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Abstract 

In this research a new methodology to evaluate the operation of spark ignition systems in high density 

conditions is presented. New requirements in engines and new combustion modes demand more from 

these systems. One of the most important new requirements is the increase in density. Thus, a better 

understanding of the effects of high density and the behavior of the ignition system in these conditions 

seems necessary. To carry out this work two experimental facilities have been used: a transparent 

constant volume vessel, and an optical engine to simulate real engine conditions. In both cases a double 

study has been performed, one of the electrical signals and derivate parameters and other using images 

obtained with a high speed camera. The methodology has been applied for different cases of pressure, 

intake temperature and other parameters that affect the density. Results show that an increase in density 

causes a decrease in integrated power. Additionally, the dispersion in this integrated power increases too. 

Finally, the combination of images and signals allows ensuring the operation of the system near its limits 

and therefore seems an appropriate methodology to study the ignition systems. Moreover it is validated 

that the results of the ambient transparent constant volume vessel follow the same trends and values as the 

realistic ones. 

Keywords: Ignition system, spark plug, electric signals, high density test rig, optical 

engine
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Introduction and problem description 

In the last decades, the scientific and technical communities of Internal Combustion Engines (ICE) are 

facing two of the most important challenges, the reduction of pollutant emissions and the increase in 

overall engine efficiency [1-2]. Accordingly, great efforts have been made in gasoline engines [3]. 

Specifically, in this framework the ignition process has revealed itself as a fundamental aspect to achieve 

a stable and efficient combustion with low emissions in a gasoline direct injection engine [4]. 

New combustion modes in current and future gasoline engines are based on  stratification of the engine 

charge, introducing the fuel directly in the combustion chamber in a lean ambient (SIDI - Spark Ignition 

Direct Injection) [5]. 

In this context, several important changes have been introduced in the engine hardware compared to 

conventional gasoline engines because mixture formation calibration for the entire range is an essential 

basic prerequisite for achieving reliable, good combustion with high efficiency and minimal emissions 

[6]. The injection pressure has been increased (around 2000 bar), the piston shape changes from that of 

the homogeneous gasoline engines to one that guides the fuel from the injection nozzle to the spark plug, 

and the exhaust gas recirculation levels used have been strongly increased. Additionally, to increase the 

reduction in consumption achieved with mixture stratification in a lean ambient, the downsizing concept 

in gasoline engines has been applied [7]. In this sense, higher supercharging conditions have been 

considered to provide proper engine performances. It is particularly important for combustion in gasoline 

engines with direct injection that an ignitable mixture is present in the vicinity of the spark plug at 

ignition point, irrespective of engine load and speed. This imposes special requirements on a range of 

parameters, in particular the intake flow, the shape of the combustion chamber, the compression ratio, the 

position of the injection nozzle and the spark plug system. 

In these new gasoline combustion modes where the range of the flammability limits has been reduced 

and, consequently, the capability to establish a flame has been decreased, the influence of the ignition 

system is even more important than in conventional ones. A relatively rich mixture is present in the 

vicinity of the spark plug and a very lean mixture can be found in the wall area of the combustion 

chamber, hence the precision in the ignition of the spark plug and the energy it releases become more 

important [8]. The requirements with respect to the ignition system characteristics are very high for 

combustion processes with heterogeneous mixture. Chemically inactive mixtures, as available in high 
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exhaust–gas recirculation rates and lean air/fuel ratios, show fluctuations in retarded ignition timings or 

even misfire when using a conventional ignition system. Therefore a proper ignition system must ensure 

the capability to initiate the flame propagation. 

Considering a conventional coil ignition system (inductive ignition system) where the primary function of 

the ignition coil is to save the energy required for generating the high voltage, the physical processes that 

occur between the electrodes of a spark plug normally imply three sequential phases, the breakdown, the 

arc and glow phase, and finally the shutdown. In the first step, the dielectric breakdown takes place. This 

first phase is characterized by a high voltage, around 20-40 kV, breaking the air dielectric and causing the 

formation of a conductive channel of ionized gas. The required ignition voltage depends strongly on the 

density of air in the combustion chamber and thus also on the timing of the ignition, electrode geometry, 

electrode material, and electrode gap [9]. In the second step, the current flows between the electrodes and 

the electric arc appears, along with a reduction of the voltage (5-10KV), this is the longest step. After few 

microseconds, the electric arc is extinguished and hence the potential difference between the electrodes of 

the spark plug becomes low once again [10]. 

As it is explained in the literature and introduced in the previous paragraphs, the evaluation of the ignition 

process in a stratified and supercharged engine with high levels of EGR is quite complex. Thus, as a first 

approach, non reactive conditions without fuel injection will be used with the aim of isolating the effects 

of increasing the density in the ignition system. Subsequently, a more realistic study with an optical 

engine is performed. In these tests different thermodynamic conditions varying pressure and temperature 

are evaluated. Therefore, the main objective of this research is to develop a methodology for the 

systematic evaluation of the spark ignition systems used in automotive gasoline engines under controlled 

high density conditions representative of new combustion modes. 

 

Experimental facilities 

Two different facilities are used in this study. The first one consists of a homemade ambient temperature 

test rig manufactured mainly in aluminum featuring an optical quartz access which allows us to study the 

spark plug discharge characteristics of the ignition system with constant and controlled ambient 

conditions; specifically no air movement is considered.  The second facility is fully equipped with an 
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optical single-cylinder engine test rig which provides optical access and is capable of reproducing the real 

thermodynamic conditions inside the chamber. 

Ambient temperature test rig 

Figure 1 represents a complete assembly of the different parts of the ambient temperature test rig. The 

general setup consisted of an ignition coil Lucas electronic DLB 198 triggered by a homemade electronic 

ignition module. The ignition was triggered by a TTL METRIX GX239 pulse from a function generator. 

All the electric signals were electrically isolated. A 10 kOhm high-tension ignition wire Lucas silicone 15 

was used for all of the measurements; a solid copper conductor was used for some measurements 

investigating the effects associated with spark plug and ignition resistance. Different tests were made to 

maximize the efficiency of the system by considering L-C factors, for not to be affected greatly from the 

other electrical signals through electronic screening. A NKG-8-RH spark plug was examined and used in 

the study.  The internal resistances of the spark plug were measured before and after the tests were 

conducted. It is interesting to note that several of the new plugs and coils had higher resistance values 

before the tests were performed than after finishing them.  Voltage traces were measured using a 

Tektronix model P6015A high voltage probe (rise time ~5 ns). Current traces were measured using a 

HEME current probe PR1030 and with current transducers with a sensitivity of 0.01volt/amp and rise 

time of 20 ns. An oscilloscope was used to capture the test signals, in this case a YOKOGAWA DL716 

system with 200 MHz frequency acquisition; the signals were subsequently transferred to a PC. Two 

different voltage measurements were made, one at the top of the spark plug, outside the test rig, and 

another one at the spark gap inside. The high voltage probe (Tektronix) was used to measure the 

secondary voltage and two clamp meters were used for the measurement of the current signals. One 

measured how the system was charged before the electric arc discharge was produced (primary current), 

while the other measured the discharge of the secondary. Finally the power signal of the spark plug was 

fired by a pulse generated by the controlled TTL function generator to simulate different rates of spark 

discharge and different engine conditions. The conditions for the measurements were: a high tension wire  

with 15 kOhm resistance, a spark plug with an internal resistance of 20 kOhm and a gap of 0.7 mm.  It is 

worthy to note that the different electrical equipment used in the ambient temperature test rig will also be 

used in the optical single-cylinder engine in order to record all the necessary signals. 
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As it was discussed, specific equipment was designed to perform the tests in controlled and ambient 

atmosphere. The most relevant design criterion was to provide enough capability for visualization of the 

spark plug discharge by means of a proper sized optical access. The dead volume of the chamber was 

designed so that it was equal to the volume of the optical engine and had the capability to implement the 

different inlet and outlet systems required. Thus, one hole was drilled to allow the spark plug introduction 

and another two to place the pressure sensor and the duct for the nitrogen inlet. Additionally, other criteria 

were considered, such us the mechanical resistance of the entire assembly. So, considering that the 

maximum pressure in test is set below 60 bar and that the temperature is kept constant within the range of 

298-350 K, along with previous experience in designing chambers with similar requirements [11] [12], 

results in the fact that the test rig was manufactured using aluminum 6045. For the optical access a quartz 

window was selected. This quartz window is a cylinder of 60 mm diameter and 50 mm thickness.. Figure 

2 shows a scheme with different views. 

Finally, to carry out the acquisition of the discharge images the spark plug is positioned perpendicular to 

the high speed camera, therefore allowing the study of the phenomena taking place at the electrodes. So, 

in this case, once the test rig is set it is necessary to adjust the camera. In this study, a Phantom V12 high 

speed camera was used. The recording speed was 20000 frames per second with a resolution of 256x256 

pixels and a exposure time of 50 microseconds. Furthermore, an optical lens 24-70 mm MACRO F/2.8 

was used along with continuous light source for a correct illumination of the entire chamber. The distance 

between the quartz window of the test rig and the camera objective is 150mm. This set up aims to allow 

very close observation of the fundamental discharge process in stable conditions that takes place between 

the electrodes in the nitrogen test rig. 

 

Optical single-cylinder engine facility 

To analyze the dynamic response of the ignition system under real conditions the experimental tests were 

performed in an optical single-cylinder DI Diesel engine with 4 valves, 0.545 l displacement and a 

modified cylinder head. Specifically, one of the exhaust valves was removed to allow the spark plug 

insertion. Thus, the engine is installed in a fully instrumented test cell, with all the auxiliary facilities 

required for operation and control. Figure 3 shows a scheme of the installation. 
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In figure 3 the complete test cell is represented. The engine was modified to reproduce high density 

conditions similar that those of new SIDI engines. The compression ratio was adjusted at 14.7:1 and 

intake temperature and air were controlled. Oil and water temperatures were also controlled at the same 

temperature via PID.  Intake air is supplied by means of a screw compressor, and flows through a dryer, a 

filter, two mass flow meters, a liquid gas heat exchanger, a plenum chamber and a second heat exchanger 

before entering the engine. The intake air temperature was measured at different points, but the control 

measurement for the PID was taken with a thermocouple placed a few millimeters upstream of one of the 

intake valves. Intake flow measurements were performed simultaneously with two flow meters. A hot 

wire flow meter (Siemens 5WK9 621 PBT-GF-30), which was selected to allow proper measurement of 

the low mass flow of the single-cylinder engine operating at low speed, was used as the main device.  The 

facility has a heater before the settling chamber to condition the inlet temperature. The main intake 

pressure at the inlet plenum chamber can be set between 1.2 and 3.2 bar.  A second volumetric mass flow 

meter was located downstream of the former for a twofold reason: on the one hand, it allowed on-line 

control of the proper behavior of the hot wire meter and, on the other hand, it allowed a further reduction 

of pressure fluctuations thus increasing the measurement accuracy of the main flow meter. Then, gas 

pressure was adjusted within the intake settling chamber while intake temperature was controlled at the 

intake manifold. The exhaust backpressure created by the turbine in the real engine was replicated by 

means of a valve placed in the exhaust system, controlling the pressure at the exhaust settling chamber. 

The oxygen concentration variation was performed using a synthetic EGR system. The decrease in 

oxygen concentration was generated by mixing nitrogen with fresh air. A system for measuring mass flow 

rate of nitrogen (Siemens 5WK9 628 PBT-GF-30) was installed in the facility. This nitrogen reaches the 

settling chamber where it mixes with the fresh air. After mixing in this large volume, oxygen 

concentration was monitored at the intake manifold by means of a lambda sensor. The mixture was 

controlled by increasing or decreasing the mass flow rate of nitrogen, thus various concentrations of 

XO2could be achieved.  

In addition in the optical version the engine is equipped with an elongated piston with a cylindrical bowl, 

its dimensions being 45x18 mm (diameter x depth), which allows optical access to the combustion 

chamber through a sapphire window placed in its bottom. Below the piston bowl, an elliptical mirror is 

placed on the cylinder axis. In front of the mirror a high speed camera is positioned to record radiation 

that comes from the combustion chamber. All this setup is mounted on an extender that sits between the 
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cylinder head and the engine. Figure 4 shows how the acquisition of the discharge images in this facility 

was performed. As discussed, the whole optical system installed in this optical engine facility has a piston 

with an adaptation of a sapphire window, an elliptical mirror that allows to reflect the light that comes 

from the combustion or otherwise illuminate the inside of the cylinder, an external light source equipment 

with optical fiber and a collimator, and finally a high speed camera to obtain images of the entire process. 

The images are taken with a high speed CMOS camera Phantom V12, equipped with a 100 mm focal 

length ZEISS and an image resolution of 512 x 512 pixels. For this resolution the images have been 

recorded at an acquisition frequency of 20000 fps and 100 microseconds exposure time were used for 

capturing the spark plug discharge process events. In most cases of this study the images have been 

recorded without external illumination and the camera settings have been adjusted to avoid the sensor 

saturation, in such a way that only the light provided by the discharge of the spark plug and combustion 

process was captured. 

 

Methodology 

This section describes the methodology that has been developed in order to understand the ignition 

system response and the spark plug discharge phenomena. This methodology combines classical electrical 

analysis with post-processing of the different signals and optical techniques. Figure 5 shows a sketch of 

the general methodology used for the ignition system analysis in high density conditions. 

 
Ambient temperature test rig operation and methodology 

In a first stage of the study, the ambient temperature test rig is used to study the effect of density on the 

ignition system in static conditions; this requires working without changing the temperature, without air 

movement, and without oxygen in the chamber. To perform the study a wide sweep of densities has been 

carried out including the range of new gasoline engines. In automotive gasoline engines representative 

temperatures and pressures at the start of spark discharge are 550 K and 10-15 bar [10] and in new 

combustion modes is near 20-25 bars. 

Thus, in this stage of the study the chamber is filled with nitrogen to maintain an inert atmosphere, 

therefore allowing performing the test under stable conditions. Consequently, a bottle of N2 is needed to 

pressurize the system. Considering that the temperature of the N2 is kept constant during all tests (298K), 
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the system density will be limited to 40kg/m3 for the study proposed and therefore the maximum pressure 

will be around 60 bar. The nitrogen filling is controlled with a pressure reducer and a pressure gauge 

before its introduction in the chamber. In a first step it is filled up to the reference pressure of the test rig.  

Then, when the pressure system has been stabilized, pressure and temperature are measured with two 

sensors and recorded to calculate the density of the test. The ignition system is discharged with a 

frequency of 0.2 hertz, this frequency is chosen because the coil requires a minimum load time and also 

because it ensures stable and long enough conditions in the electronic system to reproduce the same test. 

In order to perform a complete study and to evaluate the dispersion between tests, 10 discharges of the 

spark plug are recorded under the same ambient conditions. When the discharges occur all electrical 

signals are recorded. In every test, the following signals are recorded with high temporal resolution: 

 Instantaneous primary intensity. 

 Instantaneous primary voltage. 

 Instantaneous secondary intensity. 

 Instantaneous secondary voltage. 

 Signal triggering the ignition system. 

 Command pulse of the ignition system and high speed camera. 

 
Other control parameters are recorded as average values, such as battery voltage, and pressure and 

temperature inside the chamber. 

 
Engine operation and measurement methodology 

The engine is operated under motor steady-state conditions. The experimental study is performed at low 

engine speed operation mode and it is controlled that the battery voltage system remains at 15 V.  Once 

all relevant parameters are stabilized for the test (engine temperature, intake gas temperature, intake and 

exhaust pressures, engine speed, oxygen concentration, etc.) and the acquisition systems are ready, the 

spark discharge is performed. It is critical, when studying the discharge between the electrodes, to control 

the conditions during the discharge process so that repeatability is ensured and a better understanding of 

the phenomena involved is achieved. The beginning of the discharge of the spark plug is determined by a 

signal simulated with the injection control; all systems are synchronized and allow phasing the spark with 
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the engine pressure timing. The signal is used to initiate the spark plug charging and to start the high 

speed camera recording. 

The configuration of the acquisition system was specifically modified to allow a convenient selection of 

the temporal windows for measurement. In such a way, the recording starts in the motored cycle 

immediately prior to a spark plug discharge cycle and concludes when the discharge cycle is completed. 

In every test, the following signals are recorded with high temporal resolution: 

 Instantaneous in-cylinder pressure. 

 Instantaneous intake/exhaust flow meter signals. 

 Instantaneous air pressure at the intake/exhaust manifold. 

 Instantaneous engine speed. 

 Signal triggering the ignition system. 

 Command pulse of the ignition system and high speed camera 

Other control parameters are recorded as average values, such as water and oil temperatures, temperature 

at different points of the intake and exhaust systems, oxygen concentration, and all the electrical signals 

previously commented. 

In-chamber electrical signal analysis 

The electrical instrumentation (described above) used for measuring the main ignition system signals and 

the discharge of the spark plug is the same. The signals recorded are the conventional ones in automotive 

ignition systems: the primary and secondary intensities, and the primary and secondary voltages. 

Once the different signals are stored and considering the transformation values of all electrical probes, it 

is necessary to correct the different signals with the aim of obtaining the real absolute value. Additionally, 

the integrated power delivered by the ignition system is obtained considering the secondary intensity and 

voltage, and performing the integral on the discharge time as shown by equation [1]. 
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In-cylinder pressure analysis 

In-cylinder pressure analysis is made via the diagnostic model CALMEC [13]. This combustion 

diagnostic tool calculates the heat release law (HRL) when combustion occurs (which is not relevant in 

this study), and the temporal evolution of in-cylinder thermodynamic conditions, which is indeed relevant 

in the present study. This is calculated from the measured in-cylinder pressure by applying an energy 

balance to a control volume defined by the cylinder and the piston. Despite the fact that CALMEC was 

elaborated for systematic use in practically any Diesel engine configuration, it had to be adjusted for 

ignition system studies to ensure that even when the combustion does not occur, the appropriate density 

values due to heat transfer exist. CALMEC usually performs an analysis based on the cylinder pressure 

signal averaged over a certain number of cycles. But, in this case, the analysis must be done cycle by 

cycle because under the same thermodynamic conditions the response of the system can be different. 10 

cycles are recorded at the same thermodynamic conditions. 

 

Optical techniques 

As commented previously, the same optical technique and the same high speed camera are used in both 

facilities. However, little differences exist in the methodology used in the ambient test rig and in the 

optical engine. The synchronization as well as the number of frames per second recorded are different for 

both systems. Furthermore, in the ambient temperature test rig the electrodes can be observed while in the 

optical single cylinder engine only the bottom of the spark is accessible.  Natural luminosity radiation is 

acquired with a high speed camera for specific tests in order to complete and improve the information 

from electrical signals. 

Finally, a temporal synchronization of images and current and voltage signals is performed. To sum up, 

with the methodology proposed it is possible to obtain:  

 Information regarding the treatment of the recorded signals: charging time for the primary, 

maximum peak voltage for primary and secondary, maximum peak intensity for primary and 

secondary, profile of current discharge, time and integrated power released. 

 Information regarding spatial visualization: location of the electric arc and light intensity. 
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Once the signals and images have been recorded it is necessary to perform a post-processing step using a 

program implemented in Matlab code.  With this program the electrical signals can be synchronized with 

all the images in both studies. Figure 6 and 7 are an example of the complete time-resolved parameters 

methodology along with some of their corresponding images. 

Figures 6 and 7 depict the result of implementing the developed methodology that has been previously 

described. In the ambient test rig the case represented is 11.2 kg/m3 density in chamber (Figure 6) and for 

the optical engine the case represented is that of the cycle with 14.7 kg/m3 density in the combustion 

chamber (Figure 7).  For both figures, from up to down in the vertical axis, secondary current and the 

integrated power and voltage measured in the secondary are represented. Besides, in the lower part of the 

graphic, the thermodynamic characteristics of the test are presented. In Figure 6, the three values are kept 

constant, where the pressure and temperature are measured and density is calculated. In Figure 7, only 

pressure is measured and CALMEC calculates the temperature and the density. Finally four sample 

pictures of the discharge process are shown at the bottom of the figures with emphasis in the evolution of 

the electric arc. 

As can be seen in Figure 6, the peak values of secondary intensity and voltage are 118 mA and 23500 V 

approximately; that makes an integrated power of 113.4 mJ. In Figure 7 the peak values of these signals 

are 160 mA and 27000 V, which implies an energy of approximately 154 mJ. The ignition system charge 

(primary current evolution) is almost the same in both cases. The charge has an approximate duration of 

4.6 ms and grows linearly until close to 12 amps in both cases. By contrast, comparing the system 

discharge represented by signals I2 and V2 (secondary current and voltage) it can be noticed that the 

discharge time is shorter in the cases of higher density, but the integrated energy is higher due to the 

increase in I2 and V2 needed to achieve the electrical breakdown. This is a consequence of the higher 

energy needed to establish the electric arc when the density is increased in the chamber, as could be the 

situation in new highly supercharged engines. 
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Results 

To evaluate the ignition system, density sweeps from ambient conditions up to values used in the new 

combustion gasoline modes are proposed. The different tests have been carried out in the two facilities 

previously presented.  Table 1 presents the density values used on the ambient temperature test rig. 

Table 2 presents the different density sweeps performed at the optical engine. The engine parameters 

selected are those which are expected to have a higher impact on the ignition process. 

In the study of the optical engine a reference point is used. This point is SOS -19 CAD, an inlet 

temperature of 35°C and an oxygen concentration of 18 % vol. Engine speed is kept constant during all 

the study at 750 rpm and so is inlet pressure at 1.6 bar. 

Ambient temperature test rig 

An analysis of the ignition system is performed in the ambient temperature test rig by only varying the 

pressure to modify the value of the density. This allows to us study the effect of density on the ignition 

system at isolated conditions comparing with real engine conditions. 

In Figure 8, the mean value and the standard deviation of the integrated power versus density is presented. 

For each test 10 repetitions have been performed. As can be seen in the figure, when density in chamber 

increases, the integrated power released during the arc phase of the spark event decreases. It can be 

contrasted by observing the trend of the integrated power mean value. This behavior is due to the fact that 

more density in chamber requires more energy to ionize the air and to obtain the arc breakdown, thus, the 

available energy for the arc phase decreases. This argument can be observed in the figure 9. The figure 

shows the released power by the spark for two cases of density: 29.23 kg/m3 and 1.1 kg/m3, it can be 

appreciated that in the 29.23 kg/m3 density case, the power value for the entire integration time is lower 

than in the 1.1 kg/m3 case. Moreover the duration of the spark event is lower too, obtaining consequently 

a lower value of integrated power. 

On the other hand, the dispersion of the integrated power values increases with density due to the 

difficulties encountered by the system when trying to establish the channel between electrodes at the high 

density values. 
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Optical engine results 

In order to compare the results obtained in the ambient test rig, different studies have been carried out in 

an optical engine by modifying those engine parameters that directly or indirectly affect the density. 

These parameters are the intake temperature and the start of spark (SOS).  Thus, considering a closed 

volume, a variation in the intake temperature implies a variation in the chamber temperature as follows: 

(2) 

Where n is a polytrophic exponent which depends on the heat losses inside the combustion chamber. On 

the other hand, changes in the start of spark imply changes in both pressure and temperature. Finally, the 

effect of ambient composition is also tested. For that matter, different ratios of oxygen and nitrogen molar 

fractions are proposed. 

Thus, starting with the density effects, a sweep of intake temperature is performed while the rest of the 

engine parameters that were selected as an engine reference point are kept constant. Once the temperature 

in the settling chamber is practically constant, 10 cycles of spark plug discharge are realized for each 

point. In Figure 10 is represented the main results of integrated power versus density. Each density 

corresponds to a specific intake temperature and therefore to a specific chamber temperature, while the 

pressure is kept constant. Consequently, this study complements the study performed with the ambient 

temperature test rig. The range of intake temperature is higher than the one used in a commercial engine 

in order to explore widely the effect that an increase in chamber temperature causes in the air between the 

electrodes and therefore in the ignition system. Thus, an increase in density, provided by the decrease in 

temperature, implies a decrease in the energy released between the electrodes. It is noted that the 

dispersion follows the same trend than in the ambient test rig. 

In the second study a sweep of start of spark is carried out.  When the start of spark is changed, the 

density is modified due to variations on pressure and temperature.  As can be seen in Figure 11, variation 

on this engine parameter implies considerable variations on the density between the electrodes affecting 

the integrated power released by the ignition system. The integrated power trend obtained in this study, in 

which temperature and pressure have been modified, goes in the same way that in previous ones, where 

pressure has been kept constant and temperature has been modified and vice versa. On the other hand, the 

dispersion for these 10 discharges is similar for the three cases.  
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Additionally, in order to get a better understanding of the operation of the ignition system, a sweep of 

oxygen concentration is performed. In these new combustion modes [10] high EGR levels are commonly 

used. With the system previously explained in the facilities section, the EGR is substituted with nitrogen 

and thus different XO2 concentrations can be obtained.  The objective of this particular study is to 

observe how chamber gas composition affects the energy needed to ionize the gas between the electrodes. 

Figure 12 presents three different XO2 concentrations (21 to 14 % vol) (keeping the density constant) 

versus the integrated power. The results indicate that the effect of the oxygen concentration is negligible 

and no differences in integrated power can be appreciated, at least under these engine test conditions. 

Finally, figure 13 presents a comparison between the results obtained in the ambient test rig and the 

optical engine in order to compare the trend and values of the integrated power versus density. 

The results obtained with both facilities have similar trends and values, which allows concluding that 

using the ambient test rig is an adequate methodology to evaluate an engine ignition system in a 

simplified way. 

 

Conclusions 

A methodology for the characterization of spark ignition systems working at high density conditions has 

been presented, including the design of a simple test rig to visualize the ignition behavior under ambient 

temperature conditions. Also the description of the general schedule followed to process the different 

electrical signals and achieve the temporal synchronization of images has been provided. 

The application of the described methodology provides an overall point of view of the ignition system 

behavior, complementing the classical approach which consists of the evaluation of this type of systems 

using only electrical signals. Specifically, the effect of variations of the density at ignition system has 

been evaluated by isolating the effects of pressure, temperature and gas composition, combining 

simplified and realistic test rigs. Thus, as a general conclusion, when the density is increased the 

integrated power required and supplied by the ignition system is decreased. Additionally, it is also 

remarkable that the values of the integrated power present higher dispersion with higher density values. 

Moreover, for a given compression ratio, the start of the spark is the most relevant parameter when 

defining the ignition system required for new gasoline combustion modes, since slight variations on this 
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parameter imply considerable variations on the density. On the other hand, the methodology developed 

also helps to identify problems regarding the location of the electric arc as well as its intensity and 

therefore its released energy at current high density conditions used in new gasoline engines. 

Both the testing methodology and identification of errors in the ignition systems have been validated by 

examples with satisfactory results. Finally, it should be noted that the results of the ambient temperature 

test rig follow the same trends and values as the realistic ones. Therefore, it has been proved that the use 

of a simplified test rig could represent a useful optimization of time and resources in the research process. 
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TABLES 

Test  Pressure  Density  Characteristics 

[‐]  [bar]  [kg/m3]  [‐] 
1  Atm  1.11  Spark plug ignition 

Frequency: 0.20 Hz 

10 Ignition cycles 
recorded per density 

T=298K Constant 

2  10  11.1 
3  15  16.7 
4  20  22.2 
5  25  27.8 

 

Table 1: Test Matrix to validate the methodology with different densities in the high pressure 
test rig 

 

 

Parameter  Unit  Sweep 

Start of Spark Ignition   [CAD]  ‐19/ ‐14/ ‐9 
Intake Temperature  [°C]  35/ 50/ 70/ 90/ 110 
Intake oxygen concentration  [% vol]  21/ 16/ 14  

 

Table 2: Test Matrix to validate the methodology with different densities in the optical engine 
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Figure 1: Scheme of the ambient temperature facility. 

 

 

 

Figure 2: Different views of the parts which form the nitrogen test rig. 
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Figure 3: Complete test cell scheme for the optical engine. 

 

 

 

 

Figure 4: Sketch of the optical access in the cylinder engine and an image showing how the 

combustion chamber is seen from the camera point of view. 
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Figure 5: Sketch of the methodology applied to perform the ignition system study. 

 

 

 

 

 

 

Figure 6: Representation of the main electrical and thermodynamic signals of 11.2 kg/m3 on 

the ambient test rig. 
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Figure 7: Representation of the main electrical and thermodynamic signals of 14.7 kg/m3 on 

the optical engine. 

 

 

 

 

 

 

Figure 8: Integrated power with different densities on the test rig. 
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Figure 9: Logarithmic instantaneous power with 2 different densities. 

 

 

 

 

 

 

Figure10: Integrated power with different densities on the optical engine. Temperature 

sweep. 
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Figure 11: Integrated power with different densities on the optical engine. Start of spark 

timing sweep. 

 

 

 

 

 

 

Figure 12: Integrated power with different densities on the optical engine. Oxygen 

concentration sweep. 
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Figure 13: Ambient temperature test Rig and optical engine integrated power results. 

 

 


