter
either finds a proof in finite time, or fails in all possible attempts also in finite
time. The notion of operational termination captures this idea, meaning that,
given an initial goal, an interpreter will either succeed in finite time in producing
a closed proof tree, or will fail in finite time, not being able to close or extend
further any of the possible proof trees, after exhaustively searching all such proof
trees [12]. In particular, operational termination captures a ‘vertical’ dimension
of the termination behavior which is missing in the usual definition of termina-
tion of relations as well-founded, i.e., “without infinite reduction sequences” (the
‘horizontal’ dimension).

Available tools for proving operational termination of conditional rewriting
(AProVE [10] or VMTL [16]) rely on transformations U that map each opera-
tional termination problem for the CTRS R into a termination problem for a
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TRS U(R). Then, available methods for proving termination of U(R) are used.
However, this transformational approach has substantial limitations.

Ezample 1. Consider the following CTRS R [15, Example 8]
h(d) = c(a) (1)
h(d) — c(b) 2)
f(k(a), k(b), ) = f(x,z,z) (3)
9(x) = k(y) < h(z) = d, h(z) = c(y) (4)

As reported in [15, Example 8], U(R) is not terminating. However, our methods
in this paper will show that R is operationally terminating (Example 19).

Most termination tools for proving termination of (variants of) rewriting with
TRSs implement extensions or generalizations of the Dependency Pair Frame-
work [7,8]. The main idea is the following: the rules ¢ — r that are able to
produce infinite sequences are those whose right-hand side r contains (possi-
bly recursive) function calls. The calls associated to ¢ — r are represented as
new rules u — v, that are collected in a new TRS DP(R) of dependency pairs
(DPs); R and DP(R) determine dependency chains whose finiteness characterize
termination of R [1].

In this paper we generalize this approach to deterministic 3-CTRSs, which are
the basis of rewriting-based languages like CafeOBJ [5] or Maude [3]. In Section
3 we show that computations starting from minimal operationally nonterminat-
ing terms can always follow a precise path where two sources of nontermination
can be identified: infinite sequences of rewriting steps (an horizontal dimension),
and infinitely many attempts to check the satisfaction of the conditions in the
rules (a vertical dimension). Section 4 introduces a definition of dependency pairs
that makes such a bidimensional nature of infinite computations explicit (we call
them 2D DPs). The corresponding notion of chain of dependency pairs permits
a completely independent treatment of both dimensions of the termination prob-
lems. For 2-CTRSs (a subclass of 3-CTRSs), we characterize termination (i.e.,
the absence of infinite rewrite sequences) in terms of the “horizontal” component
of our 2D DPs only. In Section 5, we adapt the Dependency Pair Framework |7,
8] to mechanize proofs of operational termination of deterministic 3-CTRSs us-
ing 2D DPs. The framework can also be used to prove termination of 2-CTRSs
which are not operationally terminating.

Ezample 2. The following deterministic 2-CTRS R:

g(a) = c(b) ()
b— f(a) (6)
f(x) =z < g(x) = c(y) (7)

is not operationally terminating. However, it is terminating. We can prove both
things in our framework (see Examples 13 and 15), illustrating its expressiveness.

Section 6 develops the framework by introducing a number of processors and
illustrating their use. Section 7 discusses related work and concludes.
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Fig. 1. Inference rules for conditional rewriting

2 Preliminaries

Recall from [14] the usual notions and notations regarding term rewriting and
CTRSs. An (oriented) CTRS R is a pair R = (F, R) where F is a signature
and R a set of rules £ — r < s — t1,---,8, — t,, where the conditions
s; — t; for 1 < ¢ < n are intended to express the reachability of (instances of)
t; from (instances of) s;. As usual, £ and r are called the left- and right-hand
sides of the rule, and the sequence s; — t1, -+ ,8, — t, (often abreviated to
¢) is the conditional part of the rule. Rewrite rules £ — r < ¢ are classified
according to the distribution of variables among [, r, and ¢, as follows: type 1,
if Var(r) U Var(c) C Var(l); type 2, if Var(r) C Var({); type 3, if Var(r) C
Var(£)UVar(c); and type 4, if no restriction is given. An n-CTRS contains only
rewrite rules of type m < n. An oriented 3-CTRS R is called deterministic if
for each rule £ — r <= 51 — t1,...,8, = t, in R and each 1 < i < n, we
have Var(s;) C Var(l) U U;;ll Var(t;). Given R = (F, R), we consider F as the
disjoint union F = C W D of symbols ¢ € C (called constructors) and symbols
f € D (called defined functions), where D = {root(l) | (I — r < ¢) € R} and
C=F—D. Terms t € T(F,X) such that root(t) € D are called defined terms.
Terms in 7 (C, X) are called constructor terms. Posp(t) is the set of positions p
of subterms t|, such that root(t|,) € D.

We say that a proof tree T is closed whenever it is finite and contains no open
goals; it is well-formed if it is either an open goal, or a closed proof tree, or a
derivation tree of the form Tr—=—Tn where, for each j, T; is itself well-formed,
and there is 7 < n such that T; is not closed, for any j < i T} is closed, and each
of the T;41,...,T, is an open goal [12]. An infinite proof tree is well-formed if it
is an ascending chain of well-formed finite proof trees. Intuitively, well-formed
trees are the trees that an interpreter would incrementally build when trying to
solve one condition at a time from left to right. We write s —x t (resp. s =% t)



iff there is a closed proof tree for s — ¢ (resp. s —* t) using the inference system
in Figure 1. If s —% t, then there is £ — r < ¢ € R and p € Pos(s) such that

s, = o(¢) for some substitution o (written s g t). If s —% t, then there is
n > 0 and a sequence (s; LA Si+1)1<i<n Where s = s1 and s,41 = t; we write

s ZAxqif pi > Afor 1 <i<n. ACTRS R is operationally terminating if no
infinite well-formed tree for a goal s —% t exists; R is terminating if there is no
infinite sequence t; —x to =g - .

3 Minimal operationally nonterminating terms in CTRSs

Given a proof tree T', root(T') is the formula (goal) at the root of the tree, and
left(G) is the left-hand side s of goal G, where G is s — t or s —* ¢ for some
terms s and ¢.

Definition 1 (Operationally nonterminating term). Let R be a CTRS.
A term t such that left(root(T)) =t for an infinite well-formed proof tree T is
called operationally nonterminating. If there is no infinite well-formed proof tree
T such that left(root(T)) = t, then we call t operationally terminating.

Definition 2 (Minimality). Let R be a CTRS. An operationally nontermi-
nating term t is called minimal if every strict subterm w of t (i.e., t > u) is
operationally terminating. Let Top-oo be the set of minimal operationally nonter-
minating terms associated to R.

The following lemma shows that operationally nonterminating terms always con-
tain a minimal operationally nonterminatin term.

Lemma 1. Let R = (F,R) be a CTRS and s € T(F,X). If s is operationally
nonterminating, then there is a subterm t of s (s>t) such that t € Top-co-

Proposition 1 below establishes that, for ¢ € Top-o0, there is a precise way for an
infinite computation to proceed. Roughly speaking, arule £ — r < A s; — ¢;
must be used to try a root-step on a reduct of ¢t. Then, there is a minimal
operationally nonterminating subterm which is either (1) an instance of a non-
variable subterm of the right-hand side r of the rule (so that the infinite com-
putation continues through the horizontal dimension), or (2) an instance of a
non-variable subterm of one of the left-hand sides s; of a condition s; — t; (the
infinite computation continues through the vertical dimension). Given a term ¢,
DSubterm(R,t) = {t|, | p € Posp(t)} is the set of defined subterms of ¢ with
respect to rules in R. Let DRules(R, t) be the set of (possibly conditional) rules
in R defining root(t) which depend on other defined symbols in R:

DRules(R,t) ={{ = r < c € R | root({) = root(t),r ¢ T(C,X)}.

The dependency is captured as r ¢ T(C, X) in the above definition.

Ezample 3. For R in Example 1, DRules(R,h(z)) = 0 (because
c(a),c(b) € T(C,X)), DRules(R,g(z)) = 0 (again k(y) € T(C,X)) and
DRules(R. f(z,,2)) = {(9)}.



For each v € DSubterm(R, ), DRules(R,v) contains the rules that will (even-
tually) be used in root steps o(¢) — o(r) for some ¢ — r <= ¢ € DRules(R, v) in
the tmmediate continuation of the infinite computation in the horizontal dimen-
sion (starting from an instance o(v) of v). With regard to the vertical dimension,
given a term ¢, the set of ‘proper’ conditional rules defining root(t) is:

Rulesc(R,t) ={{ = r < /\ $; = t; € R | root(£) = root(t),n > 0}.

i=1
We let URules(R,t) = DRules(R,t) U Rulesc (R, t).

Ezample 4. For R in Example 1, URules(R,h(z)) = DRules(R,h(z)) =
0 and URules(R,f(z,xz,2)) = DRules(R,f(z,z,z)) = {(3)}. However
URules(R, g(x)) = Rulesc(R, g(x)) = {(4)}-

Proposition 1. Let R be a deterministic 3-CTRS. Then, for all t € Top-oo,

there exist v : £ — v <= N\, s; = t; and a substitution o such that t ZAx o(l),
and there is a term v such that £ ¥ v, 0(v) € Top-o and either

1. « € DRules(R,t), for all 1 < i <mn, o(s;) is operationally terminating and
o(s;) =* o(t;), and v € DSubterm(R, r) is such that URules(R,v) # 0, or

2. o € Rulesc (R, t), there is i, 1 < i < n such that o(s;) is operationally ter-
manating and o(s;) =* o(t;) for all j, 1 < j <, and v € DSubterm(R, s;)
is such that URules(R,v) # 0.

Remark 1. In the following we do not impose that the domain of the substitu-
tions be finite. This is usual practice in the dependency pair approach, where a
single substitution is used to instantiate an infinite number of variables coming
from renamed versions of the dependency pairs (see below).

The next result formalizes a bidimensional view of infinite computations starting
from minimal operational nonterminating terms: they can be viewed as a path
over N x N, where each bidimensional point (z;,y;) is labeled with a rule «;.

Theorem 1. Let R = (F, R) be a deterministic 3-CTRS and t € Top.oo. There
is a substitution o and an infinite sequence {(z;,yi, ;) }ien of triples (x;,y;, ;) €
N x N x R such that, for alli >0, z;41 +yi+1 =z; +y; + 1 and

1. g =yo =0, ap € URules(R,t) and t 2 a(bo).

g . .
2. For allit >0, and o; : £; = r; <= A\ s; — t; € R, we have o(t;) €
j=1

Top-oo; furthermore, there is a term v; such that £; B v;, 0(v;) € Topoo,

o(v;) ZAx (1), ajr1 € URules(v;), and

(a) If x;x1 = x; + 1, then v; € DSubterm(R, ;) and a; € DRules(R,¢;).

(b) If yix1 = y; + 1, then there is j, 1 < j < n; s.t. v; € DSubterm(R, s;)
and a; € Rulesc(R,¢;).
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Fig. 2. Computations starting with f(a) for R in Example 5

Ezample 5. Consider the following deterministic 3-CTRS R which is obtained
from the 2-CTRS in Example 2 by a small change in rule (7) to yield (10):

g(a) = c(b) (8)
b— f(a) 9)
f(@) =y <= glz) = cy) (10)

Figure 2 shows the representation of computation starting from f(a) € Top-co
according to Theorem 1, where the coordinates (z;,y;) have been left implicit.
Remark 2. The infinite minimal rewrite sequence f(a) — 10y b —(9) f(a) —(0)
b — --- is also possible for R in Example 5. This is because o(g(x)) —* o(c(y))
for rule (10) is satisfied without rewriting b if o(z) = a and o(y) = b. The implicit
assumption in the computation model of Proposition 1 is that only reachability
conditions o(s;) —* o(t;) that are free of any infinite computation are important
to decide the application of a rule. This makes real sense in practice. And, of
course, it is harmless for the correctness and completeness of our approach.

According to our discussion, the following definition establishes the subsets of
rules that play a special role in computations starting from minimal terms.

Definition 3. The dependent usable rules for a« CTRS R andt € T(F,X) are:
DU(R,t) = DRules(R, t) U U U DU(R®, v)

(I—-r<c)eDRules(R,t) veDSubterm(R,r)
where R®* = R — DRules(R,t). The set of minimal usable rules of R for t is:
MU(R,t) = URules(R, t) U U U MU(R®,v).

(I—»r<c)eDRules(R,t) veDSubterm(R,r)

Let MU(R,t) = 0 if MU(R,t) is a TRS and MU(R,t) = MU(R,t) otherwise.



Ezample 6. For R in Example 1, DU(R,h(z)) = MU(R,h(z)) = 0
DUR,g9(x)) = O but MU(R,g9(z)) = MUR,g9(z)) = {(4)}, and
DU(R, f(z,x,x)) = MUR, f(z,z,2)) = {(3)}, but MU(R, f(z,z,x)) =0.

0

Ezample 7. For R in Example 5, DRules(R, f(a)) = 0 (
side y in rule (10) defining f is a variable), DU(R, g(x
MUR, g(x)) = MU(R, g(x)) = R.

The following result shows that an infinite computation starting from a mini-
mal operationally nonterminating term can either start an infinite (horizontal)
rewrite sequence (possibly as part of the evaluation of one of the conditions of
a rule) or else climb infinitely many ‘vertical’ steps over the conditions in the
rules.

Corollary 1. Let R be a deterministic 3-CTRS and t € Top-oo. Then, the se-
quence {(x;, Yi, ;) }i>0 associated to t according to Theorem 1 satisfies one of
the following conditions. Either

because the right-hand
) = {(8),(9)} and

1. There is k > 0, {, — 1. < ¢ € R, and an infinite ‘horizontal’ se-
quence {(zi, Yk, ;) }i>k such that for all ¢ > k, v;41 = x; + 1 and o; €
U DU(R,vg), or
v €D Subterm(R,ry)
2. For each i € N such that y; > 0 and y; = y;—1 + 1, there is k; > 1
such that yr, = y; + 1, and there is j;, 1 < 3, < n; such that ap,_1 €
MU(R,v;), with ng,—1 > 0 conditions in the conditional
vi €D Subterm(R,si;)
part of the rule.

In the following, we use Dependency Pairs to capture the nontermination be-
havior of computations with CTRSs.

4 2D Dependency Pairs for CTRSs

Given a signature F and f € F, we let f* (often just capitalized, e.g., ') be a
fresh symbol associated to f [1]. Let F# = {f* | f € F}. For t = f(t1,...,t) €
T (F,X), we write t* to denote the marked term f*(t1,...,t;). Our Dependency
Pairs for CTRSs are organized into two blocks. The horizontal block contains
those pairs that correspond to rules issuing root steps in infinite rewrite se-
quences (Proposition 1, item 1):

DPy(R)={f* v <c|l—r<ccRyr>uv L v, DRules(R,v) # 0}
Ezample 8. For R in Example 1, DPy(R) = {F(k(a),k(b),z) — F(x,z,z)}.
For R in Example 5 (and also for R in Example 2), DPy(R) = {G(a) — B}.

The wertical block contains pairs for shifting the infinite computation to the
conditions of the rules (Proposition 1, item 2):

DPy(R) = {¢! — v < /\ s; =t [ l—=r< /\sz—>t € R,
=1
3k, 1<k<n sk > v, 0 ¢ v, URules(R,v) # 0}.



Ezample 9. For R in Example 1, DPy(R) = (. For R in Example 2 and R in
Example 5), DPy(R) = {F(z) = G(x)}.

The subterms in the conditions of the rules that originate the pairs in DPy (R)
are collected in the following set, which we use below:

Ve(R)={v|[l—r< /\si —t; € R,3k,1 <k <n,s, >0, v, URules(R,v) # 0}.
i=1

Ezample 10. For R in Example 1, Vo(R) = §. For R in Example 2 and R in
Example 5, Vo(R) = {g(x)}.

We also have pairs to connect pairs in DPy(R) (Corollary 1, item 2):

DPyvr(R)= U {#f=vt<=c|l—r<ce MUR,w),
weVe(R)
r >0, 0% v, URules(R,v) # 0}.

Ezample 11. For R in Example 1, DPyg(R) = 0. For R in Example 2 and R
in Example 5, DPyy(R) = {G(a) = B, B — F(a)}.

Here is the definition of 2D-Dependency Pairs for a CTRS.

Definition 4 (2D-Dependency Pairs). The triple of 2D-dependency pairs
(2D DPs) for the CTRS R is DPyp(R) = (DPy(R),DPy(R),DPyu(R)).

Ezample 12. Consider the following 3-CTRS R in [14, Example 7.1.5]

less(x,0) — false (11)
less(0,s(x)) — true (12)
(). 55) = b (13)
minus(0,s(y)) — (14)
minus(z, 0) — (15)
minus(s(z),s(y)) — mmus(w Y) (16)
quotrem(0,s(y)) — pair(0,0) (17)
quotrem(s(z),s(y)) — pair(0,s(z)) < less(z,y) — true (18)
quotrem(s(z), s(y)) — pair(s(q), ) (19)

< less(x,y) — false, quotrem(minus(zx,y),s(y)) — pair(q,r)
The set DP g (R) consists of the rules:

LESS(s(z),s(y)) — LESS(z,y) (20)
MINUS(s(z),s(y)) — MINUS(z, y) (21)

The set DPy (R) consists of the rules:

QUOTREM(s(z),s(y)) — LESS(z,y) (22)

QUOTREM(s(z),s(y)) — QUOTREM(minus(z,y),s(y)) < less(x,y) — false (23)

QUOTREM(s(z),s(y)) — MINUS(z,y) < less(x,y) — false (24)
Finally, DPVH (R) = (Z)



4.1 Characterizing operational termination of CTRSs using 2D DPs

An essential property of the dependency pair method is that it provides a charac-
terization of termination of a TRS R as the absence of infinite (minimal) chains
of dependency pairs [1,8]. As we prove below, this is also true for deterministic
3-CTRSs when 2D DPs are considered. First, we have to introduce a suitable
notion of chain that can be used with 2D DPs.

Definition 5 (Chain of pairs - Minimal chain). Let P, Q,R be CTRSs. A
(P, Q,R)-chain is a finite or infinite sequence of pairs u; — v; < /\;“:1 Sij =
tij € P, together with a substitution o satisfying that, for all i > 1,
1. 0(sij) =5 o(tij) forall j, 1 <j <n,; and
n
2. o(v;)(—=% o i@ )*o(wit1), where given a rule ¢ - r <= A s; = t; € Q,
j=1
we write s i@t if either s = t or there is a substitution 6 such that s = 6(¢),
t =0(r) and 0(s;) =% 0(t;) for all j, 1 < j < n (note that the satisfaction
of reachability constraints involves rewritings with R ).

As usual, we assume that different occurrences of pairs do not share any vari-
able (renaming substitutions are used if necessary). A (P, Q,R)-chain is called
minimal if for all i > 1, o(v;) is R-operationally terminating.

Remark 8. Note that, if P and R are TRSs (without conditional rules) and
Q = (), Definition 5 specializes to the standard definition of chain of pairs in the
Dependency Pair Framework for TRSs [8, Definition 3].

We now provide a new characterization of operational termination of CTRSs.

Theorem 2 (Operational termination of CTRSs). A deterministic 3-
CTRS R is operationally terminating if and only if there is mo infi-
nite (minimal) (DPy(R),0,R)-chain and there is no infinite (minimal)
(DPy(R),DPyy(R), R)-chain.

Ezample 13. Consider again the R in Examples 2 and 5 and DPy(R) and

DPyy(R) (that coincide for both CTRSs) as given in Examples 9 and 11. There
is an infinite (DPy(R),DP vy (R), R)-chain:

B —=ppyy(r) Fla) =% Fla) =opy(r) Gla) =7 G(a) —opy,(r) B
witnessing that both CTRSs are not operationally terminating.
For the sake of brevity, in the following we often call H-chains to the
(DPg(R),0, R)-chains. And we call V-chains to the (DPy(R),DPyy(R), R)-
chains. The following result, involving chains of a simpler type (closer to the

usual ones, where pairs are connected by rewritings with R only, see Remark 3),
also characterizes operational termination of deterministic 3-CTRSs.

Theorem 3 (Operational termination of CTRSs II). A deterministic 3-
CTRS R is operationally terminating if and only if there is no infinite (minimal)
(DPH(R) U DP V(R) UDP VH(R), @, R)-cham.

In the following section we further motivate the explicit and independent use of
the H-chains and V-chains to prove termination properties of CTRSs.



4.2 Termination of 2-CTRSs

The existence of infinite H-chains witnesses nontermination of deterministic 3-
CTRSs, i.e., the absence of infinite rewrite sequences.

Theorem 4 (Non-termination of CTRSs). Let R be a deterministic 3-
CTRS. If there is an infinite (DP g (R), D, R)-chain, then R is not terminating.

The CTRS R in Example 5 shows that Theorem 4 provides a sufficient but not
necessary criterion for termination of CTRSs.

Ezample 1. For R in Example 5, we have DPy(R) = {G(a) — B} (Example
8). There is no infinite H-chain. However, R is not terminating (see Remark 2).

However, the following result holds:

Theorem 5 (Termination of 2-CTRSs). A 2-CTRS R is terminating if and
only if there is no infinite minimal (DPy(R),0, R)-chain.

Ezample 15. For the deterministic 2-CTRS R in Example 2, DPy(R) =
{G(a) — B} and there is no infinite H-chain. By Theorem 5, R is terminating.

Therefore, for CTRSs with extra variables in the right-hand sides of conditional
rules, the vertical and horizontal dimensions of operational termination are not
completely independent. Theorem 5 suggests the following.

Definition 6 (V-termination of CTRSs). A CTRS R is V-terminating if
there is no infinite (DP (R),DP vy (R), R)-chain.

As a consequence of Theorems 2 and 5, we have the following.

Corollary 2. A deterministic 2-CTRS is operationally terminating if and only
if it is terminating and V -terminating.

5 Mechanizing proofs of operational termination with 2D
DPs

In the following, we speak of (P, Q, R, (ctrs,~))-chains, for v = a (or v = m)
if arbitrary (resp. only minimal) chains are considered. Similarly, according to
Remark 3, we speak of (P, Q, R, (trs,y))-chains if P and R are TRSs and Q = .

Definition 7 (CTRS problem). A CTRS problem 7 is a tuple 7 =
(P,Q,R,e), where P, Q and R are CTRSs, and e € {ctrs,trs} x {a,m} is a
flag. The CTRS problem 7 is finite if there is no infinite minimal (P, Q,R,e)-
chain. The CTRS problem T is infinite if R is non-operationally terminating or
there is an infinite minimal (P, Q, R, e)-chain.

Definition 8 (CTRS processor). A CTRS processor P is a mapping from
CTRS problems into sets of CTRS problems. Alternatively, it can also return
“no”. A CTRS processor P is

10



— sound if for all CTRS problems T, we have that T is finite whenever P(1) # no
and all CTRS problems in P(7) are finite.

— complete if for all CTRS problems T, we have that T is infinite whenever
P(7) = no or when P(7) contains an infinite CTRS problem.

A (sound) processor transforms CTRS problems into (hopefully) simpler ones, in
such a way that the existence of an infinite chain in the original CTRS problem
implies the existence of an infinite chain in the transformed one. Here, ‘simpler’
usually means that fewer pairs are involved. Soundness is essential for proving
operational termination; completeness for proving non-operational termination.

Processors are used in a divide and conquer scheme to incrementally simplify
the original CTRS problem as much as possible, possibly decomposing it into
(a tree of) smaller pieces which are independently treated in the same way. The
trivial case comes when the set of pairs P becomes empty. Then, no infinite chain
is possible, and the CTRS problem is finite. Such positive answer is propagated
upwards in the decision tree. In some cases, a witness of an infinite chain is
obtained; then a negative answer “no” can be provided and propagated upwards.

Theorem 6 (2D DP framework). Let R be a deterministic 3-CTRS.
We construct two trees whose nodes are labeled with CTRS problems T or
“yes” or “no”. The roots are g = (DPg(R),0,R,(ctrs,y)) and v =
(DPv(R),DPvu(R), R, (ctrs,7)), respectively (for v € {a,m}). For every node
which is a CTRS problem 7, there is a processor P satisfying one of the following
conditions:

1. P(7) = no and the node has just one child that is labeled with “no”.

2. P(1) =0 and the node has just one child that is labeled with “yes”.

3. P(1) # no, P(1) # 0, and the children of the node are labeled with the CTRS
problems in P(T).

If all leaves of both trees are labeled with “yes” and all used processors are sound,
then R is operationally terminating. If a leaf is labeled with “no” in some of the
trees and all processors used on the path from the root to this leaf are complete,
then R is operationally nonterminating.

Remark 4. By Theorem 3, an alternative to the twofold proof starting from an
H-problem and a V-problem is to start the proof of operational termination of
R from a single CTRS problem (DP g (R)UDPy (R)UDP vy (R), D, R, (ctrs, v)).

Remark 5. In order to prove (or disprove) termination of a deterministic CTRS
R, we would use Theorem 6 with a single problem: 77 = (DPg(R),0, R, e). The
procedure is analogous and the conclusion of a positive analysis (i.e., “yes” in
all leaves of the tree) is termination of R (if it is a 2-CTRS). Similarly, a leaf
labeled with “no” witnesses nontermination of R (if it is a 3-CTRS).

6 Processors for the 2D DP Framework

The first processor mowves rules from Q to P in CTRS problems.

11



Theorem 7 (Moving Q-rules). Let P, Q, and R be TRSs. Then,
Pqar(P, Q, R, (ctrs,v)) = {(PUQ,0, R, (ctrs,a))}

is a sound processor.
In general, Pqop is not complete nor preserves minimality.

Ezxample 16. Let P = {a — b,c = a}, @ = {b — ¢}, and R = {¢ — c}. There
is an infinite (P, Q,R)-chain I': a — b,¢ — a,a — b,c — a,... due to b =g c.
Note that I' is minimal because b and a are R-terminating. However, I" requires
the use of the (only) pair in Q to become an infinite (P U Q, (), R)-chain

a—bb—c,c—aa—bb—cc—a,...
which is, however, not minimal now because c is not R-terminating.

The following processor transfers any proof of finiteness of 2D DP problems to
the DP Framework for TRSs. In this way, all existing processors for the DP
Framework are now available for the 2D DP framework.

Theorem 8 (Shift to DP-Framework). Let P and R be TRSs. Then,
PTRS (Pv @, Rv (CtI’S, 7)) = {(P7 @, Rv (tFS, 7))}

s a sound and complete processor.

6.1 Graph of a CTRS problem

Given a CTRS problem (P, Q,R,e), we provide a notion of graph that is able
to represent all infinite (minimal) chains of pairs as given in Definition 5.

Definition 9 (Graph of a CTRS problem). Let P, Q and R be CTRSs.
The CTRS-graph G(P, Q,R,e) where e = (ctrs,v) and v € {a,m} has P as the
set of nodes. Given a:u — v <c,a’ :u — v < € P, there is an arc from «
to o' if a,a’ is a minimal (P, Q, R, e)-chain for some substitution o.

In general, CTRS graphs are not computable due to the reachability conditions

o(v)(=% o i@ Y*o(u') (for u = v <= ¢ € P). Since the reachability problem
for (conditional) rewriting is undecidable, we approxzimate it. Following [9], we
approximate the CTRS-dependency graph as follows. Let TCAP% be:

TCAPR(z) =y if x is a variable, and

f(ta], ..., [te]) if f([t1],- .., [tk]) does not unify
TCAPR(f(t1,...,tk)) = with £ for any / - r<cin R
Y otherwise

where y is a new, fresh variable that has not yet been used, and given a term
s, [s] = TCAPR(s). We assume that ¢ shares no variable with f([t1],..., [tx])
(rename if necessary). With TCAPr we approximate reachability problems as
unification. According to Definitions 5 and 9, we have the following.
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Definition 10 (Estimated connection). Let Q and R be CTRSs, 0 be a
substitution, and o : u — v <= c to o 1 v — v < ¢ be two conditional rules.
There is a (Q, R, 6)-connection from « to o if

1. TcAPR(8(v)) and v’ unify, or
2. TCAPR(0(v)) and v’ unify with mgu 0’ for some o’ : v’ — V" < ' € Q
and there is a (Q — {a'}, R, 0")-connection from o to .

Definition 11 (Estimated Graph). Let P, Q and R be CTRSs. The esti-
mated CTRS-graph EG(P,Q,R,e) has P as the set of nodes. There is an arc
from « to o if there is a (Q, R, €)-connection from « to .

Remark 6. If Q@ = () and P, R are TRSs, Definitions 9 and 11 specialize to the
standard ones for TRSs [8, Definition 7] (and [9, Definition 12]).

The following processor decomposes a CTRS problem (P, Q, R, e) with graph
G(P,Q,R,e) according to the strongly connected components (SCCs) of the
graph, i.e., cycles in G(P, Q, R, e) that are not contained in any other cycle.

Theorem 9 (SCC processor). Let P, Q and R be CTRSs. Then,
Pscc(P,Q,R,e) ={(P',Q,R,e) | P TP is an SCC in G(P,Q,R,e)}
s a sound and complete processor.

With Psco, we can separately work with the strongly connected components of
G(P, Q,R,e), disregarding other parts of the graph.

Ezample 17. For R in Example 12, 7y = (DPy(R),0,R,e) and v =
(DPy(R),DPyy(R),R,e); EG(Ty) and EG(7y) are:

e & @ G @@

We have Psco(ty) = {7H1,7u2}, where 71 = ({(20)},0,R,e) and 7g2 =
({(21)},0,R,e). For 7y we get Psco (1) = {Tv1}, where 7v1 = ({(23)},0, R, e).

6.2 Use of orderings and argument filterings

A CTRS problem (P, Q, R, e) can be simplified by removing rules with a decrease
with respect to a well-founded relation . In order to be more precise, in the
following we say that a relation S is compatible with R if SoR C Ror RoS C R.

Definition 12 (Removal triple). A removal triple (2, =, 3) consists of rela-

tions =, >, on terms such that 1 is well-founded; for all R € {Z,>}, R is
compatible with J; and 2 0= C 2 or 2 o= C =,
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An argument filtering m for a signature F is a mapping that assigns to each
k-ary function symbol f € F an argument position i € {1,...,k} or a (possibly
empty) list [i1,...,4m,] of argument positions 1 < i; < -+- < i, < k [11]. The
trivial argument filtering 71 (f) = [1,..., k] (for each k-ary symbol f € F) does
nothing. The signature F, of symbols with filtered arguments consists of all
function symbols f € F such that 7(f) = [i1,...,im]; the arity of f in Fy is
m but we do not change the name. An argument filtering 7 induces a mapping
from T(F,X) to T (Fr,X), also denoted by 7, which removes subterms:

t if t is a variable
7(t) = < 7(t:) ift=f(t1,...,t) and w(f) =
f(ﬂ'(til),. .. ,W(tim)) ift = f(tl, ce ,tk> and 7T(f) = [ih. .. ,im]

And if R is a relation on terms, we let 7(R) = {(n(s),7(¢)) | (s,t) € R}. Argu-
ment filterings provide a simple way to remove parts of the syntactic structure
of a rule. In this way, we obtain simpler rules that are easier to compare. In the
following, given (possibly empty) set of rules R,S and arule o : { — r < ¢, we
define the (possible) replacement of o in R by the rules S as follows:

JR—-{ah)UuSifaeRrR
R[Sla = {R otherwise

Theorem 10 (Removal triple processor). Let P, Q, and R be CTRSs, 7
be an argument filtering and (2, =, ) be a removal triple such that m(—%) C 2
and for all £ — r < ¢ € P U Q and substitutions o, if for all s — t € ¢,
o(s) =% o(t) holds, then w(o(£)) paw(o(r)) holds for some pae {Z,>=,3}. Let
a:u—v<cePUQ be such that, for all substitutions o, if for all s — t € c,
o(s) =% o(t) holds, then (o(u)) 2 w(o(v)) holds. Then,

Prr(P,Q,R,e) = {(Pll]a, Q]a, R, €)}
is a sound and complete processor.

FEzxample 18. For 11, T2 and 1y in Example 17, we apply Prr to those prob-
lems with 7+ (which we do not make explicit here, as it does nothing) and using
the same removal triple (>, >, >) induced by the polynomial interpretation

[false] =0 [true] =0 [0]=0 [s](z) =z +1
[less](z) = 0 [minus](z,y) = x [pair](xz,y) =0 [quotrem](z,y) =0
[LESS](z,y) =z [MINUS|(z,y) =z [QUOTREM](z,y) ==z

over the naturals N by s > ¢ if [s] > [t] and s > ¢ if [s] > [t]. We have:

[less(z,0)] = 0 >0 = [false]
[less(0,s(z))]= 0 > 0= [true]
less(s(x),s(y))] = 0 >0 = [less(a, )
[minus(0,s(y))]= 0 >0 =[0]
[minus(z,0)] = =z >z =[z]
[minus(s(z),s(y))] = = +1 > x = [minus(z, y)]
[quotrem(0,s(y))] = 0 >0 = [pair(0,0)]
[quotrem(s(z),s(y)] = 0 > 0 = [pair(0, (x))
[quotrem(s(z),s(y))] = 0 > 0 = [pair(s(q), )

—_
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[LESS(s(x),s(y))] = + 1 > = = [LESS(z, y)]
[MINUS(s(z),s(y))] =z + 1 >z = [MINUS(z, y)]
[QUOTREM(s(z),s(y))] =z + 1 > x = [QUOTREM(minus(z, y),s(y))]

Since > is monotonic, stable, reflexive and transitive, the first nine inequalities
prove —% C > (we do not really need to pay attention to the conditional part
of the rules). Similarly, since 1 is stable, the last three strict inequalities prove
o(u) 3 o(v) for all u — v <= ¢ € P (in the corresponding CTRS problem) and
substitution o, again without paying attention to the conditional part of the
rules. This proves 7g1, Tg2 and 7y finite, and R operationally terminating.

Theorem 11 (Unsatisfiable rules). Let P, Q, and R be CTRSs, m be an
argument filtering, 2 and 1 be relations on terms such that 2 is compatible with

~

3, m(—%) € 2, and 3 is well-founded. Let a : £ - 1 <=c € PUQUTR and

~7

s; — t; € ¢ be such that for all substitutions o, w(o(t;)) 3 (o (s;)) holds. Then,
PUR(P7 Q7 R7 6) = {(P[(Z)]OU Q[w]@’ R[(Z)]OH 8)}
is a sound and (if « ¢ R or e = (p,a)) complete processor.

Ezample 19. For R in Example 1, DPg(R) = {F(k(a),k(b),x) = F(z,z,z)},
and DPy(R) =DPyy(R) = 0. For 7y = (DP(R), D, R, (ctrs,m)), we use

[a] = [b] = [c](z) = [g](x) = [](z) = [K](z) = [f)(2,y,2) =0 and [d] =1
to generate > and easily show (as in Example 18) that —% C>. Since [h(z)] =
0 and [d] = 1, we have [d] > [h(x)]. With Pyg, we remove (4) from R to
obtain 71 = (DPy(R),0,R — {(4)}, (ctrs,m)) that satisfies the conditions for
a shift with Prrg to a DP problem 7s = (DPg(R),0, R — {(4)}, (trs,m)) that
can then be solved by using any processor for TRSs. For instance, the forward
instantiation processor [8, Definition 28] can be used to prove finiteness of 7ys.

Theorem 12 (Unsatisfiable rules II). Let P, Q, and R be CTRSs, m be an
argument filtering, 2 and 2 be relations on terms such that 2 is compatible with

~

3, 3 is well-founded, and n(—g) C 3. Leta: { - r<=c€ PUQUR and

si = t; € ¢ be such that 7(s;) and w(t;) do not unify and for all substitutions o,
w(o(t;)) 2 m(o(s;)) holds. Then,

Pur(P, 2 R, e) = {(P[0]a, Q]a; R[0]a, €)}
is a sound and (if « ¢ R or e = (p,a)) complete processor.
Ezample 20. Consider the following CTRS R [6, page 46]:
a—b fla) —=b g(x) = g(a) < f(z) > x

DPy(R) consists of a single rule: G(x) — G(a) < f(z) — x and DPy(R) =
DPyg(R) = (). We use the relations > and > generated by



(over N), and P yg to remove the rule in DPg(R) from 74 = (DPg(R),0, R, e),
thus proving operational termination of R. Note that > is monotonic, stable,
transitive, and well-founded, and we have —x C> (and also %7Jg§>); the crucial
point is that no substitution o satisfies o(f(x)) =% o(z) for the conditional
rules: since f(x) and x do not unify, we should have o(f(z)) —% o(x) and hence
o(f(z)) > o(z). But [o(f(x))] = o(z) # o(x) = [o(z)]. Thus, we do not need to
ensure that [o(g(x))] > [0(g(a))] holds! However, [z] =z > x = [f(x)].

7 Related work and conclusions

To the best of our knowledge, this is the first correct and complete characteriza-
tion of operational termination of deterministic 3-CTRS which is based on the
notion of dependency pair. The notion of minimal operationally nonterminating
term and the properties explored here (Section 3) are also new in the literature.
Our bidimensional approach simplifies the analysis of operational termination
and is also useful to prove other properties like nontermination of 3-CTRSs and
termination of 2-CTRSs. The analysis of termination of 2-CTRSs can also be
accomplished as termination of the underlying TRS (i.e., the TRS R, which is
obtained by just dropping the conditional part of the rules). However, in contrast
to our Theorem 5, the analysis of termination of 2-CTRSs R as termination of
the underlying TRS R, provides a sufficient condition only; it may fail in those
cases where taking into account the conditions of the rules is essential to prove
termination. For instance the one rule 2-CTRS ¢ — a < a — b is terminat-
ing but R,, is not. We prove (DPy(R),0,R,e) = {A - A <= a — b},0,R,e)
finite (and hence R terminating) using Py with the removal triple (>, >,>)
generated by the interpretation [a] = 0 and [b] = 1 to remove A -+ A < a — b.

The recent Conditional Dependency Pairs (CDPs) by Nakamura et al. [13]
apply to a subclass of 1-CTRSs where the conditions ¢ in 1-rules (¢ — r < ¢) are
terms instead of sequences s; — t1,..., 8, — t,. An instance o(c) of ¢ is satisfied
if and only if o(c) —* true. We generate a (usually strict) subset of the pairs
considered in [13, Definition 3.1]: DPy(R) UDPy(R) UDPyy(R) C CDP(R).
Their chains [13, Definition 3.2] are also different to ours (Definition 5).

As remarked in the introduction, existing tools for proving termination of
conditional TRSs currently use transformation techniques. We are not aware of
any implementation of direct methods. The transformation which is typically
used for this purpose is U in [14, Definition 7.2.48]. This transformation is not
complete, however. For instance, U(R) is not terminating for R in Examples
1 and 20, but we proved them operationally terminating in Examples 19 and
20. Furthermore, when U(R) is terminating, tools may fail to find a proof. This
is often due to the loss of information introduced by transformations, and also
to the presence of new symbols and rules that prevent the search process from
finding a proof. The techniques presented in this paper have been incorporated
in the latest version of the tool MU-TERM [2]. The first benchmarks of existing
examples in the literature are very positive and show that the 2D DP framework
permits simple and fast proofs like the ones in the examples of this paper. This
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makes these techniques available to tools like MTT [4], which use MU-TERM as a
backend for achieving proofs of operational termination of more general theories
like membership equational programs or order-sorted rewrite theories. Direct
termination methods for these wider logics will require extending the techniques
presented here to the case of order-sorted conditional rewrite theories with types
and subtypes, and where rewriting is context-sensitive and can take place modulo
axioms B. This is envisaged as an interesting subject for future work.

Acknoledgements. We thank Rail Gutiérrez for implementing the 2D DP Frame-
work in MU-TERM. We also thank Francisco Duran for his helpful comments.
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