
 

Document downloaded from: 

 

This paper must be cited as:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The final publication is available at 

 

 

Copyright 

http://link.springer.com/chapter/10.1007/978-3-319-13770-4_4

http://hdl.handle.net/10251/51307

Springer Verlag (Germany)

Lucas Alba, S. (2014). Using Representation Theorems for Proving Polynomials Non-
negative. En Artificial Intelligence and Symbolic Computation: 12th International
Conference, AISC 2014, Seville, Spain, December 11-13, 2014. Proceedings. Springer
Verlag (Germany). 21-33. doi:10.1007/978-3-319-13770-4_4.



Using Representation Theorems for Proving
Polynomials Non-negative

Salvador Lucas1

DSIC, Universidad Politécnica de Valencia
Camino de Vera s/n, 46022 Valencia, Spain

Abstract. Proving polynomials non-negative when variables range on a
subset of numbers (e.g., [0,+∞)) is often required in many applications
(e.g., in the analysis of program termination). Several representations for
univariate polynomials P that are non-negative on [0,+∞) have been
investigated. They can often be used to characterize the property, thus
providing a method for checking it by trying a match of P against the
representation. We introduce a new characterization based on viewing
polynomials P as vectors, and find the appropriate polynomial basis B
in which the non-negativeness of the coordinates [P ]B representing P in
B witnesses that P is non-negative on [0,+∞). Matching a polynomial
against a representation provides a way to transform universal sentences
∀x ∈ [0,+∞) P (x) ≥ 0 into a constraint solving problem which can be
solved by using efficient methods. We consider different approaches to
solve both kind of problems and provide a quantitative evaluation of
performance that points to an early result by Pólya and Szegö’s as an
appropriate basis for implementations in most cases.

Keywords: Polynomial constraints, positive polynomials, representa-
tion theorems.

1 Introduction

Representations of univariate polynomials that are positive (Pd(I)) or non-
negative (Psd(I)) on an interval I of real numbers have been investigated (see
[14] for a survey) and some of them are useful to check the property. In this
paper we investigate this question: which technique is worth to be implemented
for a practical use? Our specific motivation is the development of efficient and
automatic tools for proving termination of programs, where polynomials play a
prominent role (see [8, 12], for instance) and the focus is on Psd([0,+∞)).

We decompose the whole problem into two main steps: (1) the use of repre-
sentation theorems to obtain a set of existential constraints whose satisfaction
witnesses that (∀x ≥ 0) P ≥ 0 holds and (2) the use of constraint solving tech-
niques to obtain appropriate solutions. With regard to (1), several researchers
(starting with Hilbert) addressed this problem and contributed in different ways
(see Section 2). In this setting, the following test is often used in practice [10]: a
polynomial P is Psd([0,+∞)n) if all coefficients of the monomials in P are non-
negative. This has obvious limitations. For instance, Q(x) = x3 − 4x2 + 6x + 1



is Psd([0,+∞)), but contains negative coefficients. The following observation
generalizes this approach (Section 3): P ∈ R[X] of degree n can be represented
as a vector [P ]B = (α0, . . . , αn)T of n + 1 coordinates with respect to a ba-
sis B = {v0, . . . , vn} ⊆ R[X], i.e., P = α0v0 + α1v1 + · · · + αnvn. Then, P is
Psd([0,+∞)) if (i) [P ]B ≥ 0 and (ii) v0, . . . , vn are Psd([0,+∞)). Requiring all
coefficients in the representation P =

∑n
i=0 pix

i to be non-negative corresponds
to considering the standard basis Sn = {1, x, ..., xn} for polynomials of degree n.
In our running example, [Q]S3 = (1, 6,−4, 1)T 6≥ 0. We define a parametric poly-
nomial basis Pn such that, for all P ∈ R[X] of degree n which is Psd([0,+∞)),
[P ]B ≥ 0 for some specific B which is obtained from Pn by giving appropriate
values to the parameters. We also show how to give value to the parameters.

Example 1. The representation of Q(x) = x3 − 4x2 + 6x + 1 with respect to
B = {1, x, x2, x(x− 2)2} is [Q]B = (1, 2, 0, 1)T ≥ 0.

Regarding (2), in Section 4 we use a recent, efficient procedure to solve polyno-
mial constraints over finite domains [5] as a reference to provide a quantitative
analysis of the characterizations discussed in Sections 2 and 3 and provide an
answer to our question. Section 5 discusses some related work and concludes.

2 Representation of polynomials non-negative in [0,+∞)

We consider the following representations of Psd([0,+∞)) polynomials P (see
[14]): (1) Hilbert [9]; (2) Pólya and Szegö [13]; (3) Karlin and Studden [11]; and
(4) Hilbert’s approach using Gram matrices [7].

Remark 1. Our motivation for considering these particular methods is that, in
automatic proofs of termination, polynomials P whose non-negativity must be
guaranteed are parametric, i.e., the coefficients are not numbers but rather vari-
ables whose value is generated by a constraint solving process. All previous
methods fit the requirement of being amenable to this practical setting.

We briefly discuss how to use these four methods and also give some cost indi-
cators: V (n) is the number of parameters used to match P (of degree n) against
the representation, and I(n) is the number of (in)equalities which are obtained.
The following fact is used later.

Proposition 1. Let P,Q ∈ R[X1, . . . , Xn] be P =
∑
α aαX

α and Q =
∑
α bαX

α.
If aα ≥ bα for all α ∈ Nn and Q is Psd([0,+∞)n), then P is Psd([0,+∞)n).

In the following,÷ and % denote the integer division and remainder, respectively.
We say that a polynomial P is a sum of squares (or just sos, often denoted as
P ∈

∑
R[X]2) if can be written P =

∑
i f

2
i for polynomials fi.

2.1 Hilbert

Since P ∈ R[X1, . . . , Xn] is Psd([0,+∞)n) if and only if H(X1, . . . , Xn) =
P (X2

1 , . . . , X
2
n) is Psd(Rn) (note that this transformation doubles the degree

of P ), we can use the following result.
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Proposition 2 (Hilbert). [9] If P ∈ R[X] is Psd(R), then P is a sum of two
squares of polynomials.

Example 2. Consider H(x) = Q(x2) = x6− 4x4 + 6x2 + 1 = f1(x) + f2(x) where
fi(x) = (aix

3 + bix
2 + cix+ di)

2 for i = 1, 2. Then, H(x) should match∑2
i=1 a

2
ix

6 + 2aibix
5 + (b2i + 2aici)x

4 + 2(bici + aidi)x
3 + (2bidi + c2i )x2 + 2cidix+ d2i

which amounts at solving the following equalities:∑2
i=1 a

2
i = 1

∑2
i=1 aibi = 0

∑2
i=1 b

2
i + 2aici = −4∑2

i=1 bici + aidi = 0
∑2

i=1 2bidi + c2i = 6
∑2

i=1 cidi = 0
∑2

i=1 d
2
i = 1

A solution (with irrational numbers) is obtained by using, e.g., Mathematica.

We have V (n) = 2n+ 2 and I(n) = 2n+ 1.

2.2 Pólya and Szegö

Proposition 3 (Pólya & Szegö). [13] If P is Psd([0,+∞)), then there are sos
polynomials f, g such that P (x) = f(x) + xg(x) and deg(f),deg(xg) ≤ deg(P ).

If f, g ∈
∑

R[X]2, then both f and xg are Psd([0,+∞)). Thus, Pólya and Szegö’s
representation actually provides a characterization. We can use it, then, to prove
that P is Psd([0,+∞)) iff P matches the representation. Since every univariate
sos polynomial f can be written as a sum of two squares of polynomials, in
Proposition 3 we assume f = f21 +f22 and g = g21 +g22 , for polynomials fi and gi,
i = 1, 2. If n = deg(P ) = 1, then, since deg(f),deg(xg) ≤ 1, f, g ∈

∑
R[X]2 must

be constant polynomials f = f0 and g = g0. If n = 2, then, since deg(xg) ≤ 2,
g ∈

∑
R[X]2 must be a constant. If n > 2, then deg(fi) = d1 ≤ bn2 c, and

deg(gi) = d2 ≤ bn−12 c. Write fi = ai,d1x
d1 + · · ·+ai,1x+ai,0 and gi = bi,d2x

d2 +
· · ·+bi,1x+bi,0 for i = 1, 2. Try to match the coefficients of the target polynomial
P against this representation.

Example 3. For our running example Q, we have

Q(x) = x3 − 4x2 + 6x+ 1 = f1(x) + f2(x) + x(g1(x) + g2(x))

where fi(x) = (aix+ bi)
2 and gi(x) = (cix+ di)

2 for i = 1, 2. Then,

Q(x) = (c21 + c22)x3 + (a21 + a22 + 2c1d1 + 2c2d2)x2 + (2a1b1 + 2a2b2 + d21 + d22)x+ b21 + b22

By Proposition 1, rather than equalities, we solve now the inequalities1:

1 ≥ c21 + c22; −4 ≥ a21 + a22 + 2c1d1 + 2c2d2; 6 ≥ 2a1b1 + 2a2b2 + d21 + d22; 1 ≥ b21 + b22.

with: a1 = 0, a2 = 0, b1 = 1, b2 = 0, c1 = 1, c2 = 0, d1 = −2, and d2 = 1.

Each fi and gi contributes with d1 +1 and d2 +1 parametric coefficients, respec-
tively, i.e., V (n) = 2(d1 + 1 + d2 + 1) = 2(2 + d1 + d2) = 2(n+ 1) = 2n+ 2. The
number of inequalities to be solved is I(n) = n+ 1 (one per coefficient pi of P ).

1 Using inequalities makes the constraint solving process more flexible and often avoids
the use of irrational numbers, often out of the scope for most constraint solving tools.
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2.3 Karlin and Studden

Theorem 1 (Karlin and Studden). [11, Corollary V.8.1] Let P2m be a poly-
nomial of degree 2m for some m ≥ 0 with leading coefficient a2m > 0. If P2m is
Pd([0,+∞)), then there exists a unique representation

P2m(X) = a2m
∏m
j=1(X − αj)2 + βX

∏m
j=2(X − γj)2

where β > 0 and 0 = γ1 < α1 < γ2 < · · · < γm < αm < ∞. Similarly, if
P2m+1 is a polynomial of degree 2m+ 1 for some m ≥ 0, with leading coefficient
a2m+1 > 0 and P2m+1 is Pd([0,+∞)), then there exists a unique representation

P2m+1(X) = a2m+1X
∏m+1
j=2 (X − αj)2 + β

∏m
j=1(X − γj)2

where β > 0 and 0 = α1 < γ1 < α2 < γ2 < · · · < γm < αm+1 <∞.

Unfortunately, this representation cannot be used to prove that P is Pd([0,+∞))
by matching. For instance, P = (x − 1)2 matches it, but it is not Pd([0,+∞)).
However, Karlin and Studden’s representation can be used to prove P to be
Psd([0,+∞)) by matching if we just require αj , β, γj ≥ 0.

Example 4. Since the degree of Q is odd, we let

KQ(x) = x(x− α2)2 + β(x− γ1)2 = x3 + (β − 2α2)x2 + (α2
2 − 2βγ1)x+ βγ21

Thus, we have the following constraints (using Proposition 1):

−4 ≥ β − 2α2 1 ≥ 0 6 ≥ α2
2 − 2βγ1 1 ≥ βγ21 β ≥ 0 γ1 ≥ 0 α2 ≥ 0

The assignment α2 = 9
4 , β = 1

4 , and γ1 = 1
2 solves the system.

We have V (n) = n and I(n) = n+ 1 + V (n) = 2n+ 1.

2.4 Hilbert with Gram matrices

An alternative way to use Hilbert’s representation is the following.

Theorem 2. [7] Let P be a polynomial of degree 2m and z(X) be the vector of
all monomials Xα such that |α| ≤ m. Then, P is a sum of squares in R[X] if and
only if there exists a real, symmetric, psd matrix B such that P = z(X)TBz(X).

Proving H(x) = P (x2) of degree 2n to be sos amounts at (1) matching H against
z(X)TBz(X) (where z(X) = (1, X, . . . ,Xn)T ) and (2) proving B ∈ Rn+1×n+1

positive semidefinite. Since B is symmetric, we need (n+1)(n+2)
2 parameters bij

to represent B. Then, we need to solve 2n+ 1 equations in (n+1)(n+2)
2 variables

(the parameters bij) corresponding to the monomials in H. According to [15],

this can be done by taking (n+1)(n+2)
2 − (2n+ 1) = n2−n

2 of the bij as unknowns
which can be given appropriate values that are obtained using (2), i.e., B must be
positive semidefinite. This can be done by computing the characteristic polyno-
mial det(zIn+1−B) =

∑n
i=0 ciz

i of B and requiring its roots to be non-negative
[15]. They show that this can be achieved by imposing (−1)i+n+1ci ≥ 0 for all

0 ≤ i ≤ n. Thus, V (n) = (n+1)(n+2)
2 . and I(n) = (2n+ 1) + (n+ 1) = 3n+ 2.
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3 Checking positiveness of polynomials as vectors

Let V be an n-dimensional vector space over the reals and B = {v1, . . . , vn}
be an ordered basis for V. For all n-tuples α = (α1, . . . , αn) ∈ Rn we write
α ≥ 0 if αi ≥ 0 and α > 0 if α1 > 0 and α2, . . . , αn ≥ 0. Every v ∈ V
can be represented as a coordinate vector [v]B = (α1, . . . , αn)T ∈ Rn such that
v = α1v1+· · ·+αnvn. Given bases B and B′ for V, there is a change of base matrix
(cb-matrix) MB′ 7→B (or just M) which can be used to obtain the coordinate
representation [v]B of v in B from the representation [v]B′ of v in B′: [v]B =
M [v]B′ . The set Pn of univariate polynomials of degree at most n is a vectorial
space of dimension n + 1 and has a standard basis Sn = {1, x, . . . , xn}. If B =
{v0, . . . , vn} is a basis for Pn and every v ∈ B is Psd([0,+∞)), then given
P ∈ Pn, if [P ]B = (α0, . . . , αn)T ≥ 0, then P is Psd([0,+∞)). If P =

∑n
i=0 pix

i,
this is translated into the search of a basis B satisfying the conditions above
and a cb-matrix M = MSn 7→B such that M [P ]Sn ≥ 0. We consider parametric
bases B consisting of polynomials with parametric coefficients which can be given
appropriate values as to fit the requirements above. By a parametric polynomial
we mean a polynomial P ∈ R[γ1, . . . , γk][X] over X whose monomials have
coefficients in R[γ1, . . . , γk]; variables γ1, . . . , γk are called parameters. For all
i ∈ N, consider the parametric univariate polynomials, :

Pi(x) =
∏ i

2
j=1(x− γij)2 if i is even Pi(x) = x

∏ i−1
2
j=1(x− γij)2 if i is odd

where the empty product is 1, and γij are parameters satisfying γij ≥ 0. For
instance, P0(x) = 1, P1(x) = x, P2(x) = (x − γ21)2 = γ221 − 2γ21x + x2, and
P3(x) = x(x − γ31)2 = γ231x − 2γ31x

2 + x3. Note that for all i ≥ 0 and x ≥ 0,
Pi(x) ≥ 0 and P0(x) > 0. Given n ∈ N, let Pn = {P0(x), . . . ,Pn(x)} ordered by
the sequence 0, 1, . . . , n. Pn is a basis of Pn; this is a consequence of the following.

Theorem 3. Let P = {P0, . . . , Pn} be a set of n + 1 polynomials such that
P0 ∈ R− {0} and deg(Pi) = i for all 1 ≤ i ≤ n. Then, P is a basis of Pn(x).

Note that Pn+1 = Pn ∪ Pn+1(x).

Proposition 4 (Number of parameters in the basis). Given n ∈ N, the
number N(n) of parameters in Pn is given by N(0) = 0 and N(n) = N(n− 1) +

bn2 c for n > 0. Furthermore, N(n) = n2

4 if n is even and n2−1
4 otherwise.

We prove that Pn characterizes Psd([0,+∞)) and Pd([0,+∞)).

Theorem 4. A polynomial P ∈ R[X] of degree n is Psd([0,+∞)) (Pd([0,+∞)))
if and only if [P ]Pn ≥ 0 (resp. [P ]Pn > 0) for some assignment of values γij ≥ 0
to the parameters in Pn.

We show how to compute the cb-matrix Mn = MSn 7→Pn
for obtaining the rep-

resentation [P ]Pn = Mn[P ]Sn of P ∈ Pn which is required in Theorem 4. In
the following, [Pn(x)]1,··· ,nSn is the n-dimensional vector containing the first n
(parametric) coordinates of [Pn(x)]Sn (the last one is 1, corresponding to xn).
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Theorem 5 (Incremental cb-matrix). We have M0 = I1 and for all n > 0,

Mn =

(
Mn−1 −Mn−1[Pn(x)]1,...,nSn
01×n 1

)
Example 5. Since M1 = I2, according to Theorem 5, we have:

M2 =

 M1 −M1

(
γ221
−2γ21

)
01×2 1

 =

1 0 −γ221
0 1 2γ21
0 0 1

 and

M3 =

 M2 −M2

 0
γ231
−2γ31


01×3 1

 =


1 0 −γ221 −2γ221γ31
0 1 2γ21 4γ21γ31 − γ231
0 0 1 2γ31
0 0 0 1


For our running example [Q]S3 = (1, 6,−4, 1)T , we impose [Q]P3

= M3[Q]S3 > 0:
1 0 −γ2

21 −2γ2
21γ31

0 1 2γ21 4γ21γ31 − γ2
31

0 0 1 2γ31
0 0 0 1




1
6
−4
1

 =


1 + 4γ2

21 − 2γ2
21γ31

6− 8γ21 + 4γ21γ31 − γ2
31

−4 + 2γ31
1

 >


0
0
0
0


The corresponding existential constraint:

γ21, γ31 ≥ 0, 1+4γ2
21−2γ2

21γ31 > 0 ∧ 6−8γ21+4γ21γ31−γ2
31 ≥ 0 ∧ 2γ31−4 ≥ 0 ∧1 > 0

is satisfied if γ21 = 0 and γ31 = 2, witnessing Q as pd([0,+∞)) through the
coordinate representation [Q]P3 = (1, 2, 0, 1)T when P3 = {1, x, x2, x(x− 2)2}.

Note that V (n) = N(n) = n2−n%2
4 and I(n) = n+ 1 + V (n) = n+ 1 + n2−n%2

4 .

Remark 2. If P is a parametric polynomial of degree n, then [P ]Sn is an n+ 1-
tuple of parameters which are treated by the constraint solving system which
obtains the parameters of the basis Pn in the same way (see Remark 1).

4 Quantitative analysis

In constraint solving, the number of variables occurring in the whole set of con-
straints usually dominates the temporal cost to reach a solution. In our setting,
assuming P of degree n, for each representation method V (n) and I(n) (see
Section 2) are as follows:

Method: Hilbert P&S K&S Gram Vector

V (n): 2n+ 2 2n+ 2 n+ 1 (n+1)(n+2)
2

n2−n%2
4

I(n): 2n+ 1 n+ 1 2n+ 1 3n+2 n+ 1 + n2−n%2
4

This table suggests the following conclusion: for proving Psd([0,+∞)), Karlin &
Studden is the best choice. However, this does not pay attention to the subsequent
constraint solving process that we need to use in any implementation. In [5] an
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efficient procedure to solve polynomial constraints C (e.g., P ≥ 0, where P is
written as a sum of monomials with the corresponding coefficients) is given.
The procedure transforms a polynomial constraint into a formula of the linear
arithmetic and then fast, highly efficient Satisfiability Modulo Theories (SMT)
techniques are used to find a solution. In linear arithmetic (logic) only constants c
or additions of linear expressions c·v are allowed, the atoms consist of expressions
` ./ `′ where `, `′ are constants or linear expressions and ./ ∈ {=, >,≥}, and the
formulas are combinations of atoms using→ (implication) and ∧ (conjunction).
An initial preprocessing L0 transforms P ./ 0 into `P ./ 0, where `P is obtained
from P by replacing the nonlinear monomials M by new variables xM ; then new
atoms xM = M are added and they are subsequently transformed after further
linearization using the following rules, where D is a finite domain of numbers2:

Definition 1. Let C be a pure non-linear constraint and D be a finite set. The
transformation rules are the following (where v is a variable):

L1: C ∧ x = vp =⇒ C ∧
∧
a∈D(v = a→ x = ap), if p > 1

L2: C ∧ x = vp · w =⇒ C ∧
∧
a∈D(v = a→ x = ap · w)

L3: C ∧ x = vp ·M =⇒ C ∧
∧
a∈D(v = a→ x = ap · xM ) ∧ xM = M

if M is not linear and v does not occur in M

For x = M0 where M0 is a monomial with m different variables, if M0 consists
of at most two variables, one of them of degree 1, then L1 or L2 apply; no
new variables are introduced and the equality is transformed into |D| new linear
formulas. If M0 = vpM contains m variables and M is not linear, then only L3
applies, and then introduces a new variable xM together with |D| new linear
formulas and a new equality xM = M where M has m− 1 variables.

Example 6. For instance, for 1 ≥ c21 + c22 in Example 3,

1 ≥ c21 + c22 ;L0 1 ≥ xc21 + xc22 ∧ xc21 = c21 ∧ xc22 = c22
;L1 1 ≥ xc21 + xc22 ∧

∧
d∈D c1 = d→ xc21 = d2 ∧

∧
d∈D c2 = d→ xc22 = d2

we obtain 1 + 2|D| linear formulas and 2 new variables are required.

In the following, VL(n) is the number of new variables introduced by L0. And if
P is the targeted polynomial, pi for 0 ≤ i ≤ n is the coefficient of xi in P .

Hilbert. If f =
∑d
j=0 fjx

j is a parametric polynomial of degree d > 0, then the

coefficient ci of xi in f2 is obtained from the products frfs such that r + s = i.
Here, fsfr does not count as a new combination because frfs + fsfr = 2frfs. If
i ≤ d we have different contributing combinations from (0, i) to (i÷2, i−i÷2), i.e.,
1+i÷2 combinations. If i > d, then we have different contributing combinations
starting from (d− i, d), i.e., 1 + (2d− i)÷ 2 = 1 + d− i÷ 2− i%2 combinations.
Overall, if µd(ci) = 1 + i÷ 2, if i ≤ d, and µd(ci) = 1 + d− i÷ 2− i%2, if i > d,
then ci consists of a sum of µd(ci) monomials frfs all of them of degree 2.

2 Simplified definition which only uses a single domain of values for all variables.
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When matching P (x) =
∑n
i=0 pix

i
i against Hilbert’s representation, each

pi, 0 ≤ i ≤ n is matched by a sum c2i of 2µn(c2i) expressions of degree 2
(in the parameters). However, for all 0 ≤ i < n, there are additional equations
c2i+1 = 0 which are due to the duplication of the degree of P before the matching.
Therefore, there are 2n+ 1 equations gathering∑n

i=0 2µn(c2i) +
∑n−1
i=0 2µn(c2i+1) = 2

(∑n
i=0 µn(c2i) +

∑n−1
i=0 µn(c2i+1))

)
quadratic terms all together, i.e., VL(n) = 2

(∑n
i=0 µn(c2i) +

∑n−1
i=0 µn(c2i+1))

)
.

Polya & Szegö. When matching P =
∑n
i=0 pix

i
i against Polya and Szegö’s

representation in Section 2.2, if n = 1, then p0 and p1 are matched to squared
constants f20 and g20 , respectively. If n = 2, then p1 is matched to a sum of two
monomials of degree 2 each; finally, if n ≥ 3, then p0 and pn are each of them
matched to a sum of 2 squares, and each pi, 0 < i < n is matched to a sum of
2µn÷2(ci) + 2µ(n−1)÷2(ci−1) expressions which are parametric coefficients: the
coefficients of monomials of degree i from f21 and f22 , and the coefficients of
monomials of degree i− 1 from g21 and g22 . All these parametric coefficients have
degree 2. We have two equations with two terms and n− 1 equations gathering∑n−1

i=1 2µn÷2(ci) + 2µ(n−1)÷2(ci−1) = 2
(∑n−1

i=1 µn÷2(ci) +
∑n−1
i=1 µ(n−1)÷2(ci−1)

)
= 2

(
1 + µn÷2(cn−1) +

∑n−2
i=1 µn÷2(ci) + µ(n−1)÷2(ci)

)
terms. Terms M of degree 2 require a new variable xM in the initial step L0.
Overall, VL(1) = 2, VL(2) = 3 · 2 = 6 and, for n ≥ 3:

VL(n) = 6 + 2
(
µn÷2(cn−1) +

∑n−2
i=1 µn÷2(ci) + µ(n−1)÷2(ci)

)
Karlin & Studden. If α ∈ {0, . . . , n}m, we let |α| =

∑m
i=1 αi. Note that

(
∏m
i=1(x− ai))

n
=
∑mn
i=0(−1)i(

∑
α∈{0,...,n}m,|α|=mn−i a

α)xi. If n = 1, there are(
m

m− i

)
=

(
m
i

)
parametric monomials aα (all of them of degree m− i with

respect to parameters ai) accompanying xi. If n = 2, we can obtain the number

of monomials accompanying xi as follows. There are

(
m
p

)
monomials aα with

α ∈ {0, 1}m and |α| = m− p. Here, 0 ≤ p ≤ m. These monomials can contribute
to a monomial of degree 2m− i for xi. However, note that only those monomials
satisfying m−p ≤ 2m−i (i.e., p ≥ i−m) will be useful; otherwise, the monomials
aα exceed the required degree 2m − i for xi. If we replace 2m − i − (m − p) =
m− i+p occurrences of 1 by 2 in α to yield α′ (with m−p− (m− i+p) = i−2p
occurrences of 1 only), then, |α′| = 2(m−i+p)+i−2p = 2m−i as desired. We can

do that in

(
m− p

m− i+ p

)
different ways. However, this process makes sense only
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if α has enough occurrences of 1, i.e., if 2(m− p) ≥ 2m− i (equivalently, 2p ≤ i,
i.e., p ≤ i ÷ 2) so that the replacement of occurrences of 1 by 2 in α actually
leads to the appropriate α′. Overall, xi comes with a parametric coefficient of

mon(m, i) =

i÷2∑
p=max(0,i−m)

(
m
p

)(
m− p

m− i+ p

)

monomials of degree 2m− i (in the parameters ai).

When matching a polynomial P of degree 2m against Karlin & Studden
representation, we get 2m + 1 constraints Ci ≤ pi, 0 ≤ i ≤ 2m, where Ci
consists of mon(m, i) monomials of degree 2m− i (coming from the first term of
P2m(X) in Theorem 1) and mon(m−1, i−1) monomials of degree 2m−i (due to
the product with β and X) coming from the second term of P2m(X). Therefore,
Ci consists of nonlinear monomials if 2m− i > 1 (i.e., i < 2m− 1). Overall, we

have
∑2m−2
i=0 (mon(m, i) + mon(m− 1, i− 1)) nonlinear monomials. Similarly, P

of degree 2m + 1 yields 2m + 2 constraints Ci = pi, 0 ≤ i ≤ 2m + 1, where
Ci consists of mon(m, i − 1) monomials of degree 2m − i + 1 (coming from the
first term of P2m(X) above) and mon(m, i) monomials of degree 2m− i+ 1 (due
to the product with β) coming from the second term of P2m(X). Therefore,
Ci consists of nonlinear monomials if 2m − i + 1 > 1 (i.e., i < 2m). Overall,∑2m−1
i=0 (mon(m, i− 1) + mon(m, i)) nonlinear monomials. Hence,

VL(n) =

{∑2m−2
i=0 (mon(m, i) + mon(m− 1, i− 1)) if n = 2m∑2m−1
i=0 (mon(m, i− 1) + mon(m, i)) if n = 2m+ 1

Vector. In the following, µ(e) is the number of monomials in a parametric poly-
nomial expression e in normal form; κ(e) is the number of constant monomials
in e (κ(e) ∈ {0, 1}); λ(e) is the number of linear and non constant monomials in
e (λ(e) ∈ {0, 1}); and λ(e) is the number of nonlinear monomials in e. Clearly,
µ(e) = κ(e) + λ(e) + λ(e). Note that, since κ, λ, and λ are mutually exclusive,
identifying µ(e) with one of them implies that the other are null. Finally, δ(e) is
the common degree of all monomials in e (or ⊥ if it does not exist). A polyno-
mial Pn(x) consists of parametric coefficients πn,i for 0 ≤ i ≤ n, where πn,n = 1
(i.e., µ(πn,n) = κ(πn,n) = 1 and δ(πn,n) = 0). If n > 0 is even (n = 0 is a
particular case of the previous one), then for all 0 ≤ i < n, πn,i consists of
a sum of µ(πn,i) = mon(n ÷ 2, i) monomials, all of them of degree n − i (i.e.,
δ(πn,i) = n − i). Thus, πn,i is linear (and nonconstant) if n − i = 1. There-
fore, µ(πn,n−1) = λ(πn,n−1) and, for all 0 ≤ i < n − 1, µ(πn,i) = λ(πn,i) and
δ(πn,i) = n− i. If n is odd, then πn,0 = 0 and for all 0 < i < n, πn,i consists of
a sum of µ(πn,i) = mon(n÷ 2, i− 1) monomials, all of them of degree n− i+ 1
(i.e., δ(πn,i) = n − i + 1). Summarizing: µ(πn,i) = mon(n ÷ 2, i − (n%2)). A
constraint P ≥ 0 is translated into a set of n + 1 inequalities Ci ≥ 0, where Ci
is the result of multiplying the i-th row of Mn = (mn

ij)n+1×n+1 and [P ]Sn , the
vector of coefficients of P , for i = 0, . . . , n. We have the following results.
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Proposition 5. For all n, µ(mn
1,2) = 0 and for all 1 ≤ j < i ≤ n, µ(mn

i,i) = 1
and µ(mn

i,j) = 0. Let n > 1. For all 1 ≤ i ≤ n,

1. µ(mn
i,n+1) =

∑n
j=1 µ(mn−1

ij )µ(πn,j−1) =
∑n
j=1 µ(mn−1

ij )mon(n÷ 2, (j − 1)−
n%2).

2. δ(mn
i,n+1) = δ(mn−1

i,n ) + 1 = n+ 1− i.

Proposition 6. VL(0) = VL(1) = 0 and for all n > 1, VL(n) = VL(n − 1) +∑n−1
i=1 µ(mn

i,n+1).

4.1 Comparison

Let VP (n) = V (n)+VL(n) be the number of parameters obtained after matching
a given representation and issuing the preprocessing step L0 for the linearization.
The following table shows VP (n) for some degrees n of the targeted polynomial
P for the considered representation methods3.

Method 1 2 3 4 5 6 7 8 9 10 20 100
Hilbert 10 18 28 40 54 70 88 108 130 154 504 10504
P&S 6 10 20 28 36 46 56 68 80 94 284 5404
K&S 2 4 7 13 20 38 57 111 166 328 78741 9.57 · 1023

Vector 0 2 6 28 96 498 2322 15308 93696 758086 2.48 · 1016 <∞

Although the range of values for n is small, the trend for the different methods
is clear and suggests that, for n > 6, Pólya & Szegö’s representation provides
the best starting point for an implementation. Let’s reason that this is actually
the case. Let WL(n) be the number of variables introduced by the linearization
after using L0 and L1, . . . , L3. Obviously, VL(n) ≤WL(n). Let VT (n) = V (n) +
WL(n) be the number of variables occurring in the linear formula obtained by
the linearization process. The number FL(n) of new formulas introduced by
the linearization is bounded by |D|WL(n) ≤ FL(n). And the total number of
formulas is FT (n) = I(n) + FL(n), thus bounded by I(n) + |D|WL(n) ≤ FT (n).

Since the degree of all monomials in the parametric polynomials in the rep-
resentation is 2, for Pólya and Szegö’s representation WPS

L (n) = V PSL (n) (the
linearization process will not introduce more variables after L0). Thus, V PST (n) =
V PS(n) + V PSL (n) = V PSP (n). The V PSL (n) equations xM = M are transformed
by the application of L1 or L2 only (because deg(M) = 2) into FPSL (n) =
|D|V PSL (n) new linear formulas. Thus, FPST (n) = IPS(n) + |D|V PSL (n).

Since for M ∈ {Hilbert ,KS ,Vector ,G}, V PST (n) = V PSP (n) < VMP ≤ VMT (n)
for all n > 6 (see the table above4), and, since IPS(n) < IM (n) for all n > 1,
we have FPST (n) = IPS(n) + |D|V PSL (n) < IM (n) + |D|WM

L (n) ≤ FMT (n) for all
n > 6, we finally conclude that Pólya and Szegö’s representation is the best choice
for an implementation using the constraint solving method in [5]: it minimizes
both the number of variables VT (n) and formulas FT (n) to be considered.

3 Obtained using Haskell encodings of the cost formulas in Appendix B.
4 Although we do not provide information about V G

L (n), note that V G(n) and V PS
T

are already very similar. Thus, assuming V PS
T (n) < V G

T (n) is natural.

10



5 Related work and conclusions

In Section 3, we have shown that the notions of polynomial bases and vector
coordinates can be used instead of that of monomials and monomial coefficients
when testing univariate polynomials P for Psd([0,+∞)) and Pd([0,+∞)). The
quantitative analysis in the previous section, though, suggests that this new
method is hardly useful in practice. We show its theoretical interest as improving
on the use of Bernstein’s polynomials [3], which inspired our developments.

Psd([0,+∞)) and Psd([−1, 1]) are related through Goursat transform (see

[14]): Given P ∈ R[X] of degree n, we let P̃ (X) = (1+X)nP ( 1−X
1+X ). Furthermore,˜̃

P (X) = 2nP (X). Then, P is Psd([−1, 1]) if and only if P̃ is Psd([0,+∞)) and

deg(P̃ ) ≤ n, see [14, Lemma 1]. Testing Pd([−1, 1]) or Psd([−1, 1]) of univariate
polynomials P ∈ R[X] on [−1, 1] can be done by using the so-called Bernstein’s
basis [6]: if [P ]Bn > 0, for the Bernstein basis Bn (which consists of polynomials
of degree n only) then P is Pd([−1, 1]) [2]. Unfortunately, Bn does not capture
all P ∈ Pd([−1, 1]) as positive vectors [P ]Bn

. For instance, P (X) = 5X2−4X+1
is positive on [−1, 1] but [P ]B2

6> 0 [6]. Nevertheless, for each P ∈ Pd([−1, 1]) of
degree n the so-called Bernstein’s Theorem [4] ensures the existence of some p ≥
n such that [P ]Bp consists of positive coordinates only (the minimum of those p is
called the Bernstein degree of P ). Unfortunately, such p can be much higher than
n. For instance, for P (X) = 5X2 − 4X + 1) we need to consider 23 polynomials
in Bernstein’s basis. Even worst, the Bernstein degree of a polynomial P is not
usually known, and we have to (over)estimate it. For instance, a the recent

estimation [6] is n(n−1)
2

M
λ , where n is the degree of the polynomial, M is the

maximum value of the coordinates [P ]Bn of P in the Bernstein basis of degree
n, and λ is the minimum of P on [−1, 1]. For P (X) = 5X2 − 4X + 1 we have
n = 2, M = 10, λ = 1

5 , and a estimation of 50, far beyond 23, the real Bernstein
degree of P . In [6], this problem is addressed by using partitions of [−1, 1] where
we are able to represent P in a Bernstein basis of degree n by using positive
coordinates only. However, we need to produce several (up to n + 1) partitions
of [−1, 1], compute the corresponding representations of P , etc. Furthermore, it
is unclear how [6] would be used with parametric polynomials (see Remark 1).

Example 7. For our running example, we get Q̃(X) = −10X3 + 4X2 + 10X + 4.

According to [6, page 640], for B3 = {
(

3
i

)
(1−X)3−i(X+1)i

8 | 0 ≤ i ≤ 3}, i.e.,

{1

8
(1−3x+3x2−x3),

3

8
(1−x−x2+x3),

3

8
(1+x−x2−x3),

1

8
(1+3x+3x2+x3)}

we have: SS3 7→B3
=


1 −1 1 −1
1 − 1

3 − 1
3 1

1 1
3 − 1

3 −1
1 1 1 1

 and [Q̃]B3
= SS3 7→B3

[Q̃]S3 =


8
− 32

3
16
8

,

which does not witness Q̃ as Psd([−1, 1]) due to the negative coordinate − 32
3 in
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[Q̃]B3 . The estimated Bernstein degree (for n = 3, M = 16 and λ ' 1.22) is 40,
i.e, a 40-square cb-matrix is required! This can be compared with Example 5.

We have investigated methods for proving univariate polynomials Psd([0,+∞)),
and a quantitative evaluation of the requirements needed to make a practical
use of them suggests that an early result by Pólya and Szegö’s provides an ap-
propriate basis for implementations in most cases. An important motivation and
contribution of this work in connection with the development of tools for auto-
matically proving termination is that we avoid the need of explicitly requiring
that parametric polynomials arising in proofs of termination have non-negative
coefficients (which is the usual practice in termination provers, see [8, 12]). We
will use our new findings in future versions of the tool mu-term [1].

Acknowledgements. I thank the anonymous referees for their valuable comments.
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10. H. Hong and D. Jakuš. Testing Positiveness of Polynomials. Journal of Automated
Reasoning 21:23-38, 1998.

11. S. Karlin and W.J. Studden. Tchebycheff systems: with applications in analysis
and statistics. Interscience, New York, 1966.

12. S. Lucas. Polynomials over the reals in proofs of termination: from theory to
practice. RAIRO Theoretical Informatics and Applications, 39(3):547-586, 2005.
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