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Abstract

Over the years, the medical field has been experimented an evolution in their clinical
practices towards the inclusion of new technologies that can assist in the diagnosis and
prognosis of complex diseases. Such evolution has derived in the development of Clinical
Decision Support Systems (CDSSs) that provide physicians advanced tools to improve
their medical aid, decision making and monitoring process of the patients. Rather than
replacing the clinician figure, CDSSs are aimed to assist the human to overcome their
natural limitations in the analysis of complex and large volumes of information, such as the
patient clinical records. CDSSs are defined as computational systems that provide precise
and specific knowledge for the medical decisions to be adopted for diagnosis, prognosis,
treatment and management of patients. Such definition links the nature of CDSSs to a
specific concept: Artificial Intelligence (AI) in medicine.

Brain tumour diagnosis concerns a concrete pathology that has received a lot of at-
tention from the Pattern Recognition (PR) and Machine Learning (ML) community. Due
to the heterogeneity and complexity of the different tumours and the huge amount of
information handled by the multidisciplinary clinicians groups, CDSSs have become a key
component for the future of brain tumour treatment. As a major step in the treatment of
brain tumours, the early identification and delineation of the different tissues related to
the lesion becomes crucial to make decisions that can improve the patient survivability.
In this sense, automatic brain tumour segmentation plays a key role in the development
of CDSSs.

Currently, most of the automatic brain tumour segmentation approaches arise from
the supervised learning standpoint. The supervised learning paradigm requires a labelled
training dataset from which to infer the models of the classes that represent the different
tissues in the brain. Such training datasets are usually obtained through expert manual
annotations, which becomes a tedious, time-consuming and biased process, among other
limitations. On the other hand, unsupervised approaches address these limitations, but
usually achieve worse results in comparison to supervised approaches and often require
several manual stages to improve the interpretability of their results.

In order to overcome these limitations, this M.Sc. thesis introduces a fully auto-
mated unsupervised method for brain tumour segmentation using anatomical Magnetic
Resonance (MR) images, able to achieve accurate results comparable with supervised
approaches. A PR scheme is adopted to design the fully automated unsupervised segmen-
tation method. First, a preprocessing stage based on the state of the art techniques in
MRI is proposed to enhance and correct the information contained in the images. Next,
a feature extraction and dimensionality reduction is carried out to extract discrimina-
tive features from the images and to simplify the inference process of the unsupervised
algorithms. Four unsupervised clustering techniques, divided by their structured or non-
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structured condition, are evaluated to assess their pros and cons. Considering the non-
structured algorithms, K-means, Fuzzy K-means and Gaussian Mixture Model (GMM)
clustering are analysed, whereas as structured classification algorithms, theGaussian Hid-
den Markov Random Field (GHMRF) is evaluated. Finally, an automated tumour classes
isolation based on a statistical approach supported by tissue probability maps is proposed
to overcome the lack of biological interpretability of the unsupervised results.

The proposed segmentation method is evaluated through the public International
BRAin Tumour Segmentation (BRATS) dataset to compare its performance against the
state-of-the-art supervised approaches that participate in the challenge. Our results placed
the method in the 7th position of the challenge, with a Dice score of 0.72 for the com-
plete tumour subcompartment, which confirms our approach as a viable alternative for
Glioblastoma Multiforme (GBM) segmentation.
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Chapter 1

Introduction

1.1 Motivation

Over the years, the medical field has been experimented an evolution in their clinical
practices towards the inclusion of new technologies that can assist in the diagnosis and
prognosis of complex diseases. However, it was not until the 20th century since the
medicine was completely revolutionized with the explosion of the use of medical techno-
logy. Several advances developed in these years comprise the electrocardiography (Willem
Einthoven, 1903), the electroencephalography (Hans Berger, 1929), the Heart-Lung ma-
chine (Dr John Heysham Gibbon, 1953) and MRI (Raymond Vahan Damadian, 1971).
These improvements led to a huge increase of the data used to diagnose and treat pa-
tients, thereby converting the clinical records on an important document to store the
patient’s information.

Nowadays, this large amount of information has even increased due to its multidisci-
plinary origin, introducing new requirements to the management of the patient informa-
tion during his disease. Such requirements involve the analysis of complex multi-source
and often multi-center clinical data and the integration of medical knowledge from dif-
ferent health areas, in order to improve the quality of the treatment. Advanced systems
able to assist the human to overcome their natural limitations in the analysis of complex
volumes of information are then required. In this sense, Clinical Decision Support Sys-
tems (CDSSs) emerged to provide physicians powerful tools to improve their medical aid,
decision making and monitoring process of the patients. CDSSs are closely related to
Artificial Intelligence (AI) and Machine Learning (ML) disciplines, as they are aimed to
provide precise and specific knowledge for the medical decisions to be adopted for diagno-
sis, prognosis and treatment of patients. In this sense, the Pattern Recognition (PR) and
Machine Learning (ML) community has shown a significant interest in the development of
CDSSs due to the complex and crucial task that health represents in the everyday human
life.

Specifically, brain tumour has received a lot of this attention due to its incidence in the
population and its consequences in their life expectancy. Glioblastoma Multiforme (GBM)
tumour is the most common and most aggressive malignant tumour [1, 2|, which presents
heterogeneous lesions consisting of different areas of active tumour, necrosis and edema,
all of them exhibiting a high variability related to the aggressiveness of the tumour. Its
intra-cranial location and the unspecificity of clinical symptoms [3] makes medical imaging
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techniques to play a key role in the GBM treatment. The standard technique for GBM
diagnosis concerns the acquisition of several Magnetic Resonance (MR) images to locate
and identify the different tissues related to the lesion. However, the manual analysis
and delineation of these relevant tissues involves a complex, tedious, time-consuming and
biased task. The increasingly consolidated techniques based on PR approaches have been
shown to provide automated efficient solutions for routine clinical application [4].

Nonetheless, most of these techniques arise from the supervised learning standpoint.
Supervised learning is a ML approach that depends on a manually annotated training
datasets to learn discriminative functions used for mapping new examples. The training
dataset consists of a set of observed-input and desired-output pairs, used to infer the mo-
dels that represents these relationships. The most important drawback of the supervised
learning concerns the acquisition of the training dataset [5]. The training dataset must
be manually created by experts and should contain a sufficiently large set of labelled ex-
amples than enables to learn generalized models that apply successfully to unseen data.
Hence, supervised learning is limited to the quality and size of the training dataset, which
requires an expensive, tedious, time-consuming and biased task to compile it. Further-
more, common problems such as the over-fitting of the models or the inability to provide
labels for all situations in some problems should be considered [5]. Finally, a well-known
problem of brain tumour MR images is the normalization between acquisitions of different
patients [4]. Supervised approaches require a recalibration of the models when the data
sources are not normalized or experiment changes, for example different hospitals or new
MR protocols. Such limitation in combination with the difficult and expensive task of
compile manual labelled brain tumour datasets severely affects the viability of supervised
approaches for real clinical routine.

In these sense, this M.Sc. Thesis is intended to provide an unsupervised learning
methodology for GBM segmentation, able to overcome the limitations concerning the
supervised approaches. The proposed methodology has to reach comparable results to
supervised segmentations, while addressing the inherent limitations of the unsupervised
learning such as the lack of interpretability of the unsupervised partitioning. Furthermore,
the method has to provide mechanisms to minimize the initialization problem of clustering
algorithms, which may lead to poor local minima solutions. Finally, it is interesting that
the unsupervised method takes advantage of the self similarity presented in the images,
by employing models that considers dependencies between the data to be segmented.

1.2 Hypothesis

The present M.Sc. Thesis is based on the following hypothesis:

I The unsupervised approach to brain tumour segmentation is a viable approach as it
can obtain coherent and accurate results similar than the ones retrieved by manual
expert labelling, and also comparable to supervised segmentations, but avoiding the
tedious, time-consuming and biased task of manual expert labelling.



1.3. Goals

1.3 Goals

The general goal of this M.Sc. Thesis is to contribute in the design, development and
validation of brain tumour segmentation methods, specifically in the unsupervised learning
field, by providing a complete and robust methodology for GBM segmentation.

This main goal is achieved by fulfilling the following specific goals:

e To design a fully automated unsupervised brain tumour segmentation method. Iden-
tify the requirements and stages of the methodology and provide a competitive seg-
mentation system comparable to supervised approaches.

e To study and implement the required techniques and algorithms to develop the
unsupervised methodology.

e To design and implement mechanisms to improve the biological interpretability of
the unsupervised results for GBM segmentation, as they are devoid of semantic
meaning.

e To evaluate the proposed unsupervised segmentation method with a real public and
reference brain tumour dataset.

e To compare the performance of the unsupervised segmentation method with state-
of-the-art supervised segmentation algorithms.

1.4 Contributions

The scientific contribution of this M.Sc. thesis concerns the application of ML techniques,
specifically unsupervised learning algorithms, to design and develop a complete automated
method for GBM segmentation. This method is not limited to GBM segmentation but
can also be applied to other brain tumour cases and to other pathologies such as Multiple
Sclerosis. Nevertheless, this M.Sc. Thesis only evaluates the method for GBM segmenta-
tion to focus the study. The technological results of this M.Sc. Thesis are compiled and
registered by the Universitat Politécnica de Valéncia (UPV) and currently the method is
under the registration process as a original patent with reference ID 769-PAT /MGM.
This M.Sc. Thesis has served as a prototype and study case to write the National Re-
search Project Caracterizacion de firmas bioldgicas de Glioblastomas mediante modelos no
supervisados de prediccion estructurada basados en biomarcadores de imagen (TIN2013-
43457-R), which has been accepted and will be funded by the Ministerio de Economia
y Competitividad of Spain. This Thesis has also served to achieve a Private Research
Project called Segmentacion no supervisada de Glioblastomas basada en imagen de re-
sonancia magnética multiparamétrica y restricciones espacio/temporales, which is funded
and supported by Hospital Universitario Politécnico La Fe and BRACCO Company®.

The main contributions of this M.Sc. thesis can be summarized as follows:

Contribution 1: The design and implementation of a robust methodology for unsuper-
vised brain tumour segmentation by means of a definition of a complete automated

8http://imaging.bracco.com/us-en
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method able to achieve accurate results comparable to supervised approaches, avoid-
ing the tedious, time-consuming and biased task of manual expert labelling.

Contribution 2: The design of a postprocessing stage able to robustly differentiate be-
tween pathological and non-pathological classes in a brain tumour segmentation.
The statistical approach that underlines the method provides a flexible and power-
ful framework to accurate identify tissues that not correspond to healthy brains.
This approach can be also extrapolated to other pathologies besides GBM, as it can
detect anomalies not referred to healthy tissues.

Contribution 3: Evaluation of a complete unsupervised segmentation approach with a
public real brain tumour dataset, in order to assess the performance of the unsuper-
vised approaches with respect to the state-of-the-art techniques in supervised seg-
mentation. Several unsupervised algorithms are evaluated within the methodology
to asses the benefits and limitations of each one, differentiating between structured
and non-structured segmentation algorithms.

1.5 Summary of the remaining chapters

Chapter 2 briefly introduces the principles of MRI and the different MRI modalities
used in the study. Furthermore, the public dataset used to evaluate and compare
the performance of the method against supervised approaches is presented.

Chapter 3 presents the preprocessing stage for the proposed unsupervised segmenta-
tion methodology. Several state of the art techniques proposed to correct the most
common artefacts of MRI acquisitions are exposed. The preprocessing covers the
following artefacts and operations: Denoising, magnetic bias field correction, skull
stripping and superresolution.

Chapter 4 introduces the techniques used to extract discriminative features from the
MR images to differentiate between the tumoral tissues. In addition to the intensity
levels provided by each MR image, texture features are computed for all sequences
to distinguish between tumoral tissues. Dimensionality reduction based on Principal
Component Analysis (PCA) is proposed to reduce the high-dimensional data space
representation, thereby decreasing the complexity in the inference of the algorithms.

Chapter 5 covers the unsupervised clustering algorithms evaluated in the brain tumour
segmentation method. Both structured and non-structured classification algorithms
are considered. Under the non-structured paradigm; K-means, Fuzzy K-means and
GMM unsupervised clustering algorithms are evaluated. Regarding the structured
prediction pattern; GHMREF algorithm is proposed. All clustering techniques are
postulated in terms of variants of generative mixture models and EM algorithm.

Chapter 6 introduces the proposed automatic tumoral classes isolation designed to im-
prove the lack of interpretability of the unsupervised results. An automatic identifi-
cation of pathological classes is presented based on a statistical approach supported
by tissue probability maps obtained for normal tissues.

4



1.5. Summary of the remaining chapters

Chapter 7 discloses the evaluation of the unsupervised segmentation system. Figures of
merit used for the evaluation of the method are presented. Results obtained for the
different clustering techniques in combination with the proposed preprocessing and
postprocessing stages are described. A ranking comparing the results achieved by
the supervised approaches evaluated in the International Image Segmentation Chal-
lenge of Medical Image Computing and Computer-Assisted Intervention (MICCAT)
Conference and the proposed method is presented.

Chapter 8 discusses the pros and cons of the different algorithms of the preprocessing
stage, as well as the results obtained by the different unsupervised clustering algo-
rithms and the impact of the proposed automatic tumoral classes isolation method.

Chapter 7 summarizes the conclusions and explains the future lines of research and
development.






Chapter 2

Review of the literature

Glioblastoma Multiforme (GBM) is the most frequent (>50%) and most aggressive malig-
nant tumour of the Central Nervous System (CNS) [1]. GBMs are heterogeneous malig-
nant masses, characterized by hypercellularity, pleomorphism, microvascular proliferation
and high necrosis mitotic activity, in which different areas of malignancy grade can co-
exist [2]. The current standard treatment for GBM concerns surgery, radiotherapy and
chemotherapy, with an average global survivability of 15 months and a progression-free
survivability of 7 months [6]. Hence, the early identification of the different malignant
tissues related to the tumour becomes crucial to make decisions that can improve the pa-
tient survivability. The segmentation of the tumoral and peritumoral areas in combination
with abnormal tissue classification such as edema or necrosis is determinant to monitor
the evolution of the tumour recurrence or shrinkage during therapy.

The standard technique for GBM diagnosis is MRI [3]. MRI is a medical imaging
technique used to provide detailed images of the different types of tissues in the brain
through a non-invasive process. MRI is able to produce images with different types of
tissue contrast, which enables the segmentation and differentiation of the tissues. Due to
the heterogeneous nature of brain tumours, specifically in case of the GBM, several MRI
sequences are required to diagnose and segment the tumour including all its subregions [7].
The standard anatomical sequences used for the diagnosis are Tq-weighted, T-weighted
with contrast enhancement (T;.), To-weighted and FLuid Attenuated Inversion Recovery
(FLAIR).

In clinical practice, the segmentation is performed manually over these sequences by
expert radiologists, which becomes a complicated, tedious and time-consuming task, fre-
quently unaffordable to the humans in a reasonable time. Hence, in recent years, the
interest of automated segmentation techniques to recognize both the pathological and
healthy tissues of the brain has arisen. A previous review of automated brain tumour
segmentation methods was done by Angelini et al. [8]. However, the rapid advancement
in ML techniques applied to radiology [9] has derived in the most important brain tumour
segmentation methods after the 2007. Recent extensive reviews that compile most of these
techniques have been presented in [10, 4].

Brain tumour segmentation is usually addressed from the supervised learning stand-
point. Cai et al. [11] and Verma et al. [12] created voxel-wise feature vectors from a large
number of MRI sequences, including Diffusion Tensor Imaging (DTT), and applied Support
Vector Machines (SVM) to segment the tumour and additional subcompartments inside
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the lesion area. Ruan et al. [13, 14] used kernel class separability for feature selection
in a multiparametric MRI set and also used SVM to segment the tumour region. Tayel
et al. [15] proposed a combination of neural networks and fuzzy logic rules to segment
Region Of Interests (ROIs) for brain tumour diagnosis. Jensen et al. [16] proposed an
initial ROT segmentation based on morphological and thresholding operations and a pos-
terior training stage where four classifiers, comprising a logistic regression, a multi layer
perceptron and both fuzzy inference systems, were trained to segment different tissues of
the tumour. Lee et al. [17] used a combination of SVM and pseudo Conditional Random
Fields (CRF) to brain tumour segmentation. They performed the classic training step of
the SVM considering the data independent and identically distributed (iid), but introduces
spatial constraints similar as the CRFs to the inference process of the SVM to improve
the performance of the segmentation. Bauer et al. [18] also used SVM in combination
with hierarchical CRF to segment both healthy and tumour tissues, in addition to several
sub-compartments inside the lesion.

However, supervised learning requires an expensive, time-consuming and biased task
to retrieve manual labelled datasets from which to learn the segmentation models, hence
limiting the performance of the supervised approach to the quality of the training dataset.
Furthermore, common problems such as the over-fitting or the inability to provide labels
at all for some classification problems directly affects the supervised paradigm. Moreover,
MRI acquisition protocols are not standardized [4|, which in combination with the critical
and complex problem of brain tumour MRI normalization, limits the supervised models
to new cases acquired under the same protocol and conditions than the one used for train
the models. This limitation becomes more important as new clinical data tends to come
from different sources and is often shared between hospitals.

Unsupervised learning address this problems in a more straightforward way. Unsuper-
vised learning does not require a training dataset from which to learn the pair relations
between observation and labels, but directly uses the data to find natural groupings of
observations that represent clusters of information. Hence, the unsupervised learning is
much less affected by the heterogeneities between patients presented in the MRI datasets,
as it can segment each patient independently with its own data.

Although unsupervised learning is able to address these limitations, few research ef-
fort have been done in the brain tumour segmentation field. The heterogeneity of the
tumours, specifically in the GBMs tumour, makes the segmentation more challenging if
no prior knowledge is considered [19]. Additionally, the biological interpretation of the
unsupervised results is not as forward as in the supervised approach, thereby requiring
additional techniques to improve its comprehensibility.

Anyway, several attempts for brain tissue segmentation have been made under the
unsupervised paradigm. The first unsupervised model for tumour segmentation was pro-
posed by Schad et al. [20] in 1993. In this paper, texture patterns computed from the gray
level intensities of the MR images were used to classify different ROIs into healthy and
pathological tissues. Later, Fletcher et al. [21]| proposed an approach based on fuzzy clus-
tering and domain knowledge for multi-parametric non-enhancing tumour segmentation.
Domain knowledge and parenchymal tissue detection was based on heuristics related to
geometric shapes and locations, which may not be robust when the high deformation pro-
duced by the tumours is presented. Moreover, several assumptions such as prior knowledge
about the number of existing tumours or the slice thickness required for the MRI acqui-



sitions introduced several limitations to the method. Nie et al. [22] proposed a Gaussian
clustering with a spatial accuracy-weighted Hidden Markov Random Fields (HMRF) that
allowed them to deal with images at different resolutions without interpolation. Nowadays,
advanced reconstruction techniques such as super-resolution enables to work in a high re-
solution voxel space, minimizing typical problems of interpolation such as partial volume
effects. Moreover, no method was provided to differentiate between tumoral classes and
normal tissue classes of the brain, so manual identification might be needed. Zhu et al. [23]
developed a software based on the segmentation method proposed by Zhang et al. [24],
which performs an EM Gaussian clustering combined whit HMRF’s. Zhu et al. extended
Zhang’s approach through a sequence of additionally morphological and thresholding ope-
rations to refine the segmentation, however such operations are not fully specified and only
overall commented, so the reproducibility of their results is not possible. Vijayakumar et
al. [25] proposed a method based on Self Organizing Maps (SOMs) to segment tumour,
necrosis, cysts, edema and normal tissues using a multi-parametric MRI set. Although
the learning process of SOMs is performed in an unsupervised manner, the dataset from
which to infer the structure adopted by the Artificial Neural Networks (ANN) should be
selected and determined manually, such as a supervised approach. In the Vijayakumar
work, 700 pattern observations were chosen, corresponding to 7 different tissues that they
assumed to exist in the brain. The correct selection of these prototypes determines the
quality of the network, hence converting the process in a supervised labelling task.

Furthermore, all the unsupervised approaches proposed above apply their algorithms
on its own datasets, making difficult a general comparison of the methods. In the last years,
important efforts has been made to provide public brain tumour segmentation datasets
to evaluate the performance of the proposed methods and the current state-of-the-art in
automated brain tumour segmentation. MICCAT Society promotes this idea and started
at 2012 to organize the BRATS Challenge, by providing a public annotated dataset of
high-grade and low-grade gliomas.






Chapter 3

Materials

3.1 Magnetic Resonance Imaging

Magnetic Resonance Imaging (MRI) is a medical imaging technique used to provide in-
ternal representations of the human body, crucial for the diagnosis, follow-up prognosis
and treatment of complex diseases. This technique was first discovered by the Armenian-
American physician, scientist and professor Raymond Damadian, who published in 1971
a paper in the journal Science [26] reporting that tumours could be distinguished in vivo
from normal tissues by Nuclear Magnetic Resonance (NMR). Although Damadian’s initial
method was not viable for practical use, he developed in 1972 the world’s first magnetic
resonance imaging machine. Simultaneously, Paul Lauterbur, extending the work pro-
posed by Herman Carr, published in 1973 the first MR image [27] and one year after the
first cross-sectional image of a living mouse [28]. In the late 1970s, the professor Peter
Mansfield developed a mathematical technique able to provide MRI scans that took se-
conds rather than hours to produce clearer images than the Lauterburg and Damadian’s
images. In August of 1980 the team led by John Mallard obtained the first clinically
useful MRI, which identified a primary tumour in the patient’s chest, an abnormal liver
and secondary cancer in the patient bones. Paul Lauterbur and Peter Mansfield were later
awarded in 2003 with the Nobel Prize for their discoveries and advances in MRI.

MRI is based on the magnetic properties of the atomic nuclei, specifically on the
spin angular momentum of the hydrogen nucleus (H"). At a resting natural state, all
the hydrogen H* nucleus in the human body spin randomly, thus cancelling the angular
momentums each other and producing an overall zero spin magnetic momentum value.
Under the influence of an external uniform magnetic field By, the H™ nucleus align its
spin with the By in a parallel (low energy) or anti-parallel (high energy) state (Sp,).
Then, a sequence of Radio Frequency (RF) pulses at the Larmor frequency of the H*
nucleus is applied to the By, exciting the protons and enforcing them to change its spin
orientation 90° with respect to the By direction (Sg,,). After the RF pulses end, the H+
nucleus begins to return to the Sp, state by recovering the By direction and the excessive
spin begins to dephase at a different frequencies regarding to chemical context of the H™
nucleus. The magnetic coils capture the electric signals produced by the nucleus during
their transition, and store them in the so called K-space, in order to later reconstruct the
MR image through an inverse Fourier process.

The rate at which the H™ nuclei realigns with the By field and its dephase rate de-

11
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termines the different contrasts of the images. There are three types of contrast in MR
images: Ti-weighted, To-weighted and Proton Density (PD) images. The different con-
trasts are related to the Repetition Time (TR) and the Echo Time (TE) times. TR is the
time between successive RF pulses and affects the speed in which H+ protons realigns to
the By filed after the RF ends. The TE refers to the time at which the electrical signal
induced by the H+ protons is measured in the magnetic coils and concerns the degree of
dephasing of the spins of the protons. Figure 3.1 show the relation between the TR and
TE and the contrast of the MR images.

TE

Figure 3.1: Relation between short and long TR and TE and the contrast obtained in MR
images.

The clinical gold standard for brain tumour diagnosis relies on the use of T; and
Ty-weighted sequences, FLuid Attenuated Inversion Recovery (FLAIR) sequence and
contrast-enhanced T-weighted sequence (Ti.) [29, 30]. Ti-weighted sequences are com-
monly used to differentiate between healthy tissues as they primarily show structural
information of the brain. GBM tumours typically present a hypointense to isointense
pattern on the lesion area in the T,-weighted sequence. T;. enhances the tumour bor-
ders given that the contrast agent (Gadolinium (Gd)) accumulates in this area due to the
disruption of the blood-brain barrier. An enhanced Gadolinium ring around the tumour
is typically presented in the T;. sequences. The Ty-weighted images highlights the lesion
area including the edema region, presenting a hyperintense pattern in such area. Also the
Cerebro-Spinal Fluid (CSF) appears hyperintense, hence avoiding its separation in the
Ty sequence. The FLAIR sequence is a special To-weighted image with free water signal
suppression, which enables the differentiation between the CSF and the edema. Figure
3.2 shows an example of the visualization of GBM tumour in the different MR sequences.

12
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Figure 3.2: Example of an axial slice of different MRI sequences showing a GBM tumour.
From left to right: Tq, Ty., To and FLAIR image.

3.2 BRAin Tumour Segmentation (BRATS) 2013 dataset

In order to make the results of this M.Sc. Thesis comparable and to provide an overview of
the performance of unsupervised classification techniques for brain tumour segmentation,
we used the public multi-modal BRAin Tumour Segmentation (BRATS) 2013 dataset.
This dataset was released for the international NCI-MICCATI 2013 Grand Challenges in
Image Segmentation of MICCAT Conference®.

The BRATS 2013 dataset provides two sets for the development of automated brain
tumour segmentation methods. The training set consists of multi-contrast MR scans
of 30 real glioma patients: 20 with High Grade (HG) glioma tumour and 10 with Low
Grade (LG) glioma tumour. Additionally, 25 synthetic cases of HG and LG glioma tumour
are provided. For each patient of the training dataset, both real and synthetic, expert
manual segmentations are provided. The test set consists of multi-contrast MR scans of 10
HG glioma patients without the expert labellings. An evaluation web page was published
the day of the Challenge to upload and assess the quality of the test segmentations.

Table 3.1 summarizes the distribution of cases provided in the BRATS 2013 dataset.

Total ‘ Real ‘ Synthetic

HG LG HG LG

Training 80 20 10 25 25
Test, 10 10

Table 3.1: Distribution of the number of patients provided in the BRATS 2013 dataset.

For each patient, T1-weighted, To-weighted, contrast-enhanced Ti-weighted (Ty.) and
FLAIR MR images were provided. All images were linearly co-registered to the Ty,
sequence, skull stripped, and interpolated to 1 mm isotropic resolution. No inter-patient
registration was made to put all the images in a common reference space.

BRATS 2013 manual expert annotations comprise five intensity levels:

Class 1: Non-brain, non-tumour, necrosis, cyst and haemorrhage. Further on red color.
Class 2: Surrounding edema. Further on green color.

Class 3: Non-enhancing tumour. Further on blue color.

3https://www.virtualskeleton.ch/BRATS/Start2013
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Class 4: Enhancing tumour core. Further on yellow color.

Class 0: Everything else.

Figure 3.3 shows an example of a patient from the training set of the BRATS 2013
dataset. The same slice is showed in different MRI sequences also with the manual expert
labelling proposed by the radiologists.

Manual
segmentation

Figure 3.3: Example of an axial slice of different MRI sequences from a patient of the
BRATS 2013 dataset, showing a GBM tumour and the manual segmentation provided
by expert radiologist. From left to right: T, T4., Ts, FLAIR, and manual segmentation
overlaid on the T;. image.

Due to the unsupervised condition of the method proposed in this M.Sc. Thesis, no
training set is required to learn the models of the classes. Hence, we only used the test
partition of the BRATS 2013 dataset to develop the proposed unsupervised segmenta-
tion approach and to evaluate it in the same conditions than the supervised methods.
Thus, we provide an assessment of the performance of different unsupervised segmenta-
tion algorithms in this public real dataset, and a comparison of these techniques with the
state-of-the-art supervised segmentation methods that participated in the challenge.

3.3 International Consortium for Brain Mapping (ICBM)
templates

Under the International Consortium for Brain Mapping (ICBM) Project, unbiased stand-
ard MR templates of normal brain volumes were provided by the McConnell Brain Imaging
Centre in 2009P.

These templates comprise the average of 152 healthy brains, non-linearly registered,
bias field corrected and at different resolutions and symmetry conditions. T;-weighted,
Ty-weighted and Proton Density MR modalities were provided with their probability maps
for the White Matter (WM), Gray Matter (GM) and Cerebro-Spinal Fluid (CSF) tissues.
6 different templates regarding to the resolution, preprocessing and symmetry conditions
of the hemispheres are available:

Phttp://www.bic.mni.mcgill.ca/ServicesAtlases/HomePage
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3.3. International Consortium for Brain Mapping (ICBM) templates

ICBM 2009a Nonlinear Symmetric: 1x1x1 mm? symmetric template with tissue pro-

bability maps. Ty relaxometry, lobe atlas and different brain masks were also pro-
vided.

ICBM 2009a Nonlinear Asymmetric: 1x1x1 mm?® asymmetric template with tissue
probability maps. T, relaxometry, lobe atlas and different brain masks were also
provided.

ICBM 2009b Nonlinear Symmetric: 0.5x0.5x0.5 mm?® symmetric template with tis-
sue probability maps.

ICBM 2009b Nonlinear Asymmetric: 0.5x0.5x0.5 mm? asymmetric template with
tissue probability maps.

ICBM 2009c Nonlinear Symmetric: 1x1x1 mm? symmetric template with tissue pro-
bability maps. Ty relaxometry, lobe atlas and different brain masks were also pro-
vided. Sampling is different from 2009a template.

ICBM 2009c Nonlinear Asymmetric: 1x1x]l mm? asymmetric template with tissue
probability maps. T, relaxometry, lobe atlas and different brain masks were also
provided. Sampling is different from 2009a template.

In this M.Sc. Thesis, we used the ICBM 2009c template for the postprocessing stage.
Figure 3.4 shows an overview of the different atlases provided with the ICBM 2009c
template.

Figure 3.4: ICBM 2009¢ template. Top row shows the axial views of the different atlases
provided with the template. Middle row shows the sagital view of the atlases, while bottom
row shows the coronal view. From the left column to the right column: T;-weighted
sequence; To-weighted sequence; Proton Density sequence, GM tissue probability map;
WM tissue probability map, CSF tissue probability map; Lobes segmentation

Tissue probability maps indicates for each voxel v of the brain the probability to belong
to a normal tissue T'= {WM,GM,CSF}, thus

S p(ty) = 1

teT
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Chapter 4

Methods

This chapter introduces the methods used in the M.Sc. Thesis to design the unsupervised
segmentation approach for GBM tumour. We begin with a section about the MRI prepro-
cessing techniques used to correct common artefacts of MR acquisitions and to enhance
the information contained in the images. Then, a feature extraction and dimensiona-
lity reduction section is presented including the techniques used to extract discriminative
features from the images and to reduce the high dimensionality of the data in order to sim-
plify the inference of the segmentation algorithms. Then, the unsupervised classification
algorithms are presented, separated by its structured or non-structured nature. All unsu-
pervised techniques are postulated in terms of variants of generative mixture models and
the EM algorithm. Then, the proposed method to automatically isolate the pathological
classes related to the GBM tumour is presented to improve the biological interpretability
of the results. Finally, the last section presents the evaluation strategies and figures of
merit used to assess the performance of the method.

Figure 4.1 shows the graphical scheme of the proposed unsupervised GBM segmenta-
tion approach presented in this M.Sc. Thesis.

Preprocessing

h Feature
extraction

I ' Unsupervised
classification 5 A

h Postprocessing ( @

. W

Figure 4.1: Proposed unsupervised GBM tissue segmentation pipeline.
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4.1 MRI preprocessing

The first important stage in the GBM segmentation method is the preprocessing. MRI
preprocessing is an active field of research that attempts to enhance and correct MR
images for its posterior analysis. In an unsupervised segmentation approach this step
becomes more important due to the absence of prior knowledge to guide the learning or
segmentation process. Hence, common artefacts such as noise or inhomogeneities may
rise as erroneous classes increasing the importance of an effective MRI preprocessing. We
propose the following scheme for preprocessing MR images before the segmentation of the
different tissues in the brain: 1) Denosing; 2) Registration; 3) Skull-stripping; 4) Bias field
correction; 5) Super resolution.

There is no standard preprocessing pipeline accepted for MRI data, however several
reasons can be adduced to justify the proposed preprocessing scheme. In order to avoid
the propagation of noise to posterior stages of the preprocessing, the denoising step is
first carried out. Next, the registration is performed to put all MR images in a common
reference space, which allows the computation of a unique skull stripping mask, valid
for all the MRI acquisitions of the patient. Hence, prioritizing the registration to the
skull stripping step, the computational cost of the preprocessing is reduced. Bias field
correction also benefits from the previous registration step when temporal sequences such
as Perfusion Weighted Images (PWI) are handled. In these cases, the bias field correction
must be adapted to not consider each dynamic of the sequence independently, and hence
not destroying the temporal information. Finally, the super resolution usually requires
that the different MRI acquisitions are registered in a common voxel space and the images
are as much filtered as possible to take advantage of the self similarity between all the
acquisitions of a patient. Furthermore, the proposed preprocessing pipeline is also valid for
both MR pathological and non-pathological images, and for supervised and unsupervised
segmentation approaches.

4.1.1 Denoising

Denoising is a standard preprocessing task for MRI manipulation, which aims to reduce or
ideally remove the noise from an image. Although MRI noise has been usually modelled
as a Gaussian distribution, by definition MRI noise follows a Rician distribution [31].
Diaz et al. [32] presented in 2011 a comprehensive analysis of different denoising methods,
discussing their weaknesses and strengths. Figure 4.2 shows an example of MRI denoising.
Top row shows a noisy original T; sequence. Middle row shows the denoised version of
the T sequence. Bottom row shows the residuals corresponding to the noise of the image.

A common drawback of denoising methods concerns the removal of high frequency
signal components of the images during the filtering. Recent approaches such as the
Non Local Means (NLM) introduced by Buades et al. [33] has improved the existing
techniques for MR, data. Based on this approach, Manjon et al. [34] introduced a variant
of the filter, which does not assume an uniform distribution of the noise over the image,
thereby adapting the strength of the filter depending on a local estimation of the noise.
The filter also deals with both correlated Gaussian and Rician noise. In this M.Sc. Thesis,
the approach proposed by Manjon et al. is used to remove the noise of the MR images.
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Figure 4.2: Example of denosing of a T; sequence. Top row: noisy Ti; Middle row:
Denoised T;; Bottom row: Residuals obtained after the denoising process.

4.1.2 Registration

Registration is another common process in medical imaging field. The standard protocol
for GBM diagnosis concerns the acquisition of several MR images. When a multi-modal
analysis is performed, it is mandatory that all MR images are in a common reference
space |7]. In other words, it is required that the same area of the brain is represented
by the same voxel positions in all MR sequences, to avoid introducing inconsistencies
or mixtures of tissues from different MRI acquisitions. In normal clinical practice, MR
images are not usually registered, so to ensure the voxel correspondences the registration
step needs to be carried out. The T; sequence of the patient is usually used as a reference
to register the rest of MR images. In brain tumour lesions, affine or linear registration
methods are preferred to not deform the areas of the tumour, thereby keeping intact the
lesion.

An extensive evaluation of 14 non-linear registration methods was carried out in 2009
by Klein et al. [35]. This work concluded that SyN algorithm [36] implemented in the
Advanced Normalization Tools (ANTS) suite was one of the best registration algorithms
in terms of accuracy, flexibility and efficiency. In this sense, we propose the use of ANTS
to perform the registration of the different MRI acquisition for the posterior segmentation.
Figure 4.3 shows an example of the registration process.

Although our preprocessing scheme includes the registration step, the BRATS dataset
comes with an intra-patient MRI registration. The evaluation web-page provided to assess
the performance of the proposed segmentations also holds the ground truth of each BRATS
patient registered to its corresponding MR images. Hence, no registration should be done
in order to not deform the images and its segmentations, thereby ensuring a correct
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Figure 4.3: Example of a non-linear MRI registration process.

evaluation.

4.1.3 Skull stripping

Skull stripping process comprises the removal of skull, extra-meningial and non-brain
tissues from the MRI acquisitions. In [37|, a review of different skull-stripping methods
was presented, however it did not include recent methods such as the ones provided in the
Brain Suite Software® [38], or the RObust Brain EXtraction (ROBEX) method proposed
by Iglesias et al. [39], which claims to provide significantly improved performance in a
multi-dataset evaluation, against six popular skull stripping methods. Figure 4.4 shows an
example of the intra-cranial mask computed through the skull stripping method provided
in the Brain Suite Software.

MR images of the BRATS dataset are also skull stripped, however we detected several
cases with partial inclusion of areas of the cranium that should be removed. For that
purpose, the Brain Suite Sofware was used to automatically compute a skull stripping
mask over the T; sequences, and removed the non desired cranium areas.

4.1.4 Bias field correction

Intensity inhomogeneity is another common artefact present in MRI acquisitions. Mag-
netic field inhomogeneities are an unavoidable effect in MRI, which generates a low fre-
quency signal that corrupts the images affecting their intensity levels. Hence, the same
tissue in the brain could present different gray level distributions across the image, in-
troducing inconsistencies that directly affects the segmentation methods. Typically, auto-
mated segmentation approaches are based on the assumption that the brain tissues present
the same distribution of intensity among the image. Therefore, a preprocessing step is

3http://brainsuite.org/
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Figure 4.4: Example of a skull stripping process on a high resolution 3D T;. sequence.
Mask computed with the skull stripping method provided with the Brain Suite Software.

needed to correct the bias field before the segmentation. Figure 4.5 shows an example of a
T1. MRI sequence presenting magnetic field inhomogeneities and the corrected sequence
with its estimation of the bias of the magnetic field.

Figure 4.5: Example of bias field correction on a T, sequence. From left to right: Original
T;. sequence with magnetic field inhomogeneities artefact; T4, sequence after the bias field
correction; Estimation of the bias of the magnetic field produced by the MRI machine.

The popular non-parametric non-uniform intensity normalization N3 algorithm was
proposed in 1998 by Sled et al. [40], becoming a reference technique for bias field correcting
because of no tissue model was needed to perform the correction. Tustison et al. [41]
proposed in 2010 a new implementation of N3 called N4, which improves the N3 algorithm
with a better B-spline fitting function and a hierarchical optimization scheme for the bias
field correction. N4 is used in this M.Sc. Thesis for MRI magnetic field inhomogeneity
correction.
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4.1.5 Super resolution

In a brain tumor lesion protocol, several MR sequences are commonly acquired at dif-
ferent resolutions, thereby introducing spatial limitations when a multi-modal study is
performed. In these cases, an upsampling or interpolation is needed to set a common
voxel space for all images. Classical interpolations, such as linear, cubic or splines inter-
polation could rise as a solution for the problem, but at the cost of introducing common
artefacts in the images such as partial volume effects or stair-case artefacts. In contrast,
more powerful and sophisticated methods such as super resolution could improve classical
interpolation methods by reconstructing the low resolution images, recovering its high
frequency components. Several super resolution schemes for MR imaging are available in
the literature [42, 43, 44, 45|.

High resolution T1c Low resolution FLAIR

Figure 4.6: Example of super resolution reconstruction of a low resolution FLAIR sequence
using information of a high resolution T;. sequence from the same patient. Comparison
between classic b-spline interpolation of the low resolution FLLAIR sequence and the super
resolution reconstruction.

BRATS dataset comes with a ITmm? isotropic voxel size resolution achieved through
classic interpolation. Such interpolation could be improved through an iterative super
resolution reconstruction process to recover the high frequency components of the image.
Specifically, we use the super resolution algorithm proposed by Manjon et al. [46], which
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exploits the the self-similarity present in MR images through a patch-based non-local
reconstruction process.

4.2 Feature Extraction and Dimensionality Reduction

Feature extraction comprises the process of obtaining new features from the MR images
to improve the discrimination between different tissues in the posterior segmentation.
Although MRI intensities are the most common features used to discriminate between
tissues in the brain, it has been shown that including texture features in combination
with MR intensities increases the performance of brain tumour segmentation [47, 48|.
Several approaches to extract textures from images are proposed in the past years. Robert
Haralick provided in [49] the reference paper for analysis of textures in images. Later, Van
Gool et al. [50] also reviewed the algorithms for texture analysis and both authors agreed
in classifying the texture extraction methods in two categories: Statistical methods and
structural methods. Structural methods are better suited to regular large patterns of
texture, however statistical texture features present better performance for non-regular
micro textures in images. In this M.Sc. Thesis we adopted the statistical texture feature
analysis for texture representation.

Several approaches has been proposed to extract statistical texture features from ima-
ges [51, 52]. We implemented the first order texture features, often called histogram
derived metrics or first central moments, as a method for texture representation. Such
features consist on the computation of the histogram in a local 3D neighbourhood centred
at each voxel of the MR image, and then compute the mean, variance, skewness and kur-
tosis of such histogram. Thus, we computed the texture features for all the MRI sequences
of a patient (Ty, Ty, Ty and FLAIR), using a local 3D neighbourhood of 5 x 5 x 5 voxels
for all the non-background voxels of the images. Figure 4.7 shows an example of the first
order texture features computation on a T, sequence.

First order texture features

Mean Variance

Local histogram (5x5x5 Neighbourhood)

Absolute Frequency

12 14 16 18 2 22
Intensity x10*

Skewness Kurtosis

Figure 4.7: Example of first order texture features computation on a T;. sequence of a
patient of the BRATS dataset.

Besides the texture feature images, an additional image named T4 is computed. The
T4 image is obtained from the absolute difference of the T;. and T; sequence.

Tld :l Tlc - Tl |

23



Chapter 4. Methods

This image highlights the contrast enhanced areas of the T;. image, such as the active
tumour, and also helps in the discrimination of WM and GM tissues. First order texture
features are also extracted from the T, image in the same manner as for the other MRI
acquisitions.

As a result, a set I of 25 images (3D volumes) are obtained from each patient.

I= (T, Tie, To, FLAIR, Tyay figy s ooy OFy s ooy YTy s oo Biry,) [ 1 € REXYXZXD

where u, o, v, and k prefixes refers to the mean, variance, skewness and kurtosis texture
features respectively, X,Y, Z are the dimensions of the images (equal for all images after
the registration), and D refers to the dimensions of each voxel, id est (that is) (i.e) the
number of different images or features (D = 25).

Dimensionality reduction is the process of efficiently represent the original high dimen-
sional data into a lower dimensional space, but retaining or increasing its most relevant
information. Several dimensionality reduction algorithms have been presented in the past
years, differentiating between linear and non-linear approaches. Figure 4.8 shows a tax-
onomy of the most popular dimensionality reduction algorithms.

Dimensionality
Reduction

Linear

PCA Preserving global Alignment of local Preserving local
properties representations roperties

LLC

1 1 1 | Cem ]

i R tructi
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K | .
ermne Autoencoder MDs, MVU LLE LTSA Laplacian

PCA Isomap Hessian LLE Eigenmaps

Neighborhood
Laplacian graph

Local tangent
space

Figure 4.8: Taxonomy of dimensionality reduction algorithms.

In this M.Sc. Thesis, PCA is used to reduce the voxel dimensionality of the input
data I. PCA is a linear reduction technique, which seeks for an orthogonal transformation
of a number of hypothetical correlated variables into a smaller number of uncorrelated
variables called principal components. Such principal components are sorted in terms of
amount of variance explained from the data, becoming the first component the one that
accounts for as much variability as possible. Projecting the original data over the first
components of PCA (number of components less than the number of original dimensions),
a dimensionality reduction is achieved by preserving the most variability in the data as
possible.

As PCA is based on the variance of the data to perform the reduction, we must exclude
the variance texture feature of the set I to avoid that first components of PCA retain only
this feature. Thus, the dimensions are directly reduced to D = 20 and the I set is then
formed by:

I= (TlaTlc, TQ, FLAIR, Tld, Ty s ooy YTy s ooy K’Tld) / Ic RXXYXZxD

PCA is finally applied to retain the 99% of the variance of the data, achieving a reduction
D = 5 for all patients of the BRATS 2013 dataset. An slice example of the feature
extraction and PCA dimensionality reduction of a patient is shown in Figure 4.9.
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Original .

Skewness

Figure 4.9: Example of feature extraction and dimensionality reduction of a patient of the
BRATS dataset.
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4.3 Unsupervised voxel classification

Unsupervised learning is a branch of Machine Learning (ML) which calls for finding a
hidden structure in the input data, often called clusters, formed by natural groupings of
observations. The major difference between supervised and unsupervised learning relies in
that the second receives an additional sequence of desired outputs from which to learn the
relations with the inputs and the discriminant models to distinguish them. Conversely,
unsupervised learning does not require a set of labelled data. Instead, unsupervised learn-
ing examines the input data in order to find clusters of homogeneous information that
represents each one a different class.

We evaluated the most popular unsupervised classification algorithms to segment both
normal and pathological tissues in the brain. We divided the algorithms in two groups:
Structured and non-structured classification algorithms. Non-structured algorithms clas-
sify data assuming an iid condition between the observations (voxels) of the dataset.
Structured prediction covers the range of algorithms that assume and model data with a
specific structure, such as an image, i.e assume conditional dependency between the ob-
servations. Under the non-structured paradigm, we evaluated three methods: K-means,
Fuzzy K-means and Gaussian Mixture Model (GMM) clustering. In the structured predic-
tion case we evaluated Gaussian Hidden Markov Random Field (GHMRF) as the archetype
of unsupervised structured learning.

BRATS 2013 dataset comprises 5 classes to be segmented, which in some cases a single
class encloses several types of tissues (for example 0 class). This intra-class heterogeneity
severely affects the performance and interpretation of the unsupervised results. While su-
pervised approaches can address this heterogeneity by enforcing the algorithm to learn a
model that represents the data enclosed in a class, unsupervised approach often solves the
problem by separating the heterogeneous classes in different clusters. Thus, the unsuper-
vised approach often requires to estimate more than the initially defined classes. However,
it is then mandatory to design a postprocessing stage after the initial segmentation, to
improve the interpretability of the results, and merge the possible redundant classes. Of-
ten, prior knowledge about the task could give an orientation of the number of classes
that should be estimated. In this case we assume that at least 7 different tissues exist in
the brain, which are:

Tissue 1: Class 1 of BRATS 2013 dataset. Non-brain, non-tumour, necrosis, cyst and
haemorrhage.

Tissue 2: Class 2 of BRATS 2013 dataset. Surrounding edema.
Tissue 3: Class 3 of BRATS 2013 dataset. Non-enhancing tumour.
Tissue 4: Class 4 of BRATS 2013 dataset. Enhancing tumour.
Tissue 5: White Matter (WM).

Tissue 6: Gray Matter (GM).

Tissue 7: Cerebro-Spinal Fluid (CSF).
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4.3. Unsupervised voxel classification

Moreover, due to the intra-class heterogeneity presented in some classes, we assume
that each class is modelled through a mixture of 2 Gaussians, giving a total of 14 classes.
Therefore, 14 classes are estimated for each unsupervised classification algorithm.

A well-known requirement of unsupervised learning algorithms is the good initial seed-
ing. Although global minima is not usually reached even if a good initialization is provided,
a bad initialization can lead the model to a hard local minimum, thereby providing a poor
segmentation. Several strategies such as multiple replications or intelligent initial seeding
are proposed to palliate this effect. In this M.Sc. Thesis, we implemented the K-means-++
algorithm proposed in [53], which provides an initialization that attempts to avoid local
minima. Additionally, we generated 100 different K-means+ -+ initializations, and run each
unsupervised segmentation algorithms with each initialization. Finally, the best solution
for each algorithm is chosen attending to the following criterion:

e Lowest intra-cluster sums of point-to-centroid distances is used for K-means and
Fuzzy K-means algorithms.

e Lowest Negative Log-Likelihood value is used for GMM clustering and GHMRF.

4.3.1 Expectation-Maximization (EM) algorithm

Expectation-Maximization (EM) [54, 55] is an algorithm proposed by Arthur Dempster,
Nan Laird and Donald Rubin in 1977, which is used to find the maximum likelihood
parameters of a statistical model in cases where latent variables and unknown parameters
are involved. In our case, EM is used to estimate probabilistic generative mixture models
where both labels and parameters of the underlying model are unknown.

Let X = (x1,Xs,...,Xy) the set of observations to be classified, where x, € R? re-
presents a feature vector of D dimensions for observation n. Let Y = (y1,¥2, ..., ¥N)s
where y,, € {0,1}/°l an unit-length multinomial variable that indicates the class for the
observation n. Let C = {1,...C'} the set of all possible classes.

From the statistical point of view, the classification problem is often addressed through
the Bayes decision rule, which ensures that the minimization of the global risk is obtained
by maximizing the posterior probability of the classes given the observations.

~

Y = argmax py(Y|X)
Y

where 6 represent the parameters of the underlying probabilistic model.

The supervised classification paradigm assumes that both observations X and labels
Y are known and then, the learning process consists of estimating the parameters of the
model 0 that best fit the observed data. Thus, it is called that the supervised approach
has the complete dataset, denoted by {X,Y}. Maximum likelihood is usually employed to
estimate the parameters of the model, which considering the complete dataset becomes
straightforward.

LOIX.Y) = py(X.Y)

When an unsupervised learning approach is adopted, both labels Y and parameters 6
are not observed, so maximum likelihood estimation of the model is not directly possible.
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Hence, both 6 and Y are considered as latent or hidden variables, thus becoming the
model

po(X) = pe(X,Y)

The log-likelihood function is then given by

L(0]X) = logpg(X) = log {ZP&(Xa Y)}

which becomes in a more complex solution.

In such cases, EM algorithm can be used to iteratively obtain the most likelihood
parameters of the model and the non-observed values of the labels Y. EM consist of two
steps: the Expectation (E) step, in which the expected value of the joint distribution of
the observations and the labels is computed given the parameters of the model and the
posterior probability at the current iteration, and the Maximization (M) step, in which an
updating of the old parameters of the model is performed based on the recently computed
posterior probability in the E step.

Thus, the general form of the EM algorithm is as follows

Initialization step: Initialize (9 parameters.

Expectation step:

QOI6™) = E, , vix) (log ps(X,Y))
= pe (Y]X) (log pg(Y) + log p(X[Y))
Y

Maximization step:

6*+Y = arg max Q(A|4™))
0

Convergence step: Stop if L(0%+V|X) — £(0®)|X) < ¢ otherwise k = k + 1 and go to
Expectation step.

In practice, the Q(A|0*)) function is not usually computed in the Expectation step.
Instead, only the posterior probability (which is the unknown distribution at this point)
is required to estimate the new parameters of the model in the Maximization step. Hence,
in real implementations of the algorithm, only the posterior probability is computed in
the Expectation step.

EM algorithm is not guaranteed to converge to a global maxima of the likelihood
function, so several heuristics or strategies has been proposed such as multiple replications,
intelligent initial seeding or simulated annealing.
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4.3.2 Non-structured Gaussian mixture model

A non-structured mixture model refers to a probabilistic model where the observations are
assumed to be independent and identically distributed (iid). In this cases, the probabilistic
model has the form

iid
po(X,Y) = [ [ po(¢n, )
Following a generative process, p(y,) and p(x,|y,) are generated as

= [ i governed by p = (p1, ... pc)
ceC

Por(Xn|yn) = H po (X,|c)?™e governed by 6’
ceC

Thus, the parameters that governs the probabilistic model are § = (p, #').
In the unsupervised classification paradigm where both parameters # and labels Y are
not observed, the model is expressed as

X) = ZPG(Xv Y)
ENT ST pexan v

= [;pe(xw’l] [Z D T peenyn)

YN n=2

= H ZPG(XM Yn>

A typical assumption is to model the data as a mixture of (independent) multivariate
Gaussians. In this case, the 6 parameters are defined as

0= (p,0)

p = (p1,....,pc)
HI = ( i, ,9/0) = (,uh ...,,uC;El, ...,EC)

The EM algorithm for non-structured Gaussian mixture models performs as follows
Initialization step: Initialize 6 parameters (i.e each p., j. and X.).

Expectation step:
QUOIO™) = E, i vix) log ps (X, )]

zzd
Z Py(k) Yn|xn) logp9<xnayn)]

= Z > "y (log pe + log py (xac))
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where y,(L’Z) is the posterior probability of x,, being generated from component ¢

k k
P (x4 )
S PPy (%)

?/g? - Epe(k) (ynlxn) [ync] = Po(k) (ync = 1|Xn) =

Maximization step:

O*+Y) — argmax Q(6|6™)) , subject to ch =1
0

= arg;naxmAaxQ 6|6™) (ch — 1)

where taking derivatives of ) w.r.t p, # and A and equating them to zero gives

pt = Nzym
pdt = (k Dy x

nnc n

Z((:k+1) = k) Z y k+1)) (Xn - M((lk+1))t

n nc

Convergence step: Stop if L(0*TD|X) — L(0W]|X) < ¢; otherwise k = k4 1 and go to
Expectation step.

4.3.2.1 K-means

K-means [56, 57| is an unsupervised non-structured iterative partitional clustering based
on a distance minimization criterion. Its aim is to divide the data space into C' clusters
(C < N)J=A{J1,Ja,...,Jc} so as to each observation belongs to the cluster with nearest
centroid. The distance criterion minimized by K-means is

mmZZan2

c xp€Je

From a statistical point of view, the K-means approach is equivalent to find the most
likelihood parameters of a mixture of multivariate Gaussians [58| (each Gaussian represents
a class), assuming a shared identity covariance matrix and uniform prior probabilities for
all Gaussians. Thus, each class follows 6’ ~ N (ji¢, I) and prior probability for each class is
pe =1/ | C |. Moreover, the iterative approach followed by K-means is also demonstrated
a special limit of the EM algorithm, called Hard-EM. In this variant of the algorithm,
the observations are assigned hardly to the closest Gaussian of the mixture, assuming a
posterior probability of ps(yn. = 1|x,) = 1, instead of computing its real probability.
Thus, the Hard-EM version implemented by K-means performs as follows

1. Initialize parameters () (i.e initialize j for each class c)
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4.3. Unsupervised voxel classification

2. Hard E step: Given the current parameters #%) at iteration k, compute the fol-
lowing @) function:

Qo | 6" ZZyn (log pe + log py(Xalc))

where:

LA || x = 8 < minge || %0 — pg? |

y ) =
e 0, otherwise

3. M step: Make a guess #**1) by choosing 6 that maximizes the @ function:

0%+Y) = arg max Q(Q\Q(k)) subject to ch =1
0

where the parameter update is computed as:

pdt = (k Zy

n nc

4. Stop if samples do not change class; otherwise go to step 2.

4.3.2.2 Fuzzy K-means clustering

Like K-means, Fuzzy K-means [59, 60| also proposes a mixture of multivariate Gaussian
distribution assuming a shared identity covariance matrix and uniform prior probabilities
for all classes. However, Fuzzy K-means differs from K-means in which the assignment of
a observation to a class is not hard but fuzzy. This means that each observation now keeps
a degree of membership to each Gaussian (related to its posterior probability) instead of
a unique assignment with posterior probability of 1. In the same manner as K-means, the
aim is to divide the data space into C' clusters (C < N) J = {Jy, Ja, ..., Jc}, but it also
provides a vector u,, for each observation, which determines the membership degree of the
observation n to the different clusters. The new distance minimization criterion followed
by Fuzzy K-means is

arnginZ Zu?c | % — pte |2 1<m< oo

where m controls the degree of fuzziness of the cluster ¢, typically set to 2 in absence of
domain knowledge, and wu,, is defined as

1
N 2o
K |lxn—pel* | m~1
ZJ’ <IIXn—ujII2>
where u,, is proportional to the posterior probability of cluster ¢ given the observation n,

Unpe ~ pe(ync|xn)-
The EM version proposed by Fuzzy K-means is then formulated as follows

unc -
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1. Initialize parameters 6 (i.e initialize j for each class c)

2. Hard E step: Given the current parameters #%) at iteration k, compute the fol-
lowing @) function:

Q| o* ZZyn (log pe + 10g Py (%n]c))

where:

) = e

3. M step: Make a guess 81 by choosing 6 that maximizes the @ function:

0%+Y) = arg max Q(Q\Q(k)) subject to ch =1
0

where the parameter update is computed as:

1
(k+1) - (k)
[’LC k) unc Xn
Saun

4. Stop if samples do not change class; otherwise go to step 2.

4.3.2.3 GMM clustering

Gaussian Mixture Model (GMM) clustering is the generalization of K-means and Fuzzy K-
means algorithms. The hard constraints imposed by K-means and Fuzzy K-means related
to the prior probabilities and covariance matrices derives in linear decision boundaries of
the data space, which often lead to weak classifiers with a low performance. Also the hard
assignment of the observations to the classes may derive in noisy classifications instead
of soft decision boundaries. Thus, a natural improvement is to consider free covariance
matrices for each class, non equal prior probabilities and soft assignment based on posterior
probabilities for each class. This approach builds a more flexible model, able to represent
non-linear decision boundaries.

Attending to these new conditions, the EM algorithm is then the proposed in the
subsection 4.3.2, which performs as follows

1. Initialize parameters #(©) (i.e initialize pe, X. and p. for each class c)

2. Hard E step: Given the current parameters %) at iteration k, compute the fol-
lowing @) function:

Qo | 6" ZZyn (log pe + log py(Xalc))

where:

k) (k
y0 = Pt >pé,><xn|c>
> 08Pl (%a])
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4.3. Unsupervised voxel classification

3. M step: Make a guess #*T1) by choosing 6 that maximizes the @ function:

6* D) — arg max Q(|6™)) subject to ch =1
¢ C

where the parameter update is computed as:

1
(k+1 _ = (k)
c - N Z ync
k+1)

nnc n

E(kJrl

C

Ck+1)) (Xn . ,u((:kJrl))t

n"c n

4. Stop if LIO®HV|X) — L(0M]X) < ¢; otherwise go to step 2.

4.3.3 Structured Gaussian mixture model

In a structured mixture model, no iid assumption between observations is made, so con-
ditional dependencies between the observations are considered. Thus, the mixture model
should handle the set of labels and observations jointly. Regarding that both parameters
(0) and labels (Y) are not observed, the mixture model is expressed as

:Zpe(XaY ZP )pe(X]Y)
Y

In order to introduce structured dependencies between the observations of the model,
Markov Random Fields (MRFs) are usually used. MRFs are probabilistic undirected
graphical models, in which conditional dependencies between random variables are expli-
citly denoted via a undirected and cyclic graph. The vertices of the graph represent the
random variables of the model, and the edges of the graph represent the conditional de-
pendencies among these variables. Figure 4.10 shows an example of a undirected graphical
model, representing a generative probabilistic model of the form

po(X,Y) =pY) Hpe/ (@n|yn)

From a generative point of view, the MRF is defined over the prior probability p(Y),
which according to the Hammersey-Clifford theorem [61], follows a Gibbs distribution of
the form

p(Y) = exp (~U(Y))

where U(Y) is called the energy function and Z is the partition function that ensures the

distribution to sum 1.
Z =Y exp(-UY’
Yl

Hammersey-Clifford theorem also states that p(Y) can be factorized over the cliques of
the graphical model. A clique is defined as a subset of vertices in the graph, such that
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?
L2 2 Ve

U
Yn

Figure 4.10: Undirected graphical model representing a generative probabilistic model.
Lattice formed between white vertices determines the conditional dependencies between
the random variables of the model and is modelled through a Markov Random Field
(MRF). Gray vertices represent the observations of the model and edges that that connect
gray nodes with white nodes represent the conditional dependency between observations
and the random variables.

there exists a link between all pairs of vertices in the subset, i.e is fully connected. A
random variable of the model is then considered independent given its cliques.
Let @ the set of all cliques of the graph. The energy function U (V) is then defined as

Uy) =3, )
q€Q
Nowadays, if complexity is considered, the inference algorithms for MRF's can only do an
optimization job for undirected graphs with cliques of order 2, (pairwise cliques). Hence,
the most commonly used graphical model is the Ising model. The Ising model defines a
graph lattice where conditional dependencies of each variable are expressed in terms of
its orthogonal adjacent neighbourhood. Figure 4.10 shows an Ising model for a 2D plane,
represented by the graph defined by the white vertices.
The clique factorization for the Ising model performs as follows

Uy) = Z Vo (Yn Ym) = Zﬁq(s(yna Ym)

qeQ q€Q

where Y, Ym € ¢, Vy(Yn, ym) is the clique potential for clique ¢, 3, is a weight defined for
such clique (in our case always 5 = 1) and ¢ is a function that measures the dissimilarity
between classes of the variables involved in the clique, typically

0, ify,=uym
d ny Ym ) — ’
(n: 4m) {1, otherwise

Although MRF strictly refers to the prior probability of the generative model, typically,
the class conditional probability is also expressed in terms of energy functions, so py(X | Y)
is usually rewritten as

po(XIY) = Z exp (U (X | V)
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4.3. Unsupervised voxel classification

where Uy (X | Y) is proportional to the class conditional probability of the observations
given the current parameters and labelling, and Z is again a partition function to ensure
the distribution to sum 1. As the prior probability p(Y') determines the conditional depen-
dencies between the observations of the model, the class conditional probability p(X|Y")
could be assumed iid between the observations, thus

Up(X[Y) = [ Us(xulyn)
As a result, the structured mixture model is therefore defined as
1
po(X) =" EGXP(—UQ (X |Y)-=U(Y))
Y

Exact inference on this model is intractable due to the sum over all possible configu-
ration of labels denoted by Z, which is a # P — complete problem. However, approximate
efficient algorithms are available to compute the best labelling when pairwise conditional
dependencies are considered. Thus, py(X) is approximated by the maximum

po(X) ~ max —exp (U (X | ¥) = U (V)

Although these, inference algorithms do not compute py(X), indeed they provide the
best labelling Y and its final energy value

Y = arg;nax(—Ug(X\Y) —-U(Y))

= arg;nin(Ug(X|Y) +U(Y))

NxC) . . .
), i.e, an indicator

where following an unit-length multinomial notation, ¥ € {0, 1}(
matrix that specifies the class ¢ for each observation n.

Several algorithms are proposed for the inference of MRF's such as Iterated Conditional
Modes (ICM), Monte Carlo Sampling or Graph cuts. In this M.Sc. Thesis we used the
algorithm proposed by Komodakis et al. [62, 63|, based on a combination of Graph cuts

with primal-dual strategies.

4.3.3.1 GHMRF

GHMREF is the Gaussian unsupervised variant of MRF. The term HMREF refers to a
hidden generative structured model based on a MRF prior, where labels are not observed.
The Gaussian assumption of the class conditional probabilities of the model finally coins
it as GHMREF. Likewise GMM clustering, GHMRF considers free covariance matrices for
each class and non equal prior probabilities. However, as complete inference of the model
is not possible, only a Hard EM version is available to estimate the parameters of the
structured model. Thus, the EM version proposed for the GHMRF is

1. Initialize parameters 0 (i.e initialize j, X, and p. for each class c)
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2. Hard E step: Given the current parameters #%) at iteration k, compute the fol-
lowing @) function:

QUO10%) =33 Vi logpe +log pu (xale)

where:

~

Y® = arg min (Uy(X|Y) + U(Y))
Y

3. M step: Make a guess #**1) by choosing 6 that maximizes the @ function:

0%+Y) = arg max Q(Q\Q(k)) subject to ch =1
0

1
(k+1 _ _2 : (k)
c - N ync
(k—+1)

He - (k Zy

nnc n

E(kJrl

C

Ck+1)) (Xn . ,u((:kJrl))t

n"c n

4. Stop if samples do not change class; otherwise go to step 2.

4.4 Automatic tumour classes isolation

Unlike supervised learning, unsupervised segmentation produces a partitioning of the data
space into several classes, but each class without semantic sense. In other words, in
the unsupervised approach, class labels between different segmentations may not always
represent the same tissue, complicating its biological interpretation. Hence, tumour classes
isolation is mandatory to provide a powerful and competitive unsupervised brain tumour
segmentation method. We propose the following postprocessing pipeline to automatically
isolate pathological classes:

1. Identify WM, GM and CSF classes
2. Remove outlier classes

3. Mixture classes by statistical distribution similarities

4.4.1 Identify WM, GM and CSF classes

In order to identify WM, GM and CSF classes, and to isolate the pathological classes in the
brain, the tissue probability maps provided by the ICBM 2009¢ template are used (see sec-
tion 3.3). However, ICBM template represents a healthy brain. Hence tissue probability
maps do not consider any other tissue rather than normal tissues T = {WM,GM,CSF}.
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4.4. Automatic tumour classes isolation

Therefore, it is required to correct these tissue probability maps by introducing an ad-
ditional tissue denoted by L, to deal with the lesion area. Consequently, WM, GM and
CSF probability maps should be renormalized by spreading its probability in the lesion
area on a new map, such that

T = {WM,GM,CSF, L}

S p(te) = 1
teT’

To correct the tissue probability maps, we first performed a non-linear registration of the
ICBM T, sequence to the patient T; sequence and then applied the non-linear transforma-
tion obtained through the registration to the ICBM tissue probability maps. We employ
cross-correlation metric with the SyN algorithm [36] implemented in the ANTS suite to
perform the registration. Next, a roughly approximate mask of the lesion area is com-
puted. The delineation performed by the expert radiologist of the margins of the tumour
is usually based on the hyper-intensity areas in the Ty and Ty. sequences [4]. Following
a similar criterion, we compute an approximate mask of the lesion area by retrieving the
histograms of the FLAIR and T, sequences and selecting those voxels with an intensity
level higher than the median plus the standard deviation of any histograms. Next, holes
of each 2D axial plane of the current computed mask are filled and voxels that fall in the
perimeter of the volume are automatically removed. Finally, the lesion mask is used to set
an € value in each normal tissue probability maps in the area defined by the mask. It is
worth noting that this mask do not delimits or restricts the shape of the classes provided
by the unsupervised segmentation, but serves to identify the pathological area, and then
which classes of the segmentation primarily explains the lesion. Figure 4.11 shows the
computation process of the corrected tissue probability maps.

Based on the corrected tissue probability maps, we identify which classes of a given
segmentation mainly explain the normal tissues 7'. For a given segmentation S, a normal
tissue t € T" and for each class ¢ € S, we computed the following probability:

Zu S(v)=c p(t|v)

Pt 5) = == i)

where v denotes a voxel of the volume.

The p(c|t,S) determines the probability for each class ¢ to explain the normal tissue
t. Hence, in order to remove the classes that primarily represent the normal tissue ¢, we
sort all classes in descending order by the p(c|t, S)

Co={c | pleilt,S) > pleialt, S), 1 <i< C}
Pt = {p(cl|t7 S) ‘ p(cl|t7 S) > p(ci+1|t7 S)7 1 < 1< C}

Next, we compute the cumulative sum of P;
o) = Pij), 1<i<C
j=1

and delete the first classes until the 0.8 of the cumulative sum is reached.

Z,={C(i+1) | ®()>08, 1<i<C}
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Figure 4.11: Patient specific tissue probability maps computation and subsequent lesion
area correction.
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4.4. Automatic tumour classes isolation

We choose 0.8 as a reasonably value to explain each normal tissue ¢ through a com-
bination of classes. Note that a threshold of 1 implies deleting all the classes of the
segmentation, due to each class always retains a minimum probability to belong to a
normal tissue. Moreover, the tissue probability maps are obtained through a non-linear
registration of a healthy template to a pathological brain, and a posterior correction of
the tissue probability maps. Such process introduces unavoidable errors that should be
considered when a threshold is defined to identify the non-pathological classes. Thus, in
major cases, a 0.8 threshold provide a high confidence degree to identify the normal classes
of the segmentation.

Finally, we repeated independently this procedure for each tissue t € {WM,GM,CSF'}
to isolate the pathological classes. The intersection of the sets obtained for each normal
tissue removes the normal tissue classes, and provides the final pathological classes defined
by the set Z

Z=ZwuNZau N Zosr

4.4.2 Remove outlier classes

The process of identifying and removing the normal tissue classes (WM, GM and CSF) may
leave some spurious classes that should be deleted. We find that these classes frequently
appear in the perimeter of the brain or in a very low percentage of occurrence with
respect to the rest of classes of the segmentation. The classes located at the perimeter of
the brain usually represent the intensity gradient between the brain and the background
or the partial volume effects that the super resolution cannot remove. The smaller classes
often represent outlier voxels in terms of abnormal intensity values, usually produced by
unavoidable artefacts in the MR acquisition.

In order to delete the perimeter unwanted classes, we first compute a binary mask of
the perimeter of both hemispheres. Next, we dilate such mask in order to cover a wider
area greater than one voxel. Finally, for each class after the 4.4.1 step, we compute its
connected components and delete such connected components that falls into the perimeter
mask with more than the 50% of its area.

In order to remove the smaller classes, we first compute the percentage of occurrence
of each class over the whole segmentation and delete those ones with a percentage less
than a 1%.

4.4.3 Mixture classes by statistical distribution similarities

The heterogeneity of the tumoral classes lead us to assume that each tissue of the brain is
modelled through at least a mixture of two Gaussians. However, the unsupervised voxel
classification provides a general mixture of Gaussians over the whole brain, that better
fits the clusters of information present in the data. This means that a tissue may bind
together more than two classes for its own representation, or by the opposite, requires an
unique class if it is homogeneously enough. Thus, it is mandatory to provide a mechanism
to find class similarities that allows a merging process that results in an homogeneous
segmentation that correctly explains the final pathological tissues.

Based on the work proposed by Séez et al. [64], we analysed the statistical distributions
of the remaining classes after the 4.4.1 and 4.4.2 steps, to find possible mixtures of classes
with similar distributions. We estimate a non-parametric probability density function for
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each class through a kernel smoothing density estimation, and use the Jensen-Shannon
divergence to measure its distances. Thus, we construct a pairwise matrix of statistical
distribution distances between classes, and we use a Hierarchical Agglomerative Clustering
(HAC) with an average link (Unweighted Pair Group Method with Arithmetic Mean
(UPGMA)), to find similar classes.

Due to the BRATS 2013 labelling considers 4 pathological classes to be segmented,
we enforce the clustering to return a maximum of 4 classes. Note that this is the max-
imum number of different classes that can be returned, however the method is able to
return less than 4 classes if the HAC finds enough similarities to merge it. Moreover, this
condition can be altered or removed if an exploratory approach is adopted, to find new
sub-compartment segmentations.

Figure 4.12 shows an example of the full tumour classes isolation procedure, combining
the normal tissue class removal (step 4.4.1), the outlier class removal (step 4.4.2) and the
class merging by its statistical distribution similarities (step 4.4.3).
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Figure 4.12: Automatic tumoral class isolation process.

Finally, we manually reorder the numbers of the classes to match the BRATS labelling.
Note that this step is completely unavoidable due to the fact that the numbers of the classes
becomes an arbitrary decision and can not be inferred by an unsupervised approach. Thus,
this manual stage does not compromise the proposed automated methodology as it is a
step only required for the concrete public dataset used to evaluate the method.

4.5 FEvaluation

In this section, the evaluation strategies followed in this M.Sc. Thesis and proposed by
the MICCAI Challenge to assess the quality of the segmentations are presented below.
An evaluation web page® is provided for the organization committee of the Challenge to

Phttps://wuw.virtualskeleton.ch/BRATS/Evaluation2013
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4.5. FEvaluation

upload and evaluate the segmentations. Each segmentation should be identified by a code
related to the FLAIR acquisition of the patient that originates the segmentation.

As this M.Sc. Thesis proposes an unsupervised segmentation method and in order to
compare our results with the state-of-the-art supervised segmentation approaches, we only
used the test set of the BRATS 2013 dataset. We directly segmented the test set with
the four unsupervised segmentations algorithms (see section 4.3) in combination with the
proposed preprocessing and postprocessing pipelines. The following subsections present
the different subcompartments and metrics used to assess the quality of the segmentations.

4.5.1 Subcompartment evaluation

Three different sub-compartments are evaluated for the proposed segmentations. This
evaluation strategy aims to provide a confident measure of the quality of the segmentation
methods, avoiding global measures that could be influenced by some tissues predomina-
tion. The subcompartments are:

Complete tumour: Labels 1 + 2 + 3 + 4. Evaluation of the whole segmentation,
including all the pathological tissues, i.e necrosis, cyst and haemorrhage (1), edema
(2), non-enhancing tumour (3) and enhancing tumour (4).

Tumour core: Labels 1 + 3 + 4. Evaluation of tumoral tissues core. Includes necrosis,
cyst and haemorrhage (1), non-enhancing tumour (3) and enhancing tumour (4).

Enhancing tumour: Label 4. Evaluation of only active/enhancing tumour (4).

Figure 4.13 shows an example of the subcomparment segmentations evaluated in the
BRATS 2013 Challenge.

Complete Tumour Enhancing
tumour core tumour

Figure 4.13: Example of different subcomparment segmentations evaluated in the BRATS
2013 Challenge.

4.5.2 Figures of merit

The figures of merit used to assess the quality of the segmentations are presented below.
The S term refers to the proposed segmentation, while the GT term refers to the ground
truth hold by the BRATS 2013 evaluation web page. Table 4.1 shows the confusion matrix
of a binary classification problem and the performance metrics that can be calculated from
it.

41



Chapter 4. Methods

True class
+ — Row totals
Hypothesized class J:r True Positives | False Positives I:’
— | False Negatives | True Negatives N
Column totals P N

Table 4.1: Confusion matrix and performance metrics.

Sgrensen-Dice coefficient: Similar than the Jaccard index, the Dice coefficient mea-
sures the set agreement between the proposed segmentation S and the ground truth
GT. It computes the number of overlapped voxels between S and G'T" and divide it
between the average of the sizes of S and GT". The Dice coefficient is the most typical
measure to evaluate the quality of a segmentation. It ranges between 0 and 1, with
0 meaning absence of overlapping and 1 referring to complete perfect overlapping.

,_2|SNGT| _ 2ATP+TN)
|S|+|GT| P+N+P+N

Positive predictive value (PPV): Often called Precision, the PPV gives a metric to
assess the susceptibility of the method to produce false positives in the segmentation.
The statistic ranges from 0 to 1, with 0 meaning a low precision of the method and
1 a high precision, i.e, a low false positive rate.

TP

PPV =——
TP+ FP

Sensitivity: Often called Recall, the sensitivity measures the success ratio of the method.
Hence, the sensitivity computes the number of hits obtained by the method and
divides it by the number of real positives of the ground truth. The measure ranges
from 0 to 1, with 1 meaning a high success ratio.

TP

§=— -
TP+ FN
Cohen’s Kappa index: A robust measure of the agreement between two segmentations,
that also considers the agreement occurring by chance. The metric ranges from 0
to 1, with 0 meaning a complete disagreement between both segmentations and 1
means a complete overlapping.

Py — Pg

K= ——

1—-Pg
TP+TN

Py = Accuracy = PN

P P N N
Pr = - = — | + - = ~
P+N P4+ N P+N P4+ N
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Results

The results obtained by the unsupervised segmentation algorithms evaluated in this M.Sc.
Thesis, in combination with the proposed preprocessing and postprocessing pipelines are
shown in Table 5.1. The results are obtained through the BRATS 2013 evaluation web
page provided for the Segmentation Challenge of MICCAI 2013 conference. The Table
5.1 shows the average results for the 10 patients of the BRATS 2013 test set, grouped by
the unsupervised algorithms, the tumour subcompartments and the figures of merit used
to assess the quality of the segmentation.

Classifier ‘ Dice ‘ PPV ‘ Sensitivity ‘ Kappa
comp core enh comp core enh comp core enh

K-means 0.69 0.49 0.57 0.66 0.48 0.68 0.76 0.57 0.51 0.98

Fuzzy K-means 0.70 046 0.39 0.73 047 0.51 0.71 0.54 0.35 0.98

GMM 0.69 0.60 0.55 0.63 0.60 0.64 0.78 0.68 0.55 0.98

GHMRF 0.72 0.62 0.59 0.68 0.58 0.67 0.81 0.75 0.60 0.98

Table 5.1: Summary of results of the unsupervised segmentation algorithms evaluated in
the study, in combination with the proposed preprocessing and postprocessing pipelines.
The results are the average of the 10 patients of the BRATS 2013 test set, grouped by the
different unsupervised algorithms, tumour subcompartments and figures of merit. comp
refers to complete tumour subcompartment, core refers to tumour core subcomparment
and enh refers to enhancing tumour subcomparment.

In most cases GHMREF rises as the best algorithm in combination with the proposed
preprocessing and postprocessing pipelines. Dice coefficient, as well as sensitivity, reveals
that GHMREF retrieves the best results in all the subcompartment segmentations. PPV is
the only statistic in which other algorithms achieve better results, indicating that GHMRF
may be slightly inferior in precision than the other methods. Also, it could be seen that,
regardless of the non-supervised algorithm used, the complete tumour subcompartment
always achieves the highest scores with respect to the other subcompartments, primarily
due to the presence of the edema tissue in this subcompartment, which often may be the
bigger and easiest class to identify.

Table 5.2 shows the published ranking of the BRATS 2013 competition and the position
of the proposed unsupervised segmentation method in its best configuration, i.e GHMRF
in combination with the preprocessing and postprocessing. As it can be seen, our method
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reaches the 7th position in the competition against mostly supervised approaches. Ranks
in the table are defined by sorting each column in descending order and computing the
average of the positions for each user in each column.

Pos  User \ Dice \ PPV \ Sensitiviy | Kappa
comp core enh comp «core enh comp core enh

1 N. Tustison 087 0.78 0.74 085 0.74 069 089 088 0.83 0.99
2 R. Meier 082 073 069 076 078 071 092 072 0.73 0.99
3 S. Reza 083 072 0.72 0.82 081 070 086 0.69 0.76 0.99
4 L. Zhao 084 070 0.65 0.80 0.67 065 089 079 0.70 0.99
5 N. Cordier 084 068 0.656 0.88 0.63 068 081 082 0.66 0.99
6 J. Festa 0.72 066 0.67 0.77 077 070 072 060 0.70 0.98
7 This work 0.72 0.62 0.59 0.68 0.58 0.67 0.81 0.75 0.60 0.98
8 S. Doyle 071 046 052 0.66 038 058 087 070 0.55 0.98

Table 5.2: Ranking of the BRATS 2013 Segmentation Challenge with the position oc-
cupied by our proposed unsupervised segmentation framework (with the GHMRF algo-
rithm). comp refers to complete tumour subcompartment, core refers to tumour core
subcomparment and enh refers to enhancing tumour subcomparment.

Finally, several examples of segmentations achieved by the different unsupervised seg-
mentation algorithms obtained through the proposed method are shown in Figure 5.1.
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Figure 5.1: Examples of final segmentations (preprocess and postprocess included) of 3
patients of BRATS dataset computed by different non-supervised algorithms.

45






Chapter 6

Discussion

The proposed unsupervised brain tumour segmentation method is confirmed as a viable
alternative for GBM segmentation, as it has demonstrated to achieve competitive and
comparable results in a public reference brain tumour dataset such as the BRATS 2013
Challenge (See Table 5.2). The method is able to obtain competitive results without
any prior knowledge or manual expert labelling, thus overcoming the limitations of the
supervised approaches such as the time-consuming and biased task of retrieving a training
dataset. Furthermore, the method provides a general mechanism to automatically isolate
the tumoral tissues in the brain, to address the problems associated with the biological
interpretability of the unsupervised results. This mechanism can be also extrapolated to
other pathologies, as it adopts an a contrario approach, by identifying the normal tissues
and then isolating the abnormal classes that represent the pathology.

The proposed unsupervised segmentation method comprises four stages: MRI prepro-
cessing, Feature extraction and dimensionality reduction, Unsupervised voxel classification
and Automatic tumour classes isolation. Concerning the preprocessing stage, consolidated
state of the art techniques that provide efficient solutions to enhance the information of
the MR images are employed. However, some preprocessing techniques are primarily
oriented to non-pathological brains. This is the case of bias field correction. In our ex-
periments, we found that the estimation of the magnetic field inhomogeneities with the
N4 algorithm presented problems primarily with FLAIR sequences. The hyper-intensity
shown in the FLAIR sequence by the edema was confused frequently with inhomogeneities
of the magnetic field, thereby reducing its intensity and sometimes removing it from the
image. In order to overcome this problem we reduced the number of iterations of the
algorithm to 10 iterations at each scale, to remove as much inhomogeneities as possible,
while keeping the intensities of the lesion. Such solution assumes a non optimal removal
of the magnetic field inhomogeneities, but allows to save the information contained in the
lesion area, which becomes more important to the brain tumour segmentation. However,
it is mandatory to develop MRI preprocessing techniques suited to pathological brains, to
enhance the images as much as possible, while avoiding the removal of useful information
to classify/segment the pathology.

Several unsupervised classification algorithms are evaluated to assess its pros and cons.
Attending to the restrictiveness and constraints imposed to the probabilistic models that
underlies the unsupervised algorithms, an evident hierarchy becomes apparent. These
constraints implies both positive and negative effects, such as the efficiency in the algo-
rithm inference or the quality and fidelity of the model fitted to the data. K-means is the
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most restrictiveness algorithm in terms of the class-conditional probabilistic model. From
a Gaussian generative standpoint, K-means assumes an equal and identity covariance ma-
trix for all classes, equal prior probabilities and hard assignment of each observation to
a class. Also, an iid assumption between the observations to be classified is considered,
which together derives in a more simplistic, not necessarily worse, classifier. In contrast,
GHMREF is the less restrictive algorithm in terms of the class-conditional probabilistic
model (also GMM clustering), but it imposes a prior structure to the data that con-
straints the inference process of the algorithm. Such prior structure introduces statistical
dependencies between adjacent variables of the probabilistic model, that penalizes neigh-
bouring voxels with different classes. Hence, this structured prior aims to model the self
similarity presented in the images, leading the algorithm to a more homogeneous segmen-
tation than the non-structured classification techniques. Finally, GMM clustering is the
non-structured version of GHMRF, while Fuzzy K-means is a particular case of GMM,
which assumes an equal and identity covariance matrix for all classes.

Therefore, it is expected that the less restrictive algorithms in terms of class-conditional
probability model are likely to achieve better results, based on the hypothesis that such
algorithms learn a model for the classes that better fit the data to be classified (a more
realistic model). Moreover, algorithms that introduces mechanisms to model the self simi-
larity of the images are also expected to retrieve better results based on the hypothesis
that they exploits the information redundancy of the images. Table 5.1 confirms such
hypothesis. The results shown in Table 5.1 are the metrics provided by the BRATS 2013
evaluation web page grouped by the unsupervised algorithms and the tumour subcom-
partments. GHMRF rises as the best algorithm in almost all the metrics. Only the PPV
reveals that other algorithms may achieve a slightly better precision. Figure 5.1 also
corroborates the hypothesis. GHMRF segmentation leads to more homogeneous segmen-
tations, which is consistent with the pathological standpoint and hence with the manual
labelling that an expert radiologist will provide.

Note that differences between the GHMREF and the K-means segmentations of the pe-
ritumoral and distal areas of the tumour can be observed (for example in the P2 patient
of Figure 5.1). The K-means segmentation shows a division of this area into two classes,
which are finally labelled as edema (green color class) and non-enhancing tumour (blue
color class). Based on the definition of non-enhancing tumour, it seems clear that the area
classified as non-enhancing tumour in K-means and Fuzzy K-means does not correspond
with this tissue, and probably refers to edema. The reason by which this area is partially
misclassified into non-enhancing tumour comes from the automatic tumour classes isola-
tion stage. As proposed in Section 4.4 (Subsection 4.4.3) we enforce the system to return
4 or less classes, depending on their statistical distribution similarities. Hence, we assume
that similar classes are merged in the 4.4.3 step, returning a set of final classes different
enough to be considered a different tissue related to the BRATS labelling. In this sense, in
the K-means and Fuzzy K-means segmentations, we were required to set a distinct label
for each of the 4 classes returned by the method, thereby partially misclassifying the distal
area as non-enhancing tumour. In contrast, although GHMRF also initially divided this
area into two classes, the method found both regions similar enough to be merged, hence
determining the whole area as an homogeneous class, which is more coherent than the
K-means or Fuzzy K-means segmentations.

However, it is worth noting that this is an example of the ability of the unsupervised
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approaches to explore or provide natural clusters of data that can be useful to make
new clinical hypothesis. Following the P2 segmentation example, it can be seen that
the hyper-intensity area of the FLAIR sequence classified as edema by the GHMRF is
not homogeneous. Such area was initially separated by all clustering techniques into two
classes, therefore revealing evident differences inside the edema, that may have interesting
clinical interpretations. Such capabilities provide an added value to the segmentation
systems that arise from an unsupervised learning standpoint.

Finally, a key point that should be discussed refers to the viability of supervised seg-
mentation approaches to real clinical routine. The difficulties in the acquisition of manual
labelled ground truths and the recalibration of the models when the data sources experi-
ment changes (for example different hospitals or new MR protocols) severely affects the
performance of supervised approaches. Furthermore, supervised algorithms are trained to
classify the already well-known clinical knowledge, which allows to reduce the manual cost
of the tumour segmentation, but does not provide new knowledge that helps physicians
to make alternative clinical hypothesis. Conversely, unsupervised approaches inherits the
exploratory ability of clustering techniques, which are able to provide physicians a guide
to interpret sub-segmentations based on natural groupings of data.

The analysis of functional Magnetic Resonance Imaging (fMRI) such as PWI is an
example where clustering techniques may play an important role. fMRI is a technique for
measuring the brain activity by detecting changes in the blood oxygenation and flow in
response to neural activity. The ability of unsupervised algorithms to explore segmenta-
tions where different tissues determined in the anatomical MRI analysis share a similar
behaviour in the fMRI approach should be explored. Such similarities may provide an
insight of the evolution of the different tissues and hence provide useful information to
make early decisions that improve the treatment of the disease.

Functional MR imaging is rising as the future of brain tumour diagnosis due to its abil-
ity to reveal biomarkers related to the behaviour of the tissues instead of their anatomical
properties. These biomarkers might predict relevant information such as the tumour grow-
ing direction and its evolution. In this sense, we believe that research efforts should be
aligned with MR functional imaging requirements by providing powerful systems that
covers its clinical purposes. We plan to extend our unsupervised segmentation method to
the analysis and segmentation of PWI.
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Chapter 7

Concluding remarks and future work

7.1 Conclusion

The present M.Sc. Thesis provides a method based on the ML discipline to solve the
brain tumour segmentation problem. The first contribution of this M.Sc. Thesis concerns
the design and implementation of a robust methodology for unsupervised brain tumour
segmentation. We provide a fully automated method able to achieve accurate results com-
parable to supervised approaches, but avoiding the tedious, time-consuming and biased
task of manual expert labelling. The second major contribution refers to a statistical
postprocessing method able to robustly identify which classes in a brain tumour segmen-
tation corresponds to normal tissues. Hence, the method allows to automatically isolate
the pathological classes in the brain that belong to abnormal tissues. Finally, we present
a comprehensive evaluation of several unsupervised segmentation algorithms attending to
its structured and non-structured condition. We use a public real brain tumour dataset
in order to make a comparison between the state-of-the-art techniques in supervised seg-
mentation and the unsupervised method proposed in this M.Sc. Thesis.
The conclusions extracted from this M.Sc. Thesis are:

e The results of the comprehensive evaluation through the public BRATS 2013 brain
tumour dataset show that the proposed unsupervised segmentation method provides
accurate and coherent segmentations, similar than the manual labelling provided by
an expert radiologist. Hence, it is confirmed as a viable method for brain tumour
segmentation.

e It is mandatory to develop MRI preprocessing techniques suited to pathological
brains, to enhance these images as much as possible, while avoiding the removal of
useful information to classify or segment the disease.

e Structured classification, specifically MRF, provides a statistical language to define
probabilistic models that represent dependencies between random variables, that
better suit to image segmentation problems, as it can model the self similarity of
the images.

e The proposed postprocessing approach to improve the biological interpretability
of the unsupervised results is able to identify and isolate the pathological classes
of a segmentation that correspond to abnormal tissues in the brain. Hence, the
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method provides clinicians an unsupervised segmentation of the whole brain, with
the possibility of automatically identify the abnormal classes of the segmentation.

e A well designed unsupervised segmentation method can yield comparable results to
supervised approaches, without the need of prior manual expert labelling. Thus, it
becomes a viable alternative to supervised approaches for real clinical application.

7.2 Future work

Some of the future lines of research directly related to the results of this M.Sc. Thesis are:

e The future of GBM treatment points to the analysis of functional imaging such
as Perfusion Weighted Tmages (PWTI). The biological information provided by these
MR acquisitions may indicate the behaviour of the tumour, such as neoangiogenesis,
and its evolution. It is mandatory to include such information in the segmentation
process to try to identify the growing areas of the tumour and its direction.

e Monitoring the evolution of a GBM tumour leads to the acquisition of several MR
images during different temporal moments. Considering this temporal information
may improve the segmentation of the tumour, and even may provide a prediction of
the tumour growing direction in a posterior temporal moment.

e The feature extraction and dimensionality reduction techniques proposed in this
M.Sc. Thesis may be improved through the computation of the Second order texture
features (Haralick texture features [49]) and non-linear dimensionality reduction
techniques such as non-linear PCA. The implementation of these texture features
and the evaluation of the improvement through the non-linear reduction methods
are currently carrying out.

e The robust characterization of brain tumour tissues through biological signatures
based on the clinical information recovered for the patient is a challenging and
ambitious goal that should be tackled. Such standardized biological signatures may
provide a common reference framework for studying tumoral tissues.
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(Glossary

Acronyms

Al Artificial Intelligence

ANN Artificial Neural Networks

ANTS Advanced Normalization Tools

BRATS BRAin Tumour Segmentation

CNS Central Nervous System

CDSS Clinical Decision Support System

CSF Cerebro-Spinal Fluid

CRF Conditional Random Fields

DTI Diffusion Tensor Imaging

E Expectation

EM Expectation-Maximization

fMRI functional Magnetic Resonance Imaging
FLAIR FLuid Attenuated Inversion Recovery
GBM Glioblastoma Multiforme

GM Gray Matter

GMM Gaussian Mixture Model

GHMRF Gaussian Hidden Markov Random Field
HAC Hierarchical Agglomerative Clustering
HG High Grade

HMRF  Hidden Markov Random Fields

ICBM International Consortium for Brain Mapping
i.e id est (that is)

iid independent and identically distributed
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ICM

LG

M
MICCAI
ML

MR
MRF
MRI
NLM
NMR
PCA
PD

PR

PPV

PR

PWI

RF
ROBEX
ROI
SOM
SVM
TE

TR
UPGMA
uprPv
WM

Iterated Conditional Modes

Low Grade

Maximization

Medical Image Computing and Computer-Assisted Intervention

Machine Learning

Magnetic Resonance

Markov Random Field
Magnetic Resonance Imaging
Non Local Means

Nuclear Magnetic Resonance
Principal Component Analysis
Proton Density

Pattern Recognition

Positive predictive value
Pattern Recognition
Perfusion Weighted Images
Radio Frequency

RObust Brain EXtraction
Region Of Interest

Self Organizing Map
Support Vector Machines
Echo Time

Repetition Time

Unweighted Pair Group Method with Arithmetic Mean

Universitat Politécnica de Valéncia

White Matter
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