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A fuzzy optimization approach for procurement transport operational planning in 

an automobile supply chain 

 

 

Abstract: We consider a real-world automobile supply chain in which a first-tier 

supplier serves an assembler and determines its procurement transport planning for a 

second-tier supplier by using the automobile assembler’s demand information, the 

available capacity of trucks and inventory levels. The proposed fuzzy multi-objective 

integer linear programming model (FMOILP) improves the transport planning process 

for material procurement at the first-tier supplier level, which is subject to product 

groups composed of items that must be ordered together, order lot sizes, fuzzy 

aspiration levels for inventory and used trucks and uncertain truck maximum available 

capacities and minimum percentages of demand in stock. Regarding the defuzzification 

process, we apply two existing methods based on the weighted average method to 

convert the FMOILP into a crisp MOILP to then apply two different aggregation 

functions, which we compare, to transform this crisp MOILP into a single objective 

MILP model. A sensitivity analysis is included to show the impact of the objectives 

weight vector on the final solutions. The model, based on the full truck load material 

pick method, provides the quantity of products and number of containers to be loaded 

per truck and period. An industrial automobile supply chain case study demonstrates the 

feasibility of applying the proposed model and the solution methodology to a realistic 

procurement transport planning problem. The results provide lower stock levels and 

higher occupation of the trucks used to fulfill both demand and minimum inventory 

requirements than those obtained by the manual spreadsheet-based method. 

 

Keywords: Fuzzy multi-objective integer linear programming; uncertainty modeling; 

supply chain planning; transport planning; procurement; automobile. 

 

1. Introduction 

The supply chain (SC) encompasses all the activities associated with moving goods 

from the raw materials stage to the end user, including sourcing and procurement, 

production scheduling, order processing, inventory management, transportation, 

warehousing and customer service (Quinn 1997). Transport processes are essential parts 

of the SC as they perform the flow of materials by connecting an enterprise with its 

suppliers and customers (Fleischmann 2005). Hence, transport planning contributes to: 

the overall successful SC management goal, the planning and control of material flows 
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(Ellram 1991), and the delivery of superior value to end consumers (Christopher and 

Towill 2001). 

Frequently, real-world transport planning problems have two main properties; first, 

there are conflicting objectives in the problem structure; second, fuzziness at the 

aspiration levels of planners, and/or the epistemic uncertainty or lack of knowledge of 

some data. Fuzziness is modeled by fuzzy sets and may reflect the fact that goals or 

constraints are linguistically formulated, and that their satisfaction is a matter of 

tolerance and degrees or fuzziness (Bellman and Zadeh 1970). Epistemic uncertainty is 

concerned with ill-known parameters modeled by fuzzy numbers in the possibility 

theory setting (Zadeh 1978; Dubois and Prade 1988). Fuzziness and vagueness related 

to uncertain epistemic parameters can be found in Bhattacharya and Vasant (2007), 

Elamvazuthi et al. (2012),  Vasant (2006), Vasant et al. (2010a, 2010b, 2010c) and 

Vasant el al. (2011), among others. The multi-objective nature and the existence of 

fuzzy goals, constraints or parameters make the mathematical expression of problems 

harder to solve with traditional approaches. In order to overcome this difficulty, the 

fuzzy set theory (Zadeh 1965; Bellman and Zadeh 1970) and the possibility theory have 

been applied to fuzzy multi-objective linear programming (FMOLP), and many 

approaches have been developed (Baykasoǧlu and Göçken 2008; Cadenas and 

Verdegay 2000; Bhattacharya et al. 2007; Díaz-Madroñero et al. 2010; Ganesan et al. 

2013; Vasant et al. 2007).  

The SC procurement transport operational planning (SCPTOP) problem is used as a 

manual process based on planners’ personal judgment and experience. Furthermore, 

manual processes consider a short or myopic time perspective when planning instead of 

an entire view of the whole horizon planning at any time, which could generate 

suboptimal plans. Given the motivation of providing optimal solutions to the SCPTOP 

problem, we propose a novel fuzzy multi-objective integer linear programming 

(FMOILP) model for the SCPTOP problem in a three-level, multi-product and multi-

period SC network. The model’s fuzzy goals are to minimize the number of used trucks 

and total inventory levels by determining the amount of each product to procure, which 

also contemplates the fuzzy data related to the transport maximum capacity levels and 

the minimum percentages of demand in stock. The fuzzy parameter of the FMOILP 

model is, firstly, defuzzified based on the possibility approach proposed by Lai and 

Hwang (1992), which is used in Liang (2006) and Wang and Liang (2005). Then, the 

FMOILP model, with fuzzy objective functions, is adapted to a mixed-integer linear 
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programming (MILP) model by using the two fuzzy solution approaches provided by 

Selim and Ozkarahan (2008), based on Werners (1987), and Torabi and Hassini (2008), 

which we compare. 

Moreover, an interactive solution methodology by Liang (2008) based on the previous 

works of Bellman and Zadeh (1970) and Zimmermann (1975, 1978) is adopted as the 

basis to solve the fuzzy multi-objective SCPTOP problem for the purpose of finding a 

preferred compromise solution. To illustrate the validity of the proposed solution 

method, we applied the FMOILP model to a real-world automobile SC and compared 

the results obtained with the manual procedure currently applied. 

The rest of the paper is arranged as follows. Section 2 presents a literature review about 

supply chain transport planning at the operational level under uncertain conditions. 

Section 3 proposes the FMOILP model for the SCPTOP problem. Section 4 and Section 

5 describe the solution methodology. Next, Section 6 evaluates the behavior of the 

proposed model in a real-world automobile SC. Finally, Section 7 provides conclusions 

and directions for further research. 

2. Literature review 

The scope of this work is the procurement transport operational planning problem based 

on mathematical programming approaches. Along these lines, several authors have 

analyzed supply chain operational transport planning from a deterministic point of view. 

Cisheng et al. (2008) analyze the model of load matching. An effectual truck stowage 

planning model is proposed by equilibrating truck cargo weight and volume. Moreover, 

Sarkar and Mohapatra (2008) describe a case of an integrated steel plant where the plant 

engages a third-party transporter to bring a large number of items from its suppliers by 

maximizing the utilization of the vehicles capacity. 

In our previous works (Mula et al. 2010; Peidro et al. 2009a; 2009b; 2010b), we review 

and provide several approaches for SC planning under uncertainty conditions. Among 

them, the fuzzy mathematical programming for transport planning is being increasingly 

applied. Chanas et al. (1993) consider several assumptions on the supply and demand 

levels for a given transportation problem in accordance with the type of information the 

decision maker has. On the other hand, Shih (1999) addresses the cement transportation 

planning problem in Taiwan by using fuzzy linear programming with three different 

approaches (Zimmermann 1975; Chanas 1983; Julien 1994). Bilgen and Ozkarahan 

(2006) present a distribution planning problem in an uncertain environment with a fuzzy 

linear programming approach. Bilgen (2007) proposes a possibilistic linear 
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programming model for solving the blending and multi-mode, multi-period distribution 

planning problem with uncertain transportation, blending and storage costs. Moreover, 

Aliev et al. (2007) present an integrated multi-period multi-product production-

distribution aggregate planning model in the SC in which customer demand and 

capacities in production environment are uncertain. More recently, Bilgen (2010) 

proposes a model which addresses the production and distribution planning problem in 

a SC system that involves allocation of production volumes among the different 

production lines in manufacturing plants, and the delivery of products to distribution 

centers under uncertain conditions. Kumar et al. (2011) and Kumar and Kaur (2012) 

present new methods to find the fuzzy optimal solution of fuzzy transportation with 

transshipment and unbalanced problems occurring in real life situations. On the hand, 

Vinotha et al. (2012) propose an algorithm for solving total time minimization in fuzzy 

transportation problem where the transportation time, source and destination parameters 

have been expressed as exponential fuzzy numbers by the decision maker. 

With regard to multi-objective linear programming (MOLP) models, some works (for 

instance, Bit et al. (1993a), Bit et al. (1993b), Bit (2005), Jiménez and Verdegay (1998), 

Li and Lai (2000), and Lee and Li (1993)) provide fuzzy programming approaches to 

solve multi-objective transportation problems in a fuzzy environment. Besides, Liang 

(2006) and Liang (2008) develop an interactive multi-objective method for solving 

transportation planning problems by using fuzzy linear programming and a piece-wise 

linear membership function. Moreover, Peidro and Vasant (2011) consider the 

transportation planning decision problem with fuzzy goals, available supply and 

forecast demand represented by modified S-curve membership functions which is 

solved by using an interactive fuzzy multi-objective approach. On the other hand, Jolai 

et al. (2010) and Torabi and Hassini (2009) present MOLP models for SC planning, 

solved by using fuzzy mathematical programming approaches. 

After a review process, we highlight the following issues relating to the SCPTOP 

problem: 

 There is a need for multi-objective models to optimize conflicting objectives 

simultaneously and to manage the use of the constrained resources within 

organizations.  

 Transport capacities are expressed in general terms without specifying the 

transport mode or the type of vehicle used. 

 The consideration of uncertainty in procurement transport models is scarce. 
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 Shortage of validated transport planning models applied to real supply chains. 

These aspects are taken into account to address the SCPTOP problem in this work. 

3. Problem description 

The SCPTOP problem considered herein refers to a three-level SC of the automobile 

industry sector (see Figure 1). This SC consists of an automobile assembler, a first-tier 

supplier and a second-tier supplier. The procurement process of materials at the first-tier 

supplier level considers different pick-up methods: load form or full truck load, partial 

load or less than load and pick-up at the suppliers, or milk-round (see Hernández et al. 

(2008) for an explanation of the different material pick-up methods). 

Transport planning is usually the supplier’s responsibility, but there are important 

exceptions, e.g., in the automobile industry, where the manufacturer controls transport 

from suppliers. In this case, transport planning also occurs on the procurement side 

(Fleischmann 2005). The SCPTOP problem refers to a specific problem related to the 

associated procurement stage and transport in the automobile industry. A similar 

problem for the full truck load method was previously studied by Peidro et al. (2010a) 

for a first-tier supplier’s procurement transport planning. Here we consider product 

groups, order lot sizes and vehicle capacities, which are expressed in terms of numbers 

of containers. 

The current decision-making procedure for the considered SCPTOP problem is based 

on the use of a Microsoft Excel spreadsheet, which the first-tier supplier is in charge of. 

The second-tier supplier establishes product groups. Each product group consists of 3 

items determined by the different options that the car assembler offers to end customers. 

The second-tier supplier requires orders to be released by these product groups and their 

associated order lot size, which implies a high cost to penalize those additional parts 

ordered in an unbalanced way. However given the product characteristics, which can 

easily deteriorate once stored, unbalanced inventory levels among the different product 

groups parts could exist. 

The procedure initiates by obtaining the initial stock of each product at the beginning of 

the planning period by using the data stored in the company information system, along 

with the daily demand of each given reference. The stock and demand values for each 

part in each time period determine the decision of requesting a new full truck load. The 

second-tier supplier supplies its products at the beginning of each period, but only once 

the first-tier supplier has started production. As the car assembler does not allow delays 

in demand by the first-tier supplier, should the inventory of any part at the end of the 
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first period be lower than 40% of the demand level in the next period, then the first-tier 

supplier will include a new truck in period 1. 

Truck loads are done in terms of available capacity (between 84 and 90 containers per 

truck), the product groups formed by those items which must be ordered together, and 

the ordering lot size associated with all these groups. Thus having located the first item, 

of which the available stock does not exceed at least 40% of demand for the next period, 

the amount needed to cover the rest of the demand is manually entered into the 

spreadsheet as an integer multiple of the lot size order. The same applies for the other 

items of the given product group. The inventory level is updated in the spreadsheet by 

incorporating the order quantities, while the total amount of supply containers to be 

loaded onto the truck is determined in the spreadsheet by the number of units of each 

product to fit in a container. Then, the operation is repeated for the following item 

whose current inventory is below 40% of demand in the next period, and so on. Should 

additional space be available, truck occupation is completed with product lots and with 

a more frequent demand once the necessary quantities of all the products have been 

determined, while maintaining the established groups and corresponding lot sizes. 

After having updated the stock values, in terms of the amounts to be ordered for the new 

truck, the inventory of a certain part is, once again, lower than the 40% demand level of 

the next period, this process will then be repeated by adding the number of trucks 

required until the stock values of all the parts are higher than the demand levels of the 

following period. Subsequently, this process will be repeated for all the periods until the 

end of the planning horizon is reached. 

At the end of this process, the staff in charge of procurement planning could modify the 

amounts obtained to fulfill the established objectives based on their personal judgment 

and experience. This practice, which is often present in the automobile industry, can 

generate sub-optimal solutions (Allen and Liu 1995; Evans et al. 1990). 

Thus, we state the SCPTOP problem in the automobile SC considered as follows: 

Given:  

 A SC topology (assembler, first-tier supplier and second-tier supplier). 

 Product data, such as order lot sizes, number of units that fits in a container, 

product groups that must be ordered together. 

 Transportation data, such as transport capacities, the number of available trucks 

in each period, the minimum truck occupation to fill. 
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 Initial inventory. 

 Assembler demand over the entire planning periods.  

To determine: 

 The amount of each product to order per period. 

 The inventory level of each product per period. 

 The number of trucks required in each period and their occupation. 

The main goals to meet are: 

 Minimize the number of trucks.  

 Minimize the inventory levels to satisfy assembler demand without 

backordering. 

Moreover, the following assumptions have been made: 

 The assembler demand is considered to be firm throughout the planning horizon. 

Because it is an operational level problem, planning horizons are short (lasting a 

few days) and demand does not vary.  

 This model does not consider supplier transportation times, although it indicates 

the period to receive the amounts to be transported. 

 In general, for a transportation model the holding costs at customers and/or 

suppliers are parameters that have direct effect on inventory levels. Most of the 

time the holding costs are deterministic, also in the same way if the truck cost is 

available. However, holding costs and truck costs are not managed by the 

company in this operational decision level for this specific problem, so that they 

were not available have not been estimated. 

 

Figure 1.  Automobile SC considered in the SCPTOP problem 
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4. Model formulation 

In this section, we propose a new FMOILP model for the SCPTOP problem in order to 

improve the results obtained by the manual procedure described in the previous section.  

The model, based on the full truck load material pick method, provides the quantity of 

products and number of containers to be loaded per truck and period. The main novelty 

of this model is the optimization of truck loads by ensuring the minimum stock 

coverage at an operational level. The model considers fuzzy parameters in nature and 

fuzzy aspiration levels, which can be prioritized through two fuzzy programming 

solution methods based on weight assignments. The proposed model considers fuzzy 

objectives and fuzzy data relating to both the transport capacity levels and the minimum 

demand in stock percentages. The nomenclature defines the sets of indices, parameters 

and decision variables for the FMOILP model (Table 1). 

Table 1. Nomenclature (a tilde ~ denotes the fuzzy parameters) 

Sets of indices 

I: Set of products (i =1, 2,…,I). 

J: Set of groups composed of products that must be ordered together (j =1,2,…,J). 

K: Set of trucks (k =1, 2,…,K). 

T: Set of planning periods (days) (t =1, 2…T). 

Decision variables 

Qikt: Units transported of i by k in period t (units). 

Gijkt: Units transported of i corresponding to group j by k in period t (units). 

Ckt: Amount of containers transported by k in period t (units). 

Iit: Inventory amount of i at the end of period t (units). 

Kjkt: Number of lots to order of products of group j by k in period t. 

Ykt: Binary variable indicating whether a truck k has been used in period t. 

Objective functions 

z1: Total number of trucks utilized. 

z2: 
Total inventory amount generated. 

 

Parameters 

ui: Amount of product i that fits in a container (units).  

lj: Number of units of each group lot j (units). 

bij: 1 if product i belongs to group j, and 0 otherwise 

Dit: Demand of product i in t (units) (considered firm).  

M
~ : Fuzzy maximum capacity of the available truck (in containers) 

m: Minimum truck occupation (in containers). 

~ : Fuzzy minimum percentage of demand in period t+1 in stock at the end of period t 

I0i: Inventory amount of i in period 0. 

 

The formulation of the FMOILP model is as follows: 

There are two objectives to simultaneously optimize: 

Minimize the total number of trucks utilized 


 


K

k

T

t

ktYz
1 1

1
~Min           (1) 
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Minimize the total inventory amount generated. 


 


I

i

T

t

itIz
1 1

2
~Min              (2) 

subject to 




 
K

k

iktittiit QDII
1

)1(                    ti,  (3) 





J

j

ijktikt GQ
1

       tki ,,    (4) 

ijjjktijkt blKG       tkji ,,,  (5) 





I

i

iiktkt uQC
1

          tk,    (6) 

ktkt YMC 
~

          tk,    (7) 

ktkt YmC            tk,    (8) 

1
~

 itit DI                     ti, (9) 

1ktY
   

tk,  (10) 

Iit , Qikt , Gijkt ,Ckt , Kjkt ,Ykt ≥ 0 integer   (11) 

For each objective function, the decision maker has fuzzy objectives. Symbol “  ” is the 

fuzzified version of “=” and refers to the fuzzification of the aspiration levels. 

Accordingly, Eqs. (1) and (2) are fuzzy, and the decision maker needs to simultaneously 

optimize these conflicting objectives within the fuzzy aspiration levels framework. 

Constraint (3) is the inventory balance constraint. Constraint (4) determines the amount 

of each product to be transported per truck and period. Constraint (5) establishes the 

order lot size for all the items in each product group. Constraint (6) calculates the 

containers placed in each truck in accordance with both the quantities of each product 

ordered and the number of units of each product that fits in a container. Constraint (7) 

limits the maximum number of containers per truck loaded. Constraint (8) ensures that 

the occupied capacity on each truck is over m containers by avoiding trucks with slack. 

Next, Constraint (9) ensures the minimum inventory level for each product in each 

period. Finally, Constraints (10) and (11) define Ykt as a binary variable and establish 

the non negative and integrality conditions of the decision variables , respectively. 

In this SCPTOP problem, M
~

and 
~ are fuzzy in nature. To a great extent, truck storage 

capacity (in containers per truck) depends on the exact combination of the loaded 

tkji ,,,
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products and in such a way that, despite us theoretically knowing the meters occupied 

by a single product on the truck when combined with other products, the total occupied 

truck capacity does not exactly match the arithmetical sum of what each loaded product 

occupies. On the other hand, the minimum percentage of demand in period t+1 in stock 

at the end of period t, ~ , should be considered a fuzzy parameter since its estimation 

could not be done precisely in practice. We consider that the rest of the parameters are 

crisp because the related information is well-known over the planning horizon. We also 

assume that demand data are certain because we use firm orders in this operational 

decision-level problem with short (a few days) planning horizons.  

Figure 2 provides an overall block diagram for the proposed method. 

 

 

Figure 2. Overall block diagram  

 

5. Solution methodology 

In order to reach a preferred solution for the SCPTOP problem, the uncertain 

parameters, M
~

and ~ , are firstly defuzzified by using triangular fuzzy numbers. Then, 

the fuzzy programming solution methods of Selim and Ozkarahan (2008) and Torabi 

and Hassini (2008) are adopted to transform the FMOILP model, with fuzzy objective 

functions, into a MILP model. Furthermore, an interactive solution procedure based on 

Liang (2008) is proposed to solve the SCPTOP problem. 
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5.1 Defuzzifying the fuzzy parameters 

We apply the weighted average method (Liang 2006; Wang and Liang 2005; Lai and 

Hwang 1992). Therefore, if the minimum acceptable level of possibility, β, is given, 

Constraints (7) and (9) can be formulated as follows: 

jt
omp

kt YMwMwMwC  )( 321   
(12) 

1321 )(  it
omp

it DwwwI  
 (13)

 

where w1+w2+w3=1, and w1, w2 and w3 denote the weights of the most pessimistic, the 

most possible and the most optimistic value, respectively, for the fuzzy triangular 

number which represents the fuzzy maximum truck load. Based on the most likely 

values concept proposed by Lai and Hwang (1992), and considering the works by Liang 

(2006) and Wang and Liang (2005), we set these parameters as: w2 =4/6, w1= w3 =1/6 

and β = 0.5. According to Lai and Hwang (1992) the weights between 
pM    p

 , 
mM   m

 , 

and 
oM    o

  can be changed subjectively. The reason of using the above weighted average 

values is that 
pM    p

  is too pessimistic and
oM    o

 , too optimistic. Of course these two 

boundary values provide boundary solutions. Besides, Lai and Hwang state that the most 

possible values are often the most important ones. In this sense, taking into account the simetric 

boundary values provided by the decision maker, we have considered a higher value of w2, and 

lower and identical values of w1 and w3 (w1= w3). By considering this weight structure, same 

results in terms of number of trucks and total stock should be obtained, although the values of 

w2, w1 and w3 vary. Anyway, if we consider a higher value of w3 respect to w1, the amount of 

total stock obtained will be higher than those obtained by the considered weight structure while 

if we consider a lower value of w3 respect to w1, better results could be obtained. 

 

5.2 Transforming the FMOILP model into a MILP model  

In order to solve MOLP models, several approaches have been proposed in the literature 

(Ehrgott and Wiecek 2005). Among them, fuzzy programming approaches are highly 

applied, especially in recent years because of their capability to directly measure the 

satisfaction level of each objective function. 

There are many possible forms for a membership function to represent the fuzzy 

objective functions: linear, exponential, hyperbolic, hyperbolic inverse, piece-wise 

linear, etc. (see Peidro and Vasant (2009) for a comparison of the main types of 

membership functions). Among the various types of membership functions, the most 

feasible for constructing a membership function for solving fuzzy mathematical 
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programming problems is the linear form, although there may be preferences for other 

patterns with some applications (Zimmermann 1975; Zimmermann 1978; Tanaka et al. 

1984). Moreover, the main advantage of the linear membership functions is that they 

generate equivalent, efficient and computationally linear models. 

We formulate the corresponding non increasing continuous linear membership functions 

for each objective function as follows (Bellman and Zadeh 1970): 

 
























u

ul

lu

u

l

zz

zzz
zz

zz

zz

11

111
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11
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1

0

1


  (14) 
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
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


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







u
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lu

u

l

zz

zzz
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zz

22

222

22

22

22

2

0

1


  (15) 

where )( 21   is the membership function of )( 21 zz , while )( ll zz 21 and )( uu zz 21 are, 

respectively, the lower and upper bounds of the objective function )( 21 zz . We can 

determine each membership function by asking the decision maker to specify the fuzzy 

objective value interval (14)-(15), as well as the lower and upper bounds of the fuzzy 

parameters (12)-(13). Membership functions 
1  and 

2  are represented in Figure 3 and 

Figure 4, respectively. 

 

Figure 3. Membership function of z1 
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Figure 4. Membership function of z2 

 

 

5.2.1 The Selim and Ozkarahan (2008) approach 

Selim and Ozkarahan (2008) propose a fuzzy solution approach for solving FMOLP 

problems, with fuzzy objective functions, by modifying Werner’s aggregation function 

(Werners 1988). According to these authors, a fuzzy multi-objective model can be 

transformed into a single objective model as follows: 

Max )()1()( 0 xx
k

kk    

subject to 

nkxhk ,...,1)(0     

)(xFx  

]1,0[,,0  k    
(16) 

where k  and )}(min{0 xk   denote the degree of satisfaction corresponding to the 

kth objective function and the minimum degree of satisfaction of the objectives, 

respectively. Furthermore, k denotes the difference between each objective’s level of 

satisfaction and the minimum level of satisfaction corresponding to the objectives (

0  kk ). Moreover, θk and γ indicate the relative importance of the kth objective 

function and the compensation coefficient, respectively. The θk parameters are 

determined by the decision maker based on her/his preferences so that .0,1  kk k      

Selim and Ozkarahan’s aggregation function seeks a compromise value between the 

min operator and the weighted sum operator based on the γ value.  Thus, a low γ value 

means that the model attempts to find a solution by focusing more on obtaining a better 

degree of satisfaction for the most weighted objective and by paying less attention to 

achieving a higher level of minimum satisfaction for the objectives. A high γ value 



 14 

means that the model places more importance on maximizing the minimum degree of 

satisfaction for the objectives, independently of the weights assigned to the objective 

functions. In other words, the decision makers can obtain both balanced and unbalanced 

compromised solutions by setting the value of parameters θk and γ based on their 

preferences (see Wang and Shu (2007) for details).  

According to Selim and Ozkarahan (2008), the equivalent MILP model can be 

formulated as follows to solve the SCPTOP problem: 

Max    22110 )1(  x   (17) 

subject to 

110      (18) 

220      (19) 




 

K

k

iktittiit QDII

1

)1(   ti,  (20) 






J

j

ijktikt GQ

1

   tki ,,  (21) 

ijjjktijkt blKG     tkji ,,,  (22) 






I

i

iiktkt uQC

1

   tk,  (23) 

jt
omp

kt YMwMwMwC  )( 321    tk,    (24) 

ktkt YmC     tk,    (25) 

1321 )(  it
omp

it DwwwI           ti,  (26) 

1ktY
   

tk,  (27) 

Iit , Qikt , Gijkt ,Ckt , Kjkt ,Ykt ≥ 0 integer  (28) 

 ,,, 210 ]1,0[    (29) 

5.2.2 The Torabi and Hassini (2008) approach 

Torabi and Hassini (2008) propose a new single-phase fuzzy approach as a combination 

of the previous methods of Lai and Hwang (1993) and Selim and Ozkarahan (2008). 

According to Torabi and Hassini (2008), a multi-objective model could be transformed 

into a single objective model as follows: 

Max )()1()( 0 xx

k

kk    

subject to 

tkji ,,,
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nkxk ,...,1)(0     

)(xFx  

]1,0[,0     (30) 

where k  and )}(min{0 xk   denote the satisfaction degree of the kth objective 

function and the minimum degree of satisfaction of objectives, respectively. Moreover, 

θk and γ indicate the relative importance of the kth objective function and the 

compensation coefficient, respectively.  Besides, γ controls not only the objectives’ 

minimum level of satisfaction, but also the degree of compromise among the objectives 

implicitly. That is, the proposed formulation is capable of yielding both unbalanced and 

balanced compromised solutions for a given problem based on the decision maker’s 

preferences by adjusting the value of parameter γ (Torabi and Hassini 2008). By using 

the fuzzy decision making of Bellman and Zadeh (1970) and the Torabi and Hassini 

(2008) fuzzy programming method, we can formulate the complete equivalent crisp 

single-goal LP model to solve the SCPTOP problem as follows: 

 

Max    22110 )1(  x   (31) 

subject to 

10       (32) 

20       (33) 




 

K

k

iktittiit QDII

1

)1(   ti,  (34) 






J

j

ijktikt GQ

1

   tki ,,  (35) 

ijjjktijkt blKG     tkji ,,,  (36) 





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i

iiktkt uQC

1

   tk,  (37) 

jt
omp

kt YMwMwMwC  )( 321    tk,    (38) 

ktkt YmC     tk,    (39) 

1321 )(  it
omp

it DwwwI           ti,  (40) 

1ktY
   

tk,  (41) 

Iit , Qikt , Gijkt ,Ckt , Kjkt ,Ykt ≥ 0 integer  (42) tkji ,,,
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 ,0 ]1,0[    (43) 

5.3 Interactive solution procedure 

Here, the interactive solution procedures proposed by Liang (2008) are adapted to solve 

the SCPTOP problem. This procedure provides a systematic framework that facilitates 

the fuzzy decision-making process, thus enabling the decision maker to interactively 

adjust the search direction during the solution procedure to obtain the decision maker’s 

preferred satisfactory solution (Liang 2008). 

In summary, our proposed interactive solution procedure is as follows: 

 Step 1. Formulate the original FMOILP model for the SCPTOP problem 

according to Eqs. (1) to (11). 

 Step 2. Specify the corresponding linear membership functions for all the fuzzy 

objective functions and the fuzzy parameters using (14), (15) and (12) and (13), 

respectively. 

 Step 3. Determine the minimum acceptable level of possibility, β, for 

Constraints (24), (26), (38) and (40) and specify the corresponding relative 

importance of the objective functions, (θk), and the compensation coefficient, γ, 

in (17) and (31).  

 Step 4. Transform the original FMOILP problem into an equivalent MILP form 

by using the above-presented methodology. 

 Step 5. Solve the proposed auxiliary crisp single-objective model by the MIP 

solver and obtain the initial compromise solution for the SCPTOP problem. 

 Step 6. If the decision maker is satisfied with this current efficient compromise 

solution, stop. Otherwise, go back to Step 2 and provide another efficient 

solution by changing the value of the controllable parameters (β, θk , γ, M
~

and 
~

). 

 

Figure 5 presents the flow chart of the proposed interactive fuzzy linear programming 

method to solve multi-objective SCPTOP problems. 
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Figure 5. Flowchart of the proposed interactive solution method procedure 

 

6. Application to an automobile supply chain 

The proposed model has been evaluated with data from a real SC in the automobile 

industry. In this section, we validate our proposal as a tool for making decisions relating 

to the procurement transport operational planning in an automobile SC with epistemic 

uncertainty in the maximum capacity of available trucks. 

6.1 Implementation and resolution 

The proposed model has been developed with the modeling language GAMS and solved 

by the ILOG CPLEX 12.1.0 solver in an Intel Xeon, at 2.93 GHz, with 48 GB of RAM. 

The model has been executed for a 7-day planning time horizon with 96 different 

products grouped into 54 different product groups, and supplied by a unique full truck 

load second-tier supplier with a minimum truck occupation of 86 containers. Here, 

parameter ~ is set to (0.3, 0.4, 0.5), as used in the company under study (see Section 3). 
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According to the relative importance of the objectives provided linguistically by the 

decision maker (θ2 >> θ1), we set the objectives weight vector as: θ = (0.1, 0.9). 

Therefore, an unbalanced compromise solution with the highest degree of satisfaction 

for z2 is of particular interest because it is more important for the first-tier supplier to 

minimize inventory than the number of trucks used for procurement. 

In Annex I, Table 6 lists the basic item data for the SC considered, while Table 7 shows 

the automobile assembler’s item demand in each period. The size of the problem 

implemented in GAMS modeling language for each solution method is shown in Table 

2. 

Table 2. Data related to problem size for each solution method 

 Selim and Ozkarahan (2008) Torabi and Hassini (2008) 

Blocks of equations 16 16 

Single equations 38332 38332 

Blocks of variables 14 12 

Single variables 38032 38030 

Non zero elements 78376 78372 

Discrete variables 392 392 

6.2 Evaluation of the results 

Tables 3 and 4 show the results of the number of trucks used from the second-tier 

supplier to the first-tier supplier to fulfill the assembler’s demand, the first-tier 

supplier’s total inventory over the planning horizon, and the average occupation of the 

trucks used by the second-tier supplier obtained by the manual procedure and the 

FMOILP solution methodology proposed using the Selim and Ozkarahan (2008) and the 

Torabi and Hassini (2008) approaches, respectively. Moreover, Tables 3 and 4 add the 

objectives’ minimum degree of satisfaction (λ0), the objectives functions’ degree of 

satisfaction, the objective value of the equivalent crisp model (λ(x)), the CPU time 

needed to solve the problem, and the upper and lower limits specified by the decision 

maker for the objectives, the minimum percentage of demand in the next period to 

remain in stock, η, and the parameters used to resolve the lack of knowledge of the 

maximum truck load in Constraints (24) and (38). 

As seen in Tables 3 and 4, the proposed FMOILP models obtain better solutions than 

the manual procedure. For the different γ values analyzed, the proposed method 

generates lower stock levels and a higher occupation of trucks used to fulfill both 

demand and the minimum inventory requirements. Specifically, the best results are 

obtained for unbalanced solutions (lower γ values). In this sense, the degree of 

satisfaction of  objective function z2 (whose assigned weight is higher) increases when γ 
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decreases. On the other hand, the degree of satisfaction µ2 lowers when γ increases 

because inventory levels are higher. Besides, the higher the compensation coefficient γ 

values, the lower the distance between µ1 
and µ2 because the degree of satisfaction of 

the first objective is always µ1=0.8750. Therefore, 7 trucks were used for all cases to 

obtain a more balanced solution. Specifically in this resolved problem, the total number 

of trucks used is identical for both approaches, with the different values considered from 

the compensation coefficient. The results relating to total stock, obtained by the method 

of Selim and Ozkarahan (2008), are better for all the   values, except =0.5. As regards 

computation time, both approaches use values of the same order of magnitude, except 

the Torabi and Hassini (2008) approach, with γ=0.3, which employs a total of 15.065 

seconds. Should efficiently large-sized MILP problems need to be solved, different 

types of metaheuristics have been recently developed. Calvete et al. (2010) and Musa et 

al. (2010) propose ant colony optimization algorithms, Wang et al. (2010) and Chen and 

Lin (2009) present an algorithm based on particle swarm optimization (PSO), while 

Bard and Nanannukul (2009) present a tabu search algorithm, among others.  

The minimum degree of satisfaction values (λ0) obtained by the Torabi and Hassini 

(2008) approach are equal for all the values considered from the compensation 

coefficient, and take a value of 0.8750. Yet for the Selim and Ozkarahan (2008) 

approach, these values are obtained only for the highest compensation coefficients, and 

are null for the values of =0.1, =0.2, =0.3, =0.4 and =0.5. What this implies is that 

the cited approach could obtain excessively unbalanced solutions, which only favors the 

optimization of those objectives with heavier weights. Nonetheless, this fact does not 

apply to the problem being dealt with because the values obtained for objective z1, are 

equal. 

The total stock evaluation throughout the considered planning horizon is shown in 

Figure 6 where we can it be seen that inventory levels are always above the requested 

amounts. In accordance with the problem description, the inventory levels at the end of 

each period must cover at least 40% of the demand in the next period. Nonetheless, the 

fact that product groups and order lot sizes exist implies that the inventory levels are 

above demand. In addition, the manual procedure generates higher inventory levels. 

Then, the proposed methods offer a better selection of truck loads which, in turn, allows 

lower stock.  
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Table 3. A comparison of the manual procedure and the Selim and Ozkarahan (2008) method solutions 

Item 
Manual 

Procedure 

Proposed 

method  

(γ=0.1) 

Proposed 

method  

(γ=0.2) 

Proposed 

method  

(γ=0.3) 

Proposed 

method  

(γ=0.4) 

Proposed 

method  

(γ=0.5) 

Proposed 

method  

(γ=0.6) 

Proposed 

method  

(γ=0.7) 

Proposed 

method  

(γ=0.8) 

Proposed 

method  

(γ=0.9) 

Trucks 

(z1) 
7 7 7 7 7 7 7 7 7 7 

Inventory  

(z2) 
63,865 

units 

56,024 

units 

56,204 

units 

56,312 

units 

56,360 

units 

56,504 

units 

56,024 

units 

57,428 

units 

56,552  

units 

60,428 

units 

Truck 

occupation 

(Average) 

86.71 
containers 

87.71 

containers 

87.71 

containers 

87.71 

containers 

87.71 

containers 

87.28 

containers 

87.71 

containers 

87.14 

containers 

87.71 

containers 

90  

containers 

λ0  0 0 0 0 0 0.8750 0.8750 0.8750 0.8750 

1  

 

0.8750 0.8750 0.8750 0.8750 0.8750 0.8750 0.8750 0.8750 0.8750 

2  0.9653 0.9643 0.9637 0.9634 0.9626 0.9650 0.9572 0.9623 0.9400 

λ(x) 0.8606 0.7643 0.6684 0.5727 0.4769 0.5574 0.6347 0.7157 0.7934 

TCPU(s) 5.195 5.742 4.016 1.770 4.293 6.359 2.526 1.304 1.812 

[ ul zz 11 , ] 
lz1 = 6 uz1 = 14 

[ ul zz 22 , ] 
lz2 = 50,000 uz2 = 223,700 

η ]5.0,4.0,3.0[
 

M m=86 

M
~  9692;;88  omp MMM   
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Table 4. A comparison of the manual procedure and the Torabi and Hassini (2008) method solutions 

Item 
Manual 

Procedure 

Proposed 

method  

(γ=0.1) 

Proposed 

method  

(γ=0.2) 

Proposed 

method  

(γ=0.3) 

Proposed 

method  

(γ=0.4) 

Proposed 

method  

(γ=0.5) 

Proposed 

method  

(γ=0.6) 

Proposed 

method  

(γ=0.7) 

Proposed 

method  

(γ=0.8) 

Proposed 

method  

(γ=0.9) 

Trucks 

(z1) 
7 7 7 7 7 7 7 7 7 7 

Inventory  

(z2) 
63,865 

units 

56,360 

units 

56,264 

units 

56,528 

units 

56,444 

units 

56,360 

units 

56,792 

units 

57,572 

units 

58,592 

units 

62,120 

units 

Truck 

occupation 

(Average) 

86.71 
containers 

87.71 

containers 

87.71 

containers 

87.71 

containers 

87.71 

containers 

87.71 

containers 

87.71 

containers 

89.43 

containers 

86.86 

containers 

89.57  

containers 

λ0  0.8750 0.8750 0.8750 0.8750 0.8750 0.8750 0.8750 0.8750 0.8750 

1  

 

0.8750 0.8750 0.8750 0.8750 0.8750 0.8750 0.8750 0.8750 0.8750 

2  0.9634 0.9639 0.9624 0.9629 0.9634 0.9609 0.9564 0.9505 0.9302 

λ(x) 0.9466 0.9390 0.9301 0.9225 0.9148 0.9059 0.8970 0.8886 0.8800 

TCPU(s)
 

3.279 4.426 15.065 4.821 4.52 4.256 1.399 1.087 1.058 

[ ul zz 11 , ] 
lz1 = 6 uz1 = 14 

[ ul zz 22 , ] 
lz2 = 50,000 uz2 = 223,700 

η ]5.0,4.0,3.0[
 

M m=86 

M
~  9692;;88  omp MMM   
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Figure 6. Total stock evolution (units) 

7. Discussion 

In order to explore the influence of different weight structures on the results of the 

problem, several problem instances are generated and solved using the Selim and 

Ozkarahan (2008) method. For each instance generated, the results associated with 

different compensation coefficient values are obtained, as Table 8 of Annex II indicates. 

Table 8 shows the minimum degree of satisfaction of the objectives (λ0), the degree of 

satisfaction of the second objectives function (µ2), the average occupation of the trucks 

used and the CPU time required to solve the problem.  

Seven trucks are obtained for each generated weight vector and from the considered 

compensation coefficients to cover the transport between the second-tier supplier and 

the first-tier supplier. The minimum degree of satisfaction values are null for those 

compensation coefficients below 0.6, while the remaining cases take a value of 0.8750. 

The mean truck occupation value ranges between 86.71 containers per truck (θ1=0.2, 

θ2=0.8, γ=0.79) and 90.57 containers per truck (θ1=0.5, θ2=0.5, γ=0.9). As shown, and 

in general terms, higher occupation values are obtained for greater compensation 

coefficient values and for instances 8 and 9. On the other hand, calculation times range 

between 0.857 (θ1=0.9, θ2=0.1, γ=0.4) and 9.950 seconds (θ1=0.2, θ2=0.8, γ=0.2). 

Table 5 shows the total inventory obtained for each instance generated for the different 

vector weights and compensation coefficients considered. In global terms, we can see 

how the best results are obtained for instances 1 to 4 with a heavier weight for the 
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second objective, and lower compensation coefficients for instance 5. Meanwhile, and 

in general, the highest inventory results are obtained for those instances with a lower 

weight for the second objective, and also for higher compensation coefficients.  

Table 5. Total stocks results for different weight vectors and compensation coefficients 

 Problem instances 

 1 2 3 4 5 6 7 8 9 

θ1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

θ2 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 

γ=0.1 56,024 56,084 56,360 56,264 56,024 56,444 57,632 58,544 60,944 

γ=0.2 56,204 56,252 56,372 56,192 56,264 56,420 57,512 57,968 58,988 

γ=0.3 56,312 56,084 56,024 56,192 56,024 56,708 57,212 58,124 60,932 

γ=0.4 56,360 56,192 56,360 56,264 56,504 56,864 56,372 58,412 59,012 

γ=0.5 56,504 56,204 56,324 56,084 56,708 56,432 56,504 57,728 61,040 

γ=0.6 56,024 56,540 56,372 57,140 56,768 56,924 58,124 59,588 65,516 

γ=0.7 57,428 56,948 56,912 57,140 58,412 56,768 60,320 60,272 57,716 

γ=0.8 56,552 57,848 57,092 56,384 60,212 62,396 59,744 60,296 61,088 

γ=0.9 60,428 61,232 57,848 60,428 65,000 61,376 56,972 60,956 60,644 

 

The interactive solution methodology provides a learning process about the system, 

whereby the decision maker can learn to recognize good solutions and the relative 

importance of the factors in the system. The main advantage of this interactive approach 

is that the decision maker controls the search direction during the solution procedure 

(given a weight vector θk and by changing the γ value); as a result, his/her preferences 

are accomplished by the efficient solution.  

With respect to the managerial implications for an automobile supply chain, it is 

important to highlight the major advantages or benefits and disadvantages of the 

proposed methods. Thus, the FMOILP model obtains better results in terms of inventory 

levels and truck occupation because it makes decisions by considering all the planning 

periods together rather than period by period, as in the manual procedure. In this sense, 

we propose an effective and structured method for the SCTOP problem, which performs 

the automatize calculations in front of the current procedure. Moreover, there is also an 

improvement in the computational time needed to perform the calculations because the 

current manual procedure takes about 180 seconds to be completed and the proposed 

method always obtains optimal results or optimal results with a gap tolerance (less than 

0.5% which is set as stopping criteria). Thus, this paper has shown a feasible and 

successful implementation of fuzzy multi-objective mathematical programming to solve 

an industrial procurement transportation planning problem. 
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The main disadvantage could be related to the required higher level of operations 

research training of planners. Related to the improvements of our proposal, the use of 

solution approaches based on metaheuristics could be convenient to solve the resulting 

single objective MILP model efficiently especially when solving large-sized problems 

(Bhattacharya et al. 2007; Ganesan et al. 2012; Tsoulos and Vasant 2009; Vasant and 

Barsoum 2009; Vasant et al. 2012a; Vasant et al. 2012b; Zheng and Chen 2013). Also, 

readers are referred to Senvar et al. (2013) for a literature review on the use of 

metaheuristics for solving engineering problems. 

 

8. Conclusions 

In this work, a FMOILP model has been developed to address procurement transport 

planning at the operational level in an automobile SC formed by a car assembler, a first-

tier supplier and a second-tier supplier. The proposed model aims to minimize not only 

the total number of used trucks from the second-tier supplier to the first-tier supplier, 

but also the first-tier supplier’s total inventory level to fulfill the car assembler’s 

demand. Decision makers’ fuzzy aspiration levels for the goals and lack of knowledge 

or epistemic uncertainty in the transport capacity levels and minimum percentages of 

demand in stock, are all incorporated into the model by using linear membership 

functions and triangular fuzzy numbers, respectively.  

For the purpose of solving the corresponding FMOILP model, we propose an interactive 

solution methodology that has been tested in a real automobile SC. This methodology 

has adopted the solution methods by Selim and Ozkarahan (2008) and Torabi and 

Hassini (2008) to transform the FMOILP model, with fuzzy objective functions, into a 

MILP model. Both solution approaches have provided better results in terms of total 

stock levels than the manual decision-making procedure, which is currently applied in 

the automobile SC under study. We have also included a sensitivity analysis to show the 

impact of the relative importance of the objectives on the final solutions. 

Some limitations in this work are related to: (i) the results obtained are subject to the 

data input provided; (ii) demand has been considered certain; and (iii) a static planning 

horizon has been considered. Thus, further research is needed to address and validate 

the model with other real world problems by modeling demand uncertainty and by 

simulating a rolling planning horizon. Furthermore, future studies could apply non 

linear membership functions such as exponential, hyperbolic, modified s-curve, etc., to 

solve the SCPTOP problem. The advantages of these membership functions are: more 
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realistic, flexible and convenience. Among them, s-curve membership function is better 

in comparison with linear membership functions because its robustness in order to find 

an efficient solution, it avoids linearity in the degeneration problem of fuzzy linear 

programming, its suitability in the decision-making process for DMs given the 

vagueness factor alpha involved in the fuzzy problems and its flexibility in describing 

the vagueness of the uncertain and ill-known fuzzy problems (Vasant et al. 2003; 

Bhattacharya and Vasant, 2007). Finally, the application of soft computing techniques, 

evolutionary algorithms and metaheuristics could be applied in future studies with 

large-scale SCPTOP problems and with the long computation times required 

(Hajiaghaei-Keshteli et al. 2010; Molla-Alizadeh-Zavardehi et al. 2013; Musa et al. 

2010; Zheng and Chen 2013). 
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Annex I. Item data and demand 

Table 6. Basic item data 

Item number (i) Groups (j) I0i (units) ui 

Item 1 1 292 50 

Item 2 2 95 50 
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Item number (i) Groups (j) I0i (units) ui 

Item 3 3 55 50 

Item 4 4 11 50 

Item 5 1, 2, 3, 4 448 100 

Item 6 1, 2, 3, 4 388 25 

Item 7 5 286 50 

Item 8 6 0 50 

Item 9 5, 6 276 100 

Item 10 5, 6 276 25 

Item 11 7 0 50 

Item 12 8 0 50 

Item 13 7, 8 0 100 

Item 14 7, 8 0 25 

Item 15 9 148 50 

Item 16 10 0 50 

Item 17 9, 10 273 100 

Item 18 9, 10 218 25 

Item 19 11 21 50 

Item 20 12 0 50 

Item 21 11, 12 26 100 

Item 22 11, 12 21 25 

Item 23 13 55 25 

Item 24 14 0 50 

Item 25 13, 14 50 100 

Item 26 13, 14 50 25 

Item 27 15 57 25 

Item 28 16 0 50 

Item 29 15, 16 82 100 

Item 30 15, 16 62 25 

Item 31 17 61 20 

Item 32 18 0 20 

Item 33 17, 18 211 40 

Item 34 17, 18 201 20 

Item 35 19, 21 36 20 

Item 36 20, 22 0 20 

Item 37 19, 20, 21, 22 31 20 

Item 38 19, 20 36 10 

Item 39 21, 22 0 10 

Item 40 23, 25 9 20 

Item 41 24, 26 0 20 

Item 42 23, 24, 25, 26 9 20 

Item 43 23, 24 9 10 

Item 44 25, 26 0 10 

Item 45 27 8 20 

Item 46 28 0 20 

Item 47 27, 28 23 20 

Item 48 27, 28 23 10 

Item 49 29 93 48 

Item 50 30 4 48 

Item 51 29, 30 142 96 

Item 52 29, 30 137 48 

Item 53 31 410 48 

Item 54 32 178 48 
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Item number (i) Groups (j) I0i (units) ui 

Item 55 33 60 48 

Item 56 31, 32, 33 698 96 

Item 57 31, 32, 33 683 48 

Item 58 34 50 48 

Item 59 35 75 48 

Item 60 36 50 48 

Item 61 34, 35, 36 175 96 

Item 62 34, 35, 36 175 48 

Item 63 37 57 48 

Item 64 38 0 48 

Item 65 39 50 48 

Item 66 37, 38, 39 102 96 

Item 67 37, 38, 39 102 48 

Item 68 40 78 48 

Item 69 41 0 48 

Item 70 42 10 48 

Item 71 40, 41, 42 128 96 

Item 72 40, 41, 42 118 48 

Item 73 43 11 48 

Item 74 44 0 48 

Item 75 43, 44 51 96 

Item 76 43, 44 41 48 

Item 77 45 83 48 

Item 78 46 0 48 

Item 79 45, 46 138 96 

Item 80 45, 46 138 48 

Item 81 47 88 48 

Item 82 48 22 48 

Item 83 47, 48 120 96 

Item 84 47, 48 125 48 

Item 85 49 307 48 

Item 86 50 23 48 

Item 87 49, 50 325 96 

Item 88 49, 50 360 48 

Item 89 51 40 24 

Item 90 52 0 24 

Item 91 51, 52 40 48 

Item 92 51, 52 20 24 

Item 93 53 62 24 

Item 94 54 0 24 

Item 95 53, 54 72 48 

Item 96 53, 54 57 24 

 

 

 

 

Table 7. Item demand per period 

Item number Demand 

 t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8 

Item 1 170 162 107 130 111 71 140 135 
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Item number Demand 

 t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8 

Item 2 0 0 0 0 0 0 0 0 

Item 3 0 0 0 0 0 0 0 0 

Item 4 0 0 0 20 37 57 16 17 

Item 5 170 162 107 150 148 128 156 152 

Item 6 170 162 107 150 148 128 156 152 

Item 7 129 130 110 94 71 31 4 0 

Item 8 0 0 0 0 0 0 0 0 

Item 9 129 130 110 94 71 31 4 0 

Item 10 129 130 110 94 71 31 4 0 

Item 11 0 0 0 0 0 0 0 0 

Item 12 0 0 0 0 0 0 0 0 

Item 13 0 0 0 0 0 0 0 0 

Item 14 0 0 0 0 0 0 0 0 

Item 15 173 178 176 205 216 270 269 281 

Item 16 0 0 0 0 0 0 0 0 

Item 17 173 178 176 205 216 270 269 281 

Item 18 173 178 176 205 216 270 269 281 

Item 19 3 2 0 11 24 6 1 5 

Item 20 0 0 0 0 0 0 0 0 

Item 21 3 2 0 11 24 6 1 5 

Item 22 3 2 0 11 24 6 1 5 

Item 23 0 0 0 0 0 0 0 0 

Item 24 0 0 0 0 0 0 0 0 

Item 25 0 0 0 0 0 0 0 0 

Item 26 0 0 0 0 0 0 0 0 

Item 27 0 1 0 0 1 1 9 0 

Item 28 0 0 0 0 0 0 0 0 

Item 29 0 1 0 0 1 1 9 0 

Item 30 0 1 0 0 1 1 9 0 

Item 31 54 55 54 65 66 82 78 81 

Item 32 0 0 0 0 0 0 0 0 

Item 33 54 55 54 65 66 82 78 81 

Item 34 54 55 54 65 66 82 78 81 

Item 35 2 2 4 1 0 2 1 0 

Item 36 0 0 0 0 0 0 0 0 

Item 37 2 2 4 1 0 2 1 0 

Item 38 2 2 4 1 0 2 1 0 

Item 39 0 0 0 0 0 0 0 0 

Item 40 0 0 0 0 0 0 0 0 

Item 41 0 0 0 0 0 0 0 0 

Item 42 0 0 0 0 0 0 0 0 

Item 43 0 0 0 0 0 0 0 0 

Item 44 0 0 0 0 0 0 0 0 

Item 45 0 0 0 4 5 9 10 11 

Item 46 0 0 0 0 0 0 0 0 

Item 47 0 0 0 4 5 9 10 11 

Item 48 0 0 0 4 5 9 10 11 

Item 49 38 36 32 31 39 40 39 39 

Item 50 0 0 11 0 0 0 0 0 

Item 51 38 36 43 31 39 40 39 39 

Item 52 38 36 43 31 39 40 39 39 

Item 53 320 333 382 259 379 381 363 347 
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Item number Demand 

 t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8 

Item 54 89 57 0 155 8 15 17 10 

Item 55 18 21 56 16 46 18 19 49 

Item 56 427 411 438 430 433 414 399 406 

Item 57 427 411 438 430 433 414 399 406 

Item 58 11 5 4 6 1 7 6 2 

Item 59 1 0 0 0 0 0 0 0 

Item 60 10 27 0 1 10 23 23 17 

Item 61 22 32 4 7 11 30 29 19 

Item 62 22 32 4 7 11 30 29 19 

Item 63 5 11 15 2 5 13 17 32 

Item 64 0 0 0 0 0 0 0 0 

Item 65 5 1 0 0 3 1 2 0 

Item 66 10 12 15 2 8 14 19 32 

Item 67 10 12 15 2 8 14 19 32 

Item 68 3 5 8 19 3 10 2 6 

Item 69 0 0 0 1 0 0 0 0 

Item 70 0 0 0 0 0 0 0 0 

Item 71 3 5 8 20 3 10 2 6 

Item 72 3 5 8 20 3 10 2 6 

Item 73 4 3 0 1 4 3 4 3 

Item 74 0 0 0 0 0 0 0 0 

Item 75 4 3 0 1 4 3 4 3 

Item 76 4 3 0 1 4 3 4 3 

Item 77 4 6 14 1 7 9 8 9 

Item 78 0 0 0 0 0 0 0 0 

Item 79 4 6 14 1 7 9 8 9 

Item 80 4 6 14 1 7 9 8 9 

Item 81 29 28 54 0 38 29 59 49 

Item 82 1 0 0 0 20 0 16 57 

Item 83 30 28 54 0 58 29 75 106 

Item 84 30 28 54 0 58 29 75 106 

Item 85 369 381 332 426 329 323 314 309 

Item 86 16 6 4 3 26 60 24 0 

Item 87 385 387 336 429 355 383 338 309 

Item 88 385 387 336 429 355 383 338 309 

Item 89 0 0 0 0 1 0 0 0 

Item 90 0 0 0 0 0 0 0 0 

Item 91 0 0 0 0 1 0 0 0 

Item 92 0 0 0 0 1 0 0 0 

Item 93 6 8 8 11 9 0 6 3 

Item 94 0 0 0 0 0 0 0 0 

Item 95 6 8 8 11 9 0 6 3 

Item 96 6 8 8 11 9 0 6 3 

 

 

 

 

Annex II. Sensivity analysis results 

Table 8. Results obtained for different weight vectors and compensation coefficients 
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  Problem instances 

  1 2 3 4 5 6 7 8 9 

 θ1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

 θ2 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 

γ=0.1 

Inventory 

(z2) 
56,024 56,084 56,360 56,264 56,024 56,444 57,632 58,544 60,944 

λ0
 

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

2  0.9653 0.9650 0.9634 0.9639 0.9653 0.9629 0.9561 0.9508 0.9370 

Truck 

occupation 

(Average) 

87.71 87.71 87.71 87.71 87.71 87.71 87.29 89.14 89.29 

TCPU(s) 5.195 2.942 2.739 2.222 8.713 4.919 3.631 1.388 2.463 

γ=0.2 

Inventory 

(z2) 
56,204 56,252 56,372 56,192 56,264 56,420 57,512 57,968 58,988 

λ0
 

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

2  0.9643 0.9640 0.9633 0.9644 0.9639 0.9630 0.9568 0.9541 0.9483 

Truck 

occupation 

(Average) 

87.71 87.71 87.71 87.71 87.71 87.71 87.14 87.86 89.14 

TCPU(s) 5.742 9.95 5.26 6.004 5.514 6.054 5.121 1.579 2.816 

γ=0.3 

Inventory 

(z2) 
56,312 56,084 56,024 56,192 56,024 56,708 57,212 58,124 60,932 

λ0
 

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

2  0.9637 0.9650 0.9653 0.9644 0.9653 0.9614 0.9585 0.9532 0.9371 

Truck 

occupation 

(Average) 

87.71 87.71 87.71 87.71 87.71 87.29 87.71 88.86 89.57 

TCPU(s) 4.016 2.772 7.303 1.295 6.78 1.398 3.413 1.29 1.485 

γ=0.4 

Inventory 

(z2) 
56,360 56,192 56,360 56,264 56,504 56,864 56,372 58,412 59,012 

λ0
 

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

2  0.9634 0.9644 0.9634 0.9639 0.9626 0.9605 0.9633 0.9516 0.9481 

Truck 

occupation 

(Average) 

87.71 87.71 87.71 87.71 87.14 87.14 87.71 87.29 89.43 

TCPU(s) 1.77 4.95 2.356 5.446 7.69 1.71 1.954 1.887 0.857 

γ=0.5 

Inventory 

(z2) 
56,504 56,204 56,324 56,084 56,708 56,432 56,504 57,728 61,040 

λ0
 

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

2  0.9626 0.9643 0.9636 0.9650 0.9614 0.9630 0.9626 0.9555 0.9364 

Truck 

occupation 

(Average) 

87.28 87.71 87.71 87.71 87.14 87.29 87.14 88.14 89.43 

TCPU(s) 4.293 4.47 2.457 3.89 4.132 4.863 3.697 2.759 1.3 

γ=0.6 

Inventory 

(z2) 
56,024 56,540 56,372 57,140 56,768 56,924 58,124 59,588 65,516 

λ0
 

0.8750 0.8750 0.8750 0.8750 0.8750 0.8750 0.8750 0.8750 0.8750 

2  0.9650 0.9623 0.9633 0.9589 0.9610 0.9601 0.9532 0.9448 0.9107 

Truck 

occupation 

(Average) 

87.71 87.71 87.71 87.71 87.29 88.29 88.57 89.57 90.43 

TCPU(s) 6.359 5.224 2.08 1.327 5.276 2.112 1.158 2.838 1.344 
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  Problem instances 

  1 2 3 4 5 6 7 8 9 

 θ1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

 θ2 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 

γ=0.7 

Inventory 

(z2) 
57,428 56,948 56,912 57,140 58,412 56,768 60,320 60,272 57,716 

λ0
 

0.8750 0.8750 0.8750 0.8750 0.8750 0.8750 0.8750 0.8750 0.8750 

2  0.9572 0.9600 0.9602 0.9589 0.9516 0.9610 0.9406 0.9409 0.9556 

Truck 

occupation 

(Average) 

87.14 86.71 88.29 87.71 88.29 87.57 87.57 87.71 88.29 

TCPU(s) 2.526 5.649 1.902 1.429 1.204 1.683 2.464 2.06 1.165 

γ=0.8 

Inventory 

(z2) 
56,552 57,848 57,092 56,384 60,212 62,396 59,744 60,296 61,088 

λ0
 

0.8750 0.8750 0.8750 0.8750 0.8750 0.8750 0.8750 0.8750 0.8750 

2  0.9623 0.9548 0.9592 0.9632 0.9412 0.9286 0.9439 0.9407 0.9362 

Truck 

occupation 

(Average) 

87.71 89.00 88.86 87.71 90.14 88.71 88.29 89.43 89.00 

TCPU(s) 1.304 2.645 1.631 1.463 1.578 1.513 2.613 1.436 1.134 

γ=0.9 

Inventory 

(z2) 
60,428 61,232 57,848 60,428 65,000 61,376 56,972 60,956 60,644 

λ0
 

0.8750 0.8750 0.8750 0.8750 0.8750 0.8750 0.8750 0.8750 0.8750 

2  0.9400 0.9353 0.9548 0.9400 0.9136 0.9345 0.9599 0.9369 0.9387 

Truck 

occupation 

(Average) 

90.00 89.29 88.29 90.00 90.57 88.71 88.29 89.29 89.86 

TCPU(s) 1.812 1.301 1.45 1.39 1.947 1.168 1.138 1.279 1.081 

 


