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Abstra
t

Over the years, the medi
al �eld has been experimented an evolution in their 
lini
al

pra
ti
es towards the in
lusion of new te
hnologies that 
an assist in the diagnosis and

prognosis of 
omplex diseases. Su
h evolution has derived in the development of Clini
al

De
ision Support Systems (CDSSs) that provide physi
ians advan
ed tools to improve

their medi
al aid, de
ision making and monitoring pro
ess of the patients. Rather than

repla
ing the 
lini
ian �gure, CDSSs are aimed to assist the human to over
ome their

natural limitations in the analysis of 
omplex and large volumes of information, su
h as the

patient 
lini
al re
ords. CDSSs are de�ned as 
omputational systems that provide pre
ise

and spe
i�
 knowledge for the medi
al de
isions to be adopted for diagnosis, prognosis,

treatment and management of patients. Su
h de�nition links the nature of CDSSs to a

spe
i�
 
on
ept: Arti�
ial Intelligen
e (AI) in medi
ine.

Brain tumour diagnosis 
on
erns a 
on
rete pathology that has re
eived a lot of at-

tention from the Pattern Re
ognition (PR) and Ma
hine Learning (ML) 
ommunity. Due

to the heterogeneity and 
omplexity of the di�erent tumours and the huge amount of

information handled by the multidis
iplinary 
lini
ians groups, CDSSs have be
ome a key


omponent for the future of brain tumour treatment. As a major step in the treatment of

brain tumours, the early identi�
ation and delineation of the di�erent tissues related to

the lesion be
omes 
ru
ial to make de
isions that 
an improve the patient survivability.

In this sense, automati
 brain tumour segmentation plays a key role in the development

of CDSSs.

Currently, most of the automati
 brain tumour segmentation approa
hes arise from

the supervised learning standpoint. The supervised learning paradigm requires a labelled

training dataset from whi
h to infer the models of the 
lasses that represent the di�erent

tissues in the brain. Su
h training datasets are usually obtained through expert manual

annotations, whi
h be
omes a tedious, time-
onsuming and biased pro
ess, among other

limitations. On the other hand, unsupervised approa
hes address these limitations, but

usually a
hieve worse results in 
omparison to supervised approa
hes and often require

several manual stages to improve the interpretability of their results.

In order to over
ome these limitations, this M.S
. thesis introdu
es a fully auto-

mated unsupervised method for brain tumour segmentation using anatomi
al Magneti


Resonan
e (MR) images, able to a
hieve a

urate results 
omparable with supervised

approa
hes. A PR s
heme is adopted to design the fully automated unsupervised segmen-

tation method. First, a prepro
essing stage based on the state of the art te
hniques in

MRI is proposed to enhan
e and 
orre
t the information 
ontained in the images. Next,

a feature extra
tion and dimensionality redu
tion is 
arried out to extra
t dis
rimina-

tive features from the images and to simplify the inferen
e pro
ess of the unsupervised

algorithms. Four unsupervised 
lustering te
hniques, divided by their stru
tured or non-
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stru
tured 
ondition, are evaluated to assess their pros and 
ons. Considering the non-

stru
tured algorithms, K-means, Fuzzy K-means and Gaussian Mixture Model (GMM)


lustering are analysed, whereas as stru
tured 
lassi�
ation algorithms, theGaussian Hid-

den Markov Random Field (GHMRF) is evaluated. Finally, an automated tumour 
lasses

isolation based on a statisti
al approa
h supported by tissue probability maps is proposed

to over
ome the la
k of biologi
al interpretability of the unsupervised results.

The proposed segmentation method is evaluated through the publi
 International

BRAin Tumour Segmentation (BRATS) dataset to 
ompare its performan
e against the

state-of-the-art supervised approa
hes that parti
ipate in the 
hallenge. Our results pla
ed

the method in the 7th position of the 
hallenge, with a Di
e s
ore of 0.72 for the 
om-

plete tumour sub
ompartment, whi
h 
on�rms our approa
h as a viable alternative for

Glioblastoma Multiforme (GBM) segmentation.

iv



Contents

Contents v

1 Introdu
tion 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.5 Summary of the remaining 
hapters . . . . . . . . . . . . . . . . . . . . . . 4

2 Review of the literature 7

3 Materials 11

3.1 Magneti
 Resonan
e Imaging . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2 BRAin Tumour Segmentation (BRATS) 2013 dataset . . . . . . . . . . . . 13

3.3 International Consortium for Brain Mapping (ICBM) templates . . . . . . 14

4 Methods 17

4.1 Magneti
 Resonan
e Imaging (MRI) prepro
essing . . . . . . . . . . . . . . 18

4.1.1 Denoising . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.1.2 Registration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.1.3 Skull stripping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.1.4 Bias �eld 
orre
tion . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.1.5 Super resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2 Feature Extra
tion and Dimensionality Redu
tion . . . . . . . . . . . . . . 23

4.3 Unsupervised voxel 
lassi�
ation . . . . . . . . . . . . . . . . . . . . . . . . 26

4.3.1 Expe
tation-Maximization (EM) algorithm . . . . . . . . . . . . . . 27

4.3.2 Non-stru
tured Gaussian mixture model . . . . . . . . . . . . . . . 29

4.3.2.1 K-means . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.3.2.2 Fuzzy K-means 
lustering . . . . . . . . . . . . . . . . . . 31

4.3.2.3 Gaussian Mixture Model (GMM) 
lustering . . . . . . . . 32

4.3.3 Stru
tured Gaussian mixture model . . . . . . . . . . . . . . . . . . 33

4.3.3.1 Gaussian Hidden Markov Random Field (GHMRF) . . . . 35

4.4 Automati
 tumour 
lasses isolation . . . . . . . . . . . . . . . . . . . . . . 36

4.4.1 Identify WM, GM and CSF 
lasses . . . . . . . . . . . . . . . . . . 36

4.4.2 Remove outlier 
lasses . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.4.3 Mixture 
lasses by statisti
al distribution similarities . . . . . . . . 39

4.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

v



Contents

4.5.1 Sub
ompartment evaluation . . . . . . . . . . . . . . . . . . . . . . 41

4.5.2 Figures of merit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5 Results 43

6 Dis
ussion 47

7 Con
luding remarks and future work 51

7.1 Con
lusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

7.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Glossary 53

Bibliography 55

List of Figures 61

List of Tables 63

vi



Chapter 1

Introdu
tion

1.1 Motivation

Over the years, the medi
al �eld has been experimented an evolution in their 
lini
al

pra
ti
es towards the in
lusion of new te
hnologies that 
an assist in the diagnosis and

prognosis of 
omplex diseases. However, it was not until the 20th 
entury sin
e the

medi
ine was 
ompletely revolutionized with the explosion of the use of medi
al te
hno-

logy. Several advan
es developed in these years 
omprise the ele
tro
ardiography (Willem

Einthoven, 1903), the ele
troen
ephalography (Hans Berger, 1929), the Heart-Lung ma-


hine (Dr John Heysham Gibbon, 1953) and MRI (Raymond Vahan Damadian, 1971).

These improvements led to a huge in
rease of the data used to diagnose and treat pa-

tients, thereby 
onverting the 
lini
al re
ords on an important do
ument to store the

patient's information.

Nowadays, this large amount of information has even in
reased due to its multidis
i-

plinary origin, introdu
ing new requirements to the management of the patient informa-

tion during his disease. Su
h requirements involve the analysis of 
omplex multi-sour
e

and often multi-
enter 
lini
al data and the integration of medi
al knowledge from dif-

ferent health areas, in order to improve the quality of the treatment. Advan
ed systems

able to assist the human to over
ome their natural limitations in the analysis of 
omplex

volumes of information are then required. In this sense, Clini
al De
ision Support Sys-

tems (CDSSs) emerged to provide physi
ians powerful tools to improve their medi
al aid,

de
ision making and monitoring pro
ess of the patients. CDSSs are 
losely related to

Arti�
ial Intelligen
e (AI) and Ma
hine Learning (ML) dis
iplines, as they are aimed to

provide pre
ise and spe
i�
 knowledge for the medi
al de
isions to be adopted for diagno-

sis, prognosis and treatment of patients. In this sense, the Pattern Re
ognition (PR) and

Ma
hine Learning (ML) 
ommunity has shown a signi�
ant interest in the development of

CDSSs due to the 
omplex and 
ru
ial task that health represents in the everyday human

life.

Spe
i�
ally, brain tumour has re
eived a lot of this attention due to its in
iden
e in the

population and its 
onsequen
es in their life expe
tan
y. GlioblastomaMultiforme (GBM)

tumour is the most 
ommon and most aggressive malignant tumour [1, 2℄, whi
h presents

heterogeneous lesions 
onsisting of di�erent areas of a
tive tumour, ne
rosis and edema,

all of them exhibiting a high variability related to the aggressiveness of the tumour. Its

intra-
ranial lo
ation and the unspe
i�
ity of 
lini
al symptoms [3℄ makes medi
al imaging

1
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te
hniques to play a key role in the GBM treatment. The standard te
hnique for GBM

diagnosis 
on
erns the a
quisition of several Magneti
 Resonan
e (MR) images to lo
ate

and identify the di�erent tissues related to the lesion. However, the manual analysis

and delineation of these relevant tissues involves a 
omplex, tedious, time-
onsuming and

biased task. The in
reasingly 
onsolidated te
hniques based on PR approa
hes have been

shown to provide automated e�
ient solutions for routine 
lini
al appli
ation [4℄.

Nonetheless, most of these te
hniques arise from the supervised learning standpoint.

Supervised learning is a ML approa
h that depends on a manually annotated training

datasets to learn dis
riminative fun
tions used for mapping new examples. The training

dataset 
onsists of a set of observed-input and desired-output pairs, used to infer the mo-

dels that represents these relationships. The most important drawba
k of the supervised

learning 
on
erns the a
quisition of the training dataset [5℄. The training dataset must

be manually 
reated by experts and should 
ontain a su�
iently large set of labelled ex-

amples than enables to learn generalized models that apply su

essfully to unseen data.

Hen
e, supervised learning is limited to the quality and size of the training dataset, whi
h

requires an expensive, tedious, time-
onsuming and biased task to 
ompile it. Further-

more, 
ommon problems su
h as the over-�tting of the models or the inability to provide

labels for all situations in some problems should be 
onsidered [5℄. Finally, a well-known

problem of brain tumour MR images is the normalization between a
quisitions of di�erent

patients [4℄. Supervised approa
hes require a re
alibration of the models when the data

sour
es are not normalized or experiment 
hanges, for example di�erent hospitals or new

MR proto
ols. Su
h limitation in 
ombination with the di�
ult and expensive task of


ompile manual labelled brain tumour datasets severely a�e
ts the viability of supervised

approa
hes for real 
lini
al routine.

In these sense, this M.S
. Thesis is intended to provide an unsupervised learning

methodology for GBM segmentation, able to over
ome the limitations 
on
erning the

supervised approa
hes. The proposed methodology has to rea
h 
omparable results to

supervised segmentations, while addressing the inherent limitations of the unsupervised

learning su
h as the la
k of interpretability of the unsupervised partitioning. Furthermore,

the method has to provide me
hanisms to minimize the initialization problem of 
lustering

algorithms, whi
h may lead to poor lo
al minima solutions. Finally, it is interesting that

the unsupervised method takes advantage of the self similarity presented in the images,

by employing models that 
onsiders dependen
ies between the data to be segmented.

1.2 Hypothesis

The present M.S
. Thesis is based on the following hypothesis:

I The unsupervised approa
h to brain tumour segmentation is a viable approa
h as it


an obtain 
oherent and a

urate results similar than the ones retrieved by manual

expert labelling, and also 
omparable to supervised segmentations, but avoiding the

tedious, time-
onsuming and biased task of manual expert labelling.

2



1.3. Goals

1.3 Goals

The general goal of this M.S
. Thesis is to 
ontribute in the design, development and

validation of brain tumour segmentation methods, spe
i�
ally in the unsupervised learning

�eld, by providing a 
omplete and robust methodology for GBM segmentation.

This main goal is a
hieved by ful�lling the following spe
i�
 goals:

• To design a fully automated unsupervised brain tumour segmentation method. Iden-

tify the requirements and stages of the methodology and provide a 
ompetitive seg-

mentation system 
omparable to supervised approa
hes.

• To study and implement the required te
hniques and algorithms to develop the

unsupervised methodology.

• To design and implement me
hanisms to improve the biologi
al interpretability of

the unsupervised results for GBM segmentation, as they are devoid of semanti


meaning.

• To evaluate the proposed unsupervised segmentation method with a real publi
 and

referen
e brain tumour dataset.

• To 
ompare the performan
e of the unsupervised segmentation method with state-

of-the-art supervised segmentation algorithms.

1.4 Contributions

The s
ienti�
 
ontribution of this M.S
. thesis 
on
erns the appli
ation of ML te
hniques,

spe
i�
ally unsupervised learning algorithms, to design and develop a 
omplete automated

method for GBM segmentation. This method is not limited to GBM segmentation but


an also be applied to other brain tumour 
ases and to other pathologies su
h as Multiple

S
lerosis. Nevertheless, this M.S
. Thesis only evaluates the method for GBM segmenta-

tion to fo
us the study. The te
hnologi
al results of this M.S
. Thesis are 
ompiled and

registered by the Universitat Politè
ni
a de Valèn
ia (UPV) and 
urrently the method is

under the registration pro
ess as a original patent with referen
e ID 769-PAT/MGM.

This M.S
. Thesis has served as a prototype and study 
ase to write the National Re-

sear
h Proje
t Cara
teriza
ión de �rmas biológi
as de Glioblastomas mediante modelos no

supervisados de predi

ión estru
turada basados en biomar
adores de imagen (TIN2013-

43457-R), whi
h has been a

epted and will be funded by the Ministerio de E
onomía

y Competitividad of Spain. This Thesis has also served to a
hieve a Private Resear
h

Proje
t 
alled Segmenta
ión no supervisada de Glioblastomas basada en imagen de re-

sonan
ia magnéti
a multiparamétri
a y restri

iones espa
io/temporales, whi
h is funded

and supported by Hospital Universitario Polité
ni
o La Fe and BRACCO Company

a

.

The main 
ontributions of this M.S
. thesis 
an be summarized as follows:

Contribution 1: The design and implementation of a robust methodology for unsuper-

vised brain tumour segmentation by means of a de�nition of a 
omplete automated

a

http://imaging.bra

o.
om/us-en
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method able to a
hieve a

urate results 
omparable to supervised approa
hes, avoid-

ing the tedious, time-
onsuming and biased task of manual expert labelling.

Contribution 2: The design of a postpro
essing stage able to robustly di�erentiate be-

tween pathologi
al and non-pathologi
al 
lasses in a brain tumour segmentation.

The statisti
al approa
h that underlines the method provides a �exible and power-

ful framework to a

urate identify tissues that not 
orrespond to healthy brains.

This approa
h 
an be also extrapolated to other pathologies besides GBM, as it 
an

dete
t anomalies not referred to healthy tissues.

Contribution 3: Evaluation of a 
omplete unsupervised segmentation approa
h with a

publi
 real brain tumour dataset, in order to assess the performan
e of the unsuper-

vised approa
hes with respe
t to the state-of-the-art te
hniques in supervised seg-

mentation. Several unsupervised algorithms are evaluated within the methodology

to asses the bene�ts and limitations of ea
h one, di�erentiating between stru
tured

and non-stru
tured segmentation algorithms.

1.5 Summary of the remaining 
hapters

Chapter 2 brie�y introdu
es the prin
iples of MRI and the di�erent MRI modalities

used in the study. Furthermore, the publi
 dataset used to evaluate and 
ompare

the performan
e of the method against supervised approa
hes is presented.

Chapter 3 presents the prepro
essing stage for the proposed unsupervised segmenta-

tion methodology. Several state of the art te
hniques proposed to 
orre
t the most


ommon artefa
ts of MRI a
quisitions are exposed. The prepro
essing 
overs the

following artefa
ts and operations: Denoising, magneti
 bias �eld 
orre
tion, skull

stripping and superresolution.

Chapter 4 introdu
es the te
hniques used to extra
t dis
riminative features from the

MR images to di�erentiate between the tumoral tissues. In addition to the intensity

levels provided by ea
h MR image, texture features are 
omputed for all sequen
es

to distinguish between tumoral tissues. Dimensionality redu
tion based on Prin
ipal

Component Analysis (PCA) is proposed to redu
e the high-dimensional data spa
e

representation, thereby de
reasing the 
omplexity in the inferen
e of the algorithms.

Chapter 5 
overs the unsupervised 
lustering algorithms evaluated in the brain tumour

segmentation method. Both stru
tured and non-stru
tured 
lassi�
ation algorithms

are 
onsidered. Under the non-stru
tured paradigm; K-means, Fuzzy K-means and

GMM unsupervised 
lustering algorithms are evaluated. Regarding the stru
tured

predi
tion pattern; GHMRF algorithm is proposed. All 
lustering te
hniques are

postulated in terms of variants of generative mixture models and EM algorithm.

Chapter 6 introdu
es the proposed automati
 tumoral 
lasses isolation designed to im-

prove the la
k of interpretability of the unsupervised results. An automati
 identi�-


ation of pathologi
al 
lasses is presented based on a statisti
al approa
h supported

by tissue probability maps obtained for normal tissues.

4



1.5. Summary of the remaining 
hapters

Chapter 7 dis
loses the evaluation of the unsupervised segmentation system. Figures of

merit used for the evaluation of the method are presented. Results obtained for the

di�erent 
lustering te
hniques in 
ombination with the proposed prepro
essing and

postpro
essing stages are des
ribed. A ranking 
omparing the results a
hieved by

the supervised approa
hes evaluated in the International Image Segmentation Chal-

lenge of Medi
al Image Computing and Computer-Assisted Intervention (MICCAI)

Conferen
e and the proposed method is presented.

Chapter 8 dis
usses the pros and 
ons of the di�erent algorithms of the prepro
essing

stage, as well as the results obtained by the di�erent unsupervised 
lustering algo-

rithms and the impa
t of the proposed automati
 tumoral 
lasses isolation method.

Chapter 7 summarizes the 
on
lusions and explains the future lines of resear
h and

development.

5





Chapter 2

Review of the literature

Glioblastoma Multiforme (GBM) is the most frequent (>50%) and most aggressive malig-

nant tumour of the Central Nervous System (CNS) [1℄. GBMs are heterogeneous malig-

nant masses, 
hara
terized by hyper
ellularity, pleomorphism, mi
rovas
ular proliferation

and high ne
rosis mitoti
 a
tivity, in whi
h di�erent areas of malignan
y grade 
an 
o-

exist [2℄. The 
urrent standard treatment for GBM 
on
erns surgery, radiotherapy and


hemotherapy, with an average global survivability of 15 months and a progression-free

survivability of 7 months [6℄. Hen
e, the early identi�
ation of the di�erent malignant

tissues related to the tumour be
omes 
ru
ial to make de
isions that 
an improve the pa-

tient survivability. The segmentation of the tumoral and peritumoral areas in 
ombination

with abnormal tissue 
lassi�
ation su
h as edema or ne
rosis is determinant to monitor

the evolution of the tumour re
urren
e or shrinkage during therapy.

The standard te
hnique for GBM diagnosis is MRI [3℄. MRI is a medi
al imaging

te
hnique used to provide detailed images of the di�erent types of tissues in the brain

through a non-invasive pro
ess. MRI is able to produ
e images with di�erent types of

tissue 
ontrast, whi
h enables the segmentation and di�erentiation of the tissues. Due to

the heterogeneous nature of brain tumours, spe
i�
ally in 
ase of the GBM, several MRI

sequen
es are required to diagnose and segment the tumour in
luding all its subregions [7℄.

The standard anatomi
al sequen
es used for the diagnosis are T1-weighted, T1-weighted

with 
ontrast enhan
ement (T1c), T2-weighted and FLuid Attenuated Inversion Re
overy

(FLAIR).

In 
lini
al pra
ti
e, the segmentation is performed manually over these sequen
es by

expert radiologists, whi
h be
omes a 
ompli
ated, tedious and time-
onsuming task, fre-

quently una�ordable to the humans in a reasonable time. Hen
e, in re
ent years, the

interest of automated segmentation te
hniques to re
ognize both the pathologi
al and

healthy tissues of the brain has arisen. A previous review of automated brain tumour

segmentation methods was done by Angelini et al. [8℄. However, the rapid advan
ement

in ML te
hniques applied to radiology [9℄ has derived in the most important brain tumour

segmentation methods after the 2007. Re
ent extensive reviews that 
ompile most of these

te
hniques have been presented in [10, 4℄.

Brain tumour segmentation is usually addressed from the supervised learning stand-

point. Cai et al. [11℄ and Verma et al. [12℄ 
reated voxel-wise feature ve
tors from a large

number of MRI sequen
es, in
luding Di�usion Tensor Imaging (DTI), and applied Support

Ve
tor Ma
hines (SVM) to segment the tumour and additional sub
ompartments inside

7
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the lesion area. Ruan et al. [13, 14℄ used kernel 
lass separability for feature sele
tion

in a multiparametri
 MRI set and also used SVM to segment the tumour region. Tayel

et al. [15℄ proposed a 
ombination of neural networks and fuzzy logi
 rules to segment

Region Of Interests (ROIs) for brain tumour diagnosis. Jensen et al. [16℄ proposed an

initial ROI segmentation based on morphologi
al and thresholding operations and a pos-

terior training stage where four 
lassi�ers, 
omprising a logisti
 regression, a multi layer

per
eptron and both fuzzy inferen
e systems, were trained to segment di�erent tissues of

the tumour. Lee et al. [17℄ used a 
ombination of SVM and pseudo Conditional Random

Fields (CRF) to brain tumour segmentation. They performed the 
lassi
 training step of

the SVM 
onsidering the data independent and identi
ally distributed (iid), but introdu
es

spatial 
onstraints similar as the CRFs to the inferen
e pro
ess of the SVM to improve

the performan
e of the segmentation. Bauer et al. [18℄ also used SVM in 
ombination

with hierar
hi
al CRF to segment both healthy and tumour tissues, in addition to several

sub-
ompartments inside the lesion.

However, supervised learning requires an expensive, time-
onsuming and biased task

to retrieve manual labelled datasets from whi
h to learn the segmentation models, hen
e

limiting the performan
e of the supervised approa
h to the quality of the training dataset.

Furthermore, 
ommon problems su
h as the over-�tting or the inability to provide labels

at all for some 
lassi�
ation problems dire
tly a�e
ts the supervised paradigm. Moreover,

MRI a
quisition proto
ols are not standardized [4℄, whi
h in 
ombination with the 
riti
al

and 
omplex problem of brain tumour MRI normalization, limits the supervised models

to new 
ases a
quired under the same proto
ol and 
onditions than the one used for train

the models. This limitation be
omes more important as new 
lini
al data tends to 
ome

from di�erent sour
es and is often shared between hospitals.

Unsupervised learning address this problems in a more straightforward way. Unsuper-

vised learning does not require a training dataset from whi
h to learn the pair relations

between observation and labels, but dire
tly uses the data to �nd natural groupings of

observations that represent 
lusters of information. Hen
e, the unsupervised learning is

mu
h less a�e
ted by the heterogeneities between patients presented in the MRI datasets,

as it 
an segment ea
h patient independently with its own data.

Although unsupervised learning is able to address these limitations, few resear
h ef-

fort have been done in the brain tumour segmentation �eld. The heterogeneity of the

tumours, spe
i�
ally in the GBMs tumour, makes the segmentation more 
hallenging if

no prior knowledge is 
onsidered [19℄. Additionally, the biologi
al interpretation of the

unsupervised results is not as forward as in the supervised approa
h, thereby requiring

additional te
hniques to improve its 
omprehensibility.

Anyway, several attempts for brain tissue segmentation have been made under the

unsupervised paradigm. The �rst unsupervised model for tumour segmentation was pro-

posed by S
had et al. [20℄ in 1993. In this paper, texture patterns 
omputed from the gray

level intensities of the MR images were used to 
lassify di�erent ROIs into healthy and

pathologi
al tissues. Later, Flet
her et al. [21℄ proposed an approa
h based on fuzzy 
lus-

tering and domain knowledge for multi-parametri
 non-enhan
ing tumour segmentation.

Domain knowledge and paren
hymal tissue dete
tion was based on heuristi
s related to

geometri
 shapes and lo
ations, whi
h may not be robust when the high deformation pro-

du
ed by the tumours is presented. Moreover, several assumptions su
h as prior knowledge

about the number of existing tumours or the sli
e thi
kness required for the MRI a
qui-

8



sitions introdu
ed several limitations to the method. Nie et al. [22℄ proposed a Gaussian


lustering with a spatial a

ura
y-weighted Hidden Markov Random Fields (HMRF) that

allowed them to deal with images at di�erent resolutions without interpolation. Nowadays,

advan
ed re
onstru
tion te
hniques su
h as super-resolution enables to work in a high re-

solution voxel spa
e, minimizing typi
al problems of interpolation su
h as partial volume

e�e
ts. Moreover, no method was provided to di�erentiate between tumoral 
lasses and

normal tissue 
lasses of the brain, so manual identi�
ation might be needed. Zhu et al. [23℄

developed a software based on the segmentation method proposed by Zhang et al. [24℄,

whi
h performs an EM Gaussian 
lustering 
ombined whit HMRF's. Zhu et al. extended

Zhang's approa
h through a sequen
e of additionally morphologi
al and thresholding ope-

rations to re�ne the segmentation, however su
h operations are not fully spe
i�ed and only

overall 
ommented, so the reprodu
ibility of their results is not possible. Vijayakumar et

al. [25℄ proposed a method based on Self Organizing Maps (SOMs) to segment tumour,

ne
rosis, 
ysts, edema and normal tissues using a multi-parametri
 MRI set. Although

the learning pro
ess of SOMs is performed in an unsupervised manner, the dataset from

whi
h to infer the stru
ture adopted by the Arti�
ial Neural Networks (ANN) should be

sele
ted and determined manually, su
h as a supervised approa
h. In the Vijayakumar

work, 700 pattern observations were 
hosen, 
orresponding to 7 di�erent tissues that they

assumed to exist in the brain. The 
orre
t sele
tion of these prototypes determines the

quality of the network, hen
e 
onverting the pro
ess in a supervised labelling task.

Furthermore, all the unsupervised approa
hes proposed above apply their algorithms

on its own datasets, making di�
ult a general 
omparison of the methods. In the last years,

important e�orts has been made to provide publi
 brain tumour segmentation datasets

to evaluate the performan
e of the proposed methods and the 
urrent state-of-the-art in

automated brain tumour segmentation. MICCAI So
iety promotes this idea and started

at 2012 to organize the BRATS Challenge, by providing a publi
 annotated dataset of

high-grade and low-grade gliomas.
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Chapter 3

Materials

3.1 Magneti
 Resonan
e Imaging

Magneti
 Resonan
e Imaging (MRI) is a medi
al imaging te
hnique used to provide in-

ternal representations of the human body, 
ru
ial for the diagnosis, follow-up prognosis

and treatment of 
omplex diseases. This te
hnique was �rst dis
overed by the Armenian-

Ameri
an physi
ian, s
ientist and professor Raymond Damadian, who published in 1971

a paper in the journal S
ien
e [26℄ reporting that tumours 
ould be distinguished in vivo

from normal tissues by Nu
lear Magneti
 Resonan
e (NMR). Although Damadian's initial

method was not viable for pra
ti
al use, he developed in 1972 the world's �rst magneti


resonan
e imaging ma
hine. Simultaneously, Paul Lauterbur, extending the work pro-

posed by Herman Carr, published in 1973 the �rst MR image [27℄ and one year after the

�rst 
ross-se
tional image of a living mouse [28℄. In the late 1970s, the professor Peter

Mans�eld developed a mathemati
al te
hnique able to provide MRI s
ans that took se-


onds rather than hours to produ
e 
learer images than the Lauterburg and Damadian's

images. In August of 1980 the team led by John Mallard obtained the �rst 
lini
ally

useful MRI, whi
h identi�ed a primary tumour in the patient's 
hest, an abnormal liver

and se
ondary 
an
er in the patient bones. Paul Lauterbur and Peter Mans�eld were later

awarded in 2003 with the Nobel Prize for their dis
overies and advan
es in MRI.

MRI is based on the magneti
 properties of the atomi
 nu
lei, spe
i�
ally on the

spin angular momentum of the hydrogen nu
leus (H+
). At a resting natural state, all

the hydrogen H+
nu
leus in the human body spin randomly, thus 
an
elling the angular

momentums ea
h other and produ
ing an overall zero spin magneti
 momentum value.

Under the in�uen
e of an external uniform magneti
 �eld B0, the H+
nu
leus align its

spin with the B0 in a parallel (low energy) or anti-parallel (high energy) state (SB0).

Then, a sequen
e of Radio Frequen
y (RF) pulses at the Larmor frequen
y of the H+

nu
leus is applied to the B0, ex
iting the protons and enfor
ing them to 
hange its spin

orientation 90

o

with respe
t to the B0 dire
tion (SB90). After the RF pulses end, the H+

nu
leus begins to return to the SB0 state by re
overing the B0 dire
tion and the ex
essive

spin begins to dephase at a di�erent frequen
ies regarding to 
hemi
al 
ontext of the H+

nu
leus. The magneti
 
oils 
apture the ele
tri
 signals produ
ed by the nu
leus during

their transition, and store them in the so 
alled K-spa
e, in order to later re
onstru
t the

MR image through an inverse Fourier pro
ess.

The rate at whi
h the H+
nu
lei realigns with the B0 �eld and its dephase rate de-

11
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termines the di�erent 
ontrasts of the images. There are three types of 
ontrast in MR

images: T1-weighted, T2-weighted and Proton Density (PD) images. The di�erent 
on-

trasts are related to the Repetition Time (TR) and the E
ho Time (TE) times. TR is the

time between su

essive RF pulses and a�e
ts the speed in whi
h H+ protons realigns to

the B0 �led after the RF ends. The TE refers to the time at whi
h the ele
tri
al signal

indu
ed by the H+ protons is measured in the magneti
 
oils and 
on
erns the degree of

dephasing of the spins of the protons. Figure 3.1 show the relation between the TR and

TE and the 
ontrast of the MR images.

T2

PoorT1

PD

Short

Short

Long

Long

TR

TE

Figure 3.1: Relation between short and long TR and TE and the 
ontrast obtained in MR

images.

The 
lini
al gold standard for brain tumour diagnosis relies on the use of T1 and

T2-weighted sequen
es, FLuid Attenuated Inversion Re
overy (FLAIR) sequen
e and


ontrast-enhan
ed T1-weighted sequen
e (T1c) [29, 30℄. T1-weighted sequen
es are 
om-

monly used to di�erentiate between healthy tissues as they primarily show stru
tural

information of the brain. GBM tumours typi
ally present a hypointense to isointense

pattern on the lesion area in the T1-weighted sequen
e. T1c enhan
es the tumour bor-

ders given that the 
ontrast agent (Gadolinium (Gd)) a

umulates in this area due to the

disruption of the blood-brain barrier. An enhan
ed Gadolinium ring around the tumour

is typi
ally presented in the T1c sequen
es. The T2-weighted images highlights the lesion

area in
luding the edema region, presenting a hyperintense pattern in su
h area. Also the

Cerebro-Spinal Fluid (CSF) appears hyperintense, hen
e avoiding its separation in the

T2 sequen
e. The FLAIR sequen
e is a spe
ial T2-weighted image with free water signal

suppression, whi
h enables the di�erentiation between the CSF and the edema. Figure

3.2 shows an example of the visualization of GBM tumour in the di�erent MR sequen
es.

12
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Figure 3.2: Example of an axial sli
e of di�erent MRI sequen
es showing a GBM tumour.

From left to right: T1, T1c, T2 and FLAIR image.

3.2 BRAin Tumour Segmentation (BRATS) 2013 dataset

In order to make the results of this M.S
. Thesis 
omparable and to provide an overview of

the performan
e of unsupervised 
lassi�
ation te
hniques for brain tumour segmentation,

we used the publi
 multi-modal BRAin Tumour Segmentation (BRATS) 2013 dataset.

This dataset was released for the international NCI-MICCAI 2013 Grand Challenges in

Image Segmentation of MICCAI Conferen
e

a

.

The BRATS 2013 dataset provides two sets for the development of automated brain

tumour segmentation methods. The training set 
onsists of multi-
ontrast MR s
ans

of 30 real glioma patients: 20 with High Grade (HG) glioma tumour and 10 with Low

Grade (LG) glioma tumour. Additionally, 25 syntheti
 
ases of HG and LG glioma tumour

are provided. For ea
h patient of the training dataset, both real and syntheti
, expert

manual segmentations are provided. The test set 
onsists of multi-
ontrast MR s
ans of 10

HG glioma patients without the expert labellings. An evaluation web page was published

the day of the Challenge to upload and assess the quality of the test segmentations.

Table 3.1 summarizes the distribution of 
ases provided in the BRATS 2013 dataset.

Total Real Syntheti


HG LG HG LG

Training 80 20 10 25 25

Test 10 10

Table 3.1: Distribution of the number of patients provided in the BRATS 2013 dataset.

For ea
h patient, T1-weighted, T2-weighted, 
ontrast-enhan
ed T1-weighted (T1c) and

FLAIR MR images were provided. All images were linearly 
o-registered to the T1c

sequen
e, skull stripped, and interpolated to 1 mm isotropi
 resolution. No inter-patient

registration was made to put all the images in a 
ommon referen
e spa
e.

BRATS 2013 manual expert annotations 
omprise �ve intensity levels:

Class 1: Non-brain, non-tumour, ne
rosis, 
yst and haemorrhage. Further on red 
olor.

Class 2: Surrounding edema. Further on green 
olor.

Class 3: Non-enhan
ing tumour. Further on blue 
olor.

a

https://www.virtualskeleton.
h/BRATS/Start2013
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Class 4: Enhan
ing tumour 
ore. Further on yellow 
olor.

Class 0: Everything else.

Figure 3.3 shows an example of a patient from the training set of the BRATS 2013

dataset. The same sli
e is showed in di�erent MRI sequen
es also with the manual expert

labelling proposed by the radiologists.

T1 T1c T2 Flair

Real HG

Manual

segmentation

Figure 3.3: Example of an axial sli
e of di�erent MRI sequen
es from a patient of the

BRATS 2013 dataset, showing a GBM tumour and the manual segmentation provided

by expert radiologist. From left to right: T1, T1c, T2, FLAIR, and manual segmentation

overlaid on the T1c image.

Due to the unsupervised 
ondition of the method proposed in this M.S
. Thesis, no

training set is required to learn the models of the 
lasses. Hen
e, we only used the test

partition of the BRATS 2013 dataset to develop the proposed unsupervised segmenta-

tion approa
h and to evaluate it in the same 
onditions than the supervised methods.

Thus, we provide an assessment of the performan
e of di�erent unsupervised segmenta-

tion algorithms in this publi
 real dataset, and a 
omparison of these te
hniques with the

state-of-the-art supervised segmentation methods that parti
ipated in the 
hallenge.

3.3 International Consortium for Brain Mapping (ICBM)

templates

Under the International Consortium for Brain Mapping (ICBM) Proje
t, unbiased stand-

ard MR templates of normal brain volumes were provided by the M
Connell Brain Imaging

Centre in 2009

b

.

These templates 
omprise the average of 152 healthy brains, non-linearly registered,

bias �eld 
orre
ted and at di�erent resolutions and symmetry 
onditions. T1-weighted,

T2-weighted and Proton Density MR modalities were provided with their probability maps

for the White Matter (WM), Gray Matter (GM) and Cerebro-Spinal Fluid (CSF) tissues.

6 di�erent templates regarding to the resolution, prepro
essing and symmetry 
onditions

of the hemispheres are available:

b

http://www.bi
.mni.m
gill.
a/Servi
esAtlases/HomePage
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ICBM 2009a Nonlinear Symmetri
: 1x1x1 mm

3

symmetri
 template with tissue pro-

bability maps. T2 relaxometry, lobe atlas and di�erent brain masks were also pro-

vided.

ICBM 2009a Nonlinear Asymmetri
: 1x1x1 mm

3

asymmetri
 template with tissue

probability maps. T2 relaxometry, lobe atlas and di�erent brain masks were also

provided.

ICBM 2009b Nonlinear Symmetri
: 0.5x0.5x0.5 mm

3

symmetri
 template with tis-

sue probability maps.

ICBM 2009b Nonlinear Asymmetri
: 0.5x0.5x0.5 mm

3

asymmetri
 template with

tissue probability maps.

ICBM 2009
 Nonlinear Symmetri
: 1x1x1 mm

3

symmetri
 template with tissue pro-

bability maps. T2 relaxometry, lobe atlas and di�erent brain masks were also pro-

vided. Sampling is di�erent from 2009a template.

ICBM 2009
 Nonlinear Asymmetri
: 1x1x1 mm

3

asymmetri
 template with tissue

probability maps. T2 relaxometry, lobe atlas and di�erent brain masks were also

provided. Sampling is di�erent from 2009a template.

In this M.S
. Thesis, we used the ICBM 2009
 template for the postpro
essing stage.

Figure 3.4 shows an overview of the di�erent atlases provided with the ICBM 2009


template.

Figure 3.4: ICBM 2009
 template. Top row shows the axial views of the di�erent atlases

provided with the template. Middle row shows the sagital view of the atlases, while bottom

row shows the 
oronal view. From the left 
olumn to the right 
olumn: T1-weighted

sequen
e; T2-weighted sequen
e; Proton Density sequen
e, GM tissue probability map;

WM tissue probability map, CSF tissue probability map; Lobes segmentation

Tissue probability maps indi
ates for ea
h voxel v of the brain the probability to belong
to a normal tissue T = {WM,GM,CSF}, thus

∑

t∈T

p(t|v) = 1
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Chapter 4

Methods

This 
hapter introdu
es the methods used in the M.S
. Thesis to design the unsupervised

segmentation approa
h for GBM tumour. We begin with a se
tion about the MRI prepro-


essing te
hniques used to 
orre
t 
ommon artefa
ts of MR a
quisitions and to enhan
e

the information 
ontained in the images. Then, a feature extra
tion and dimensiona-

lity redu
tion se
tion is presented in
luding the te
hniques used to extra
t dis
riminative

features from the images and to redu
e the high dimensionality of the data in order to sim-

plify the inferen
e of the segmentation algorithms. Then, the unsupervised 
lassi�
ation

algorithms are presented, separated by its stru
tured or non-stru
tured nature. All unsu-

pervised te
hniques are postulated in terms of variants of generative mixture models and

the EM algorithm. Then, the proposed method to automati
ally isolate the pathologi
al


lasses related to the GBM tumour is presented to improve the biologi
al interpretability

of the results. Finally, the last se
tion presents the evaluation strategies and �gures of

merit used to assess the performan
e of the method.

Figure 4.1 shows the graphi
al s
heme of the proposed unsupervised GBM segmenta-

tion approa
h presented in this M.S
. Thesis.

Preprocessing

Feature

extraction

Unsupervised

classification

Postprocessing

Figure 4.1: Proposed unsupervised GBM tissue segmentation pipeline.
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4.1 MRI prepro
essing

The �rst important stage in the GBM segmentation method is the prepro
essing. MRI

prepro
essing is an a
tive �eld of resear
h that attempts to enhan
e and 
orre
t MR

images for its posterior analysis. In an unsupervised segmentation approa
h this step

be
omes more important due to the absen
e of prior knowledge to guide the learning or

segmentation pro
ess. Hen
e, 
ommon artefa
ts su
h as noise or inhomogeneities may

rise as erroneous 
lasses in
reasing the importan
e of an e�e
tive MRI prepro
essing. We

propose the following s
heme for prepro
essing MR images before the segmentation of the

di�erent tissues in the brain: 1) Denosing; 2) Registration; 3) Skull-stripping; 4) Bias �eld


orre
tion; 5) Super resolution.

There is no standard prepro
essing pipeline a

epted for MRI data, however several

reasons 
an be addu
ed to justify the proposed prepro
essing s
heme. In order to avoid

the propagation of noise to posterior stages of the prepro
essing, the denoising step is

�rst 
arried out. Next, the registration is performed to put all MR images in a 
ommon

referen
e spa
e, whi
h allows the 
omputation of a unique skull stripping mask, valid

for all the MRI a
quisitions of the patient. Hen
e, prioritizing the registration to the

skull stripping step, the 
omputational 
ost of the prepro
essing is redu
ed. Bias �eld


orre
tion also bene�ts from the previous registration step when temporal sequen
es su
h

as Perfusion Weighted Images (PWI) are handled. In these 
ases, the bias �eld 
orre
tion

must be adapted to not 
onsider ea
h dynami
 of the sequen
e independently, and hen
e

not destroying the temporal information. Finally, the super resolution usually requires

that the di�erent MRI a
quisitions are registered in a 
ommon voxel spa
e and the images

are as mu
h �ltered as possible to take advantage of the self similarity between all the

a
quisitions of a patient. Furthermore, the proposed prepro
essing pipeline is also valid for

both MR pathologi
al and non-pathologi
al images, and for supervised and unsupervised

segmentation approa
hes.

4.1.1 Denoising

Denoising is a standard prepro
essing task for MRI manipulation, whi
h aims to redu
e or

ideally remove the noise from an image. Although MRI noise has been usually modelled

as a Gaussian distribution, by de�nition MRI noise follows a Ri
ian distribution [31℄.

Diaz et al. [32℄ presented in 2011 a 
omprehensive analysis of di�erent denoising methods,

dis
ussing their weaknesses and strengths. Figure 4.2 shows an example of MRI denoising.

Top row shows a noisy original T1 sequen
e. Middle row shows the denoised version of

the T1 sequen
e. Bottom row shows the residuals 
orresponding to the noise of the image.

A 
ommon drawba
k of denoising methods 
on
erns the removal of high frequen
y

signal 
omponents of the images during the �ltering. Re
ent approa
hes su
h as the

Non Lo
al Means (NLM) introdu
ed by Buades et al. [33℄ has improved the existing

te
hniques for MR data. Based on this approa
h, Manjón et al. [34℄ introdu
ed a variant

of the �lter, whi
h does not assume an uniform distribution of the noise over the image,

thereby adapting the strength of the �lter depending on a lo
al estimation of the noise.

The �lter also deals with both 
orrelated Gaussian and Ri
ian noise. In this M.S
. Thesis,

the approa
h proposed by Manjón et al. is used to remove the noise of the MR images.
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4.1. MRI prepro
essing

Figure 4.2: Example of denosing of a T1 sequen
e. Top row: noisy T1; Middle row:

Denoised T1; Bottom row: Residuals obtained after the denoising pro
ess.

4.1.2 Registration

Registration is another 
ommon pro
ess in medi
al imaging �eld. The standard proto
ol

for GBM diagnosis 
on
erns the a
quisition of several MR images. When a multi-modal

analysis is performed, it is mandatory that all MR images are in a 
ommon referen
e

spa
e [7℄. In other words, it is required that the same area of the brain is represented

by the same voxel positions in all MR sequen
es, to avoid introdu
ing in
onsisten
ies

or mixtures of tissues from di�erent MRI a
quisitions. In normal 
lini
al pra
ti
e, MR

images are not usually registered, so to ensure the voxel 
orresponden
es the registration

step needs to be 
arried out. The T1 sequen
e of the patient is usually used as a referen
e

to register the rest of MR images. In brain tumour lesions, a�ne or linear registration

methods are preferred to not deform the areas of the tumour, thereby keeping inta
t the

lesion.

An extensive evaluation of 14 non-linear registration methods was 
arried out in 2009

by Klein et al. [35℄. This work 
on
luded that SyN algorithm [36℄ implemented in the

Advan
ed Normalization Tools (ANTS) suite was one of the best registration algorithms

in terms of a

ura
y, �exibility and e�
ien
y. In this sense, we propose the use of ANTS

to perform the registration of the di�erent MRI a
quisition for the posterior segmentation.

Figure 4.3 shows an example of the registration pro
ess.

Although our prepro
essing s
heme in
ludes the registration step, the BRATS dataset


omes with an intra-patient MRI registration. The evaluation web-page provided to assess

the performan
e of the proposed segmentations also holds the ground truth of ea
h BRATS

patient registered to its 
orresponding MR images. Hen
e, no registration should be done

in order to not deform the images and its segmentations, thereby ensuring a 
orre
t
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Source

Target

Registration

Deformable

model

Apply transformation

Registered

source

Figure 4.3: Example of a non-linear MRI registration pro
ess.

evaluation.

4.1.3 Skull stripping

Skull stripping pro
ess 
omprises the removal of skull, extra-meningial and non-brain

tissues from the MRI a
quisitions. In [37℄, a review of di�erent skull-stripping methods

was presented, however it did not in
lude re
ent methods su
h as the ones provided in the

Brain Suite Software

a

[38℄, or the RObust Brain EXtra
tion (ROBEX) method proposed

by Iglesias et al. [39℄, whi
h 
laims to provide signi�
antly improved performan
e in a

multi-dataset evaluation, against six popular skull stripping methods. Figure 4.4 shows an

example of the intra-
ranial mask 
omputed through the skull stripping method provided

in the Brain Suite Software.

MR images of the BRATS dataset are also skull stripped, however we dete
ted several


ases with partial in
lusion of areas of the 
ranium that should be removed. For that

purpose, the Brain Suite Sofware was used to automati
ally 
ompute a skull stripping

mask over the T1 sequen
es, and removed the non desired 
ranium areas.

4.1.4 Bias �eld 
orre
tion

Intensity inhomogeneity is another 
ommon artefa
t present in MRI a
quisitions. Mag-

neti
 �eld inhomogeneities are an unavoidable e�e
t in MRI, whi
h generates a low fre-

quen
y signal that 
orrupts the images a�e
ting their intensity levels. Hen
e, the same

tissue in the brain 
ould present di�erent gray level distributions a
ross the image, in-

trodu
ing in
onsisten
ies that dire
tly a�e
ts the segmentation methods. Typi
ally, auto-

mated segmentation approa
hes are based on the assumption that the brain tissues present

the same distribution of intensity among the image. Therefore, a prepro
essing step is

a

http://brainsuite.org/
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essing

Figure 4.4: Example of a skull stripping pro
ess on a high resolution 3D T1c sequen
e.

Mask 
omputed with the skull stripping method provided with the Brain Suite Software.

needed to 
orre
t the bias �eld before the segmentation. Figure 4.5 shows an example of a

T1c MRI sequen
e presenting magneti
 �eld inhomogeneities and the 
orre
ted sequen
e

with its estimation of the bias of the magneti
 �eld.

Figure 4.5: Example of bias �eld 
orre
tion on a T1c sequen
e. From left to right: Original

T1c sequen
e with magneti
 �eld inhomogeneities artefa
t; T1c sequen
e after the bias �eld


orre
tion; Estimation of the bias of the magneti
 �eld produ
ed by the MRI ma
hine.

The popular non-parametri
 non-uniform intensity normalization N3 algorithm was

proposed in 1998 by Sled et al. [40℄, be
oming a referen
e te
hnique for bias �eld 
orre
ting

be
ause of no tissue model was needed to perform the 
orre
tion. Tustison et al. [41℄

proposed in 2010 a new implementation of N3 
alled N4, whi
h improves the N3 algorithm

with a better B-spline �tting fun
tion and a hierar
hi
al optimization s
heme for the bias

�eld 
orre
tion. N4 is used in this M.S
. Thesis for MRI magneti
 �eld inhomogeneity


orre
tion.
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4.1.5 Super resolution

In a brain tumor lesion proto
ol, several MR sequen
es are 
ommonly a
quired at dif-

ferent resolutions, thereby introdu
ing spatial limitations when a multi-modal study is

performed. In these 
ases, an upsampling or interpolation is needed to set a 
ommon

voxel spa
e for all images. Classi
al interpolations, su
h as linear, 
ubi
 or splines inter-

polation 
ould rise as a solution for the problem, but at the 
ost of introdu
ing 
ommon

artefa
ts in the images su
h as partial volume e�e
ts or stair-
ase artefa
ts. In 
ontrast,

more powerful and sophisti
ated methods su
h as super resolution 
ould improve 
lassi
al

interpolation methods by re
onstru
ting the low resolution images, re
overing its high

frequen
y 
omponents. Several super resolution s
hemes for MR imaging are available in

the literature [42, 43, 44, 45℄.

High resolution T1c Low resolution FLAIR

B-spline FLAIR interpolation Super resolution reconstruction

Figure 4.6: Example of super resolution re
onstru
tion of a low resolution FLAIR sequen
e

using information of a high resolution T1c sequen
e from the same patient. Comparison

between 
lassi
 b-spline interpolation of the low resolution FLAIR sequen
e and the super

resolution re
onstru
tion.

BRATS dataset 
omes with a 1mm

3

isotropi
 voxel size resolution a
hieved through


lassi
 interpolation. Su
h interpolation 
ould be improved through an iterative super

resolution re
onstru
tion pro
ess to re
over the high frequen
y 
omponents of the image.

Spe
i�
ally, we use the super resolution algorithm proposed by Manjón et al. [46℄, whi
h
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exploits the the self-similarity present in MR images through a pat
h-based non-lo
al

re
onstru
tion pro
ess.

4.2 Feature Extra
tion and Dimensionality Redu
tion

Feature extra
tion 
omprises the pro
ess of obtaining new features from the MR images

to improve the dis
rimination between di�erent tissues in the posterior segmentation.

Although MRI intensities are the most 
ommon features used to dis
riminate between

tissues in the brain, it has been shown that in
luding texture features in 
ombination

with MR intensities in
reases the performan
e of brain tumour segmentation [47, 48℄.

Several approa
hes to extra
t textures from images are proposed in the past years. Robert

Harali
k provided in [49℄ the referen
e paper for analysis of textures in images. Later, Van

Gool et al. [50℄ also reviewed the algorithms for texture analysis and both authors agreed

in 
lassifying the texture extra
tion methods in two 
ategories: Statisti
al methods and

stru
tural methods. Stru
tural methods are better suited to regular large patterns of

texture, however statisti
al texture features present better performan
e for non-regular

mi
ro textures in images. In this M.S
. Thesis we adopted the statisti
al texture feature

analysis for texture representation.

Several approa
hes has been proposed to extra
t statisti
al texture features from ima-

ges [51, 52℄. We implemented the �rst order texture features, often 
alled histogram

derived metri
s or �rst 
entral moments, as a method for texture representation. Su
h

features 
onsist on the 
omputation of the histogram in a lo
al 3D neighbourhood 
entred

at ea
h voxel of the MR image, and then 
ompute the mean, varian
e, skewness and kur-

tosis of su
h histogram. Thus, we 
omputed the texture features for all the MRI sequen
es

of a patient (T1, T1c, T2 and FLAIR), using a lo
al 3D neighbourhood of 5× 5× 5 voxels
for all the non-ba
kground voxels of the images. Figure 4.7 shows an example of the �rst

order texture features 
omputation on a T1c sequen
e.
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Figure 4.7: Example of �rst order texture features 
omputation on a T1c sequen
e of a

patient of the BRATS dataset.

Besides the texture feature images, an additional image named T1d is 
omputed. The

T1d image is obtained from the absolute di�eren
e of the T1c and T1 sequen
e.

T1d =| T1c − T1 |
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This image highlights the 
ontrast enhan
ed areas of the T1c image, su
h as the a
tive

tumour, and also helps in the dis
rimination of WM and GM tissues. First order texture

features are also extra
ted from the T1d image in the same manner as for the other MRI

a
quisitions.

As a result, a set I of 25 images (3D volumes) are obtained from ea
h patient.

I = (T1, T1c, T2, FLAIR, T1d, µT1, ..., σT1 , ..., γT1, ..., κT1d
) / I ∈ R

X×Y×Z×D

where µ, σ, γ, and κ pre�xes refers to the mean, varian
e, skewness and kurtosis texture

features respe
tively, X, Y, Z are the dimensions of the images (equal for all images after

the registration), and D refers to the dimensions of ea
h voxel, id est (that is) (i.e) the

number of di�erent images or features (D = 25).

Dimensionality redu
tion is the pro
ess of e�
iently represent the original high dimen-

sional data into a lower dimensional spa
e, but retaining or in
reasing its most relevant

information. Several dimensionality redu
tion algorithms have been presented in the past

years, di�erentiating between linear and non-linear approa
hes. Figure 4.8 shows a tax-

onomy of the most popular dimensionality redu
tion algorithms.

Dimensionality

Reduction

Linear

PCA

Non-linear

Preserving global 

properties

Alignment of local 

representations

Preserving local 

properties

LLC 

Charting

Kernel-based Neural network
Distance 

preservation
Unfolding

Kernel 

PCA
Autoencoder MDS, 

Isomap
MVU

Reconstruction 

weights

Local tangent 

space

Neighborhood

Laplacian graph

LLE
LTSA 

Hessian LLE

Laplacian

Eigenmaps

Figure 4.8: Taxonomy of dimensionality redu
tion algorithms.

In this M.S
. Thesis, PCA is used to redu
e the voxel dimensionality of the input

data I. PCA is a linear redu
tion te
hnique, whi
h seeks for an orthogonal transformation

of a number of hypotheti
al 
orrelated variables into a smaller number of un
orrelated

variables 
alled prin
ipal 
omponents. Su
h prin
ipal 
omponents are sorted in terms of

amount of varian
e explained from the data, be
oming the �rst 
omponent the one that

a

ounts for as mu
h variability as possible. Proje
ting the original data over the �rst


omponents of PCA (number of 
omponents less than the number of original dimensions),

a dimensionality redu
tion is a
hieved by preserving the most variability in the data as

possible.

As PCA is based on the varian
e of the data to perform the redu
tion, we must ex
lude

the varian
e texture feature of the set I to avoid that �rst 
omponents of PCA retain only

this feature. Thus, the dimensions are dire
tly redu
ed to D = 20 and the I set is then

formed by:

I = (T1, T1c, T2, FLAIR, T1d, µT1 , ..., γT1, ..., κT1d
) / I ∈ R

X×Y×Z×D

PCA is �nally applied to retain the 99% of the varian
e of the data, a
hieving a redu
tion

D = 5 for all patients of the BRATS 2013 dataset. An sli
e example of the feature

extra
tion and PCA dimensionality redu
tion of a patient is shown in Figure 4.9.
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T1 T1c T2 Flair

Original

Mean

Skewness

Kurtosis

PCA

Figure 4.9: Example of feature extra
tion and dimensionality redu
tion of a patient of the

BRATS dataset.
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4.3 Unsupervised voxel 
lassi�
ation

Unsupervised learning is a bran
h of Ma
hine Learning (ML) whi
h 
alls for �nding a

hidden stru
ture in the input data, often 
alled 
lusters, formed by natural groupings of

observations. The major di�eren
e between supervised and unsupervised learning relies in

that the se
ond re
eives an additional sequen
e of desired outputs from whi
h to learn the

relations with the inputs and the dis
riminant models to distinguish them. Conversely,

unsupervised learning does not require a set of labelled data. Instead, unsupervised learn-

ing examines the input data in order to �nd 
lusters of homogeneous information that

represents ea
h one a di�erent 
lass.

We evaluated the most popular unsupervised 
lassi�
ation algorithms to segment both

normal and pathologi
al tissues in the brain. We divided the algorithms in two groups:

Stru
tured and non-stru
tured 
lassi�
ation algorithms. Non-stru
tured algorithms 
las-

sify data assuming an iid 
ondition between the observations (voxels) of the dataset.

Stru
tured predi
tion 
overs the range of algorithms that assume and model data with a

spe
i�
 stru
ture, su
h as an image, i.e assume 
onditional dependen
y between the ob-

servations. Under the non-stru
tured paradigm, we evaluated three methods: K-means,

Fuzzy K-means and Gaussian Mixture Model (GMM) 
lustering. In the stru
tured predi
-

tion 
ase we evaluated Gaussian Hidden Markov Random Field (GHMRF) as the ar
hetype

of unsupervised stru
tured learning.

BRATS 2013 dataset 
omprises 5 
lasses to be segmented, whi
h in some 
ases a single


lass en
loses several types of tissues (for example 0 
lass). This intra-
lass heterogeneity

severely a�e
ts the performan
e and interpretation of the unsupervised results. While su-

pervised approa
hes 
an address this heterogeneity by enfor
ing the algorithm to learn a

model that represents the data en
losed in a 
lass, unsupervised approa
h often solves the

problem by separating the heterogeneous 
lasses in di�erent 
lusters. Thus, the unsuper-

vised approa
h often requires to estimate more than the initially de�ned 
lasses. However,

it is then mandatory to design a postpro
essing stage after the initial segmentation, to

improve the interpretability of the results, and merge the possible redundant 
lasses. Of-

ten, prior knowledge about the task 
ould give an orientation of the number of 
lasses

that should be estimated. In this 
ase we assume that at least 7 di�erent tissues exist in

the brain, whi
h are:

Tissue 1: Class 1 of BRATS 2013 dataset. Non-brain, non-tumour, ne
rosis, 
yst and

haemorrhage.

Tissue 2: Class 2 of BRATS 2013 dataset. Surrounding edema.

Tissue 3: Class 3 of BRATS 2013 dataset. Non-enhan
ing tumour.

Tissue 4: Class 4 of BRATS 2013 dataset. Enhan
ing tumour.

Tissue 5: White Matter (WM).

Tissue 6: Gray Matter (GM).

Tissue 7: Cerebro-Spinal Fluid (CSF).
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Moreover, due to the intra-
lass heterogeneity presented in some 
lasses, we assume

that ea
h 
lass is modelled through a mixture of 2 Gaussians, giving a total of 14 
lasses.

Therefore, 14 
lasses are estimated for ea
h unsupervised 
lassi�
ation algorithm.

A well-known requirement of unsupervised learning algorithms is the good initial seed-

ing. Although global minima is not usually rea
hed even if a good initialization is provided,

a bad initialization 
an lead the model to a hard lo
al minimum, thereby providing a poor

segmentation. Several strategies su
h as multiple repli
ations or intelligent initial seeding

are proposed to palliate this e�e
t. In this M.S
. Thesis, we implemented the K-means++

algorithm proposed in [53℄, whi
h provides an initialization that attempts to avoid lo
al

minima. Additionally, we generated 100 di�erent K-means++ initializations, and run ea
h

unsupervised segmentation algorithms with ea
h initialization. Finally, the best solution

for ea
h algorithm is 
hosen attending to the following 
riterion:

• Lowest intra-
luster sums of point-to-
entroid distan
es is used for K-means and

Fuzzy K-means algorithms.

• Lowest Negative Log-Likelihood value is used for GMM 
lustering and GHMRF.

4.3.1 Expe
tation-Maximization (EM) algorithm

Expe
tation-Maximization (EM) [54, 55℄ is an algorithm proposed by Arthur Dempster,

Nan Laird and Donald Rubin in 1977, whi
h is used to �nd the maximum likelihood

parameters of a statisti
al model in 
ases where latent variables and unknown parameters

are involved. In our 
ase, EM is used to estimate probabilisti
 generative mixture models

where both labels and parameters of the underlying model are unknown.

Let X = (x1,x2, ...,xN) the set of observations to be 
lassi�ed, where xn ∈ R
D
re-

presents a feature ve
tor of D dimensions for observation n. Let Y = (y1,y2, ...,yN),
where yn ∈ {0, 1}|C|

an unit-length multinomial variable that indi
ates the 
lass for the

observation n. Let C = {1, ...C} the set of all possible 
lasses.

From the statisti
al point of view, the 
lassi�
ation problem is often addressed through

the Bayes de
ision rule, whi
h ensures that the minimization of the global risk is obtained

by maximizing the posterior probability of the 
lasses given the observations.

Ŷ = argmax
Y

pθ(Y |X)

where θ represent the parameters of the underlying probabilisti
 model.

The supervised 
lassi�
ation paradigm assumes that both observations X and labels

Y are known and then, the learning pro
ess 
onsists of estimating the parameters of the

model θ that best �t the observed data. Thus, it is 
alled that the supervised approa
h

has the 
omplete dataset, denoted by {X, Y }. Maximum likelihood is usually employed to

estimate the parameters of the model, whi
h 
onsidering the 
omplete dataset be
omes

straightforward.

L(θ|X, Y ) = pθ(X, Y )

When an unsupervised learning approa
h is adopted, both labels Y and parameters θ
are not observed, so maximum likelihood estimation of the model is not dire
tly possible.
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Hen
e, both θ and Y are 
onsidered as latent or hidden variables, thus be
oming the

model

pθ(X) =
∑

Y

pθ(X, Y )

The log-likelihood fun
tion is then given by

L(θ|X) = log pθ(X) = log

{

∑

Y

pθ(X, Y )

}

whi
h be
omes in a more 
omplex solution.

In su
h 
ases, EM algorithm 
an be used to iteratively obtain the most likelihood

parameters of the model and the non-observed values of the labels Y . EM 
onsist of two

steps: the Expe
tation (E) step, in whi
h the expe
ted value of the joint distribution of

the observations and the labels is 
omputed given the parameters of the model and the

posterior probability at the 
urrent iteration, and the Maximization (M) step, in whi
h an

updating of the old parameters of the model is performed based on the re
ently 
omputed

posterior probability in the E step.

Thus, the general form of the EM algorithm is as follows

Initialization step: Initialize θ(0) parameters.

Expe
tation step:

Q(θ|θ(k)) = Ep
θ(k)

(Y |X) (log pθ(X, Y ))

=
∑

Y

pθ(k)(Y |X) (log pθ(Y ) + log pθ(X|Y ))

Maximization step:

θ(k+1) = argmax
θ

Q(θ|θ(k))

Convergen
e step: Stop if L(θ(k+1)|X)−L(θ(k)|X) ≤ ǫ; otherwise k = k + 1 and go to

Expe
tation step.

In pra
ti
e, the Q(θ|θ(k)) fun
tion is not usually 
omputed in the Expe
tation step.

Instead, only the posterior probability (whi
h is the unknown distribution at this point)

is required to estimate the new parameters of the model in the Maximization step. Hen
e,

in real implementations of the algorithm, only the posterior probability is 
omputed in

the Expe
tation step.

EM algorithm is not guaranteed to 
onverge to a global maxima of the likelihood

fun
tion, so several heuristi
s or strategies has been proposed su
h as multiple repli
ations,

intelligent initial seeding or simulated annealing.
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4.3.2 Non-stru
tured Gaussian mixture model

A non-stru
tured mixture model refers to a probabilisti
 model where the observations are

assumed to be independent and identi
ally distributed (iid). In this 
ases, the probabilisti


model has the form

pθ(X, Y )
iid
=
∏

n

pθ(xn,yn)

Following a generative pro
ess, p(yn) and p(xn|yn) are generated as

pp(yn) =
∏

c∈C

pync

c governed by p = (p1, ..., pC)

pθ′(xn|yn) =
∏

c∈C

pθ′(xn|c)
ync

governed by θ′

Thus, the parameters that governs the probabilisti
 model are θ = (p, θ′).
In the unsupervised 
lassi�
ation paradigm where both parameters θ and labels Y are

not observed, the model is expressed as

pθ(X) =
∑

Y

pθ(X, Y )

iid
=
∑

y1

· · ·
∑

yN

∏

n

pθ(xn,yn)

=

[

∑

y1

pθ(x1,y1)

][

∑

y2

· · ·
∑

yN

∏

n=2

pθ(xn,yn)

]

= · · ·

=
∏

n

∑

yn

pθ(xn,yn)

A typi
al assumption is to model the data as a mixture of (independent) multivariate

Gaussians. In this 
ase, the θ parameters are de�ned as

θ = (p, θ′)

p = (p1, ..., pC)

θ′ = (θ′1, ..., θ
′
C) = (µ1, ..., µC ; Σ1, ...,ΣC)

The EM algorithm for non-stru
tured Gaussian mixture models performs as follows

Initialization step: Initialize θ(0) parameters (i.e ea
h pc, µc and Σc).

Expe
tation step:

Q(θ|θ(k)) = Ep
θ(k)

(Y |X) [log pθ(X, Y )]

iid
=
∑

n

Ep
θ(k)

(yn|xn) [log pθ(xn,yn)]

=
∑

n

∑

c

y(k)nc (log pc + log pθ′(xn|c))
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where y
(k)
nc is the posterior probability of xn being generated from 
omponent c

y(k)nc = Ep
θ(k)

(yn|xn) [ync] = pθ(k)(ync = 1|xn) =
p
(k)
c p

(k)
θ′ (xn|c)

∑

c′ p
(k)
c′ p

(k)
θ′ (xn|c′)

Maximization step:

θ(k+1) = argmax
θ

Q(θ|θ(k)) , subje
t to
∑

c

pc = 1

= argmax
θ

max
λ

Q(θ|θ(k))− λ

(

∑

c

pc − 1

)

where taking derivatives of Q w.r.t p, θ′ and λ and equating them to zero gives

p(k+1)
c =

1

N

∑

n

y(k)nc

µ(k+1)
c =

1
∑

n y
(k)
nc

∑

n

y(k)nc xn

Σ(k+1)
c =

1
∑

n y
(k)
nc

∑

n

y(k)nc

(

xn − µ(k+1)
c

) (

xn − µ(k+1)
c

)t

Convergen
e step: Stop if L(θ(k+1)|X)−L(θ(k)|X) ≤ ǫ; otherwise k = k + 1 and go to

Expe
tation step.

4.3.2.1 K-means

K-means [56, 57℄ is an unsupervised non-stru
tured iterative partitional 
lustering based

on a distan
e minimization 
riterion. Its aim is to divide the data spa
e into C 
lusters

(C ≤ N) J = {J1, J2, ..., JC} so as to ea
h observation belongs to the 
luster with nearest


entroid. The distan
e 
riterion minimized by K-means is

argmin
J

C
∑

c

∑

xn∈Jc

‖ xn − µc ‖
2

From a statisti
al point of view, the K-means approa
h is equivalent to �nd the most

likelihood parameters of a mixture of multivariate Gaussians [58℄ (ea
h Gaussian represents

a 
lass), assuming a shared identity 
ovarian
e matrix and uniform prior probabilities for

all Gaussians. Thus, ea
h 
lass follows θ′ ∼ N (µc, I) and prior probability for ea
h 
lass is

pc = 1/ | C |. Moreover, the iterative approa
h followed by K-means is also demonstrated

a spe
ial limit of the EM algorithm, 
alled Hard-EM. In this variant of the algorithm,

the observations are assigned hardly to the 
losest Gaussian of the mixture, assuming a

posterior probability of pθ(ync = 1|xn) = 1, instead of 
omputing its real probability.

Thus, the Hard-EM version implemented by K-means performs as follows

1. Initialize parameters θ(0) (i.e initialize µc for ea
h 
lass c)
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2. Hard E step: Given the 
urrent parameters θ(k) at iteration k, 
ompute the fol-

lowing Q fun
tion:

Q(θ | θ(k)) =
∑

n

∑

c

y(k)nc (log pc + log pθ′(xn|c))

where:

y(k)nc =

{

1, if ‖ xn − µ
(k)
c ‖2< minc′ 6=c ‖ xn − µ

(k)
c′ ‖2

0, otherwise

3. M step: Make a guess θ(k+1)
by 
hoosing θ that maximizes the Q fun
tion:

θ(k+1) = argmax
θ

Q(θ|θ(k)) subje
t to
∑

c

pc = 1

where the parameter update is 
omputed as:

µ(k+1)
c =

1
∑

n y
(k)
nc

∑

n

y(k)nc xn

4. Stop if samples do not 
hange 
lass; otherwise go to step 2.

4.3.2.2 Fuzzy K-means 
lustering

Like K-means, Fuzzy K-means [59, 60℄ also proposes a mixture of multivariate Gaussian

distribution assuming a shared identity 
ovarian
e matrix and uniform prior probabilities

for all 
lasses. However, Fuzzy K-means di�ers from K-means in whi
h the assignment of

a observation to a 
lass is not hard but fuzzy. This means that ea
h observation now keeps

a degree of membership to ea
h Gaussian (related to its posterior probability) instead of

a unique assignment with posterior probability of 1. In the same manner as K-means, the

aim is to divide the data spa
e into C 
lusters (C ≤ N) J = {J1, J2, ..., JC}, but it also
provides a ve
tor un for ea
h observation, whi
h determines the membership degree of the

observation n to the di�erent 
lusters. The new distan
e minimization 
riterion followed

by Fuzzy K-means is

argmin
J

K
∑

c

∑

xn∈Jc

um
nc ‖ xn − µc ‖

2 1 ≤ m < ∞

where m 
ontrols the degree of fuzziness of the 
luster c, typi
ally set to 2 in absen
e of

domain knowledge, and unc is de�ned as

unc =
1

∑K

j

(

‖xn−µc‖2

‖xn−µj‖2

)
2

m−1

where unc is proportional to the posterior probability of 
luster c given the observation n,
unc ∼ pθ(ync|xn).

The EM version proposed by Fuzzy K-means is then formulated as follows
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1. Initialize parameters θ(0) (i.e initialize µc for ea
h 
lass c)

2. Hard E step: Given the 
urrent parameters θ(k) at iteration k, 
ompute the fol-

lowing Q fun
tion:

Q(θ | θ(k)) =
∑

n

∑

c

y(k)nc (log pc + log pθ′(xn|c))

where:

y(k)nc ≡ unc

3. M step: Make a guess θ(k+1)
by 
hoosing θ that maximizes the Q fun
tion:

θ(k+1) = argmax
θ

Q(θ|θ(k)) subje
t to
∑

c

pc = 1

where the parameter update is 
omputed as:

µ(k+1)
c =

1
∑

n u
(k)
nc

∑

n

u(k)
nc xn

4. Stop if samples do not 
hange 
lass; otherwise go to step 2.

4.3.2.3 GMM 
lustering

Gaussian Mixture Model (GMM) 
lustering is the generalization of K-means and Fuzzy K-

means algorithms. The hard 
onstraints imposed by K-means and Fuzzy K-means related

to the prior probabilities and 
ovarian
e matri
es derives in linear de
ision boundaries of

the data spa
e, whi
h often lead to weak 
lassi�ers with a low performan
e. Also the hard

assignment of the observations to the 
lasses may derive in noisy 
lassi�
ations instead

of soft de
ision boundaries. Thus, a natural improvement is to 
onsider free 
ovarian
e

matri
es for ea
h 
lass, non equal prior probabilities and soft assignment based on posterior

probabilities for ea
h 
lass. This approa
h builds a more �exible model, able to represent

non-linear de
ision boundaries.

Attending to these new 
onditions, the EM algorithm is then the proposed in the

subse
tion 4.3.2, whi
h performs as follows

1. Initialize parameters θ(0) (i.e initialize µc, Σc and pc for ea
h 
lass c)

2. Hard E step: Given the 
urrent parameters θ(k) at iteration k, 
ompute the fol-

lowing Q fun
tion:

Q(θ | θ(k)) =
∑

n

∑

c

y(k)nc (log pc + log pθ′(xn|c))

where:

y(k)nc =
p
(k)
c p

(k)
θ′ (xn|c)

∑

c′ p
(k)
c′ p

(k)
θ′ (xn|c′)
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3. M step: Make a guess θ(k+1)
by 
hoosing θ that maximizes the Q fun
tion:

θ(k+1) = argmax
θ

Q(θ|θ(k)) subje
t to
∑

c

pc = 1

where the parameter update is 
omputed as:

p(k+1)
c =

1

N

∑

n

y(k)nc

µ(k+1)
c =

1
∑

n y
(k)
nc

∑

n

y(k)nc xn

Σ(k+1)
c =

1
∑

n y
(k)
nc

∑

n

y(k)nc

(

xn − µ(k+1)
c

) (

xn − µ(k+1)
c

)t

4. Stop if L(θ(k+1)|X)− L(θ(k)|X) ≤ ǫ; otherwise go to step 2.

4.3.3 Stru
tured Gaussian mixture model

In a stru
tured mixture model, no iid assumption between observations is made, so 
on-

ditional dependen
ies between the observations are 
onsidered. Thus, the mixture model

should handle the set of labels and observations jointly. Regarding that both parameters

(θ) and labels (Y ) are not observed, the mixture model is expressed as

pθ(X) =
∑

Y

pθ(X, Y ) =
∑

Y

p(Y )pθ(X|Y )

In order to introdu
e stru
tured dependen
ies between the observations of the model,

Markov Random Fields (MRFs) are usually used. MRFs are probabilisti
 undire
ted

graphi
al models, in whi
h 
onditional dependen
ies between random variables are expli-


itly denoted via a undire
ted and 
y
li
 graph. The verti
es of the graph represent the

random variables of the model, and the edges of the graph represent the 
onditional de-

penden
ies among these variables. Figure 4.10 shows an example of a undire
ted graphi
al

model, representing a generative probabilisti
 model of the form

pθ(X, Y ) = p(Y )
∏

n

pθ′(xn|yn)

From a generative point of view, the MRF is de�ned over the prior probability p(Y ),
whi
h a

ording to the Hammersey-Cli�ord theorem [61℄, follows a Gibbs distribution of

the form

p(Y ) =
1

Z
exp (−U(Y ))

where U(Y ) is 
alled the energy fun
tion and Z is the partition fun
tion that ensures the

distribution to sum 1.

Z =
∑

Y ′

exp (−U(Y ′))

Hammersey-Cli�ord theorem also states that p(Y ) 
an be fa
torized over the 
liques of

the graphi
al model. A 
lique is de�ned as a subset of verti
es in the graph, su
h that
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yn

xn

Figure 4.10: Undire
ted graphi
al model representing a generative probabilisti
 model.

Latti
e formed between white verti
es determines the 
onditional dependen
ies between

the random variables of the model and is modelled through a Markov Random Field

(MRF). Gray verti
es represent the observations of the model and edges that that 
onne
t

gray nodes with white nodes represent the 
onditional dependen
y between observations

and the random variables.

there exists a link between all pairs of verti
es in the subset, i.e is fully 
onne
ted. A

random variable of the model is then 
onsidered independent given its 
liques.

Let Q the set of all 
liques of the graph. The energy fun
tion U (Y ) is then de�ned as

U(Y ) =
∑

q∈Q

Ψq (Y )

Nowadays, if 
omplexity is 
onsidered, the inferen
e algorithms for MRFs 
an only do an

optimization job for undire
ted graphs with 
liques of order 2, (pairwise 
liques). Hen
e,

the most 
ommonly used graphi
al model is the Ising model. The Ising model de�nes a

graph latti
e where 
onditional dependen
ies of ea
h variable are expressed in terms of

its orthogonal adja
ent neighbourhood. Figure 4.10 shows an Ising model for a 2D plane,

represented by the graph de�ned by the white verti
es.

The 
lique fa
torization for the Ising model performs as follows

U(Y ) =
∑

q∈Q

Ψq(yn, ym) =
∑

q∈Q

βqδ(yn, ym)

where yn, ym ∈ q, Ψq(yn, ym) is the 
lique potential for 
lique q, βq is a weight de�ned for

su
h 
lique (in our 
ase always β = 1) and δ is a fun
tion that measures the dissimilarity

between 
lasses of the variables involved in the 
lique, typi
ally

δ(yn, ym) =

{

0, if yn = ym

1, otherwise

Although MRF stri
tly refers to the prior probability of the generative model, typi
ally,

the 
lass 
onditional probability is also expressed in terms of energy fun
tions, so pθ(X | Y )
is usually rewritten as

pθ(X|Y ) =
1

Z
exp (−Uθ (X | Y ))
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where Uθ (X | Y ) is proportional to the 
lass 
onditional probability of the observations

given the 
urrent parameters and labelling, and Z is again a partition fun
tion to ensure

the distribution to sum 1. As the prior probability p(Y ) determines the 
onditional depen-

den
ies between the observations of the model, the 
lass 
onditional probability p(X|Y )

ould be assumed iid between the observations, thus

Uθ(X|Y ) =
∏

n

Uθ(xn|yn)

As a result, the stru
tured mixture model is therefore de�ned as

pθ(X) =
∑

Y

1

Z
exp (−Uθ (X | Y )− U (Y ))

Exa
t inferen
e on this model is intra
table due to the sum over all possible 
on�gu-

ration of labels denoted by Z, whi
h is a #P − complete problem. However, approximate

e�
ient algorithms are available to 
ompute the best labelling when pairwise 
onditional

dependen
ies are 
onsidered. Thus, pθ(X) is approximated by the maximum

pθ(X) ≈ max
Y

1

Z
exp (−Uθ (X | Y )− U (Y ))

Although these, inferen
e algorithms do not 
ompute pθ(X), indeed they provide the

best labelling Ŷ and its �nal energy value

Ŷ = argmax
Y

(−Uθ(X|Y )− U(Y ))

= argmin
Y

(Uθ(X|Y ) + U(Y ))

where following an unit-length multinomial notation, Ŷ ∈ {0, 1}(N×C)
, i.e, an indi
ator

matrix that spe
i�es the 
lass c for ea
h observation n.

Several algorithms are proposed for the inferen
e of MRFs su
h as Iterated Conditional

Modes (ICM), Monte Carlo Sampling or Graph 
uts. In this M.S
. Thesis we used the

algorithm proposed by Komodakis et al. [62, 63℄, based on a 
ombination of Graph 
uts

with primal-dual strategies.

4.3.3.1 GHMRF

GHMRF is the Gaussian unsupervised variant of MRF. The term HMRF refers to a

hidden generative stru
tured model based on a MRF prior, where labels are not observed.

The Gaussian assumption of the 
lass 
onditional probabilities of the model �nally 
oins

it as GHMRF. Likewise GMM 
lustering, GHMRF 
onsiders free 
ovarian
e matri
es for

ea
h 
lass and non equal prior probabilities. However, as 
omplete inferen
e of the model

is not possible, only a Hard EM version is available to estimate the parameters of the

stru
tured model. Thus, the EM version proposed for the GHMRF is

1. Initialize parameters θ(0) (i.e initialize µc, Σc and pc for ea
h 
lass c)
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2. Hard E step: Given the 
urrent parameters θ(k) at iteration k, 
ompute the fol-

lowing Q fun
tion:

Q(θ | θ(k)) =
∑

n

∑

c

Ŷ (k)
nc (log pc + log pθ′(xn|c))

where:

Ŷ (k) = argmin
Y

(Uθ(X|Y ) + U(Y ))

3. M step: Make a guess θ(k+1)
by 
hoosing θ that maximizes the Q fun
tion:

θ(k+1) = argmax
θ

Q(θ|θ(k)) subje
t to
∑

c

pc = 1

p(k+1)
c =

1

N

∑

n

y(k)nc

µ(k+1)
c =

1
∑

n y
(k)
nc

∑

n

y(k)nc xn

Σ(k+1)
c =

1
∑

n y
(k)
nc

∑

n

y(k)nc

(

xn − µ(k+1)
c

) (

xn − µ(k+1)
c

)t

4. Stop if samples do not 
hange 
lass; otherwise go to step 2.

4.4 Automati
 tumour 
lasses isolation

Unlike supervised learning, unsupervised segmentation produ
es a partitioning of the data

spa
e into several 
lasses, but ea
h 
lass without semanti
 sense. In other words, in

the unsupervised approa
h, 
lass labels between di�erent segmentations may not always

represent the same tissue, 
ompli
ating its biologi
al interpretation. Hen
e, tumour 
lasses

isolation is mandatory to provide a powerful and 
ompetitive unsupervised brain tumour

segmentation method. We propose the following postpro
essing pipeline to automati
ally

isolate pathologi
al 
lasses:

1. Identify WM, GM and CSF 
lasses

2. Remove outlier 
lasses

3. Mixture 
lasses by statisti
al distribution similarities

4.4.1 Identify WM, GM and CSF 
lasses

In order to identify WM, GM and CSF 
lasses, and to isolate the pathologi
al 
lasses in the

brain, the tissue probability maps provided by the ICBM 2009
 template are used (see se
-

tion 3.3). However, ICBM template represents a healthy brain. Hen
e tissue probability

maps do not 
onsider any other tissue rather than normal tissues T = {WM,GM,CSF}.
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Therefore, it is required to 
orre
t these tissue probability maps by introdu
ing an ad-

ditional tissue denoted by L, to deal with the lesion area. Consequently, WM, GM and

CSF probability maps should be renormalized by spreading its probability in the lesion

area on a new map, su
h that

T ′ = {WM,GM,CSF, L}
∑

t∈T ′

p(t|v) = 1

To 
orre
t the tissue probability maps, we �rst performed a non-linear registration of the

ICBM T1 sequen
e to the patient T1 sequen
e and then applied the non-linear transforma-

tion obtained through the registration to the ICBM tissue probability maps. We employ


ross-
orrelation metri
 with the SyN algorithm [36℄ implemented in the ANTS suite to

perform the registration. Next, a roughly approximate mask of the lesion area is 
om-

puted. The delineation performed by the expert radiologist of the margins of the tumour

is usually based on the hyper-intensity areas in the T2 and T1c sequen
es [4℄. Following

a similar 
riterion, we 
ompute an approximate mask of the lesion area by retrieving the

histograms of the FLAIR and T1c sequen
es and sele
ting those voxels with an intensity

level higher than the median plus the standard deviation of any histograms. Next, holes

of ea
h 2D axial plane of the 
urrent 
omputed mask are �lled and voxels that fall in the

perimeter of the volume are automati
ally removed. Finally, the lesion mask is used to set

an ǫ value in ea
h normal tissue probability maps in the area de�ned by the mask. It is

worth noting that this mask do not delimits or restri
ts the shape of the 
lasses provided

by the unsupervised segmentation, but serves to identify the pathologi
al area, and then

whi
h 
lasses of the segmentation primarily explains the lesion. Figure 4.11 shows the


omputation pro
ess of the 
orre
ted tissue probability maps.

Based on the 
orre
ted tissue probability maps, we identify whi
h 
lasses of a given

segmentation mainly explain the normal tissues T . For a given segmentation S, a normal

tissue t ∈ T and for ea
h 
lass c ∈ S, we 
omputed the following probability:

p(c|t, S) =

∑

v, S(v)=c p(t|v)
∑

v p(t|v)

where v denotes a voxel of the volume.

The p(c|t, S) determines the probability for ea
h 
lass c to explain the normal tissue

t. Hen
e, in order to remove the 
lasses that primarily represent the normal tissue t, we
sort all 
lasses in des
ending order by the p(c|t, S)

Ct = {ci | p(ci|t, S) ≥ p(ci+1|t, S), 1 ≤ i < C}

Pt = {p(ci|t, S) | p(ci|t, S) ≥ p(ci+1|t, S), 1 ≤ i < C}

Next, we 
ompute the 
umulative sum of Pt

Φ(i) =
i
∑

j=1

Pt(j), 1 ≤ i < C

and delete the �rst 
lasses until the 0.8 of the 
umulative sum is rea
hed.

Zt = {Ct(i+ 1) | Φ(i) > 0.8, 1 ≤ i < C}
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Figure 4.11: Patient spe
i�
 tissue probability maps 
omputation and subsequent lesion

area 
orre
tion.
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We 
hoose 0.8 as a reasonably value to explain ea
h normal tissue t through a 
om-

bination of 
lasses. Note that a threshold of 1 implies deleting all the 
lasses of the

segmentation, due to ea
h 
lass always retains a minimum probability to belong to a

normal tissue. Moreover, the tissue probability maps are obtained through a non-linear

registration of a healthy template to a pathologi
al brain, and a posterior 
orre
tion of

the tissue probability maps. Su
h pro
ess introdu
es unavoidable errors that should be


onsidered when a threshold is de�ned to identify the non-pathologi
al 
lasses. Thus, in

major 
ases, a 0.8 threshold provide a high 
on�den
e degree to identify the normal 
lasses

of the segmentation.

Finally, we repeated independently this pro
edure for ea
h tissue t ∈ {WM,GM,CSF}
to isolate the pathologi
al 
lasses. The interse
tion of the sets obtained for ea
h normal

tissue removes the normal tissue 
lasses, and provides the �nal pathologi
al 
lasses de�ned

by the set Z
Z = ZWM ∩ ZGM ∩ ZCSF

4.4.2 Remove outlier 
lasses

The pro
ess of identifying and removing the normal tissue 
lasses (WM, GM and CSF) may

leave some spurious 
lasses that should be deleted. We �nd that these 
lasses frequently

appear in the perimeter of the brain or in a very low per
entage of o

urren
e with

respe
t to the rest of 
lasses of the segmentation. The 
lasses lo
ated at the perimeter of

the brain usually represent the intensity gradient between the brain and the ba
kground

or the partial volume e�e
ts that the super resolution 
annot remove. The smaller 
lasses

often represent outlier voxels in terms of abnormal intensity values, usually produ
ed by

unavoidable artefa
ts in the MR a
quisition.

In order to delete the perimeter unwanted 
lasses, we �rst 
ompute a binary mask of

the perimeter of both hemispheres. Next, we dilate su
h mask in order to 
over a wider

area greater than one voxel. Finally, for ea
h 
lass after the 4.4.1 step, we 
ompute its


onne
ted 
omponents and delete su
h 
onne
ted 
omponents that falls into the perimeter

mask with more than the 50% of its area.

In order to remove the smaller 
lasses, we �rst 
ompute the per
entage of o

urren
e

of ea
h 
lass over the whole segmentation and delete those ones with a per
entage less

than a 1%.

4.4.3 Mixture 
lasses by statisti
al distribution similarities

The heterogeneity of the tumoral 
lasses lead us to assume that ea
h tissue of the brain is

modelled through at least a mixture of two Gaussians. However, the unsupervised voxel


lassi�
ation provides a general mixture of Gaussians over the whole brain, that better

�ts the 
lusters of information present in the data. This means that a tissue may bind

together more than two 
lasses for its own representation, or by the opposite, requires an

unique 
lass if it is homogeneously enough. Thus, it is mandatory to provide a me
hanism

to �nd 
lass similarities that allows a merging pro
ess that results in an homogeneous

segmentation that 
orre
tly explains the �nal pathologi
al tissues.

Based on the work proposed by Sáez et al. [64℄, we analysed the statisti
al distributions

of the remaining 
lasses after the 4.4.1 and 4.4.2 steps, to �nd possible mixtures of 
lasses

with similar distributions. We estimate a non-parametri
 probability density fun
tion for
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ea
h 
lass through a kernel smoothing density estimation, and use the Jensen-Shannon

divergen
e to measure its distan
es. Thus, we 
onstru
t a pairwise matrix of statisti
al

distribution distan
es between 
lasses, and we use a Hierar
hi
al Agglomerative Clustering

(HAC) with an average link (Unweighted Pair Group Method with Arithmeti
 Mean

(UPGMA)), to �nd similar 
lasses.

Due to the BRATS 2013 labelling 
onsiders 4 pathologi
al 
lasses to be segmented,

we enfor
e the 
lustering to return a maximum of 4 
lasses. Note that this is the max-

imum number of di�erent 
lasses that 
an be returned, however the method is able to

return less than 4 
lasses if the HAC �nds enough similarities to merge it. Moreover, this


ondition 
an be altered or removed if an exploratory approa
h is adopted, to �nd new

sub-
ompartment segmentations.

Figure 4.12 shows an example of the full tumour 
lasses isolation pro
edure, 
ombining

the normal tissue 
lass removal (step 4.4.1), the outlier 
lass removal (step 4.4.2) and the


lass merging by its statisti
al distribution similarities (step 4.4.3).
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Figure 4.12: Automati
 tumoral 
lass isolation pro
ess.

Finally, we manually reorder the numbers of the 
lasses to mat
h the BRATS labelling.

Note that this step is 
ompletely unavoidable due to the fa
t that the numbers of the 
lasses

be
omes an arbitrary de
ision and 
an not be inferred by an unsupervised approa
h. Thus,

this manual stage does not 
ompromise the proposed automated methodology as it is a

step only required for the 
on
rete publi
 dataset used to evaluate the method.

4.5 Evaluation

In this se
tion, the evaluation strategies followed in this M.S
. Thesis and proposed by

the MICCAI Challenge to assess the quality of the segmentations are presented below.

An evaluation web page

b

is provided for the organization 
ommittee of the Challenge to

b

https://www.virtualskeleton.
h/BRATS/Evaluation2013
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upload and evaluate the segmentations. Ea
h segmentation should be identi�ed by a 
ode

related to the FLAIR a
quisition of the patient that originates the segmentation.

As this M.S
. Thesis proposes an unsupervised segmentation method and in order to


ompare our results with the state-of-the-art supervised segmentation approa
hes, we only

used the test set of the BRATS 2013 dataset. We dire
tly segmented the test set with

the four unsupervised segmentations algorithms (see se
tion 4.3) in 
ombination with the

proposed prepro
essing and postpro
essing pipelines. The following subse
tions present

the di�erent sub
ompartments and metri
s used to assess the quality of the segmentations.

4.5.1 Sub
ompartment evaluation

Three di�erent sub-
ompartments are evaluated for the proposed segmentations. This

evaluation strategy aims to provide a 
on�dent measure of the quality of the segmentation

methods, avoiding global measures that 
ould be in�uen
ed by some tissues predomina-

tion. The sub
ompartments are:

Complete tumour: Labels 1 + 2 + 3 + 4. Evaluation of the whole segmentation,

in
luding all the pathologi
al tissues, i.e ne
rosis, 
yst and haemorrhage (1), edema

(2), non-enhan
ing tumour (3) and enhan
ing tumour (4).

Tumour 
ore: Labels 1 + 3 + 4. Evaluation of tumoral tissues 
ore. In
ludes ne
rosis,


yst and haemorrhage (1), non-enhan
ing tumour (3) and enhan
ing tumour (4).

Enhan
ing tumour: Label 4. Evaluation of only a
tive/enhan
ing tumour (4).

Figure 4.13 shows an example of the sub
omparment segmentations evaluated in the

BRATS 2013 Challenge.

Complete

tumour

Tumour

core

cing

tumour

Figure 4.13: Example of di�erent sub
omparment segmentations evaluated in the BRATS

2013 Challenge.

4.5.2 Figures of merit

The �gures of merit used to assess the quality of the segmentations are presented below.

The S term refers to the proposed segmentation, while the GT term refers to the ground

truth hold by the BRATS 2013 evaluation web page. Table 4.1 shows the 
onfusion matrix

of a binary 
lassi�
ation problem and the performan
e metri
s that 
an be 
al
ulated from

it.
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True 
lass

+ − Row totals

Hypothesized 
lass

+̂ True Positives False Positives P̂

−̂ False Negatives True Negatives N̂

Column totals P N

Table 4.1: Confusion matrix and performan
e metri
s.

Sørensen-Di
e 
oe�
ient: Similar than the Ja

ard index, the Di
e 
oe�
ient mea-

sures the set agreement between the proposed segmentation S and the ground truth

GT . It 
omputes the number of overlapped voxels between S and GT and divide it

between the average of the sizes of S and GT . The Di
e 
oe�
ient is the most typi
al

measure to evaluate the quality of a segmentation. It ranges between 0 and 1, with

0 meaning absen
e of overlapping and 1 referring to 
omplete perfe
t overlapping.

D =
2 | S ∩GT |

| S | + | GT |
=

2(TP + TN)

P +N + P̂ + N̂

Positive predi
tive value (PPV): Often 
alled Pre
ision, the PPV gives a metri
 to

assess the sus
eptibility of the method to produ
e false positives in the segmentation.

The statisti
 ranges from 0 to 1, with 0 meaning a low pre
ision of the method and

1 a high pre
ision, i.e, a low false positive rate.

PPV =
TP

TP + FP

Sensitivity: Often 
alled Re
all, the sensitivity measures the su

ess ratio of the method.

Hen
e, the sensitivity 
omputes the number of hits obtained by the method and

divides it by the number of real positives of the ground truth. The measure ranges

from 0 to 1, with 1 meaning a high su

ess ratio.

S =
TP

TP + FN

Cohen's Kappa index: A robust measure of the agreement between two segmentations,

that also 
onsiders the agreement o

urring by 
han
e. The metri
 ranges from 0

to 1, with 0 meaning a 
omplete disagreement between both segmentations and 1

means a 
omplete overlapping.

κ =
PA − PE

1− PE

PA = Accuracy =
TP + TN

P +N

PE =

(

P

P +N
·

P̂

P̂ + N̂

)

+

(

N

P +N
·

N̂

P̂ + N̂

)
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Results

The results obtained by the unsupervised segmentation algorithms evaluated in this M.S
.

Thesis, in 
ombination with the proposed prepro
essing and postpro
essing pipelines are

shown in Table 5.1. The results are obtained through the BRATS 2013 evaluation web

page provided for the Segmentation Challenge of MICCAI 2013 
onferen
e. The Table

5.1 shows the average results for the 10 patients of the BRATS 2013 test set, grouped by

the unsupervised algorithms, the tumour sub
ompartments and the �gures of merit used

to assess the quality of the segmentation.

Classi�er Di
e PPV Sensitivity Kappa


omp 
ore enh 
omp 
ore enh 
omp 
ore enh

K-means 0.69 0.49 0.57 0.66 0.48 0.68 0.76 0.57 0.51 0.98

Fuzzy K-means 0.70 0.46 0.39 0.73 0.47 0.51 0.71 0.54 0.35 0.98

GMM 0.69 0.60 0.55 0.63 0.60 0.64 0.78 0.68 0.55 0.98

GHMRF 0.72 0.62 0.59 0.68 0.58 0.67 0.81 0.75 0.60 0.98

Table 5.1: Summary of results of the unsupervised segmentation algorithms evaluated in

the study, in 
ombination with the proposed prepro
essing and postpro
essing pipelines.

The results are the average of the 10 patients of the BRATS 2013 test set, grouped by the

di�erent unsupervised algorithms, tumour sub
ompartments and �gures of merit. 
omp

refers to 
omplete tumour sub
ompartment, 
ore refers to tumour 
ore sub
omparment

and enh refers to enhan
ing tumour sub
omparment.

In most 
ases GHMRF rises as the best algorithm in 
ombination with the proposed

prepro
essing and postpro
essing pipelines. Di
e 
oe�
ient, as well as sensitivity, reveals

that GHMRF retrieves the best results in all the sub
ompartment segmentations. PPV is

the only statisti
 in whi
h other algorithms a
hieve better results, indi
ating that GHMRF

may be slightly inferior in pre
ision than the other methods. Also, it 
ould be seen that,

regardless of the non-supervised algorithm used, the 
omplete tumour sub
ompartment

always a
hieves the highest s
ores with respe
t to the other sub
ompartments, primarily

due to the presen
e of the edema tissue in this sub
ompartment, whi
h often may be the

bigger and easiest 
lass to identify.

Table 5.2 shows the published ranking of the BRATS 2013 
ompetition and the position

of the proposed unsupervised segmentation method in its best 
on�guration, i.e GHMRF

in 
ombination with the prepro
essing and postpro
essing. As it 
an be seen, our method
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rea
hes the 7th position in the 
ompetition against mostly supervised approa
hes. Ranks

in the table are de�ned by sorting ea
h 
olumn in des
ending order and 
omputing the

average of the positions for ea
h user in ea
h 
olumn.

Pos User Di
e PPV Sensitiviy Kappa


omp 
ore enh 
omp 
ore enh 
omp 
ore enh

1 N. Tustison 0.87 0.78 0.74 0.85 0.74 0.69 0.89 0.88 0.83 0.99

2 R. Meier 0.82 0.73 0.69 0.76 0.78 0.71 0.92 0.72 0.73 0.99

3 S. Reza 0.83 0.72 0.72 0.82 0.81 0.70 0.86 0.69 0.76 0.99

4 L. Zhao 0.84 0.70 0.65 0.80 0.67 0.65 0.89 0.79 0.70 0.99

5 N. Cordier 0.84 0.68 0.65 0.88 0.63 0.68 0.81 0.82 0.66 0.99

6 J. Festa 0.72 0.66 0.67 0.77 0.77 0.70 0.72 0.60 0.70 0.98

7 This work 0.72 0.62 0.59 0.68 0.58 0.67 0.81 0.75 0.60 0.98

8 S. Doyle 0.71 0.46 0.52 0.66 0.38 0.58 0.87 0.70 0.55 0.98

Table 5.2: Ranking of the BRATS 2013 Segmentation Challenge with the position o
-


upied by our proposed unsupervised segmentation framework (with the GHMRF algo-

rithm). 
omp refers to 
omplete tumour sub
ompartment, 
ore refers to tumour 
ore

sub
omparment and enh refers to enhan
ing tumour sub
omparment.

.

Finally, several examples of segmentations a
hieved by the di�erent unsupervised seg-

mentation algorithms obtained through the proposed method are shown in Figure 5.1.

44



Fuzzy K-meansK-means

Figure 5.1: Examples of �nal segmentations (prepro
ess and postpro
ess in
luded) of 3

patients of BRATS dataset 
omputed by di�erent non-supervised algorithms.
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Chapter 6

Dis
ussion

The proposed unsupervised brain tumour segmentation method is 
on�rmed as a viable

alternative for GBM segmentation, as it has demonstrated to a
hieve 
ompetitive and


omparable results in a publi
 referen
e brain tumour dataset su
h as the BRATS 2013

Challenge (See Table 5.2). The method is able to obtain 
ompetitive results without

any prior knowledge or manual expert labelling, thus over
oming the limitations of the

supervised approa
hes su
h as the time-
onsuming and biased task of retrieving a training

dataset. Furthermore, the method provides a general me
hanism to automati
ally isolate

the tumoral tissues in the brain, to address the problems asso
iated with the biologi
al

interpretability of the unsupervised results. This me
hanism 
an be also extrapolated to

other pathologies, as it adopts an a 
ontrario approa
h, by identifying the normal tissues

and then isolating the abnormal 
lasses that represent the pathology.

The proposed unsupervised segmentation method 
omprises four stages: MRI prepro-


essing, Feature extra
tion and dimensionality redu
tion, Unsupervised voxel 
lassi�
ation

and Automati
 tumour 
lasses isolation. Con
erning the prepro
essing stage, 
onsolidated

state of the art te
hniques that provide e�
ient solutions to enhan
e the information of

the MR images are employed. However, some prepro
essing te
hniques are primarily

oriented to non-pathologi
al brains. This is the 
ase of bias �eld 
orre
tion. In our ex-

periments, we found that the estimation of the magneti
 �eld inhomogeneities with the

N4 algorithm presented problems primarily with FLAIR sequen
es. The hyper-intensity

shown in the FLAIR sequen
e by the edema was 
onfused frequently with inhomogeneities

of the magneti
 �eld, thereby redu
ing its intensity and sometimes removing it from the

image. In order to over
ome this problem we redu
ed the number of iterations of the

algorithm to 10 iterations at ea
h s
ale, to remove as mu
h inhomogeneities as possible,

while keeping the intensities of the lesion. Su
h solution assumes a non optimal removal

of the magneti
 �eld inhomogeneities, but allows to save the information 
ontained in the

lesion area, whi
h be
omes more important to the brain tumour segmentation. However,

it is mandatory to develop MRI prepro
essing te
hniques suited to pathologi
al brains, to

enhan
e the images as mu
h as possible, while avoiding the removal of useful information

to 
lassify/segment the pathology.

Several unsupervised 
lassi�
ation algorithms are evaluated to assess its pros and 
ons.

Attending to the restri
tiveness and 
onstraints imposed to the probabilisti
 models that

underlies the unsupervised algorithms, an evident hierar
hy be
omes apparent. These


onstraints implies both positive and negative e�e
ts, su
h as the e�
ien
y in the algo-

rithm inferen
e or the quality and �delity of the model �tted to the data. K-means is the
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most restri
tiveness algorithm in terms of the 
lass-
onditional probabilisti
 model. From

a Gaussian generative standpoint, K-means assumes an equal and identity 
ovarian
e ma-

trix for all 
lasses, equal prior probabilities and hard assignment of ea
h observation to

a 
lass. Also, an iid assumption between the observations to be 
lassi�ed is 
onsidered,

whi
h together derives in a more simplisti
, not ne
essarily worse, 
lassi�er. In 
ontrast,

GHMRF is the less restri
tive algorithm in terms of the 
lass-
onditional probabilisti


model (also GMM 
lustering), but it imposes a prior stru
ture to the data that 
on-

straints the inferen
e pro
ess of the algorithm. Su
h prior stru
ture introdu
es statisti
al

dependen
ies between adja
ent variables of the probabilisti
 model, that penalizes neigh-

bouring voxels with di�erent 
lasses. Hen
e, this stru
tured prior aims to model the self

similarity presented in the images, leading the algorithm to a more homogeneous segmen-

tation than the non-stru
tured 
lassi�
ation te
hniques. Finally, GMM 
lustering is the

non-stru
tured version of GHMRF, while Fuzzy K-means is a parti
ular 
ase of GMM,

whi
h assumes an equal and identity 
ovarian
e matrix for all 
lasses.

Therefore, it is expe
ted that the less restri
tive algorithms in terms of 
lass-
onditional

probability model are likely to a
hieve better results, based on the hypothesis that su
h

algorithms learn a model for the 
lasses that better �t the data to be 
lassi�ed (a more

realisti
 model). Moreover, algorithms that introdu
es me
hanisms to model the self simi-

larity of the images are also expe
ted to retrieve better results based on the hypothesis

that they exploits the information redundan
y of the images. Table 5.1 
on�rms su
h

hypothesis. The results shown in Table 5.1 are the metri
s provided by the BRATS 2013

evaluation web page grouped by the unsupervised algorithms and the tumour sub
om-

partments. GHMRF rises as the best algorithm in almost all the metri
s. Only the PPV

reveals that other algorithms may a
hieve a slightly better pre
ision. Figure 5.1 also


orroborates the hypothesis. GHMRF segmentation leads to more homogeneous segmen-

tations, whi
h is 
onsistent with the pathologi
al standpoint and hen
e with the manual

labelling that an expert radiologist will provide.

Note that di�eren
es between the GHMRF and the K-means segmentations of the pe-

ritumoral and distal areas of the tumour 
an be observed (for example in the P2 patient

of Figure 5.1). The K-means segmentation shows a division of this area into two 
lasses,

whi
h are �nally labelled as edema (green 
olor 
lass) and non-enhan
ing tumour (blue


olor 
lass). Based on the de�nition of non-enhan
ing tumour, it seems 
lear that the area


lassi�ed as non-enhan
ing tumour in K-means and Fuzzy K-means does not 
orrespond

with this tissue, and probably refers to edema. The reason by whi
h this area is partially

mis
lassi�ed into non-enhan
ing tumour 
omes from the automati
 tumour 
lasses isola-

tion stage. As proposed in Se
tion 4.4 (Subse
tion 4.4.3) we enfor
e the system to return

4 or less 
lasses, depending on their statisti
al distribution similarities. Hen
e, we assume

that similar 
lasses are merged in the 4.4.3 step, returning a set of �nal 
lasses di�erent

enough to be 
onsidered a di�erent tissue related to the BRATS labelling. In this sense, in

the K-means and Fuzzy K-means segmentations, we were required to set a distin
t label

for ea
h of the 4 
lasses returned by the method, thereby partially mis
lassifying the distal

area as non-enhan
ing tumour. In 
ontrast, although GHMRF also initially divided this

area into two 
lasses, the method found both regions similar enough to be merged, hen
e

determining the whole area as an homogeneous 
lass, whi
h is more 
oherent than the

K-means or Fuzzy K-means segmentations.

However, it is worth noting that this is an example of the ability of the unsupervised
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approa
hes to explore or provide natural 
lusters of data that 
an be useful to make

new 
lini
al hypothesis. Following the P2 segmentation example, it 
an be seen that

the hyper-intensity area of the FLAIR sequen
e 
lassi�ed as edema by the GHMRF is

not homogeneous. Su
h area was initially separated by all 
lustering te
hniques into two


lasses, therefore revealing evident di�eren
es inside the edema, that may have interesting


lini
al interpretations. Su
h 
apabilities provide an added value to the segmentation

systems that arise from an unsupervised learning standpoint.

Finally, a key point that should be dis
ussed refers to the viability of supervised seg-

mentation approa
hes to real 
lini
al routine. The di�
ulties in the a
quisition of manual

labelled ground truths and the re
alibration of the models when the data sour
es experi-

ment 
hanges (for example di�erent hospitals or new MR proto
ols) severely a�e
ts the

performan
e of supervised approa
hes. Furthermore, supervised algorithms are trained to


lassify the already well-known 
lini
al knowledge, whi
h allows to redu
e the manual 
ost

of the tumour segmentation, but does not provide new knowledge that helps physi
ians

to make alternative 
lini
al hypothesis. Conversely, unsupervised approa
hes inherits the

exploratory ability of 
lustering te
hniques, whi
h are able to provide physi
ians a guide

to interpret sub-segmentations based on natural groupings of data.

The analysis of fun
tional Magneti
 Resonan
e Imaging (fMRI) su
h as PWI is an

example where 
lustering te
hniques may play an important role. fMRI is a te
hnique for

measuring the brain a
tivity by dete
ting 
hanges in the blood oxygenation and �ow in

response to neural a
tivity. The ability of unsupervised algorithms to explore segmenta-

tions where di�erent tissues determined in the anatomi
al MRI analysis share a similar

behaviour in the fMRI approa
h should be explored. Su
h similarities may provide an

insight of the evolution of the di�erent tissues and hen
e provide useful information to

make early de
isions that improve the treatment of the disease.

Fun
tional MR imaging is rising as the future of brain tumour diagnosis due to its abil-

ity to reveal biomarkers related to the behaviour of the tissues instead of their anatomi
al

properties. These biomarkers might predi
t relevant information su
h as the tumour grow-

ing dire
tion and its evolution. In this sense, we believe that resear
h e�orts should be

aligned with MR fun
tional imaging requirements by providing powerful systems that


overs its 
lini
al purposes. We plan to extend our unsupervised segmentation method to

the analysis and segmentation of PWI.
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Chapter 7

Con
luding remarks and future work

7.1 Con
lusion

The present M.S
. Thesis provides a method based on the ML dis
ipline to solve the

brain tumour segmentation problem. The �rst 
ontribution of this M.S
. Thesis 
on
erns

the design and implementation of a robust methodology for unsupervised brain tumour

segmentation. We provide a fully automated method able to a
hieve a

urate results 
om-

parable to supervised approa
hes, but avoiding the tedious, time-
onsuming and biased

task of manual expert labelling. The se
ond major 
ontribution refers to a statisti
al

postpro
essing method able to robustly identify whi
h 
lasses in a brain tumour segmen-

tation 
orresponds to normal tissues. Hen
e, the method allows to automati
ally isolate

the pathologi
al 
lasses in the brain that belong to abnormal tissues. Finally, we present

a 
omprehensive evaluation of several unsupervised segmentation algorithms attending to

its stru
tured and non-stru
tured 
ondition. We use a publi
 real brain tumour dataset

in order to make a 
omparison between the state-of-the-art te
hniques in supervised seg-

mentation and the unsupervised method proposed in this M.S
. Thesis.

The 
on
lusions extra
ted from this M.S
. Thesis are:

• The results of the 
omprehensive evaluation through the publi
 BRATS 2013 brain

tumour dataset show that the proposed unsupervised segmentation method provides

a

urate and 
oherent segmentations, similar than the manual labelling provided by

an expert radiologist. Hen
e, it is 
on�rmed as a viable method for brain tumour

segmentation.

• It is mandatory to develop MRI prepro
essing te
hniques suited to pathologi
al

brains, to enhan
e these images as mu
h as possible, while avoiding the removal of

useful information to 
lassify or segment the disease.

• Stru
tured 
lassi�
ation, spe
i�
ally MRF, provides a statisti
al language to de�ne

probabilisti
 models that represent dependen
ies between random variables, that

better suit to image segmentation problems, as it 
an model the self similarity of

the images.

• The proposed postpro
essing approa
h to improve the biologi
al interpretability

of the unsupervised results is able to identify and isolate the pathologi
al 
lasses

of a segmentation that 
orrespond to abnormal tissues in the brain. Hen
e, the
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method provides 
lini
ians an unsupervised segmentation of the whole brain, with

the possibility of automati
ally identify the abnormal 
lasses of the segmentation.

• A well designed unsupervised segmentation method 
an yield 
omparable results to

supervised approa
hes, without the need of prior manual expert labelling. Thus, it

be
omes a viable alternative to supervised approa
hes for real 
lini
al appli
ation.

7.2 Future work

Some of the future lines of resear
h dire
tly related to the results of this M.S
. Thesis are:

• The future of GBM treatment points to the analysis of fun
tional imaging su
h

as Perfusion Weighted Images (PWI). The biologi
al information provided by these

MR a
quisitions may indi
ate the behaviour of the tumour, su
h as neoangiogenesis,

and its evolution. It is mandatory to in
lude su
h information in the segmentation

pro
ess to try to identify the growing areas of the tumour and its dire
tion.

• Monitoring the evolution of a GBM tumour leads to the a
quisition of several MR

images during di�erent temporal moments. Considering this temporal information

may improve the segmentation of the tumour, and even may provide a predi
tion of

the tumour growing dire
tion in a posterior temporal moment.

• The feature extra
tion and dimensionality redu
tion te
hniques proposed in this

M.S
. Thesis may be improved through the 
omputation of the Se
ond order texture

features (Harali
k texture features [49℄) and non-linear dimensionality redu
tion

te
hniques su
h as non-linear PCA. The implementation of these texture features

and the evaluation of the improvement through the non-linear redu
tion methods

are 
urrently 
arrying out.

• The robust 
hara
terization of brain tumour tissues through biologi
al signatures

based on the 
lini
al information re
overed for the patient is a 
hallenging and

ambitious goal that should be ta
kled. Su
h standardized biologi
al signatures may

provide a 
ommon referen
e framework for studying tumoral tissues.
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Glossary

A
ronyms

AI Arti�
ial Intelligen
e

ANN Arti�
ial Neural Networks

ANTS Advan
ed Normalization Tools

BRATS BRAin Tumour Segmentation

CNS Central Nervous System

CDSS Clini
al De
ision Support System

CSF Cerebro-Spinal Fluid

CRF Conditional Random Fields

DTI Di�usion Tensor Imaging

E Expe
tation

EM Expe
tation-Maximization

fMRI fun
tional Magneti
 Resonan
e Imaging

FLAIR FLuid Attenuated Inversion Re
overy

GBM Glioblastoma Multiforme

GM Gray Matter

GMM Gaussian Mixture Model

GHMRF Gaussian Hidden Markov Random Field

HAC Hierar
hi
al Agglomerative Clustering

HG High Grade

HMRF Hidden Markov Random Fields

ICBM International Consortium for Brain Mapping

i.e id est (that is)

iid independent and identi
ally distributed
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ICM Iterated Conditional Modes

LG Low Grade

M Maximization

MICCAI Medi
al Image Computing and Computer-Assisted Intervention

ML Ma
hine Learning

MR Magneti
 Resonan
e

MRF Markov Random Field

MRI Magneti
 Resonan
e Imaging

NLM Non Lo
al Means

NMR Nu
lear Magneti
 Resonan
e

PCA Prin
ipal Component Analysis

PD Proton Density

PR Pattern Re
ognition

PPV Positive predi
tive value

PR Pattern Re
ognition

PWI Perfusion Weighted Images

RF Radio Frequen
y

ROBEX RObust Brain EXtra
tion

ROI Region Of Interest

SOM Self Organizing Map

SVM Support Ve
tor Ma
hines

TE E
ho Time

TR Repetition Time

UPGMA Unweighted Pair Group Method with Arithmeti
 Mean

UPV Universitat Politè
ni
a de Valèn
ia

WM White Matter
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