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E-46022 València (Spain)
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Abstract. This paper presents a handwritten word recogniser based on
HMMs at subword level (characters) in which state-emission probabil-
ities are governed by multivariate Bernoulli probability functions. This
recogniser works directly with raw binary pixels of the image, instead
of conventional, real-valued local features. A detailed experimentation
has been carried out by varying the number of states, and comparing
the results with those from a conventional system based on continuous
(Gaussian) densities. From this experimentation, it becomes clear that
the proposed recogniser is much better than the conventional system.
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1 Introduction

Hidden Markov models (HMMs) have received significant attention in off-line
handwriting recognition during the last few years [2, 3]. As in speech recogni-
tion [6], HMMs are used to model the probability (density) of an observation
sequence, given its corresponding text transcription or simply its class label.

Observation sequences typically consist of fixed-dimension feature vectors
which are computed locally, using a sliding window along the handwritten text
image. In [1], we explored the possibility of using raw, binary pixels as feature
vectors. This was done with two ideas in mind. On the one hand, this guarantees
that no discriminative information is filtered out during feature extraction. On
the other hand, this allows us to introduce probabilistic models that deal more
directly with the object to be recognised [4, 7]. This lead us to the study of
Bernoulli HMMs, that is, HMMs in which the state-conditional probabilities are
governed by multivariate Bernoulli probability functions.

The direct method to model handwritten words with Bernoulli HMMs is to
use an independent, separate Bernoulli HMM for each word. We did it in [1],
where successful results were obtained in a task of word classification with a
moderate number of (word) classes. However, this direct approach is no longer
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applicable in the case of classification tasks involving a large number of classes
since, typically, most classes do not have enough examples for reliable param-
eter estimation. As in continuous handwritten text recognition, which can be
considered the extreme case of unlimited number of classes, this problem can be
alleviated by using subword (character) HMMs; that is, all word classes (sen-
tences) are modelled by concatenation of subword (character) HMMs, and thus
only one HMM per character has to be trained. This is precisely what we do in
this work. Empirical results are reported in which Bernoulli HMMs at subword
level are compared with both, independent Bernoulli HMMs, and conventional
(Gaussian) HMMs at subword level [3].

The paper is organised as follows. We first review basic HMM theory in Sec-
tions 2 and 3, mainly to fix notation. Then, in Section 4, the previous basic
HMM theory is particularised to case of Bernoulli HMMs. Experiments are de-
scribed in Section 5, while concluding remarks and future work are discussed in
Section 6.

2 Hidden Markov Models

HMMs are used to model the probability (density) of an observation sequence.
In a way similar to [6], we characterise an HMM as follows:

1. M , the number of states in the model. Individual states are labelled as
{1, 2, . . . ,M} and we denote the state at time t as qt. In addition, we define
the special states I and F for start and stop.

2. The state-transition probability distribution, A = {aij}, where

aij = P (qt+1 = j | qt = i) , 1 ≤ i, j ≤ M, i = I, j = F . (1)

For convenience, we set aIF = 0.
3. The observation probability (density) function, B = {bj(o)}, in which

bj(ot) = P (ot | qt = j) , (2)

defines the probability (density) function in state j, j = 1, 2, . . . ,M .

For convenience, the specification of an HMM can be compacted as

λ = (A,B) . (3)

Therefore, the probability (density) of an observation sequence O = o1, . . . , oT
is given by:

P (O | λ) =
∑

I,q1,...,qT ,F

aIq1





∏

1≤t<T

aqtqt+1



 aqTF

T
∏

t=1

bqt(ot) . (4)

Maximum likelihood estimation of the parameters governing an HMM can
be carried out using the EM algorithm for HMMs; i.e. using Baum-Welch re-
estimation formulae. Assume that the likelihood is calculated with respect to
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N observation sequences O1, . . . , ON ; with On = (on1, . . . , onTn
). In the E step

(at iteration k), the forward probability for each sample n, state i and time t,
αnt(i) = P (on1, . . . , ont, qnt = i | λ), is calculated as:

α
(k)
nt+1(j) =















a
(k)
Ii b

(k)
i (on1) 1 ≤ i ≤ M, t = 0

[

M
∑

i=1

α
(k)
nt (i)a

(k)
ij

]

b
(k)
j (ont+1)

1 ≤ j ≤ M

1 ≤ t < Tn

, (5)

while the backward probability, βnt(i) = P (ont+1, . . . , onTn
| qnt = i, λ), is:

β
(k)
nt (i) =















a
(k)
iF 1 ≤ i ≤ M, t = Tn

M
∑

j=1

a
(k)
ij b

(k)
j (ont+1)β

(k)
nt+1(j)

1 ≤ i ≤ M

1 ≤ t < Tn

. (6)

The probability (density) of an observation can be calculated using forward
probabilities:

P (On | λ) =

M
∑

i=1

αnTn
(i)aiF . (7)

In the M step (at iteration k), the transition parameters are updated as
follows:

a
(k+1)
ij =











































1

N

∑

n

αn1(j)
(k)βn1(j)

(k)

P (On | λ)(k)
i = 1

1 ≤ j ≤ M

1

γ(i)

∑

n

∑Tn−1
t=1 α

(k)
nt (i)a

(k)
ij b

(k)
j (ont+1)β

(k)
nt+1(j)

P (On | λ)(k)
1 ≤ i, j ≤ M

1

γ(i)

∑

n

α
(k)
nTn

(i)β
(k)
nTn

(i)

P (On | λ)(k)
1 ≤ i ≤ M

j = F

, (8)

where γ(i) is:

γ(i) =
∑

n

∑Tn

t=1 α
(k)
nt (i)β

(k)
nt (i)

P (On | λ)(k)
. (9)

3 Subunit Models Based on HMMs

HMMs are often used in classification tasks to model the conditional probability
of an observation sequence given a class label. A large number of classes involves
a huge number of parameters; more precisely, one independent, complete HMM
per class. Nevertheless, if the classes are in fact symbol sequences of a given
alphabet {1, . . . , C}, this problem can be alleviated by instead defining an HMM
for each symbol of the alphabet {λ1, . . . , λC}. Therefore, for each class label we
have a virtual HMM by concatenating the HMMs related to the class symbols.
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The concatenation is done by joining the state F of an HMM with the state I

of the next HMM. Thus, the probability of an observation sequence o1, . . . , oT
given a symbol sequence s1, . . . , sL, where L ≤ T , is:

P (oT1 | sL1 , λ
C
1 ) =

∑

I,q1,...,qe(1),Q1,

qb(2) ,...,qe(2),Q2
...

qb(L),...,qT ,F

L
∏

l=1

P (o
e(l)
b(l) , q

e(l)
b(l) , Ql | λsl , Ql−1) , (10)

where e(l) and b(l) are the positions of the first and the last observations gener-
ated by λsl respectively, Ql = Isl+1

= Fsl , and:

P (o
e(l)
b(l) , q

e(l)
b(l) , Ql | λsl , Ql−1)=aslIqb(l)





e(l)−1
∏

t=b(l)

aslqtqt+1



aslqe(l)F

e(l)
∏

t=b(l)

bslqt(ot) . (11)

As in the previous section, the parameters can be estimated using the EM
algorithm. Consider the calculation of the likelihood function with respect to
N pairs of sequences (O1, S1), . . . , (ON , SN ); with On = (on1, . . . , onTn

) and
Sn = (sn1, . . . , snLn

), where Ln ≤ Tn. In the E step, the forward probabilities
are calculated as:

α
(k)
nlt+1(j) =



























































































a
(k)
sn1Ij

b
(k)
sn1j

(on1)
l = 1, t = 0

1 ≤ j ≤ Msn1










∑

1≤i≤Ms
nl

i=Is
nl

α
(k)
nlt(i)a

(k)
snlij











b
(k)
snlj

(ont+1)
1 ≤ l ≤ Ln

1 ≤ t < Tn

1 ≤ j ≤ Msnl

Ms
nl

∑

i=1

α
(k)
nlt+1(i)a

(k)
snliF

1 ≤ l ≤ Ln

0 ≤ t < Tn

j = Fsnl

α
(k)
nl−1t+1(Fsnl−1

)
1 < l ≤ Ln

0 ≤ t < Tn

j = Isnl

0 otherwise

. (12)

Similarly, the backward probabilities are given by:

β
(k)
nlt (i) =



































































a
(k)
snLn

iF

l = Ln, t = Tn

1 ≤ i ≤ MsnLn

a
(k)
snliF

β
(k)
nlt (Fsnl

)

+

Ms
nl

∑

j=1

a
(k)
snlij

b
(k)
snlj

(ont+1)β
(k)
nlt+1(j)

1 ≤ l ≤ Ln

1 ≤ t < Tn

1 ≤ i ≤ Msnl

i = Isnl

β
(k)
nl+1t(Isnl+1

)

1 ≤ l < Ln

1 ≤ t < Tn

i = Fsnl

0 otherwise

. (13)
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Using the forward probabilities, the probability of an observation can be
computed as:

P (O | S, λC
1 ) = αLT (FsL) . (14)

In the M step, transition parameters of λc are updated for all i (1 ≤ i ≤ Mc

and i = Ic) as:

a
(k+1)
cij =

1

γc(i)























∑

n

∑

l:snl=c

∑Tn−1
t=1 α

(k)
nlt(i)a

(k)
cij b

(k)
cj (ont+1)β

(k)
nlt+1(j)

P (On | Sn, λ
C
1 )

1 ≤ j ≤ Mc

∑

n

∑

l:snl=c

∑Tn

t=1 α
(k)
nlt(i)a

(k)
ciFβ

(k)
nlt (Fc)

P (On | Sn, λ
C
1 )

j = Fc

,

(15)
where:

γc(i) =
∑

n

∑

l:snl=c

∑Tn

t=1 α
(k)
nlt(i)β

(k)
nlt (i)

P (On | Sn, λ
C
1 )

. (16)

4 Bernoulli HMM

Let O = (o1, . . . ,oT ) be a sequence ofD-dimensional binary observation vectors.
A Bernoulli HMM is an HMM in which the probability of observing ot, when
qt = j, is given by multivariate Bernoulli probability function for the state j:

bj(ot) =

D
∏

d=1

potdjd (1 − pjd)
1−otd , (17)

where pjd is the probability for bit d to be 1 when the observation vector is
generated in the state j. Note that (17) is just the product of state-conditional
unidimensional Bernoulli variables. The parameter vector associated with the
state j, pj = (pj1, . . . , pjD)

t
, will be referred to as the prototype of the Bernoulli

distribution in the state j.
Using the EM algorithm, the Bernoulli prototype corresponding to the state

j of λc has to be updated as:

pcj
(k+1) =

1

γc(j)

∑

n

∑

l:snl=c

∑Tn

t=1 α
(k)
nlt(j)ontβ

(k)
nlt (j)

P (On | Sn, λ
C
1 )

, (18)

where γc(j) is defined in (16).
Note that the time required for an EM iteration over a single sequence is

O(TM2D) (M =
∑L

l=1 Msl in the case of subunit HMMs), which reduces to
O(TMD) in the usual case of simple, linear HMM topologies. This time cost does
not differ from that of continuous (Gaussian) HMMs (with diagonal covariance
matrices).

In order to avoid 0 probabilities at Bernoulli prototypes, these are smoothed
by a linear interpolation with a flat (uniform) prototype, 0.5,

p̃ = (1 − ξ)p+ ξ 0.5 , (19)

where typically ξ = 10−6.
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5 Experiments

The experiments have been carried out using the IAM database [5]. This cor-
pus contains forms of unconstrained handwritten English text. All texts were
extracted from the LOB corpus. A total of 657 writers contributed. Different
datasets were obtained by using segmentations techniques, in particular we have
used the handwritten words dataset. More precisely, we have selected those sam-
ples in this dataset that are marked as correctly segmented in the corpus, and
which belong to a word with at least 10 samples.

All input gray level images were preprocessed before transforming them into
sequences of feature vectors. Preprocessing consisted of three steps: gray level
normalisation, deslanting, and size normalisation of ascenders and descenders.
See [3] for further details.

Selected samples were randomly splitted into 30 80%-20% training-test parti-
tions at the writer level to ensure writer-independent testing. This means about
59000 samples for training and 14000 for testing. The lexicon comprises 1117
different words and the alphabet is composed by 71 characters (upper and lower-
case letters, punctuation signs, digits, etc.). This task is similar to that described
in [2].

For the Bernoulli system, feature extraction has been carried out by rescaling
the image to height 30 while respecting the original aspect ratio, and applying
an Otsu binarisation to the resulting image. Therefore, the observation sequence
is in fact a binary image of height 30. In the Gaussian case, feature vectors
are of dimension 60, where the first 20 values are gray levels, and the other 40
are horizontal and vertical gray level derivatives [3]. In this case, we used the
well-known HTK software [8].

Experiments have been carried out by varying number of states, Q ∈ {4, 6,
8, 10, 12}, and comparing our Bernoulli system to a conventional system based
on Gaussian HMMs. Both systems have been initialised by first segmenting the
training set using a “neutral” model, and then using the resulting segments
to perform a Viterbi initialisation. The model has been trained with 4 EM it-
erations, and the recognition has been performed using the Viterbi algorithm.
Figure 1 shows the results, where each point is the average of 30 repetitions (30
random splits). Vertical bars denote ± standard deviation.

The results obtained with the Bernoulli system are much better than those
given by the Gaussian system. In particular, the best result for the Bernoulli
system is a 44.0% classification error, obtained with Q = 10. In contrast, the
best result for the Gaussian system is a 64.2% classification error, obtained with
Q = 8.

We have extended the experiment by using a different number of states for
each HMM. For this purpose, the training set was first aligned and segmented.
Then, for each HMM, the number of states was calculated as the average length
of the segments multiplied by a predefined load factor, f . This load factor in-
dicates the number of observations that a state generates on average. We have
tried several load factors {0.1, 0.2, 0.3, 0.4, 0.5, 0.6}. The results obtained are very
similar to those reported above; i.e. the Bernoulli system outperforms the Gaus-
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Fig. 1. Classification error (in %) as a function of the number of states for the Bernoulli
HMM system and the conventional, Gaussian HMM system.

sian system with error rates similar to those in Figure 1. In both systems the
best results are obtained with f = 0.4.

We concluded the experiments by repeating those shown in Figure 1, but
using one Bernoulli HMM per word instead of one Bernoulli HMM per character
while (approximately) keeping the same number of parameters. Using Bernoulli
HMMs at word level and Q = 1 (1117 Bernoulli prototypes) a classification error
of 89.3% was achieved, while with Bernoulli HMMs at subword level and Q = 10
(710 Bernoulli prototypes) we had a classification error of 44.0%. Moreover,
using Bernoulli HMMs at word level and Q = 10 (11170 Bernoulli prototypes)
the classification error is 64%; that is, it is still not better than that obtained
with Bernoulli HMMs at subword level.

6 Concluding Remarks and Future Work

Bernoulli HMMs at subword (character) level has been studied and empirically
tested on a task of handwritten word classification from the IAM database. We
have obtained a classification error of 44.0%, which is 20 points better than the
best result obtained with a conventional, Gaussian-based HMM system. It is also
worth noting that the proposed system works with less features and parameters
than the conventional system (30 vs 60 and half of the parameters). On the other
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hand, the proposed system has been also compared with Bernoulli HMM-based
classifier at word level. As expected, the advantage of using subword models has
been clearly confirmed.

For future work, we plan to try Bernoulli mixtures instead of a single Bernoulli
at each state. We also plan to use the ideas reported in [7] for explicitly modelling
of invariances in Bernoulli mixtures, and to extend the experiments to general
handwritten text recognition.
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