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Abstract. Polycaprolactone scaffolds were produced by electrospinning. 

Polymeric solutions in a mix of dichloromethane and dimethylformamide were 

electrospun to form fibers in the sub-micron range. Physical properties of the 

polycaprolactone solutions were characterized with respect to density, 

viscosity, conductivity and surface tension. Processing was optimized 

following Taguchi’s methodology to select the set of processing parameters 

that resulted in producing fibers with the smallest diameters, minimum number 

of defects and with the narrowest distribution of fiber diameter. Morphology of 

electrospun fibers was qualitatively and quantitatively analyzed for the 

different sets of processing parameters. The optimum conditions found to 

electrospun polycaprolactone were used to process polycaprolactone solutions 

containing nano-particles of hydroxyapatite or bioactive glass. Bioactivity of 

nano-composite electrospun membranes in simulated body fluid was analyzed 

and biological response was tested by assessing proliferation and viability of 

MT3C3-E1 preosteoblasts cultured on polycaprolactone and its nanocomposite 

membranes. 
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1. Introduction 

In the last several years the application in tissue engineering of membranes or three-

dimensional structures made of aligned or randomly oriented nanofibers has been extensively 

studied. These materials act as supports for cell expansion or differentiation or as a vehicle for 

cell transplant to the damaged tissue or organ. In particular, nanofibrillar structures have 

proven to be suitable for bone regeneration. It has been shown that nanofiber membranes 

sustain attachment and proliferation of bone marrow mesenchymal stem cells (MSCs) [1-6], 

and enhance osteogenic differentiation. Much of this research has been performed using 

biodegradable polyesters, in particular polycaprolactone[3, 7-9].  

Polycaprolactone, PCL, is a linear, resorbable, aliphatic polyester with physical properties that 

make it quite interesting to use to produce tissue engineering scaffolds, such as non-toxicity, 

non-immunogenicity, good solubility, low melting point (59-64 ºC), good mechanical 

properties (modulus and elasticity), exceptional blend-compatibility and it is slowly 

biodegraded by hydrolysis [10-16]. In fact, the use of PCL to support attachment and 

proliferation of different types of cells has been explored [11, 17-19].Although exhibiting 

good properties for these applications, PCL alone is not bioactive and its stiffness is much less 

than that of bone tissue; the incorporation of ceramics such as hydroxyapatite (HA) and 

bioactive glass (BG) tends to help both requirements. [9, 11, 12, 18-21] 

Hydroxyapatite is a type of calcium phosphate with chemical composition, Ca10(PO4)6(OH)2, 

structure and size resembling the mineral component of bone. Due to its good properties, such 

as bone mineral-like features, bioactivity, biocompatibility, non-toxicity, non-inflammatory, 

non-immunogenic, osteoinducer, osteoconducter, relatively stable degradation and 

mechanical strength, this bioceramic has gained increasing attention for bone tissue repairing 

applications [20, 22-29]. Bioactive glasses, having bone bonding ability due to their surface 

reactivity, excellent osteoconductivity, and controlled biodegradability, are commonly applied 

in bone tissue engineering. The classic bioglass composition, containing SiO2, Na2O, CaO and 

P2O5 (wt% 45 – 24.5 – 24.5 – 6), was approved by the U.S. Food and Drug Administration 

(FDA) while other compositions might contain sodium or other elements, such as magnesium 

or potassium, among others [20, 21, 30, 31]. When used in the form of nano-particles, both 

ceramics present improved properties with respect to protein adsorption and cell adhesion due 

to the small size and high specific surface area [21, 27-30, 32, 33].  

Composite nanofiber mats have been produced combining PCL and hydroxyapatite 

nanoparticles, or inducing apatite precipitation from simulated body fluids [1, 8, 9, 33-36].  

The aim of this work was to analyze, in detail, the electrospinning process to produce PCL 

and PCL / hydroxyapatite or bioactive glass nanocomposites nanofibrilar scaffolds.  

The electrospinning process typically has a setup consisting of a capillary through which the 

polymer solution or melt is forced by a syringe pump or gravity action, a direct current high 

voltage source and a grounded collector [37]. An electric field (up to 30 kV) is created 

between the polymer solution drop at the end of the tip and the collector. This electric field 

provokes the projection and acceleration of a fiber jet towards the grounded collector. The 

evaporation of the solvent while the solutions travel from the tip to the collector produces 

solid polymer fibers [17, 37-39]. Some instability of the jet is inherent to the electrospinning 

process [38, 40]. Bending instabilities affect the diameter and development of the polymer jet 

and are responsible for possible defects such as branching, bead formation and drops, 

depending on the governing parameters [38-40]. The governing parameters include solution 

properties (concentration, viscosity, etc), process (gap distance between tip and collector, flow 
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rate, etc) and ambient parameters (temperature and humidity); their control and adjustment 

allows the production of suitable fibers [41-44].   

According to the literature the most considered governing parameters are solvents ratio, when 

the polymer is dissolved in mixture of solvents, polymer concentration in the solution, 

polymer molecular weight, applied voltage, solution flow rate, and nozzle to collector 

distance [39, 42, 45, 46]. Thus, the distribution of fiber diameters and mean values strongly 

depend on a quite high number of parameters, which makes it very difficult to understand the 

influence of each parameter on membrane microstructure and to optimize the process with 

respect to specific objectives, such as obtaining narrow fiber size distributions or specific 

mean diameters. Taguchi’s methodology is commonly used for industrial process optimization 

and has also been applied in the optimization of the electrospinning technique. With this 

method, the number of experiments is reduced by performing orthogonal arrays with 

beneficial factors combination and reliable quality control [42, 44, 46-52]. 

 

2. Materials and methods 

2.1. Materials 

Poly(-caprolactone) (PCL) from Polysciences Europe GmbH (Germany) with an average  

molecular weight (Mw) of 43,000-50,000 Da in the form of pellets was used. Dichloromethane 

(DCM, 99.8% purity, synthesis grade) and dimethylformamide (DMF, 99.8% purity) were 

obtained from by Scharlau Chemie, S.A. (Spain). Hydroxyapatite nanoparticles (HA-NP, with 

particle size smaller than 200 nm, and a purity level higher than 97%) were delivered by 

Sigma-Aldrich (Spain). Bioactive glass nanoparticles (BG-NP) with the composition 

SiO2:CaO:P2O5 (55:40:5 mol.%) were prepared. Spherical-shaped nano-particles were 

obtained with sizes ranging from 100nm to 800nm. The BG-NPs were produced using a sol-

gel methodology, as described elsewhere [53, 54].  

Dulbecco’s Phosphate Buffered Saline (DPBS), ascorbic acid, formalin and glutaraldehyde 

were purchased from Sigma Aldrich (Spain). Trypsin-ethylenediaminetetraacetic acid 

(EDTA), penicillin/streptomycin (P/S), fetal bovine serum (FBS) and sodium pyruvate were 

obtained from Fisher (Spain). DL-Glutamine was purchased from Lonza (Spain) and 3-(4,5 

dimetiltiazol-2-il)-5-(3-carboximetoxifenil)-2-(4-sulfofenil)-2H-tetrazolium inner salt (MTS) 

from Promega (Spain). Monoclonal antivinculin and 5 integrin antibodies, produced in mice, 

were purchased from Sigma Aldrich (Spain) and Immunotech (UK) respectively; BODIPY® 

FL phallacidin and Alexa Fluor® 633 from Life Technologies (Spain). VECTASHIELD® 

mounting media with incorporated 4’,6-diamidino-2-phenylindole (DAPI) was from Vector 

Laboratories (UK). All the chemicals were used as-received, without further purification. 

 

2.2. Solutions preparation 

Several PCL solutions were prepared by stirring in mixtures of DMF and DCM with different 

ratios. After a preliminary analysis the solution concentration values 10, 12 and 15% w/v and 

the solvents ratios of 80/20 and 90/10 (DCM/DMF) by volume were selected for the 

optimization process. Homogeneous solutions were obtained after one hour stirring at room 

temperature. 

Nano-particles were incorporated and dispersed in the polymer solution under ultrasonic 

stirring (Bandelin UW 2200, Germany), for 5 - 10 minutes. In order to avoid overheating, 

ultrasound was applied in sequences of 2 seconds followed by another two seconds of rest, at 

a power of 40W. As the BG-NPs were larger sized, they needed more time to disperse.  
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Electrospinning was performed immediately after dispersing the nano-particles in the PCL 

solution, in order to avoid nano-particles deposition on the bottom of the syringe. 

 

2.3. Electrospinning 

A syringe pump Multi Phaser
TM

 NE – 1000 of New Era Pump System Inc. (USA), with a 

10mL syringe was connected to a hypodermic needle with 0,5mm inner diameter (the same 

needle diameter was used in all the experiments), allowing control of the flow rate within the 

range of 0.3 – 0.5mL/h. The needle was connected to a high voltage supply, Glassman High 

Voltage Inc. (USA) that allowed varying the voltage between 15 and 25kV. A horizontal 

metallic collector, connected to ground, was situated at a distance between 10 and 20 cm 

under the needle. The solution concentrations varied between 10 and 15 wt%. 

 

2.4. Taguchi´s orthogonal design 

The method in this case consisted of three main steps; a first step consisting of the parameter 

selection defining the levels of variation of each of them; a second part consisting of the array 

selection and the performance of the experiments and finally a third part which concluded the 

analysis process by determining which were the most influential parameters on average fiber 

diameter and fiber diameter distribution width and the values of the set that allows obtaining 

the optimum electrospun mat that, in this work, was defined as that with the smallest diameter 

fibers and most homogeneously distributed fiber diameter and with no apparent defects such 

as beads or drops.   

The number of factors that influence the electrospinning process is quite large; some of them 

are related to the characteristics of the polymer solutions, other with the process itself. 

Taguchi’s design was performed on the basis of five selected parameters, two of them: 

solution concentration and solvents ratio were related to the polymer solution while three 

more: flow rate, travelling distance and applied voltage are characteristics of the 

electrospinning process. According to the literature these seemed to be the most relevant 

parameters for the experimental design concerning polycaprolactone electrospinning [13, 39, 

42, 45, 46, 55-58]. Each parameter was varied at three levels, a minimum, a medium and a 

maximum, except for the solvents ratio where only two levels were taken into account. Given 

the number of design parameters, the orthogonal array L18 should be used [46, 56, 57] and so 

it was possible to evaluate parameter influence with only 18 experiments, which are shown in 

Table 1. 
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Table 1: Design of orthogonal table L18 and mean value ( x ) and standard deviation () of the 

diameter of obtained fibres. And results for fiber diameter distribution for the nano-particles 

incorporation study. 

Exp. 

No. 

Solvents ratio 

(DCM – DMF%) 

Applied 

 voltage 

(kV) 

Flow 

 rate 

 (ml/h) 

Solution 

 concentration 

 (%w/v) 

Gap 

distance 

(cm) 

 

x (µm) 

 

 (µm) 

1 90 – 10 15 3 12 10 1.27 0.71 

2 90 – 10 15 4 10 15 1.69 0.71 

3 90 – 10 15 5 15 20 3.75 1.20 

4 90 – 10 20 3 12 15 2.59 0.77 

5 90 – 10 20 4 10 20 1.95 0.74 

6 90 – 10 20 5 15 10 3.44 2.79 

7 90 – 10 25 3 10 10 1.89 0.56 

8 90 – 10 25 4 15 15 1.43 0.54 

9 90 – 10 25 5 12 20 1.68 0.77 

10 80 – 20 15 3 15 20 0.81 0.63 

11 80 – 20 15 4 12 10 1.03 0.52 

12 80 – 20 15 5 10 15 0.57 0.41 

13 80 – 20 20 3 10 20 0.54 0.27 

14 80 – 20 20 4 15 10 1.68 0.68 

15 80 – 20 20 5 12 15 1.77 0.74 

16 80 – 20 25 3 15 15 1.60 0.71 

17 80 – 20 25 4 12 20 1.12 0.54 

18 80 – 20 25 5 10 10 0.98 0.52 

Percentage of nano-particles incorporated   

HA-NP 1% 0.49 0.24 

HA-NP 5% 0.35 0.10 

HA-NP 10% 0.29 0.11 

BG-NP 1% 0.61 0.30 

BG-NP 5% 0.57 0.29 

BG-NP 10% 0.50 0.24 

 

 

2.5. Polymer solution characterization techniques 

The density of each solution was calculated by gravimetric methods. The conductivity of the 

polymer solutions was measured at room temperature using an EC – Meter BASIC 30
+
 

conductivity meter with a Crison 5071 probe (Spain). A Proton Ubbelohde Viscometer 

nº8035 size 2 ASTM D445*TP-71*ASTM D, suitable for transparent liquids, was used for 

viscosity measurement. An OCA20+ Contact Angle System from Dataphysics (Spain) was 

used to measure surface tension by the pendant drop method. 

 

2.6. Mats characterization by scanning electron microscopy 

The morphology of the electrospun mats was assessed using a JEOL JSM-5410 scanning 

electron microscope (Japan) with an acceleration voltage of 15kV and the resulting images 

were taken with magnifications between 350 and 10,000. Previous to the SEM analysis the 

sample surfaces were gold sputtered. 
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2.7. Bioactivity tests 

In-vitro bioactivity tests on the obtained nanocomposites were performed to check the 

potential osteoconductive properties of the materials. An acellular simulated body fluid (SBF) 

(1.0x) was prepared, with ions concentration nearly equal to human blood plasma. The SBF 

composition and preparation was previously described by Kokubo and co-workers [59]. The 

composite membranes were immersed for 7 days in the SBF and SEM was used to assess 

biomimetic apatite deposition onto the surfaces.  

 

2.8. Cell culture 

The electrospinning membranes were washed for two days with 70% ethanol to remove any 

remaining solvent; the ethanol was changed every four hours. Samples were then dried in 

vacuum for two days at room temperature until constant weight. Disks of 5 mm diameter were 

cut from the electrospun scaffold and sterilized by 25kGy gamma irradiation (Aragogamma 

Company, Spain) before cell culture. 

The sterilized membranes were washed with DPBS, preconditioned in Dulbecco’s Modified 

Eagle’s Medium (DMEM) with 1g/L of D-glucose and incubated at 37ºC and 5% CO2 for 

24h. 

Mouse pre-osteoblastic cells (MC3T3-E1, obtained from the Riken Cell Bank, Japan) were 

used for cell culture. The cell suspension was diluted to obtain a final concentration of 

780,000 cells/mL. Samples disks were placed in a 48-well tissue culture plate and over each 

sample surface 10L of the cell suspension was dropped and incubated for 1h at 37ºC and 5% 

CO2 for cell adherence. Afterwards, the culture medium (DMEM 1g/L D-Glucose, 10% FBS 

and 1% P/S) was added and the samples incubated at 37ºC in a humidified atmosphere with 

5% CO2 for various periods of time (3h, 6h, 24h, 2days, 5 days and 14 days). The culture 

medium was changed every 24h. Polyethylene terephthalate coverslips (Thermanox® ,Nunc 

Inc., USA) were used as control sample. 

 

2.9. Cell culture characterization analysis 

Prior observing the cell morphology by SEM, the cell/support constructs were washed with 

DPBS (2-3 times) and then incubated with glutaraldehyde at 4ºC for 1h for cell fixation. The 

samples were then washed once again with DPBS (2 times) and dehydrated with a sequence 

of water/ethanol washes with increasing alcohol percentage. From 30% to 70% of ethanol, the 

samples were washed twice for 5 minutes each and from 70% to absolute ethanol the samples 

were washed once for 10 minutes each and finally left to dry at room temperature. Samples 

were gold coated, and observed with the JSM-5410 scanning electron microscope at an 

acceleration voltage of 10kV. 

Immunolabeling against vinculin antibody was used to recognize the focal adhesion on the 

electrospun membranes. Prior to immunostaining, the samples were fixed after 3h, 6h and 24h 

of culture with formalin at 10 % for 1 h and 4 ºC and then washed three times in DPBS. The 

immunostaining was carried out following standard protocols [60]. Samples were incubated 

with the monoclonal vinculin antibody (dilution 1:400) in a 1 % solution of bovine serum 

albumin (BSA) in DPBS at room temperature for 1 h, followed by incubation for 1 h with the 

secondary antibody Alexa fluor 633-labeled anti-mouse (5 g/ml) mixed with BODIPY® FL 

phallacidin (10 l/sample) to label the actin cytoskeleton in 1 % BSA/DPBS at room 

temperature. At last, the substrates were washed with 0.5% DPBS/Tween 20 and mounted 

adding a drop of VECTASHIELD® with incorporated 4’,6-diamidino-2-phenylindole (DAPI, 
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Vector Laboratories, Peterborough, UK). The samples were analyzed by confocal laser 

scanning microscopy (CLSM) Leica TCS SP2 AOBS (Germany). 

The viability of pre-osteoblastic cells was determined using the MTS assay following the 

manufacturer’s instructions. The assay is based on the mitochondrial activity of living cells. 

Three different times (2, 5 and 14 days) and four samples were analyzed for all the 

scaffolding cultured materials in order to obtain a better understanding of the evolution of cell 

viability on each scaffold. The absorbance at 490 nm was measured using a Perkin Elmer/ 

Wallac 1420 Multilaber Counter (USA). In order to visualize and be able to distinguish viable 

from dead cells, calcein was used to stain live cells with a green color and ethidium to mark 

the dead cells with a red color. To analyze the percentage of live and dead cells in the samples 

a CLSM was used with the aid of an incubator (37ºC and 5%CO2) for keeping the cells alive 

while capturing images. 

 

3. Results and discussion 

3.1. Solution properties evaluation 

 

Table 2: Solution properties. 

Concentration 

%w/v 

Solvent ratio 

%DCM-DMF 

 Density 

(kg/m3) 

Conductivity 

(mS/m) 

Viscosity 

(mPa s) 

Surface 

tension 

(mN/m) 

 

10 80-20 1250 0.020 24.6 31.5  

90-10 1290 0.025 22.4 33.7  

12 80-20 1350 0.014 42.4 33.0  

90-10 1360 0.015 40.0 34.3  

15 80-20 1360 0.005 76.0 33.5  

90-10 1380 0.008 73.3 36.8  

 

 

The density, conductivity, viscosity and surface tension of the PCL solutions in different 

DCM/DMF mixtures are listed in Table 2 for the different polymer concentrations. 

The density of the solution moderately increased with PCL content while the conductivity 

decreased. These parameters only slightly changed with DCM/DMF ratio. The density 

slightly increased with increasing DCM content, which can be explained by the higher density 

of DCM compared to DMF, and the conductivity also increased at least in this composition 

interval. Large discrepancies among the absolute values of the conductivity of PCL solutions 

in DCM/DMF mixtures can be found in the literature [45, 61-63] but they also report 

increases of the conductivity with larger DMF content. The different behavior found by the 

different authors must be ascribed to the different purity of the chemicals used in each work.  

As the solution concentration increased, also did the viscosity. The value of the viscosity 

increased with the content of DMF in the solvent mixture for any polymer content; however, 

the differences were not significant. To this point, contradictory results can be found in the 

literature as well: Khil et al. have reported that viscosity decreased as DMF volume fraction 

increased [61]; Theron et al. have found that the viscosity increased as the DMF ratio increase 

[45]; Lee et al, have shown that the viscosity remained approximately constant for a 13 wt% 

PCL solution with DMF content between 0 and 25 % [63]. 
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The differences obtained in surface tension values were also not really significant. 

Nevertheless, a slight increase of surface tension with increasing PCL content can be 

observed. Also, the surface tension increased with DMF content in the solvent mixture. 

Again, contradictory results can be found in the literature: Lee et al. have found that the 

surface tension decreased when the DMF ratio increased [63], whereas other authors have 

reported an increasing of surface tension when increasing DMF content in the mixture [45, 

61]. 

 

3.2. Morphology of the electrospun mats 

 

 
Figure 1: SEM images corresponding to four experiments of the L18 array: (a) experiment 3, 

(b) experiment 6, (c) experiment 12 and (d) experiment 13 of table 1. 

 

 

SEM images were used for analyzing the morphology of the electrospun mats. In Fig. 1 we 

have selected pictures corresponding to several experiments included in Table 1. The PCL 

mats obtained with the different processing conditions showed a mesh of randomly oriented 

fibers. The fiber diameter distribution and morphology depended very much on the processing 

parameters. In most of the experiments the presence of bimodal diameter distributions was 

quite apparent, as shown in Figs. 1b, c, and d. The presence of sub-structures of smaller fibers 

can be explained by the formation of a secondary jet during the main electrospinning 

procedure due to high solution viscosity. This bimodal structure is also related to certain 
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process conditions, such as high voltage, low relative humidity and fast phase separation of 

polymer and solvent during the travel between the needle and the collector [64]. This was 

observed in all experiments except for experiments number 3, 4, and 8. See for instance Fig. 

1a, corresponding to experiment 3, in which a more homogeneous fiber diameter distribution 

was found with only one small diameter fiber in the image. According to the data of Table 1, 

it may be noticed that thicker fibers in the mats were obtained when performing experiments 

3, 4 and 6. Experiments 10, 12 and 13 had the smallest diameters obtained in all the 

optimization study with values ranging between 0.54 and 0.81 m. The rest of the 

experiments had results below 2.0 m.  

 

3.3. Taguchi methodology analysis  

 

To determine the effect each variable had on the output, the average of fiber diameter and 

standard deviation found for the different levels of each parameter were calculated and are 

presented in Table 3. In this table the range is the difference between the maximum and the 

minimum values of the three levels, and importance of the parameter is obtained by the range, 

the one with the largest range being the most important [56]. 
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Table 3: Mean effects of different levels of each parameter on fibre diameter and its SD. The 

importance of the parameter is determined by the range, the difference between the maximum and the 

minimum, of each parameter (largest range is the most important). The best level leading to the 

smallest diameters and the narrowest diameter distributions were also selected. 

  
Solvents ratio 

(DCM-DMF) 

Applied 

Voltage  

Flow rate Solution 

concentration  

Gap distance 

 

Fibre 

diameter 

x  (m) 

Level 1 2.19 1.52 1.45 1.27 1.72 

Level 2 1.12 2.00 1.48 1.58 1.61 

Level 3  1.45 2.03 2.12 1.64 

Range 1.07 0.55 0.58 0.85 0.11 

Importance 1 4 3 2 5 

 

Standard 

deviation 

σ  (m) 

Level 1 0.98  0.70 0.61 0.54 0.96 

Level 2 0.56 1.00 0.62 0.68 0.65 

Level 3  0.61 1.07 1.09 0.69 

Range 0.42 0.39 0.46 0.56 0.32 

Importance 3 4 2 1 5 

Best level 80-20 25 kV 3 ml/h 10 %w/v 15 cm 

 

 

From these results, we observe that DCM/DMF ratio and solution concentration had the 

biggest influence on the fiber diameter while the solution concentration and flow rate were the 

most influential on standard deviation. The effect of solvents ratio was quite clear, 

electrospinning a solution with the 80/20 DCM/DMF solvents ratio yielded the thinnest and 

most homogeneous fibers. The effect of concentration was also very clear; by increasing the 

polymer concentration in the solution, the fiber diameter and its standard deviation increased. 

It can also be noticed that by increasing the flow rate, the fiber diameter and standard 

deviation also increased. On the contrary, the effect of the applied voltage was not clear. It 

depended very much on the rest of parameters. Very similar results were obtained for 15 and 

25 kV while significant differences were found for 20 kV the intermediate value of applied 

voltage. The effect of the applied voltage on fiber diameter is not clear in the literature; while 

in several cases a decrease of fiber diameter with increasing applied voltage has been reported 

[65-68] in other cases non-significant or non-monotonous changes were found [44, 69, 70]. 

The effect of travelling distance also was not very important; there were no significant 

differences between 15 and 20 cm gap distance, while showing a small decrease of fibers 

diameter from 10 to 15 cm and decreasing standard deviation, as well. Thus, we chose a 
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DCM/DMF ratio 80-20, 10 wt% for the solution concentration, 3 mL/h for the flow rate, 25 

kV for the applied voltage and 15 cm for the nozzle-collector distance as the optimal values. 

In Fig. 2, we show SEM images of the fiber mats obtained with the mentioned parameter set 

at two magnifications. An inhomogeneous mat of thin fibers (similar to Fig 1c and d) with a 

diameter average of approximately 0.78 m and standard deviation of 0.44 m was obtained. 

No usual defects, like beads or drops, can be seen in the mats. 

 

Figure 2: SEM images of thin fiber mats obtained with the operating conditions of 25kV as 

applied voltage; 15cm as nozzle-collector distance; 3mL/h as feed rate; 10%w/v as polymer 

solution concentration and 80-20% as DCM-DMF ratio. Diameter average is approximately 

0.78 m and standard deviation 0.44 m.  

 

Some experiments of the Taguchi array had lower diameter averages and standard deviations 

when compared to the results of the optimal experimental conditions. However, although 

these results, in number, appear better, when compared microscopically they lost to the 

optimized results because the mats had branched fibers, which are minor defects that can 

occur within the electrospinning performance, and also an irregular shape was visible on some 

fibers. In the optimal results the fibers are individual, there were no branches on the fibers and 

their shape was smooth and regular. They appear to be homogeneously deposited over each 

other without aggregation. 

With Taguchi’s methodology it was possible to produce a mat of thin fibers deposited 

homogeneously and very few defects, but also to understand which factors had the larger 

influences on the electrospinning process and how their variation affected the electrospun 

fibers and mats formation. In this particular study the most influential parameter was the 

solvents ratio. In order to confirm this feature, a series of experiments were performed in 

which the other parameters were set to their best levels (according to the Taguchi 

optimization methodology) while the most significant one was varied monotonously over a 

range larger than in the optimization experiment. The variation interval of the solvents ratio 

took into consideration the fact that contents of DCM below 70% yielded mats with the 

presence of beads and high non-homogeneity. Thus, Fig. 3 shows SEM images of electrospun 

mats made with PCL solutions in DCM/DMF with ratios 70/30, 90/10 and 100/0 by weight 

(the picture corresponding to the 80/20 ratio can be seen in Fig. 2).  
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Figure 3: Solvents ratio effect on the electrospun fibers, 70-30% (a), 90-10% (b) and 100-0% 

(c) as DCM-DMF% ratio and 25kV as applied voltage; 15cm as gap distance; 3mL/h as flow 

rate and 10%w/v as solution concentration. Scale bar 100 m. 
 

 

When increasing DCM content above 80%, mainly when using only DCM, the diameter of 

the fibers increased and fibers become more irregular with some discontinuities and 

significant diameter changes along the fibers (see the arrows in Figure 3c). For 90% of DCM, 

we obtained a fiber diameter of (0.81±0.31) m and (0.89±0.40) m for pure DCM. 

Decreasing the DCM content below the ideal value, to 70-30% as solvent ratio, the fibrous 

structures were thinner and the diameter distribution was more homogeneous (0.46±0.21 m); 

however, imperfections across the mesh of fibers were common, with the presence of some 

beads (see arrows in Figure 3a). 

 

3.4. Morphology of the electrospun fibers incorporating nanoparticles 
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Figure 4. SEM images of mats incorporating (a) 1% HA; (b) 5% HA; (c) 10% HA; (d) 1% 

BG-NP; (e) 5% BG-NP and (f) 10% BG-NP.  

 

 

Using the best processing parameters found for the PCL electrospinning, we produced 

electrospun nanocomposites incorporating nano-particles in the polymer solution. Fig. 4 

shows the morphologic structure of the samples containing different percentages of 

hydroxyapatite (Figs. 4 a-c) and bioactive glass (Figs. 4 d-f) nano-particles in the polymer 

fibrous mats.  
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The morphology of the electrospun nanocomposite changed slightly with respect to the pure 

PCL mats (Fig. 2). When incorporating 1% of nano-particles a few small beads, possibly from 

the nano-particles, appeared along the fibers (Fig. 4a and d). Increasing the amount of nano-

particles to 5%, agglomeration points were created (see the arrows in Figs. 4b and e) and 

formation of larger beads that grew further when the filler content was increased to 10% 

(Figs. 4c and f). 

In addition, it is worth noting that when incorporating nano-particles the mean fiber diameter 

decreased monotonically compared to the values in the PCL mats, to the value of 0.3 m in 

the case of HA-NP, and to the value of 0.5 m for BG-NP (see data at the end of Table 1). 

The fiber diameter obtained was slightly larger than that of nanoparticles (the size of the HA-

NPs was smaller than 200 m and in the case of BG-NPs ranged between 100nm and 800nm). 

The suspension of the nanoparticles in the PCL solution produced small changes in the 

conductivity and viscosity that can explain the small changes in the morphology of the fibrils. 

 

3.5. In-vitro bioactivity tests 

 
Figure 5: SEM images of some of the obtained optimized substrates after immersion in SBF 

for 7 days. a) Pure PCL membrane; b) PCL with 5% BG-NP; c) PCL with 5% HA; d) PCL 

with 10% HA. 

 

 

The composite and pure PCL optimized membranes were immersed in SBF for 7 days to 

evaluate their capability to induce the precipitation of apatite in vitro, as is shown in the SEM 

images of Fig. 5. It is possible to conclude that the pure PCL substrate was not bioactive (Fig. 

5a). Even with the inclusion of either 5% of BG-NP or 5% of HA, no calcification could be 
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detected. However, with the inclusion of 10% of HA a clear deposition of cauliflower-like 

structures, presumably of apatite, could be observed. This result demonstrates that bioactive 

nanocomposite membranes could be obtained using the proposed methodology. In 

nanocomposites with the smallest nanoparticle contents, the filler seems to be completely 

encapsulated in the polymer fibers, not appearing at the surfaces, and thus showing no initial 

effect on bioactivity since no polycaprolactone degradation takes place in the seven days of 

the test. Osteoconductive properties of the nanocomposite could possibly be manifested at 

longer implantation times with fibril erosion. 

 

3.6. Cell culture evaluation 

 
Figure 6. SEM images of pre-osteoblastic cells attached to the developed scaffolding 

materials after five days of culture: (a) PCL with 1%HA; (b) PCL with 10%HA and (c) PCL 

with 5%BG-NP. 

 

 

The SEM images of Fig. 6 show that cells attach and spread on the electrospun membranes 

and acquired complex shapes due to the difficulty in finding adhesion points on the 

microfibrils of the substrate. This feature was confirmed by staining of the actin cytoskeleton 

shown in Fig. 8 (discussed below).  
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Figure 7. Cell viability on different electrospun membranes measured byMTS assay at 2, 5 

and 14 days is shown in a). Viable (green) and dead (red) cells were stained after 5 days on 

pure PCL membranes b) and PCL+5% HA c). Data show the average, standard deviation and 

its level of statistical significance using ANOVA test (p<0.05). The * denotes significant 

differences between the composites and pure PCL membrane. 

 

 

The results of the MTS analysis shown in Fig. 7a indicated that viable cells grew continuously 

with culture time on all the substrates but at different rates. In particular, the proliferation on 

the substrate with 1% HA-NP was very fast after 2 days, but at 14 days the cell viability was 

stabilized. After 14 days of culture no significant differences in cell viability were found 

among the nano-filled mats with 1% HA and 5%HA compared with pure PCL membrane. 

However, the electrospun membrane containing 10% HA showed a marked proliferation with 

respect to the pure PCL mat. A similar behavior was obtained by Ródenas et al. [71] using 

PCL scaffolds with different content of HA. The membrane with BgP content show the lowest 

signal of viability after 14 days, however no significant differences were found between the 

membranes with the same content of particles of either 5% BgP or 5% HA in all the culture 

times evaluated. This result suggests that a higher concentration of bioglass is necessary to 

improve the cellular growth, as was reported by Hae-Hyoung et al. ref [72]. This can explain 

why the electrospun membrane containing 10% HA showed a marked proliferation with 

respect to the pure PCL mat.  

In order to confirm the cellular viability a live/dead cells assay was performed at 5 days of 

culture (see figure 7b-c). These images further support the result obtained in the MTS assay, 

showing that cell proliferation was slower in the membranes containing nanoparticles 

although viability at the end of culture was even higher than in pure PCL. 
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Figure 8. Immunostaining of vinculin and F-actin cytoskeleton label of in vitro cultures 

developed on a flat control  and a PCL electrospun mat containing 5% BG-NP for 3h (a-d) 

and 6h (e-h). a), c), e) and g) show immunoflurescence images using anti-vinculin antibodies 

to prove focal adhesions. In (b), (d) f) and (h) the vinculin is colocalized with F-actin staining 

(green) while cell nuclei are counterstained in blue.  

 

 

Cell attachment to the substrate starts by adsorption of proteins at the surface of the material, 

then the recognition of specific ligands in these proteins by transmembrane proteins, the 

integrins, that collect and cluster a series of proteins in cell cytoplasm (vinculin is a common 

focal adhesion protein) to form what is called a focal adhesion, actin cytoskeleton fibers 

polymerize from focal adhesions and reach the cell nucleus. The immunodetection of vinculin 

and F-actin cytoskeleton staining were indicative of cellular adhesion (see Figure 8). The 

morphology and adhesion behavior of the cells were similar when cultured on the different 

membranes. After 3h culture on the flat control, perimetral focal adhesions were clearly, 

shown in Fig. 8a; the cells had an extended polygonal morphology with well defined contours 

and cytoskeleton. Perimetral focal adhesions colocalized with the ends of the F-actin fibers 

that densely filled the cytoplasm (see Figure 8b). However, a majority of the cells maintained 

a quite circular shape on the PCL/bioglass membranes: the labelling of vinculin (Fig. 8c) was 

diffuse with no marked focal adhesions and the actin cytoskeleton was mainly shown at the 

cell contour with incipient stress fibers, as shown in Fig. 8d. After 6 h culture, the cells were 

spread although the cell surface was much smaller compared with flat controls (Figure 8e-h). 

The adhesion points found on the membrane were localized on different fibrils and thus 

irregularly distributed. Some focal adhesions, labeled by intense vinculin spots at different 

points of the cell contour, were detected, although a diffuse expression was still shown (Fig. 

8g) The distribution of the focal adhesions explains the irregular shape of the cells on the 

membranes shown in the SEM images of Fig. 6, as can also be observed by the stress fibers of 

the actin cytoskeleton (Fig. 8h).  

 

4. Conclusions 

Electrospinning of polycaprolactone dissolved in DCM/DMF mixtures was optimized by 

application of the Taguchi methodology with respect to five design parameters, two of them 

related to solution properties (solvents ratio and polymer concentration in the solution) and 

three more related to the process (applied voltage, travelling distance and flow rate). With the 
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best set of parameters, mats consisting of uniform meshes of randomly distributed fibers were 

obtained. The mean diameter was 0.78m with a standard deviation of 0.44m. 

The DCM/DMF ratio was the most influential parameter on the mean fiber’s diameter and 

morphology. The incorporation of increased ratio of DMF continuously decreased the fiber 

diameter but when its content in the solvents mixture was larger than 20% a significant 

number of imperfections in the fibers appeared. 

Hydroxyapatite or bioactive glass nanoparticles can be successfully incorporated into the 

electrospun fibrils. Electrospinning of nanoparticle PCL suspensions yielded thinner fibrils 

than in the case of pure PCL when using the same processing parameters, probably due to 

changes in the physical properties of the solutions. Nanocomposite mats containing 10% by 

weight hydroxyapatite had higher bioactivity than pure PCL and mats containing less HA; 

however, when the amount of nanoparticles was smaller they were not exposed on the fibers 

surfaces. Use of smaller nano-filler contents would need fibers erosion when the scaffold is 

implanted. Biological response was studied by culturing MT3C3-E1 pre-osteoblasts on the 

sterilized mats. The viability results showed that the cells proliferated and were viable on all 

of the substrates with only small differences between them. The cell shape was quite irregular 

due to the random distribution of focal adhesions on the mats fibrils.  
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