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Abstract 

 

Geopolymers simultaneously containing two waste materials have been developed: Fluid 

catalytic cracking catalyst (FCC), as mineral admixture and Rice Husk Ash (RHA) for preparing 

alkaline activator. Alkaline activators were prepared by refluxing aqueous mixtures of ground or 

original RHA with NaOH. All mortars with alkaline activator containing RHA showed 

compressive strength (cured at 65ºC for one day) in the range of 31-41 MPa, which was similar 

to control mortar prepared using an equivalent mixture of NaOH and water glass. Refluxing 

times between 30 and 240 minutes yielded good performance mortars. This new way of 

valorisation would imply economic and environmental benefits in geopolymer production. 
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1. Introduction 

The reaction of an aluminosilicate mineral admixture with a highly concentrated aqueous alkali 

hydroxide and/or silicate solution produces an alkali aluminosilicate structure called geopolymer 

(1). This type of material can provide comparable performance to conventional cementitious 

binders, with an additional environmental advantage: an important reduction of greenhouse gas 

emissions (2). Alkali-activated cements usually consist of two components: a mineral admixture 
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(with vitreous silica and alumina component) and an alkaline activator solution. Caustic alkalis 

or alkaline salts are normally used as alkaline activators in alkali-activated cement and concrete 

(3). In particular, the use of water glass becomes the most critical item in terms of environmental 

and economic points of view (4). Some industrial by-products and wastes alone or combined, as 

coal fly ash, rice husk ash, metakaolin, fluid catalytic cracking catalyst and hydrated carbonated 

cement have been used as cementitious components in alkali-activated cements (4-8). In this 

paper, the fluid catalytic cracking catalyst residue (FCC) is tested as an aluminosilicate source 

in the production of geopolymeric binder (7), using the rice husk ash (RHA) as a source for 

preparing the alkaline activator. FCC and RHA have been successfully used as supplementary 

cementitious materials (SCM) in Portland cement-based binders (9,10). 

 

In this research, a mixture of RHA, NaOH and water was boiled in a reflux system to dissolve 

silica and to obtain sodium silicate solution. This mixture was used as an alkaline activator 

instead of commercial water glass, which is usually used in the manufacture of most of the 

geopolymers. Thus, in our research, two waste materials were used to produce alkaline 

activators: FCC as an aluminosilicate source and RHA as a silica source. Soluble silica in RHA 

and mortar strength results were compared with quartz in order to study the influence of silica 

crystallinity.   

   

 

 

2. Experimental 

2.1 Materials and Techniques 

FCC is an aluminosilicate with a high pozzolanic reactivity and a mean particle diameter of 17.1 

μm (supplied by OMYA Clariana S.A.). RHA was supplied by DACSA S.A. and had a mean 

particle diameter of 62.3 μm. After grinding, the mean particle diameter was reduced to 20.3 

μm. Sikron M-500 (siliceous flour, quartz) was supplied by Sibelco with a mean diameter of 7.7 

μm. In table 1, the chemical compositions of FCC, RHA and Sikron are shown. Sodium 

hydroxide (98% purity) supplied by Panreac S.A. and commercial water glass (28% SiO2; 8% 

Na2O; 64% H2O) from Merck were used in the preparation of alkaline solutions. 



 

 

 

Table 1. Chemical composition in mass percentage of FCC, RHA and Sikron 

Sample SiO2 Al2O3 Fe2O3 CaO MgO SO3 K2O LOI Na2O P2O5 TiO2 Cl
-
 

FCC* 47.76 49.26 0.60 0.11 0.17 0.02 0.02 0.51 0.31 0.01 1.22 - 

RHA* 85.58 0.25 0.21 1.83 0.50 0.26 3.39 6.99 - 0.67 - 0.32 

SIKRON** 99.2 0.40 0.05 0.02 - - 0.05 0.27 - - 0.03 - 

 *Analyzed in ICITECH laboratory   **Supplied by Sibelco 
 
 

Three different samples were used for the preparation of alkaline activator solution: original 

RHA (O-RHA), ground RHA (G-RHA), and Sikron (Quartz). Soluble silica was calculated by a 

gravimetric method as follows: a mixture of 3g of NaOH, 2.9 g of RHA or Sikron was suspended 

in 10 mL of deionised water. The mixture was boiled in a reflux system for different times (5 to 

240 min), after which it was filtered, washed with hot water, and dried at 60ºC before being 

weighed. The weight difference between untreated and treated samples was considered soluble 

silica, although small quantities of other products may have also been dissolved.  

  

Mechanical strengths (flexural and compressive) of mortars were obtained by using a universal 

testing machine, according to UNE-EN-196-1 standard. Thermogravimetric analyses (TGA) 

were performed in a TGA 850 Mettler- Toledo thermobalance under air atmosphere, using 

alumina crucibles, and a heating rate of 20°C min
−1

, from 35°C to 1000°C. Microscopic studies 

were carried out by means of JEOL JSM-6300 Scanning Electron Microscopy. 

 

2.2 Dosage and curing conditions 

Two different geopolymeric mortars with the same sodium content, which were based on FCC, 

were prepared; the first one used a mixture of 81 g of NaOH, and 78.6 g of silica sample (O-

RHA, G-RHA or Quartz) suspended in 270 mL of deionised water as an alkaline activator. The 

mixtures were refluxed from 15 to 240 min and cooled before use. For the second geopolymeric 

mortar, the activator dissolution was prepared using a mixture of water glass/NaOH with a 

SiO2/Na2O molar ratio equal to 1.17. This second geopolymeric mortar was taken as the control 



mortar. In both cases, 450 g of FCC as a cementitious material was used. All mortars tested 

presented a water/FCC ratio of 0.60 and a sand/FCC ratio of 3. Mortars were tested in bending 

and compression modes after 1 day of curing at 65ºC in a high relative humidity (RH 95-100%).  

 

 

3. Results and Discussion 

 

In Figure 1, soluble silica versus reflux time is shown. For O-RHA and G-RHA, for the first 60 

min, an increase of soluble silica with reflux time was produced. At this time, approximately 80% 

of the sample was dissolved; no significant differences were observed until 120 min reflux time. 

For longer reflux times, a decrease in soluble silica occurred for G-RHA. However, for the O-

RHA samples, the soluble silica remained constant at approximately 80%.  

 

Figure 1. Soluble silica content (%) versus reflux time. Original Rice Husk Ash (O-RHA), Ground 
Rice Husk Ash (G-RHA) and Sikron (Quartz).  
  

 
 
 

In order to understand this finding, both residues (O-RHA and G-RHA) obtained by reflux for 

240 min were analysed by SEM (see Figure 2a). Important differences between residues were 

found: in the G-RHA residue, a gel structure was observed, indicating that the jellification 

process of Na2SiO3 occurred.  

 

 
 



 
 
 
 
 
Figure 2a.  SEM micrographs from residues refluxed for 240 minutes of Ground Rice Husk Ash 
(G-RHA, left) and Original Rice Husk Ash (O-RHA, right)  

   
 
Figure 2b.  TG and DGT curves from original rice husk ash (O-RHA) and residues refluxed for 
30 minutes of original rice husk ash (O-RHA30) 

 
 

This process could explain the results obtained in the soluble silica values (Figure 1). In the 

jellification process, a significant amount of water could have been retained in the gel structure; 

this water cannot be totally eliminated by filtering and drying. As a result, when a filtered/dried 



sample is weighed, the gel produced was weighed together the non-dissolved silica. A 

thermogravimetric analysis (Figure 2b) for O-RHA samples and the insoluble residue from the 

reflux of O-RHA for 30 minutes was made (O-RHA30). Two significant differences were found: 

in the thermogram for residue from reflux, a loss of mass at approximately 150ºC was observed, 

which was probably due to the formation of the gel by the reaction of silica present in RHA and 

the added sodium hydroxide. This loss of mass was not found in the thermogram for the O-RHA 

sample. Secondly, in the 350-600ºC range, and in both samples, a loss of mass due to carbon 

oxidation processes took place, but this loss of mass was much higher for the insoluble residue 

than for the O-RHA sample (41.7% and 6.3% respectively). This suggests that carbon present 

in O-RHA is not dissolved when attacked with sodium hydroxide, and remains in the insoluble 

residue, thereby increasing its carbon concentration. 

 

For Quartz samples, a linear increase of dissolved sample with refluxing time is observed, but 

the amount of soluble silica was much lower than that found for RHA samples. This fact can be 

explained by taking into account the crystallinity of quartz: the more crystallised a sample, the 

more difficult it will be to dissolve.  

 

Control mortar, prepared using a mixture of water glass and NaOH, yielded 40.9 MPa in 

compression and 8.45 MPa in bending mode. In Figure 3, the strengths of mortars versus reflux 

times are shown. All mortars prepared with alkaline activators containing RHA (original and 

ground) showed a compressive strength higher than 30 MPa, and in general, no significant 

differences were observed between activating solutions prepared with O-RHA and G-RHA. A 

very low compressive strength was obtained in mortars with quartz due to the low soluble silica 

content. It is noteworthy that for 240 minutes of reflux time, soluble silica for G-RHA was lower 

than those found for O-RHA (see figure 1); however, compressive strengths for both mortars 

were similar. This suggests that the jellification process does not appear to have an influence on 

mortar strength.  

 

 

 



 
Figure 3. Influence of reflux time on mortar strength. Flexural strength (dotted lines). 
Compressive strength (solid lines). Double lines are used for control mortar. 
 

 
 

The most relevant result of this set of experiments is that compressive strength of control mortar 

was very similar to that found for mortars prepared using refluxed RHA samples, except in the 

case of the lowest reflux time (15 min).  These results confirm, firstly, that is possible to prepare 

a geopolymer using two waste materials: FCC as a cementitious component and RHA as a part 

of the alkaline activator. Secondly, the compressive strength of this geopolymer is very similar to 

those found for geopolymers prepared using a mixture of commercial water glass and NaOH 

(control mortar).  

 

 

4. Conclusions 

 

Alkaline activators for geopolymer synthesis can be prepared by reflux mixtures of ground or 

original RHA with NaOH. The effectiveness of the process depends on reflux time. Activation of 

FCC by a mixture of RHA/NaOH produced mortars with a compressive strength in the range of 

31-41 MPa, which is similar to the compressive strength of control mortar prepared using a 

mixture of commercial water glass and NaOH. These results would promote the possibility of 

using two waste materials in alkali-activated cements simultaneously: RHA for the alkaline 



activator and FCC as the cementitious material, thereby reducing the economic and 

environmental cost of geopolymer production.  
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