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Abstract

Bernoulli HMMs (BHMMs) have been successfully applied to handwritten

text recognition (HTR) tasks such as continuous and isolated handwritten

words. BHMMs belong to the generative model family and, hence, are usu-

ally trained by (joint) maximum likelihood estimation (MLE) by means of

the Baum-Welch algorithm. Despite the good properties of the MLE cri-

terion, there are better training criteria such as maximum mutual informa-

tion (MMI). The MMI is the most widespread criterion to train discrimina-

tive models such as log-linear (or maximum entropy) models. Inspired by a

BHMM classifier, in this work, a log-linear HMM (LLHMM) for binary data

is proposed. The proposed model is proved to be equivalent to the BHMM

classifier, and, in this way, a discriminative training framework for BHMM

classifiers is defined. The behavior of the proposed discriminative training

framework is deeply studied in a well known task of isolated word recognition,

the RIMES database.
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Andrés-Ferrer and Alfons Juan)

Preprint submitted to Pattern Recognition Letters March 24, 2014



1. Introduction1

In the past few years Bernoulli HMMs (BHMMs) have been proved to2

be competitive for handwritten text recognition (HTR). Specifically, com-3

petitive performance has been reported by BHMMs on handwritten English4

text (Giménez and Juan, 2009), and Arabic HTR (Giménez et al., 2010;5

Märgner and El Abed, 2010) 1.6

Handwritten word classifiers based on HMMs, and in particular in BH-7

MMs, are generative models. Generative models are classifiers based on the8

optimal Bayes classifier (Duda and Hart, 1973) which classify choosing the9

class c∗ that maximizes the posterior class probability for a given input x as10

follows11

c⋆(x) = argmax
c

p(c | x) = argmax
c

p(c,x) (1)

where instead of directly approximating the posterior class probability p(c |12

x), the joint probability is modelled by a distribution pθ(c,x) parameter-13

ized with θ. Among many other advantages, the generative models have14

two outstanding properties. On the one hand, the parameters of the gen-15

erative models are easily understandable for researchers. For instance, in16

the BHMMs all parameters can be interpreted as percentages, and in par-17

ticular, the emission parameters that model the emission probabilities are18

easily interpreted as grey level images. On the other hand, generative mod-19

els are mostly trained with maximum likelihood estimation (MLE) criterion20

for which there are well-known algorithms for training latent variable mod-21

1the BHMM achieved the first place prize in the Arabic HTR competition organized

during the ICFHR 2010 conference.
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els (Dempster et al., 1977) in general, and HMMs in particular (Rabiner and22

Juang, 1993).23

Despite the good properties of the MLE criterion, it acknowledges an24

important drawback in classification problems. The MLE is aimed at ex-25

plaining the probability distribution that underlies in the training sample by26

maximizing the likelihood of the joint probability function pθ(c,x). However,27

we are simply interested in classifying inputs, and there is no guarantee that28

the MLE parameters are the most suitable for classifying, even though they29

have been proved to be competitive.30

An alternative to generative models are the discriminative models. Dis-31

criminative models and criteria are aimed at classifying the data without32

explaining the data distribution itself. These models are also based on the33

Bayes decision rule in (1) but instead of the joint probability, they directly34

approximate the posterior class probability by a model pλ(c |x) parameter-35

ized by λ. However, discriminative parameters are difficult to understand36

provided that they do not explain the input. Discriminative parameters37

are usually estimated by the maximum mutual information (MMI) criterion,38

which directly maximizes the likelihood of the posterior probability function39

pλ(c|x). In contrast to MLE, the parameters estimated with MMI maximize40

the most the differences between classes in order to better classify samples.41

Unfortunately, there is no closed form solution for the MMI criterion, and few42

unsatisfactory algorithms are available for finding the optimal parameters.43

This problem is specially remarkable for discriminative models with hidden44

variables as HMMs.45

In Giménez et al. (2011) a MMI training scheme for Bernoulli mixture46
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classifiers was proposed and tested in a task of isolated handwritten digit47

recognition. The proposed approach was based on the idea of finding a simi-48

lar discriminative classifier to the Bernoulli mixture classifier, and then prove49

the equivalence between both classifiers. The results analyzed in Giménez50

et al. (2011) report that discriminatively trained Bernoulli mixture classi-51

fier outperforms the generative Bernoulli mixture classifiers. In this paper52

the work in Giménez et al. (2011) is extended to more complex models, the53

BHMMs, which are assessed in a complex isolated word recognition task.54

Specifically, we compared both generative and discriminative approaches in55

the RIMES database (Grosicki et al., 2009) in which the discriminative mod-56

els obtained very competitive results surpassing the performance obtained57

by generative classifiers.58

More precisely, the contributions of this work are the following:59

1. We propose a particular case of log-linear HMM (LLHMM) classifier,60

which can also be interpreted as a semi-Markov conditional Markov61

chain (semi-CRF), for binary data inspired by the BHMM classifier.62

2. We prove the equivalence between BHMMs and the proposed discrim-63

inative model for binary data.64

3. We provide a discriminative training scheme for BHMM classifiers by65

means of their equivalence with LLHMMs, and analyze several discrim-66

inative training criteria such as MMI.67

4. We provide the capability to understand discriminative parameters68

from a generative point of view by means of their equivalence with69

BHMMs.70

The remainder of the paper is organized as follows. A review of BHMMs71
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is given in Sec. 2. The proposed LLHMM or semi-CRF classifier for binary72

data is described in Sec. 3. The Sec. 4 proves equivalence between both clas-73

sifiers, and in Sec. 5 the parameter estimation for the LLHMM is analyzed.74

The proposed training scheme is deeply analyzed on the RIMES database75

in Sec. 6. We conclude the paper by summarizing and discussing the most76

important results and future research directions.77

2. Bernoulli HMM78

Let O = (o1, . . . , oT ) be a sequence of feature vectors. An HMM is a79

probability (density) function of the form80

pθ(O) :=
∑

q

pθ(O,q) =
∑

q

T
∏

t=0

a(qt, qt+1)
T
∏

t=1

bqt(ot) , (2)

where we have uncovered the latent variables q = (q0, q1, . . . , qT+1) which81

represent all the possible state sequences (or paths), such that q1, . . . , qT ∈82

{1, . . . ,M} are the regular states chosen out of a total of M states, and the83

first (q0 = I) and last (qT+1 = F ) states are special, the so-called initial or84

start state and the final or stop state, respectively. Furthermore, for any85

regular states i and j, a(i, j) denotes the transition probability from i to j,86

while bj is the probability distribution for an observation at state j.87

If we further assume that O is a sequence of binary featured vectors, then88

a Bernoulli (mixture) HMM (BHMM) is an HMM in which the probability of89

observing ot at position t and the state j (qt = j) follows a Bernoulli mixture90

distribution91

bj(ot) :=
K
∑

k=1

τj(k)
D
∏

d=1

pjkd
otd (1− pjkd)

1−otd , (3)
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where τj(k) and pjk are, respectively, the prior and prototype of the k-th92

mixture component in state j. Fig. 1, depicts some prototypes for several93

states and components.94

In isolated handwriting word recognition, BHMMs are used in Bayes’95

classifiers to approximate the input probability of a binary image, which is96

represented by an observation sequence of binary feature vectors for a given97

transcription. More precisely, the most probable transcription S⋆ ∈ W for a98

given observation sequence O is obtained according to99

S⋆ = argmax
S

p(S,O) = argmax
S

p(S) p(O | S) , (4)

where for each possible transcription S, the emission probability, p(O | S), is100

approximated as a BHMM, and p(S) is modelled regarding each probability101

as a parameter itself, πS.102

The number of possible transcriptions in handwriting recognition is typi-103

cally large, and consequently, the resulting parameters for a BHMMs are very104

sparse. In order to amend sparseness problems, BHMMs at word level are105

built from shared, embedded BHMMs at character level. More precisely, let106

C be the number of different characters (symbols) from which global BHMMs107

are built, we assume that each character c is modeled with a different BHMM108

with parametric vector θc, which is shared among words. Unfortunately, the109

input featured vectors are not aligned with individual characters, and the110

character boundaries are, therefore, unknown. For a given feature sequence111

O = (o1, . . . , oT ) representing a sequence of symbols S = (s1, . . . , sL), with112

L ≤ T ; the latent segmentation i = (i1, i2, . . . , iL+1) defined as follows113

1 = i1 < · · · < iL < iL+1 = T + 1; (5)
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induces the segmentation of O into L segments which monotonically corre-114

spond to each symbol. Specifically, the feature segment corresponding to115

the l-th character, sl, is denoted by O(il, il+1) = oil , . . . , oil+1−1. Finally, the116

probability of O is determined by117

pθ(O | S) =
∑

i

pθ(O, i | S) =
∑

i

L
∏

l=1

p(O(il, il+1) | sl) , (6)

where the sum is carried out over all possible segmentations of O into L118

segments, and p(O(il, il+1) | sl) is the probability of the l-th segment given119

by a BHMM in (2) with the parameters, θsl , associated to the character120

sl. Note that θ comprises all the embedded character parameters, i.e. θ =121

{θ1, . . . , θC}. These parameters are commonly estimated by MLE (Giménez122

et al., 2010).123

Many of the parameters of the discussed model are constrained to sum124

1, since they directly approximate probabilities. These parameters are the125

mixture coefficients, the state transitions and the word prior probabilities,126

which must verify127

∑

w

πw = 1, ∀c,q :
∑

q′

ac(q, q
′) = 1, ∀c,q :

∑

k

τcq(k) = 1 . (7)

In Fig. 1, an embedded BHMM for the number 313 is shown. Note that128

the word model is the result of concatenating character models for the digit129

3, blank space, digit 1, and the blank space and digit 3 again, in that order.130

3. Log-linear HMM Classifier for Binary Data131

In this section, we propose a discriminative classifier inspired by the132

BHMM classifier for isolated handwritten words (4). The discriminative133
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Figure 1: The binary featured vector representing the number 313 and the most prob-

able path for generating it accordingly to a BHMM. Bernoulli prototype probabilities

are represented using the following color scheme: black=1, white=0, gray=0.5 and light

gray=0.1.

classifier proposed is based on a log-linear model, which is inferred from the134

parameters of a BHMM classifier. In what follows, we define the log-linear135

model and how a log-linear HMM (LLHMM) discriminative classifier can be136

built using it.137

3.1. BHMM Inspired Log-linear Model138

The BHMM classifier can be expressed by plugging (2), (3), and (6) as139

follows140

pθ(O, S) =
∑

i,q,k

pθ(O, S, i,q,k) , (8)

where by i,q,k we denote the 3 latent variables of the model, namely: the141

segmentation, i, of O into L segments as defined in (5); the state sequence,142

q = (q0, q1, . . . , qT+1); and the emission component at each state, k. Accord-143
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ing to the given segmentation i, the state sequence q must be valid, which144

implies that if t belongs to the l-th segment, then the state qt must be a145

possible state of the character-level BHMM for the corresponding symbol sl.146

Similarly, k = (k1, . . . , kT ) must be a valid integer sequence where kt denotes147

the selected mixture component for state qt, among all the components of148

the state.149

The joint probability in the right-hand-side of previous equation, pθ(O, S, i,q,k),150

is decomposed left-to-right as follows151

pθ(O, S, i,q,k) = πSpθ(O, i,q,k | S) = πS pθ(i,q | S) pθ(O,k | i,q, S) (9)

where pθ(i,q | S) is the transition probability of the word-level BHMM and152

pθ(O,k | i,q, S) the emission probability. The transition probabilities are153

then decomposed into154

pθ(i,q | S) :=

L
∏

l=1

asl(I, qil) · asl(qil+1−1, F )

il+1−2
∏

t=il

asl(qt, qt+1) (10)

where the first product accounts for the input, asl(I, qil), and output, asl(qil+1−1, F ),155

transitions of the embedded model for the character sl; and where the sec-156

ond product are the inner transitions within the embedded character model.157

In the remaining of the paper, we will not differentiate between inner and158

outer transitions since this is a well-known characteristic of HMM, and by159

extension to our BHMM model. Furthermore, this significantly simplifies the160

notation. For instance, previous equation is expressed as161

pθ(i,q | S) :=
∏

l,t

asl(qtqt+1) (11)

where we have also omitted the boundaries of the products, which can always162

be traced back to (10).163
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Similarly, the emission probability is decomposed as follows164

pθ(O,k | i,q, S) :=
L
∏

l=1

il+1−1
∏

t=il

τslqt(kt)
D
∏

d=1

pslqtktd
otd(1− pslqtktd)

(1−otd) . (12)

where again by dropping the product boundaries is simplified to165

pθ(O,k | i,q, S) :=
∏

l,t

τslqt(kt)
∏

d

pslqtktd
otd(1− pslqtktd)

(1−otd) . (13)

with τslqt(kt) and pslqtkt being the prior and prototype of the k-th mixture166

component at state qt of the character sl.167

Consequently, the model in (9) can be expressed as follows168

pθ(O, S, i,q,k) = exp
(

log πS + log pθ(i,q | S) + log pθ(O,k | i,q, S)
)

(14)

where the logarithms of the probabilities are given by169

log pθ(i,q | S) =
∑

l,t

log asl(qt, qt+1) (15)

and170

log pθ(O,k | i,q, S) =
∑

l,t

(log τslqt(kt) + ξslqt(kt) +
∑

l,t,d

otd log
pslqtktd

(1− pslqtktd)
,

(16)

with ξcq(k) defined as171

ξcq(k) =
∑

d

log (1− pcqkd) . (17)

Note that the term ξcq(k) is easily obtained when applying the logarithm to172

(13) by rearranging terms similarly to Giménez et al. (2011).173
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At this point, we reparameterize the probabilities in terms of the new

parameters, λ, as follow

λS = log πS , (18)

λcqq′ = log ac(q, q
′) , (19)

λcqk = log τcq(k) + ξcq(k) , (20)

λcqkd = log
pcqkd

1− pcqkd
, (21)

for each character, c; states, q and q′; mixture component, k; and input174

dimension, d.175

Provided the previous parameterization, the original joint probability176

in (9) is alternatively expressed as follows177

pλ(O, S, i,q,k) = exp(λS +
∑

l,t

λslqtqt+1 +
∑

l,t

λslqtkt +
∑

l,t,d

otdλslqtktd) (22)

In order to simplify notation, we adopt here the standard and powerful nota-178

tion of log-linear models. We define an index m that ranges through all the179

subindexes of the previous equation, i.e., m ranges from {S} over {c, q, q′}180

and {c, q, k} to {c, q, k, d}. We also introduce a function gm(O, S, i,q,k) that181

equals to the number of times the parameter λm is used, except for the pa-182

rameters {λcqkd}. In this case, the function gm(O, S, i,q,k) with m = cqkd,183

counts the number of times the d-th bit is set and has been generated with184

the k-th component in the state, q, of the character, c. The simplest case185

of the function is that of the prior parameters λS for which gm = 1 (with186

m = S).187

The proposed notation simplifies (22) into188

pλ(O, S, i,q,k) = exp(
∑

m∈M(O,S,i,q,k)

λmgm(O, S, i,q,k)) (23)
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where byM(O, S, i,q,k) we denote the set of values through which the index189

m ranges. It is important to notice that this set depends on all the variables,190

namely O, S, i,q,k; and changes with them. However, it is simpler to define191

M as the union of all the possible indexes that our parameters require and192

replace the functions gm by the so-called feature functions fm(O, S, i,q,k),193

which are equal to gm ifm is an index of a required parameter and 0 otherwise.194

For instance, consider again the word prior example with the new domain195

M. In this case, the index m can take the value of any word, S ′ in the196

vocabulary; and then the feature function is defined as197

fS′(O, S, i,q,k) = δ(S, S ′) (24)

where δ(a, b) is the Kronecker delta function, which equals 1 if both ele-198

ments are equal, and 0 otherwise. The feature functions for the remaining199

parameters are detailed in Sec. 3.3.200

Finally, equation (22) is expressed as201

pλ(O, S, i,q,k) = exp(
∑

m∈M

λmfm(O, S, i,q,k)) = exp(λ′f(O, S, i,q,k)) ,

(25)

where we can substitute the sum by its vectorial notation. The model in (25)202

when plugged into (8) is a log-linear model with binary inputs.203

3.2. Discriminative Classifier204

Log-linear models are commonly employed to approximate posterior prob-205

abilities. From (25), we can approximate the posterior class probability re-206

quired by the optimal Bayes’ classifier in (1) as follows207

pλ(S | O) =
∑

i,q,k

pλ(S, i,q,k | O) , (26)
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where pλ(S, i,q,k | O) is approximated by (25) and the Bayes’ theorem as208

pλ(S, i,q,k | O) =
pλ(O, S, i,q,k)

pλ(O)
=

exp(
∑

m∈M
λmfm(O, S, i,q,k))

pλ(O)
.

(27)

It is worth noting that the denominator is a probability because of the209

transformation that we have performed in equations (18)-(21). However, we210

wish to select any arbitrary parametric vector, λ, and in such a case, the211

denominator also becomes arbitrary, yielding the LLHMM model212

pλ(S, i,q,k | O) =
exp(

∑

m∈M
λmfm(O, S, i,q,k))

Zλ(O)
, (28)

where Zλ(O) is a normalization constant defined as213

Zλ(O) =
∑

S

∑

i,q,k

exp(λ′f(O, S, i,q,k)) , (29)

that for the specific parameters in equations (18)-(21) corresponds to the214

marginal probability pλ(O). The log-linear model in (28) is a log-linear model215

with hidden variables for the segmentation and for the states which have a216

first order dependence. This model is variation of a semi-Markov conditional217

random field.218

The previous LLHMM is used in the optimal Bayes’ rule to obtain the219

LLHMM classifier220

S⋆ = argmax
S

pλ(S | O) , (30)

3.3. Feature Functions221

As discussed before, in order to use the standard notation in log-linear222

models, we need to define the feature functions for each kind of parameters.223
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For a given character c out of C different symbols, and for a given pair224

of state indexes (q, q′) of that character, we define the transition features225

fcqq′(O, S, i,q,k) = fcqq′(S, i,q) as follows226

fcqq′(S, i,q) =
L
∑

l=1

δ(sl, c)































































il+1−2
∑

t=il

δ(qt, q)δ(qt+1, q
′) 1 ≤ q, q′ ≤Mc

δ(qil, q
′) q = I, 1 ≤ q′ ≤Mc

δ(qil+1−1, q) 1 ≤ q ≤Mc, q
′ = F

0 otherwise

(31)

where I and F represent the initial and final states respectively. Intuitively,227

this feature counts the number of times the specific transition from q to q′228

of the character c, is used in the input S, i,q. Note that it can be 0, if, for229

instance, the character c is not part of word S.230

For the mixture components, we define the component features for each231

character c, state q and component k as follows232

fcqk(O, S, i,q,k) = fcqk(S, i,q,k) =
L
∑

l=1

δ(sl, c)

il+1−1
∑

t=il

δ(qt, q)δ(kt, k) . (32)

Intuitively, this feature counts the number of times an emission of O is gen-233

erated by the k-th component of the state q of the character c.234

The final set of features are the emission features, which are given as235

follows for each character c, state q, component k and dimension d236

fcqkd(O, S, i,q,k) =
L
∑

l=1

δ(sl, c)

il+1−1
∑

t=il

δ(qt, q)δ(kt, k)otd . (33)
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4. Equivalence Between BHMMs and LLHMMs237

In this section we prove that the BHMM classifier for isolated words is238

equivalent to the LLHMM proposed in Sec. 3. A generative classifier is said239

to be equivalent to a discriminative classifier if for a given set of generative240

parameters θ, a set of discriminative parameters λ can be found such that241

argmax
S∈W

pθ(O, S) = argmax
S∈W

pλ(S | O) ; (34)

and vice-versa. Note that the previous equivalence holds even when any of242

both probabilities is scaled by a factor that does not depends on S, and243

consequently, the normalization constant of the LLHMM, Zλ(O), defined244

in (29), can be removed from the right-hand side (34) without changing the245

equivalence. The proof of the equation is done in two steps by proving two246

implications: left to right, and right to left.247

4.1. From Generative to Discriminative Parameters248

Unlike the converse direction, it is relatively simple to prove that given a249

BHMM classifier for isolated word recognition, it can be reparameterized into250

a LLHMM. Recall that by definition of the LLHMM, if we set the log-linear251

parameters, λ, using the generative parameters, θ, as defined in (18)-(21),252

then we have that253

pθ(O, S) =
∑

i,q,k

exp(λ′f(O, S, i,q,k)) = Zλ(O)pλ(S | O) . (35)

Therefore, these two models when inserted into their corresponding classifiers254

in (34) produce proportional scores and, hence, select the same word or class.255
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4.2. From Discriminative to Generative Parameters256

In this subsection, we prove the converse statement: that given a LLHMM257

classifier for isolated word recognition as defined in Sec. 3, an equivalent258

BHMM classifier exists. We begin expressing the right-hand model in (34)259

as follows260

pλ(S | O) =
∑

i,q,k

hλ(O, S, i,q,k)

Zλ(O)
, (36)

where hλ(O, S, i,q,k) = exp(λ′f(O, S, i,q,k)).261

We start instantiating the feature hλ(· · · ) in previous equations obtaining262

hλ(O, S, i,q,k) = exp(λS) · hλ(i,q;S) · hλ(O,k; i,q, S) (37)

with263

hλ(i,q;S) = exp
(

∑

l,t

λslqtqt+1

)

, (38)

and264

hλ(O,k; i,q, S) = exp
(

∑

l,t

λslqtkt +
∑

l,t,d

otdλslqtktd

)

. (39)

If we compare (9) expanded accordingly to (11) and (12), with (37) expanded265

with (38); then it is observed that each of the 3 terms in the right-hand side266

in (37) must be transformed, independently, into the corresponding term267

in (9).268

Firstly, we transform hλ(O,k; i,q, S) into pθ(O,k | i,q, S). Therefore,269

we need to transform the part of the discriminative parameters {λcqk} and270

{λcqkd} into the generative parameters {τ ;p}, where τ is constrained as271

shown in (7). For doing that, (37) is multiplied and divided by exp(
∑

l,t ζslqt),272
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and then, we rearrange the multiplication into (39) as follows273

exp(
∑

l,t

ζslqt)hλ(O,k; i,q, S) = exp
(

∑

l,t

(λslqtkt + ζslqt) +
∑

l,t,d

otdλslqtktd

)

,

(40)

whereas the division is moved into the second term in the right-hand side274

of (37), yielding275

exp(−
∑

l,t

ζslqt)hλ(i,q;S) = exp
(

∑

l,t

λ̄slqtqt+1

)

, (41)

where λ̄sqq′ = λsqq′ − ζsq will be used afterwards. The unknown parameters276

{ζsq} are introduced to force the generative parameters {τcq(k)} to sum 1 in277

the transformation.278

From (16) and (40), and taking into account the constraints in (7), the

solution must fulfill the following 3 constraints

λcqkd = log
pcqkd

1− pcqkd
, (42)

λcqk + ζcq = log τcq(k) + ξcq(k) , (43)

Kcq
∑

k=1

τcq(k) = 1 . (44)

Then, from (42) we work out the value of pcqkd279

pcqkd =
exp (λcqkd)

1 + exp (λcqkd)
, (45)

and from (43) the value of τcq(k) is expressed as280

τcq(k) = exp (λcqk − ξcq(k)) exp (ζcq) , (46)

where ξcq(k) is defined as in (17) using the values of {pcqkd} defined in (45).281

Although exp (ζcq) is still unknown, recall that it was introduced to tackle282
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the normalization constraint in (44), and then its value is worked out by283

replacing (46) in (44)284

exp(ζcq) =
1

∑Kcq

k′=1 exp (λcqk′ − ξcq(k′))
. (47)

Finally, the exact value of τcq(k) is obtained by plugging (47) into (46)285

τcq(k) =
exp (λcqk − ξcq(k))

∑Kcq

k′=1 exp (λcqk′ − ξcq(k′))
. (48)

Now we focus on transforming exp(−
∑

l,t ζslqt)hλ(i,q;S) from (41) into286

pθ(i,q | S) as defined in (11). This part of the proof is similar in conception to287

the proof given in Heigold et al. (2008b). Firstly we define a global transition288

matrix Q as follows289

Qij =



























exp (λ̄cqq′) i = f(c, q) and j = f(c, q′)

1 i = f(c, F )

0 otherwise

, (49)

where f : N2 7→ N is an injective function that maps each pair composed by290

a character and state, into a global index or state291

f(c, q) =



























Bc q = I

Bc + q 1 ≤ q ≤Mc

Bc +Mc + 1 q = F

, (50)

withMc being the number of states for the symbol c, and Bc = 1+
∑c−1

n=1(2+292

Mn) being the number of preceding states to the first state of symbol c plus293

1.294
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Since all the values ofQ are not negative, accordingly to Perron-Frobenius295

theorem(Rao and Rao, 1998, p.473), the largest eigenvalue of Q, ψ, is pos-296

itive and unique. Furthermore, the eigenvector associated to the largest297

eigenvalue, v, has only positive coefficients, and obviously because of the298

eigenvector definition, v satisfies299

∑

j

Qijvj = ψvi, ∀i = 1, . . . (51)

Now, the transition generative parameters are defined as300

ac(q, q
′) =

Qf(c,q)f(c,q′)vf(c,q′)

ψvf(c,q)
=

exp (λ̄cqq′)vf(c,q′)
ψvf(c,q)

, (52)

where ac(q, q
′) verifies the normalization constraint (7) because of (51). These301

parameters yield a probability proportional to that of (41) when used in (11)302

as the generative parameters of pθ(i,q | S) (see Appendix A),303

pθ(i,q | S) =
1

ψT+L

[

∏

l

vf(sl,F )

vf(sl,I)

] hλ(i,q;S)

exp(
∑

l,t ζslqt)
, (53)

which is the equivalence we need but for the term 1
ψT+L

∏

l

vf(sl,F )

vf(sl,I)
.304

We can introduce this constant factor by multiplying and dividing (37)

by it. The division is used in this part whereas the multiplication is added

to the first term as follows

hλ(O, S, i,q,k) =

ψT ·exp(λ̄S)·
hλ(i,q;S)

ψT+L exp(
∑

l,t ζslqt)

[

∏

l

vf(sl,F )

vf(sl,I)

]

·exp(
∑

l,t

ζslqt)hλ(O,k; i,q, S)

(54)

with λ̄S = λS + L logψ +
∑L

l=1 log
vf(sl,I)

vf(sl,F )
.305
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Finally, the last part of the proof consists in the transformation of exp(λ̄S)306

into the word prior probabilities πS. Similarly to the case of mixture coeffi-307

cients, we multiply and divide the numerator of (37) by an unknown constant,308

exp (ζ). Since the constant exp (ζ) is independent of the word S, it can be in-309

troduced into the right-hand side of (34). This constant is grouped together310

with exp (λ̄) as follows311

exp(λ̄S + ζ) (55)

Thus, taking into account (55) and the constraints (7), we have that following

equalities must hold

λ̄S + ζ = log πS (56)
∑

S∈W

πS = 1 (57)

and the solution is found by following a similar procedure to that of the312

mixture coefficients313

πS =
exp (λ̄S)

∑

S′∈W exp (λ̄S′)
. (58)

In summary, we have proven that for a given set of discriminative param-314

eters λ, a set of generative parameters can be defined, θ, by (45), (48), (52),315
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and (58); such that316

argmax
S

pλ(S | O) = argmax
S

Zλ(O)

exp(ζ)
exp(ζ)pλ(S | O)

= argmax
S

exp(ζ)Zλ(O)pλ(S | O)

= argmax
S

∑

q,i,k

exp(ζ)hλ(O, S, i,q,k)

= argmax
S

∑

q,i,k

ψT exp(λ̄S + ζ) ·
hλ(i,q;S)

ψT+L exp(
∑

l,t ζslqt)

[

L
∏

l=1

vf(sl,F )

vf(sl,I)

]

· exp(
∑

l,t

ζslqt)hλ(O,k; i,q, S)

⇒ argmax
S

∑

q,i,k

ψT · πS · pθ(i,q | S) · pθ(O,k | i,q, S)

= argmax
S

ψT
∑

q,i,k

pθ(O, S, i,q,k) = argmax
S

pθ(O, S) .

(59)

where by ⇒ we highlight the step of the proof that is not symmetric.317

5. LLHMM Parameter Estimation318

In contrast to generative models as BHMMs, in which parameter esti-319

mation is usually carried out using the MLE criterion, there is not a unique320

widespread criterion to find the optimal parameters for a class posterior321

discriminative model such as the LLHMM proposed in this paper. Per-322

haps, the most well-known criteria for discriminative parameter estimation323

is the maximum mutual information (MMI). Given a collection of samples324

{(O1, S1), . . . , (ON , SN)}, the MMI criterion is defined as follows325

FMMI(λ) =
N
∑

n=1

log (pλ(Sn | On)) . (60)
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The optimal discriminative parameters, λ∗, are those that maximize FMMI.326

There are several algorithms for obtaining the parameters that maxi-327

mize (60) (Heigold et al., 2008a), but commonly the Resilient back-propagation328

(RPROP) algorithm (Riedmiller and Braun, 1993) is used (Giménez et al.,329

2011). The RPROP requires the computation of the gradient sign, for each330

parameter λm. The gradient of FMMI is given by331

∂FMMI(λ)

∂λm
= Nm(λ)−Qm(λ) (61)

where Nm(λ) and Qm(λ) are expected counts defined as follows332

Nm(λ) =

N
∑

n=1

Nnm(λ), Qm(λ) =

N
∑

n=1

Qnm(λ) , (62)

with Nnm(λ) and Qnm(λ) being the expected latent and class counts respec-333

tively. These counts are defined as follows334

Nnm(λ) =
∑

i,q,k

pλ(i,q,k | On, Sn)fm(On, Sn, i,q,k) , (63)

and335

Qnm(λ) =
∑

i,q,k

∑

S

pλ(S, i,q,k | On)fm(On, S, i,q,k) . (64)

The probabilities pλ(i,q,k | O, S) and pλ(S, i,q,k | O) are computed as336

follows337

pλ(i,q,k | O, S) =
exp(λ′f(O, S, i,q,k))

Zλ(O, S)
, (65)

and338

pλ(S, i,q,k | O) = pλ(S | O)pλ(i,q,k | O, S) =
exp(λ′f(O, S, i,q,k))

Zλ(O)
. (66)
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Finally, Zλ(O) is the normalization constant for the model defined in (29)339

whereas Zλ(O, S) is a joint normalization constant for the output and the340

word, which is likewise defined as follows341

Zλ(O, S) =
∑

i,q,k

exp(λ′f(O, S, i,q,k)) . (67)

The RPROP algorithm computes the sign of the gradient with the aid342

of these expected counts, and then, modifies the current parameters λ(k)343

accordingly, so that a new estimate of the parameters is obtained, λ(k+1).344

The algorithm starts with a rough estimate of the parameters, λ(0), and it345

ends when either a maximum number of iterations have been reached, or the346

value of the objective function surpass a given threshold.347

5.1. γ-MMI Criterion348

A modification of the MMI criterion (60), the so-called γ-MMI criterion,349

leads to better performance (Schluter and Macherey, 1998; Povey, 2003). The350

γ-MMI is defined by introducing a scaling factor γ into the MMI criterion as351

follows352

Fγ-MMI(λ) =
1

γ

N
∑

n=1

log(pλ γ(Sn | On)) , (68)

with pλ γ(S | O) defined as follows353

pλ γ(S | O) =

[

Zλ(O, S)
]γ

∑

R

[

Zλ(O,R)
]γ . (69)

The basic idea is to scale the likelihoods for each word in order to make354

the best words to compete one against the others even if the differences in355

probability are large. However, the reason why this idea outperforms the356

standard MMI is unclear. A possible hypothesis that we support is that it357

addresses some numerical problems related to the machine precision.358
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The gradient for the γ-MMI criterion in (68) is analogous to (61) but359

instead of using Qnm(λ), we now use Qγ
nm(λ) which is defined as follows360

Qγ
nm(λ) =

∑

i,q,k

∑

S

pλ γ(S, i,q,k | On)fm(On, S, i,q,k) , (70)

with the probability pλγ(S, i,q,k | O) defined as361

pλ γ(S, i,q,k | O) = pλ γ(S | O)pλ(i,q,k | S,O) , (71)

where the probabilities pλ γ(S | O) and pλ(i,q,k | S,O) are defined in (69)362

and (65), respectively.363

Fig. 2, summarizes the main idea behind the γ-MMI training criterion.364

It depicts the differences between the most probable word an the second365

most probable competitor for a LLHMM model (more details in Sec. 6). It366

is observed that these differences are of 44 points (in logarithmic scale) at367

the beginning, which corresponds to MLE. Additionally, the training sample368

is incorrectly classified at the first training iterations. Although, after 50369

iterations all the γ values correctly classify the sample; smaller values of γ370

induce larger difference between the correct class and its competitors.371

5.2. Regularization372

A common undesired property of all the proposed discriminative criteria373

is that they easily overfit the parameters. Even criteria specially designed374

to avoid outlayers such as the power criterion suffer from overfitting. Since375

there is no clear way to smooth discriminatively trained models. A typical376

patch is to add a regularization term to the criterion itself377

FC∗(λ) = F∗(λ)−
C

2

∑

m

(λ(0)m − λm)
2 , (72)
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Figure 2: Differences (in logarithmic scale) between the most probable and the second most

probable word for a given training sample (cette). Several values of the γ-MMI criterion

are plotted. The most probable word changes at iteration 50 becoming the correct word.
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with F∗(λ) denoting the original criterion, namely FMMI or Fγ ; and λ(0)378

being either a reliable estimation of the parameters or simply 0.379

The inclusion of the regularization term, only modifies the gradient in the380

following form381

∂FC∗(λ)

∂λm
=
∂F∗(λ)

∂λm
+C(λ(0)m − λm) = Nm(λ)−Qm(λ) +C(λ(0)m − λm) , (73)

where the expected counts, Nm and Qm, are calculated as in the original382

criterion.383

6. Experiments384

In this section, we perform several experiments on the RIMES database385

of handwritten French letters (Grosicki et al., 2009), so that the performance386

of several discriminative training criteria for BHMM is assessed with respect387

to the generative training. Furthermore, we visually inspect several discrim-388

inative parameters by transforming them into their generative counterpart.389

6.1. The RIMES Database390

All the experiments were carried out on the protocol WR2 used in the391

handwritten word recognition competition of the ICDAR 2009. This protocol392

comprises 51 738 and 7 464 samples for training and testing, respectively. The393

lexicon used during the recognition comprises the words that occur in the test394

(1 612 words) and an alphabet of 81 characters. A three step preprocess was395

applied to all input images (Pastor i Gadea, 2007): gray level normalization,396

deslanting, and vertical size normalization.397

Preprocessed images were first scaled in height to 30 pixels maintaining398

the aspect ratio, and then binarized with the Otsu’s method. A sliding399
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window of width 9 was applied centered on each column in order to extract a400

sequence of 270-dimensional binary feature vectors. More precisely, for each401

column the sliding window was horizontally centered, and then vertically402

repositioned so that the center of the window is aligned with mass center of403

the window before repositioning. Once realigned, the 9 binary vectors of the404

window were concatenated in order to compose a binary feature vector of405

dimension 270 which is fed into the BHMM or LLHMM as input.406

6.2. Experimental Setup407

In order to properly initialize the MMI training scheme the LLHMM408

was initialized with a BHMM classifier trained with the EM (Baum-Welch)409

algorithm (Rabiner and Juang, 1993), using the training scheme described410

in Giménez et al. (2010). The best generative BHMM, which is composed411

by Q = 8 states per character and K = 64 mixture components per state,412

obtains an error of 21.2%.413

Regarding to the discriminative training, the RPROP algorithm was used414

for optimizing the criteria. The initial discriminative parameters were ob-415

tained transforming the generative parameters of a BHMMs with Q = 8416

states per character and K = 26 mixture components per state. Despite417

the best generative results is obtained with K = 64 mixture components418

per state, some works reported (Giménez et al., 2011) that the best classi-419

fier obtained using MMI training has half (0.4 ratio) the number of mixture420

component per state than its generative counterpart. Consequently, in pre-421

liminary experiments we checked that the results obtained using the conven-422

tional MMI criterion with K = 26 are similar or better to those obtained423

increasing the value of K.424
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Finally, the proposed discriminative training criteria require to compute425

sums over all the words for calculating several values such as Zλ(O) in (66).426

Consequently discriminative training algorithms become unfeasible in a straight427

implementation. For this reason we have approximated the sums over all the428

words by a beam pruning strategy together with a histogram pruning up to429

100 best hypothesis accordingly to p(S | O).430

6.3. Experiments431

Firstly, we wanted to assess the repercussions of the regularization term432

in the conventional MMI criterion. For doing so, we scanned several values433

of the regularization parameter C = {0, 0.1, 1, 10, 100} as introduced in (72),434

where C = 0 stands for not using the regularization at all. In Fig. 3, the435

classification error rate (CER) as a function of the number of RPROP iter-436

ations is plotted for different regularization values. In all cases, even with437

standard MMI, the CER decreases in a similar way, until iteration 60, where438

the best result is obtained. At this point, the behavior diverges depending439

on the precise value of C. If no regularization is applied (C = 0) the error440

becomes unstable and increases (overfits) as the training iterates. However,441

the larger the regularization parameter is, the less overtrained the model442

becomes, until that for C = 10 the error becomes stable while providing443

similar performance to that at iteration 60. Note that if the regularization444

parameter is further increased, an slight drop in performance is observed. As445

expected, the regularization term reduces the overfitting problem.446

Fig. 3 also shows that the regularized MMI criterion obtains a CER447

around 19.5% using only K = 26 components per state. If we compare it448

with the best generative result, which is 21.2% and is obtained using K = 64,449
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we observe not only an improvement of 1.7 absolute points but also a reduc-450

tion on the number of parameters of 0.4, i.e. less than half the parameters451

are needed for such improvement.
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Figure 3: Classification error (in %) as a function of RPROP iterations for the regularized

MMI criterion with several values of the regularization parameter C. Note that C = 0

stands for the non-regularized MMI.

452

For a deeper understanding of the MMI criterion, in Fig. 4 we depict the453

top 5 most probable words as a function of the training iterations (0,50,55,60,100)454

and the γ value of the γ-MMI criterion (1-MMI=MMI). We selected a com-455

mon example in which the MLE misclassifies the sample and the MMI learns456

how to discriminate it among the the other competitors. More precisely, for457

several training iterations the 5 most probable transcriptions are shown. In458
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addition, for each transcription the difference (in logarithmic scale) between459

its score and the best score at that iteration is also shown. As expected,460

the correct transcription (cette) gains relevance with the iterations, that is,461

the training algorithm is modifying the model parameters in order to better462

classify the sample. In particular, at the beginning there is a separation of463

44 points between cette and the best transcription (celle). However, at some464

point near to iteration 50 this situation is reverted, and from this point on465

the score difference keeps increasing (see Fig. 2). A total of 60.3% of the466

training samples that are misclassified by the MLE, are correctly classified467

at the end of the last MMI iteration. In contrast, only 1.3% of the correctly468

classified samples by the MLE are misclassified at the end of the training469

process.470

In Fig. 6, we explored several values of γ, ranging from standard MMI471

(γ = 2) to 10−4, using the best regularization term obtained in the previous472

experiment C = 10. In the previous experiment the 100-best words were473

recalculated every 10 iterations, however, with the γ-MMI we observed a474

severe overfitting. Consequently, we repeated the experiments recalculating475

the best words every iteration. It is observed in Fig. 6 that the modified476

γ-MMI obtains a very competitive performance in terms of CER (15%) if477

applied properly. If we compare the best result in Fig. 6 with the best478

generative result, the former obtains an improvement boost of more than 6479

absolute points with respect to the latter. In Fig. 4 the behavior of the γ-MMI480

can be checked for a training sample. As we can see, the use of small values481

of γ leads to an increase of the separation between classes, which is consistent482

with the idea that the γ is increasing the competition between classes during483
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Original image Preprocessed without sliding window

MLE γ−MMI (γ = 1)

Iterations 1 50 55 60 100

1-best - celle - celle - cette - cette - cette

2-best 44 cette 6 cette 73 celle 72 celle 100 celle

3-best 447 Cette 376 dette 342 dette 359 dette 354 dette

4-best 467 dette 406 Cette 382 Cette 388 Cette 393 Cette

5-best 499 celles 497 celles 564 celles 542 celles 485 geste

MLE γ−MMI (γ = 10−1)

Iterations 1 50 55 60 100

1-best - celle - celle - cette - cette - cette

2-best 44 cette 7 cette 79 celle 94 celle 116 celle

3-best 447 Cette 375 dette 340 dette 358 dette 336 dette

4-best 467 dette 409 Cette 385 Cette 403 Cette 393 Cette

5-best 499 celles 497 celles 570 celles 556 geste 459 geste

MLE γ−MMI (γ = 10−3)

Iterations 1 50 55 60 100

1-best - celle - celle - cette - cette - cette

2-best 44 cette 6 cette 128 celle 207 celle 260 celle

3-best 447 Cette 403 dette 413 dette 417 dette 440 dette

4-best 467 dette 516 celles 663 Cette 631 Cette 657 Cette

5-best 499 celles 530 Cette 667 celles 784 celles 828 telle

Figure 4: γ-MMI behavior on a training sample for several values of γ. The figures stand for

the difference (in logarithmic scale) between each n-best word and the best transcription

at each iteration. Bold words highlight the position of the correct word cette.
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the training process. For example, at iteration 100 the separation between484

the two best hypothesis using γ = 1 is 100 points, while using γ = 10−3 the485

separation increases up to 260 points.486

Fig. 5 depicts a similar experimentation to that of Fig. 3 but for several487

test samples. The first sample (vous) is a sample that is misclassified by the488

MLE model and it is correctly classified using γ-MMI criterion. The remain-489

ing two samples are correctly classified by the MLE criterion. However, the490

first one is finally misclassified by the discriminative model, while the second491

one remains correctly classified. It is worth noting, that these three cases492

represent the 10.2%, 2.2% and 74.7% of the test set,respectively.493

As discussed before, all experiments were carried out using K = 26 com-494

ponents per state. In order to better compare the performance of the MLE495

and γ-MMI criteria we carried out a final experiment, in which both criteria496

are tested using several components per state K ∈ {1, 4, 16, 64}. For the497

γ-MMI criteria the best parameters from previous experiments were used498

(γ = 10−3 and C = 10). Results are shown in Fig. 7.499

From the results reported in Fig. 7 it is clear that γ-MMI outperforms500

MLE in all cases. The improvement of the MMI decreases as the number of501

components increases. For example, the improvement using K = 1 is about502

20 points while using K = 64 is about 5 points. It is worth noting, that the503

best result in this figure is 15.2% which is achieved using K = 16 components504

and it is very similar to the best result obtained with K = 26, which we chose505

for all the previous experimentation.506

Finally, a visual inspection of some Bernoulli prototypes for several train-507

ing criteria is given in Fig. 8. The Bernoulli prototypes for letters e and s are508
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Incorrect → Correct

MLE γ−MMI (γ = 10−3)

Iterations 0 40 45 50 100

1-best - virus - virus - virus - vous - vous

2-best 26 Vous 35 vous 15 vous 16 virus 89 virus

3-best 44 vous 40 Vous 50 Vous 93 Vous 318 Vous

4-best 82 bruits 118 bruits 165 bruits 268 bruits 350 nous

5-best 231 plus 243 plus 261 plus 323 plus 419 viens

Correct → Incorrect

MLE γ−MMI (γ = 10−3)

Iterations 0 40 45 50 100

1-best - Suite - Suite - Suite - suite - suite

2-best 97 suite 77 suite 50 suite 16 Suite 247 Suite

3-best 357 Socit 376 Socit 395 seule 336 seule 465 seule

4-best 405 socit 413 socit 402 Socit 457 socit 698 sant

5-best 428 Sant 431 seule 425 socit 470 Socit 702 suis

Correct → Correct

MLE γ−MMI (γ = 10−3)

Iterations 0 40 45 50 100

1-best - que - que - que - que - que

2-best 239 due 233 due 221 due 188 due 167 due

3-best 350 dire 371 dire 396 dire 438 dire 753 dire

4-best 539 grise 590 grise 620 date 628 date 810 date

5-best 595 avez 611 date 639 avez 659 d’une 930 quel

Figure 5: γ-MMI behavior on three selected test samples. The figures stand for the

difference (in logarithmic scale) between each n-best word and the best transcription at

each iteration. Bold words highlight the position of the correct word cette.
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shown, where the columns represent states, and rows represent mixture com-509

ponents. Provided that the number of mixture components in each state is510

large (K = 26) we have selected the 4 components with the highest mixture511

coefficients when trained using the MLE criterion. Prototypes are plotted512

for 3 different training criteria (from left to right): MLE training; the γ-MMI513

with γ = 10−3 and regularization C = 10; and the conventional MMI train-514

ing without regularization. It is worth noting that the MLE prototypes are515

the initial prototypes for both represented discriminative training criteria.516

It is observed that the prototypes without regularization are apparently517

a noise version of the MLE prototypes, however we know that they have518

a better performance when classifying. A further observation reveals that519

discriminative training is focused on modifying those pixels that discriminate520

the most while keeping the remaining pixels unmodified. These unmodified521

pixels are those that keep the same state (0 or 1) for many words. When no522

regularization is employed, a pixel that discriminates a single training sample523

can be set to 1, however, those spurious pixels are eliminated by adding the524

regularization term.525

7. Concluding Remarks and Future Work526

In this work, we presented a log-linear HMM (LLHMM) to recognize527

isolated handwritten words that directly deals with binarized images with-528

out the need of a sophisticated feature extraction process. This model has529

been proved to be equivalent to Bernoulli HMMs (BHMMs), and in this way,530

we have provided a framework for discriminatively training BHMMs. Fur-531

thermore, this allows us to visually inspect and understand discriminative532
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Figure 8: Bernoulli prototypes of letters e and s using three different training criteria

(from left to right): MLE, γ-MMI with regularization and MMI without regularization.
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parameters by transforming them into generative ones.533

Two discriminative training criteria have also been analyzed for the LLHMM534

model: conventional MMI and γ-MMI. We tried all of them discussing prob-535

lems (over-fitting, computational cost) and some typical approximation to536

those problems (regularization term, pruning techniques). All these methods537

have been tested over the well-known RIMES database of handwritten French538

words. Furthermore, in all cases discriminative training clearly outperformed539

the conventional MLE training. In particular, very competitive results were540

obtained using the γ-MMI training scheme which obtained nearly 15% of541

CER, or in other words an improvement of more than 6% of absolute points542

with respect to the generative counterpart. However, there are many more543

discriminative training criteria such as margin-based or minimum phoneme544

error. As future work we plan to implement and adapt these discriminative545

criteria to the proposed model.546

The best result obtained in this work on the considered task of the RIMES547

database is 15%, which to our knowledge is the best result reported using548

HMMs and without system combination. If we compare our system with549

the results of the ICDAR 2009 (Grosicki and El Abed, 2009), our system550

would be positioned in the third position and very close to the second sys-551

tem (13.9%), which is in fact a combination of hybrid HMM/MLP systems,552

and far from the first system (6.8), which is a system based on a hierarchy of553

multidimensional recurrent neural networks, and has shown to be extremely554

competitive in this task. Moreover, if we compare our result with the results555

reported on the same task in Bianne-Bernard et al. (2011), it is observed that556

our system outperforms the results of the three systems presented on that557
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paper: a dynamic context-independent system based on HMMs (24.5%), a558

dynamic context-dependent system based on HMMs (19.6%), and a hybrid559

HMM/neural network system (20.5%). However, when the three systems are560

combined an error of 10.9% is obtained. Consequently, as future work we561

plan to combine the proposed discriminative BHMMs system, with the con-562

ventional generative BHMMs system and other state of the art systems, as563

for instance those based on recurrent neural networks (Graves and Schmid-564

huber), in order to measure the impact of discriminative BHMMs when com-565

bined with other systems.566

Finally, we intend to extend all the work developed in this paper to con-567

tinuous HTR, that is, a discriminative BHMM in which the words are re-568

placed by word sequences, and hence, the prior probabilities are replaced by569

a language model.570
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Appendix A. Discriminative to generative transition probabilities578

In this appendix, we prove that the parameters in (52) yield a probability579

proportional to that of (41) when used in (11) as the generative parameters580
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of pθ(q, i | S). In order to clarify this, we plug the parameters as computed581

in (52) into (11) yielding582

L
∏

l=1

[exp (λ̄slIqil )vf(sl,qil)

ψvf(sl,I)
·

il+1−2
∏

t=il

exp (λ̄slqtqt+1)vf(sl,qt+1)

ψvf(sl,qt)
·
exp (λ̄slqil+1−1F )vf(sl,F )

ψvf(sl,qil+1−1)
] ,

(A.1)

where by grouping elements we get583

1

ψT+L
hλ(i,q;S)

exp(
∑

l,t ζslqt)

L
∏

l=1

[vf(sl,F )

vf(sl,I)

vf(sl,qil)

vf(sl,qil+1−1)

il+1−2
∏

t=il

vf(sl,qt+1)

vf(sl,qt)

]

. (A.2)

Note that, in each segment l the telescope product over
vj′

vj
is equal to

vf(sl,F )

vf(sl,I)
·1,584

and then equation (A.2) is reduced to585

pθ(i,q | S) =
1

ψT+L

[

L
∏

l=1

vf(sl,F )

vf(sl,I)

] hλ(i,q;S)

exp(
∑

l,t ζslqt)
. (A.3)
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