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Abstract

Falls in elderly people are becoming an increasing healthcare problem, since
life expectancy and the number of elderly people who live alone have in-
creased over recent decades. If fall detection systems could be installed eas-
ily and economically in homes, telecare could be provided to alleviate this
problem. In this paper we propose a low cost fall detection system based on
a single wide-angle camera. Wide-angle cameras are used to reduce the num-
ber of cameras required for monitoring large areas. Using a calibrated video
system, two new features based on the gravity vector are introduced for fall
detection. These features are: angle between the gravity vector and the line
from feet to head of the human and size of the upper body. Additionally, to
differentiate between fall events and controlled lying down events the speed
of changes in the features is also measured. Our experiments demonstrate
that our system is 97% accurate for fall detection.

Keywords: fall detection, artificial vision, feature selection, feature
extraction, new features based on gravity vector, monocular camera,
wide-angle camera, calibration, low cost

1. Introduction

People in the First World are aging. Life expectancy at birth in the First
World has increased to nearly 80 years during this century and the last.
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Moreover, remaining life expectancy at old ages has also increased, meaning
that elderly people live for longer. (Lutz et al., 2008) states the rate of
population ageing in the current century will exceed that of the previous.
This has serious consequences in society, because of the need to take care of
these people and the increasing related health care costs (Bech et al., 2011).
This has lead to the development of care, monitoring, and ambience assited
technologies (Chaaraoui et al., 2012).

Falls are one of the major issues in elderly health. A fall can have severe
consequences, which can be worse if the person is not assisted in a short
period of time, which can happen if they also lose consciousness or are unable
to call for help.

During recent years several fall detection systems have been developed.
(Mubashir et al., 2013) provides a recent survey on principles and approaches
for fall detection. There are three major approaches which are based on
weareable sensors, ambience sensing and vision based systems. Wearable
sensors measure motion, such accelerations (Mathie et al., 2004) and periods
of inactivity (Sixsmith & Johnson, 2004), posture of the person (Kangas
et al., 2009), or a combination of both (Luo & Hu, 2004). These are good
at fall detection, but have some drawbacks: they can be uncomfortable,
people may forget to wear them and they are prone to produce false positives.
The second approach takes measures of the ambience of the room being
monitored, such as sound (Zhuang et al., 2009) and vibrations (Alwan et al.,
2006) in the room.

The third approach is based on computer vision systems. Computer vi-
sion systems are aimed to distinguish between different activities of the per-
son being monitored, analyzing a video stream. With just one camera it
is possible to monitor an area with independence on the number of people
present. Action recognition is a popular research area (Poppe, 2010), but
current methods are computationally very expensive. Action detection has
usually better performance rates, as it only correlates observed sequences to
labeled video sequences.

Fall detection through computer vision is difficult due to the multipart
nature of the human body. The human body is composed of several parts
which can be moved freely, thus making the process of identifying and locat-
ing people more difficult (Ferrari et al., 2008). This problem could be lessened
by using human parts which are usually detectable, such as the head, waist
or feet.

Several cameras are needed to monitor an entire house. This issue can be
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partially solved with wide-angle cameras, which use wide field of view lenses
and can thus monitor larger areas. This type of lens produces images that
are highly-distorted, which must be corrected.

Some people may have privacy concerns because of the use of a computer
vision systems. (Rajpoot & Jensen, 2014) provides a general model for video
surveillance systems and identifies privacy requirements.

This paper presents a new approach to fall detection based on monocular
wide-angle cameras by calibrating these cameras and correcting their distor-
tions. In this scenario a new set of features is proposed which results in 97%
accuracy for fall detection.

The following sections of this paper are organized as follows. Section 2
gives an overview of the current state-of-the-art with regard to features used
in vision based fall detection systems. Section 3 introduces the method used
to correct image distortion in a wide-angle camera. Section 4 describes the
proposed new features. Section 5 shows the experiments and section 6 shows
the results of our approach. Finally, in section 7 we present our concluding
remarks.

2. Preliminary

Current computer vision based fall detection systems use different features
extracted from the person being monitored. The features can be 2D, when
they are extracted directly from the images, or 3D, when a reconstruction
of the real-world objects in the scene is performed prior to extraction of the
features.

The first step in 2D feature extraction is to transform the image of the
body. Bounding box, best-fit approximated ellipse and projection histograms
are the three most common transformations. Several authors use one of these
transformations or even a combination of them. (Liu et al., 2010) use a ver-
tical projection histogram with a statistical scheme in order to identify and
locate the person in the video and the ratio of the width and height of the
bounding box and the absolute difference between these two values to de-
tect falls. To differentiate between a fall event and a controlled lying down
event, temporal evidence is measured from the experiments and verified by
statistical hypothesis testing. (Foroughi et al., 2008) combine vertical and
horizontal projection histograms with best fit ellipse of the body, along with
the 2D speed of the head. (Nasution et al., 2009) propose a method for
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posture identification based on projection histograms, but there is a singu-
larity between the postures of bending and lying toward the camera. To
solve this problem the angle between vertices of the current bounding box
and the bounding box of the last standing position is calculated. Movement
based events, such as running, jumping active and inactive events are de-
tected using the speed of the bounding box. (Willems et al., 2009) fit an
ellipse to locate people in the image and use a combination of the angle of
the person, the aspect ratio of the bounding box and a vertical projection
histogram as features. The approach presented in (Anderson et al., 2006)
uses the aspect ratio of the bounding box and the covariance matrix of pixel
distribution as features. (Töreyin et al., 2005) extract a wavelet of the mov-
ing pixels in the bounding box. They also take advantage of fact that video
recording systems can record audio. Falls produce high amplitude sounds,
so in their work they also extract a wavelet of recorded audio in order to
distinguish falls from sitting or controlled lying events. Other works which
use the aspect ratio are (Tao et al., 2005), (Miaou et al., 2006) and (Khan
& Habib, 2009). (Miaou et al., 2006) make use of personal information to
improve their results. (Khan & Habib, 2009) first detect large motion in a
video sequence using Motion History Images, followed by a segmentation of
the person using projection histograms. For fall detection they use a com-
bination of the aspect ratio of the bounding box and the speed of change of
width and height. (Olivieri et al., 2012) uses optical flow to detect falls and
recognize other human activities.

3D can be extracted from calibrated video cameras, stereo-vision cam-
eras and depth cameras. Features extracted from 3D data are the location
of the body and its parts in real-world or certain dynamic parameters, such
as speed, acceleration or orientation. (Rougier et al., 2006) use a monocular
camera to track 3D head trajectory. The algorithm used is POSIT com-
bined with a set of particle filters. A fall event is detected using the vertical
and horizontal speed of the head relative to the world coordinate system.
(Rougier et al., 2011) use a camera that provides a depth map of the scene
to calculate the height of the centroid of the human relative to ground plane
and body velocity. By using these two features their system is able to solve
the problem of occlusion. (Auvinet et al., 2011) present a system where sev-
eral cameras are used to perform stereovision. In their work they calculate
a measure of the vertical distribution along the vertical axis. A fall event is
detected when this distribution is abnormally near the ground for a certain
length of time. (Anderson et al., 2009) use voxels to define a 3D representa-
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tion of a person called ”voxel person”. Each voxel person is classified using
fuzzy logic and assigned a linguistic representation (up-right, on-the-ground
or in-between).

However, stereo-vision systems have practical disadvantages, since a suf-
ficient number of overlapping views is needed to reconstruct 3D objects in
the scene. Depth cameras are limited by their narrow-angle field-of-view. A
simpler alternative is to process the frames captured from monocular cam-
eras independently. Our method performs a simple 3D reconstruction using
a homography between the image plane and the ground plane. The state-
of-the-art of 2D features for fall detection is mainly based on bounding box
properties and they are independently extracted from monocular and narrow-
angle cameras, since these cameras have low radial distortions. Wide-angle
cameras can monitor larger areas, but they have a significant radial distor-
sion. (Nait-Charif & McKenna, 2004) also uses a wide-angle camera, but
does not correct the distorsion.

We introduce two new features based on the gravity vector for fall detec-
tion by using independent wide-angle video systems. One of the proposed
features measures the angle between the projected gravity vector and the line
from feet to head of the human. However, this feature presents a singularity
when a monocular camera is used. This singularity is solved by adding a new
feature based on the size of the upper body. Additionally, a time measuring
feature is added to differentiate between fall events and controlled lying down
events.

3. System calibration

The calibration of the system consists of removing the distortion in the
image and defining the transformation between the camera image plane and
the ground plane of the room. The calibration process is solved in three
steps. First lens distortion is calibrated to remove the distortion in the image.
With undistorted images, the intrinsic and extrinsic camera parameters are
computed. Finally, the homography H to define the transformation between
the camera image plane and the ground plane of the room is computed.
Calibration is done using several images of a chessboard template captured
with the wide angle camera.

To calibrate the lens distortion, we use the calibration process proposed
by (Ricolfe-Viala & Sanchez-Salmeron, 2011) for the rational function lens
distortion model. According with (Ricolfe-Viala & Sánchez-Salmerón, 2010)
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the rational function model performs better image correction if high distor-
tion is present in the image. The rational function model was proposed by
(Claus & Fitzgibbon, 2005) where distortion parameters are arranged in a
3x6 matrix and a six-vector of monomials in u and v as follows:

d(u, v) =





A11 · u
2 + A12 · u · v + A13 · v

2 + A14 · u+ A15 · v + A16

A21 · u
2 + A22 · u · v + A23 · v

2 + A24 · u+ A25 · v + A26

A31 · u
2 + A32 · u · v + A33 · v

2 + A34 · u+ A35 · v + A36



 (1)

d represents the correction vector for pixel (u,v) in projective coordinates.
The rational function lens distortion model can be computed with just one
image of the calibration template.

Intrinsic and extrinsic camera parameters have been computed using
several images of the calibration templates using the method proposed in
(Ricolfe-Viala et al., 2012). This step is necessary to obtain the projection
matrix P between the 3D world and the camera image plane and the homog-
raphy H between the ground plane and the camera image plane.

The homography H is computed with just one image where the chessboard
template was located on the floor using the method proposed in (Zhang,
1999). Since the plane of the chessboard template matches with the ground
floor of the room, the homography H between the ground plane and the
camera image plane is computed easily. Image is undistorted before using it
to compute the homography H.

4. New features based on the gravity vector

A set of new features is defined for fall detection by using calibrated
wide-angle cameras. Firstly, highly-distorted images are corrected and then
features are independently extracted from each monocular camera. These
new features relate the actual pose of the person with the theoretical pose
of a person who is standing. The features used individually fail to detect
falls in specific cases, but the combination of the features overcomes these
failures.

To calculate the theoretical pose of a standing person we use the gravity
vector (see fig. 1). The gravity vector, gv, is the projected normal vector to
the real ground plane at a point f. The point is located in the image and then
its real-world position is calculated using the homography between the image
plane and the ground plane. Then this real-world location is translated in
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Figure 1: Gravity Vector

the direction of gravity and finally it is reprojected to the image using the
projection matrix. This method is described in Algorithm 1.

Data: f, 2D feet location in the undistorted image plane;
H, homography between undistorted image plane and ground plane;
P, projection matrix to the undistorted image plane
Result: gv, projected gravity vector
f3d← H ∗ f ;
h3d← f3d.z translate(z offset) ;
h← P ∗ h3d ;
gv ← h− f ;

Algorithm 1: Calculation of projected gravity vector

We use also the estimated height of the person. Once the feet and head
are located in the image, an estimate of the height of the person is calculated
by assuming the feet and the head are lie a normal line to the ground plane.
The location of the feet in the real world is calculated with the homography
between the image plane and the ground plane. Then, the real world line that
projects in the head location in the image is calculated using the projection
matrix. This line and the normal line to the ground plane that passes through
the feet are arranged in a system of linear equations. Finally, this system is
resolved using a SVD decomposition, which yields the closest point between
the two lines. This method is described in Algorithm 2, and is also used to
calculate the height of the waist.

7



Data: [f, h], head and feet 2D location in the undistorted image plane;
H, homography between undistorted image plane and ground plane;
P, projection matrix to the undistorted image plane
Result: height, estimated height of h
f3d← H ∗ f ;

A←









[

1 0 −c[0]
]

∗ P
[

0 1 −c[1]
]

∗ P
[

1 0 0 −f3d[0]
]

[

0 1 0 −f3d[1]
]









;

v ← SV D(A) ;
h← [v[2]/v[3]];

Algorithm 2: Calculation of height

4.1. Classification of standing

The first feature is α, the angle between the projected gravity vector and
the line between the head and the feet of the person in the image. α varies
between 0 and π (see fig. 2). α is close to zero if the person is standing but
increases if the person is lying on the ground. α reaches its maximum value
if the person is lying on the ground with their head and feet aligned with
the optical axis of camera, with the head towards the camera. Algorithm 3
describes this method.

Data: [h,f], head and feet 2D locations in the undistorted image plane
Result: α, angle between the gravity vector and the line from head to

feet
hf ← h− f ;
gv ← GravityV ector(f);
pose angle← atan2(hfy , hfx) ;
gravity angle← atan2(gvy, gvx) ;
α← π − ||gravity angle− pose angle| − π| ;

Algorithm 3: Calculation of α

α has a singularity when the person is lying on the ground and their head
and feet are aligned with the optical axis of the camera with the feet towards
the camera. In this case, the angle remains close to zero and it is impossible
to differentiate between the standing and lying position (fig 3).

To solve this singularity we add a feature based on the normalized size
s of the upper body of the person in the image. If the person is standing,
the size of their upper body in the image remains stable in the undistorted
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(a) Angle at half of its maximum value (b) Angle at maximum value

Figure 2: Different values of α when the person is lying down

image, but decreases when the person is lying on the floor due to the position
of the camera on the ceiling. This decrease in size is particularly noticeable
when the person is lying aligned with the optical axis of the camera, with
the feet towards the camera (fig 3(b)). The actual size of the upper body,
as, is normalized to the theoretical upper body size, ts, in the position of
the person in the image, so this feature remains stable in the field of view of
the camera. This method is described in Algorithm 4.

Data: [h,w,f], head, waist and feet 2D locations in the undistorted
image plane

Result: s, theoretical normalized upper body size in the image plane
if the feet are located at f

f3d← H ∗ f ;
h3d← f3d.z translate(head height) ;
w3d← f3d.z translate(waist height) ;
ht ← P ∗ h3d ;
wt ← P ∗ w3d ;
ts← ||ht − wt||

2;
as← ||h− w||2;
s← as/ts ;

Algorithm 4: Calculation of s

This feature fails when the person is below the camera, because in this
location the size of the upper body is highly variable. In this case, α remains
the discriminating feature between classes.
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(a) Angle when the person is standing (b) Angle when the person is lying with the
feet towards the camera

Figure 3: Singularity of α

4.2. Differentiation between a fall and lying down

Finally, falls are differentiated from controlled lying down actions using a
time measuring feature. This feature, m, is the number of frames where the
ratio between the actual upper body size, asi, and the mean of the actual
upper body size, as, in a sequence is above a certain threshold, th. Falls have
a shorter duration than lying down, so this feature has higher values in the
latter case. Algorithm 4 describes this method.

Data: [hi, wi, fi] i ∈ [1 . . .N ] sequence of N head, waist and feet 2D
locations in the undistorted image plane.

Result: m, number of frames where the normalized actual upper
body size is above a certain threshold

for i← 1 to N do

asi = ||hi − wi||
2

end

m← 0;
for i← 1 to N do

if asi/as > th then
m← m+ 1;

end

Algorithm 5: Calculation of m
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5. Experiments

5.1. Dataset

We did not find any public dataset for our application, and so we recorded
videos representing three different actions: walking, lying down and falling.
We have a total of 335 videos, divided into 195 videos of walking, 40 lying
down and 100 falling. The videos were recorded with an AXIS camera located
on the ceiling of our laboratory. This camera has a resolution of 640x480
pixels and can record video at 15 fps. The actions were performed by four
different people. Falls were performed forward, backwards and lateral. Some
of the videos labeled as walking were recorded using an automated process,
were a sequence was recorded when a person was detected in the scene.
This process lasted 4 hours and yielded 98 videos. Each video consists of
a sequence that is 80 frames long, the maximum time it takes to lie down,
which was the longest action in our videos. As our work is focused on the
features, each sequence was manually annotated, locating the feet, the waist
and the head of the person, to avoid problems originated in the tracking
algorithm. The dataset is available at (Bosch-Jorge et al., 2014).

5.2. Classifier

The data were classified using a SVM classifier. The implementation
used is (Chang & Lin, 2011). We used a RBF kernel and a leave-one-out
approach to separate data in testing and training sets. The parameters of the
RBF kernel (C, gamma) were optimized for each test using a cross-validation
approach on the training set. For each test the data were scaled to [-1, +1]
range of values, as it is recommended by the authors of (Chang & Lin, 2011).
Each test was classified with a binary classifier and a multi-class classifier.
The multi-class approach used by (Chang & Lin, 2011) is one-vs-one with a
voting strategy.

5.3. Parameters and feature extraction

The algorithms for features extraction presented in this work depend on
the values of their parameters to work properly. α, s and m were calculated
for the last frame of each sequence. head height and waist height were
calculated for each sequence using the location of the head and waist in the
first frame.

th has been determined empirically. We have analyzed the precision,
recall, f1-score and accuracy for different values of th between 0 and 1, with
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Figure 4: Evaluation of classification performance for varying th values.

a step of 0.05. The data were classified using the classifier of the previous
section. The values are shown in figure 4. As can be seen in the figure, the
best performance is achieved when th has a value of 0.8.

6. Results

The final results were obtained using a th value of 0.8.
The confusion matrices of the binary classification and multi-class classi-

fication are shown in tables 1 and 2, and the statistics are shown in table 3.
The statistics are precision, recall, f1-score and accuracy for binary classifica-
tion. We have used the macro-averaging measures and the average accuracy
presented by (Sokolova & Lapalme, 2009) for multi-class classification. Pre-
cision, recall and f1-score have the same value in the multi-class classification
because the confusion matrix is symmetric.
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Predicted class
Correct Incorrect

A
ct
u
al

cl
as
s Falling 94 6

Other 5 230
Lying down 37 3

Other 4 291
Walking 195 0
Other 1 139

Table 1: Confusion matrix for binary classification.

Predicted class

A
ct
u
al

cl
as
s Falling Lying down Walking

Falling 94 4 2
Lying down 10 35 0
Walking 0 0 195

Table 2: Confusion matrix for multi-class classification.

Class Precision Recall F1-Score Accuracy

Binary

Falling 0.949 0.940 0.945 0.967
Lying down 0.902 0.925 0.914 0.979
Walking 0.995 1.000 0.997 0.997
Averaged 0.948 0.955 0.952 0.981

Multi-class Macro-averaged 0.930 0.906 0.918 0.969

Table 3: Statistics for binary and multi-class classification.
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7. Conclusions

In this paper we have proposed two new features for computer vision
based fall detection. These features are angle between the projected gravity
vector and the line from feet to head of the human and normalized size of
the upper body. We perform a simple 3D reconstruction from a monocular
camera to calculate these features. To perform the 3D reconstruction we
need to calibrate the camera used by the system. Additionally, to reduce
the number of cameras needed to monitor a large room we use a wide-angle
camera. This type of camera uses a lens with high radial distortion, which
must be corrected before the calibration process. As we use a single camera
to monitor a large area, we have gained significant advantages in terms of
system architecture without losing performance. Our system is more flexible,
as cameras do not need to be calibrated one to one another, cameras do
not need to overlap, cameras can drop in and out with little penalty, new
features can be incorporated easily, and discriminative views can be exploited
opportunistically. We believe our system is appropriate for widely-distributed
camera systems thanks to its flexible architecture.

It is difficult to compare our method with others, because the features
are of different nature. (Nait-Charif & McKenna, 2004) also uses a wide-
angle camera, but does not correct the distortion of the camera, and does
not provide any statistics for fall detection. Moreover, the use of differ-
ent databases also difficults the comparison between methods. However our
method presents one of the highests accuracy rates of the state of the art. For
instance, (Foroughi et al., 2008) and (Cucchiara et al., 2007) obtained 97.7%
and 97.23% accuracy respectively. Our dataset is available at (Bosch-Jorge
et al., 2014).

Our future work is focused on a person-variable time measuring feature,
due to the fact that young people usually move faster than old people. A
robust body-part location should be used to increase the reliability of the
system. As an ultimate goal, we are aimed at person identification and
action detection in a system composed of several cameras, located in different
rooms, with tracking across the rooms. The system should be able to trigger
different events depending on the action detected, on who has performed the
action and on in which room the person is located.
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