UNIVERSITAT POLITECNICA DE VALENCIA ,
DEPARTAMENTO DE SISTEMAS INFORMATICOS Y COMPUTACION

Mathematical Expression Recognition
based on Probabilistic Grammars

By
Francisco Alvaro Munoz

written under the direction of
Dr. Joan Andreu Séanchez and Prof. José Miguel Benedi

April 10, 2015

MATHEMATICAL EXPRESSION RECOGNITION
BASED ON PROBABILISTIC GRAMMARS

By

FRANCISCO ALVARO MUNOZ

A thesis dissertation submitted to the
Departamento de Sistemas Informaticos y Computacion,
Universitat Politecnica de Valencia
in partial fulfillment of the requirements
for the degree of
Doctor en Informética
written under the direction of
Dr. Joan Andreu Sanchez and Prof. José Miguel Benedi
Valencia, Spain, April 10, 2015

Work supported by the European Union 7** Framework Program under the
tranScriptorium project (Ref: 600707), and by the EC (FEDER/FSE) and the
Spanish MEC/MICINN under the MIPRCV “Consolider Ingenio 2010” program
(CSD2007-00018) and the FPU scholarship AP2009-4363.

A mis padres Paco y Magdalena

Copyright Note

I hereby declare that this dissertation describes my own original work devel-
oped under the direction of my two supervisors Dr. Joan Andreu Sanchez and
Prof. José Miguel Benedi. Further, I have acknowledged all sources used and
have cited these in the bibliography section.

Additionally, we have collaborated with other researchers in order to tackle
some of the tasks reported in this thesis:

e The work regarding spatial relationships classification and shape descrip-
tors (Section 4.2.2) was made in collaboration with Dr. Richard Zanibbi
from the Rochester Institute of Technology, USA.

e The application of 2D-PCFG to layout analysis of structured documents
(Section 8.4) results from the collaboration with Francisco Cruz and
Dr. Oriol Ramos Terrades, from the Universitat Autonoma de Barcelona,
Spain. In this task, they were experts on the image analysis of the doc-
ument images and PGMs, while we focused on the structural parsing
process of the documents.

e The pCAPTCHA proposal (Section 8.3) was jointly developed with
Dr. Luis A. Leiva, colleague from the Universitat Politecnica de Valéncia.
He is also responsible for the IATEX transcription and information re-
trieval application presented in Section 8.2.

Finally, we have used public software and libraries in some of the develop-
ments of this thesis. We have explicitly acknowledged them in the correspond-
ing sections of this document.

Acknowledgements /
Agradecimientos

Aunque estas lineas aparecen al principio de esta tesis, son las iltimas que
escribo. Con el documento terminado, echo la vista atras y veo el resultado
de méas de cinco anos de trabajo dedicados a resolver un problema. Muchas
personas han formado parte de mi vida durante este periodo de tiempo y han
influido de un modo u otro, y aqui quiero agradecérselo.

En primer lugar me gustaria dar las gracias a mis directores Joan Andreu
y José Miguel por haberme dado la oportunidad de hacer el doctorado con
ellos. Hemos trabajado duro durante mucho tiempo, y esta tesis es el fruto de
numerosas reuniones, discusiones, correos, revisiones... que representan una
parte intangible a la par que esencial de este documento.

I would like to thank Richard Zanibbi and the DPRL lab for their warm
welcome during my research stay at the cold Rochester Institute of Technology.
I spent an unforgettable period of time over there, where I had the chance to
discuss this specific research field, and also, I met many nice people with whom
I am still in touch. Attending conferences was also a great experience that
allowed me to meet people (kind as well as smart) from all over the world and
share interesting ideas with them.

Many thanks to the reviewers and the board committee for accepting and
making the effort of evaluating this thesis. Their comments and suggestions
have positively contributed to the final state of this document and it is a great
pleasure to receive feedback from people with such knowledge and research ex-
perience.

El PRHLT ha sido mi casa durante méas de cinco afios, un grupo lleno de
gente mas que brillante con unos niveles de exigencia que hacen que todos
nos esforcemos por ser mejores. El ambiente de trabajo estos anos ha sido
extraordinario, muchos de nosotros hemos pasado de companeros a ser grandes
amigos, vy la verdad es que he disfrutado mucho yendo a trabajar cada dia.
Echaré de menos conversaciones capaces de combinar la ciencia més rigurosa
con el humor mas fino, tardes acelerando para llegar a tiempo a un deadline
y algin que otro frenazo.

Coémo no, he de agradecer a las personas que me han apoyado (y soporta-
do) durante este periodo de tiempo. Entre los desafortunados que han estado
conmigo en los buenos y en los malos momentos, estdn muy especialmente la
penia de Aras, un grupo que germiné en un lugar remoto de la serrania com-
binando a gente tinica con la que he tenido la suerte de haber coincidido. Ni
siquiera soy capaz de recordar cuando nos conocimos, y aunque nos hayamos
repartido un poco por el mundo, cuando nos vemos parece que no haya pasado
el tiempo.

Por 1ltimo, a mi familia, a mis padres y a mi hermana. Por estar siempre
ahi, confiar en mi y apoyarnos unos a otros en todo lo que hacemos y nos ha
tocado vivir. Aunque no lo digamos a menudo, lo demostramos cada dia.

Gracias a todos.

Valencia, 10 de abril de 2015.

ii FAM-DSIC-UPV

Abstract / Resumen / Resum

Mathematical notation is well-known and used all over the world. Humankind
has evolved from simple methods representing countings to current well-defined
math notation able to account for complex problems. Furthermore, mathe-
matical expressions constitute a universal language in scientific fields, and
many information resources containing mathematics have been created during
the last decades. However, in order to efficiently access all that information,
scientific documents have to be digitized or produced directly in electronic
formats.

Although most people is able to understand and produce mathematical in-
formation, introducing math expressions into electronic devices requires learn-
ing specific notations or using editors. Automatic recognition of mathematical
expressions aims at filling this gap between the knowledge of a person and the
input accepted by computers. This way, printed documents containing math
expressions could be automatically digitized, and handwriting could be used
for direct input of math notation into electronic devices.

This thesis is devoted to develop an approach for mathematical expression
recognition. In this document we propose an approach for recognizing any type
of mathematical expression (printed or handwritten) based on probabilistic
grammars. In order to do so, we develop the formal statistical framework
such that derives several probability distributions. Along the document, we
deal with the definition and estimation of all these probabilistic sources of
information. Finally, we define the parsing algorithm that globally computes
the most probable mathematical expression for a given input according to the
statistical framework.

An important point in this study is to provide objective performance evalu-
ation and report results using public data and standard metrics. We inspected
the problems of automatic evaluation in this field and looked for the best so-
lutions. We also report several experiments using public databases and we
participated in several international competitions. Furthermore, we have re-
leased most of the software developed in this thesis as open source.

We also explore some of the applications of mathematical expression recog-

iii

nition. In addition to the direct applications of transcription and digitiza-
tion, we report two important proposals. First, we developed uyCAPTCHA, a
method to tell humans and computers apart by means of math handwriting
input, which represents a novel application of math expression recognition.
Second, we tackled the problem of layout analysis of structured documents
using the statistical framework developed in this thesis, because both are two-
dimensional problems that can be modeled with probabilistic grammars.

The approach developed in this thesis for mathematical expression recog-
nition has obtained good results at different levels. It has produced several
scientific publications in international conferences and journals, and has been
awarded in international competitions.

La notacion matemdtica es bien conocida y se utiliza en todo el mundo.
La humanidad ha evolucionado desde simples métodos para representar cuen-
tas hasta la motacion formal actual capaz de modelar problemas complejos.
Ademds, las expresiones matemdticas constituyen un idioma universal en el
mundo cientifico, y se han creado muchos recursos que contienen matemdti-
cas durante las ultimas décadas. Sin embargo, para acceder de forma eficiente
a toda esa informacion, los documentos cientificos han de ser digitalizados o
producidos directamente en formatos electrénicos.

Aungue la mayoria de personas es capaz de entender y producir informa-
cion matemdtica, introducir expresiones matemdticas en dispositivos electroni-
cos requiere aprender notaciones especiales o usar editores. El reconocimiento
automdatico de expresiones matemdaticas tiene como objetivo llenar ese espa-
cto existente entre el conocimiento de una persona y la entrada que aceptan
los ordenadores. De este modo, documentos impresos que contienen formulas
podrian digitalizarse automdticamente, y la escritura se podria utilizar para
introducir directamente notacion matemdtica en dispositivos electronicos.

Esta tesis estd centrada en desarrollar un método para reconocer expresio-
nes matemdticas. En este documento proponemos un método para reconocer
cualquier tipo de férmula (impresa o manuscrita) basado en gramdticas pro-
babilisticas. Para ello, desarrollamos el marco estadistico formal que deriva
varias distribuciones de probabilidad. A lo largo del documento, abordamos la
definicion y estimacion de todas estas fuentes de informacion probabilistica.
Finalmente, definimos el algoritmo que, dada cierta entrada, calcula global-
mente la expresion matemdtica mas probable de acuerdo al marco estadistico.

Un aspecto importante de este trabajo es proporcionar una evaluacion obje-
tiva de los resultados y presentarlos usando datos publicos y medidas estdndar.
Por ello, estudiamos los problemas de la evaluacion automdtica en este campo
y buscamos las mejores soluciones. Asimismo, presentamos diversos erperi-

v FAM-DSIC-UPV

mentos usando bases de datos publicas y hemos participado en varias com-
peticiones internacionales. Ademds, hemos publicado como cddigo abierto la
mayoria del software desarrollado en esta tesis.

También hemos explorado algunas de las aplicaciones del reconocimiento
de expresiones matemdticas. Ademds de las aplicaciones directas de transcrip-
cion y digitalizacion, presentamos dos propuestas importantes. En primer lu-
gar, desarrollamos pCAPTCHA, un método para discriminar entre humanos
y ordenadores mediante la escritura de expresiones matemdaticas, el cual re-
presenta una novedosa aplicacion del reconocimiento de formulas. En sequndo
lugar, abordamos el problema de detectar y segmentar la estructura de docu-
mentos utilizando el marco estadistico formal desarrollado en esta tesis, dado
que ambos son problemas bidimensionales que pueden modelarse con gramdti-
cas probabilisticas.

El método desarrollado en esta tesis para reconocer expresiones matemdti-
cas ha obtenido buenos resultados a diferentes niveles. Este trabajo ha produ-
citdo varias publicaciones en conferencias internacionales y revistas, y ha sido
premiado en competiciones internacionales.

La notacié matematica és ben coneguda i s'utilitza a tot el mén. La humanitat
ha evolucionat des de simples métodes per representar comptes fins a la notacié
formal actual capac de modelar problemes complexos. A més, les expressions ma-
tematiques constitueixen un idioma universal al mén cientific, i s'han creat molts
recursos que contenen matematiques durant les tltimes decades. No obstant aixo,
per accedir de forma eficient a tota aquesta informacid, els documents cientifics
han de ser digitalitzats o produits directament en formats electronics.

Encara que la majoria de persones és capac¢ d'entendre i produir informa-
cié matematica, introduir expressions matematiques en dispositius electronics re-
quereix aprendre notacions especials o usar editors. El reconeixement automatic
d’'expressions matematiques té per objectiu omplir aquest espai existent entre el
coneixement d'una persona i I'entrada que accepten els ordinadors. D'aquesta
manera, documents impresos que contenen férmules podrien digitalitzar-se au-
tomaticament, i 'escriptura es podria utilitzar per introduir directament notacié
matematica en dispositius electronics.

Aquesta tesi esta centrada en desenvolupar un metode per reconeixer expres-
sions matematiques. En aquest document proposem un métode per reconeixer
qualsevol tipus de férmula (impresa o manuscrita) basat en gramatiques proba-
bilistiques. Amb aquesta finalitat, desenvolupem el marc estadistic formal que
deriva diverses distribucions de probabilitat. Al llarg del document, abordem la
definicid i estimacid de totes aquestes fonts d’informacié probabilistica. Finalment,

FAM-DSIC-UPV \

definim I'algorisme que, donada certa entrada, calcula globalment I'expressié ma-
tematica més probable d'acord al marc estadistic.

Un aspecte important d'aquest treball és proporcionar una avaluacié objectiva
dels resultats i presentar-los usant dades ptbliques i mesures estandard. Per aixo,
estudiem els problemes de I'avaluacié automatica en aquest camp i busquem les
millors solucions. Aixi mateix, presentem diversos experiments usant bases de
dades publiques i hem participat en diverses competicions internacionals. A més,
hem publicat com a codi obert la majoria del software desenvolupat en aquesta
tesi.

També hem explorat algunes de les aplicacions del reconeixement d'expres-
sions matematiques. A més de les aplicacions directes de transcripcié i digi-
talitzacié, presentem dues propostes importants. En primer lloc, desenvolupem
pCAPTCHA, un metode per discriminar entre humans i ordinadors mitjancant
I'escriptura d'expressions matematiques, el qual representa una nova aplicacié del
reconeixement de férmules. En segon lloc, abordem el problema de detectar i
segmentar |'estructura de documents utilitzant el marc estadistic formal desenvo-
lupat en aquesta tesi, donat que ambdds sén problemes bidimensionals que poden
modelar-se amb gramatiques probabilistiques.

El metode desenvolupat en aquesta tesi per reconeixer expressions matemati-
ques ha obtingut bons resultats a diferents nivells. Aquest treball ha produit
diverses publicacions en conferéncies internacionals i revistes, i ha sigut premiat
en competicions internacionals.

vi FAM-DSIC-UPV

Contents

Acknowledgements / Agradecimientos
Abstract / Resumen / Resum

1 Introduction

1.1 Motivation
1.2 Mathematical Expression Recognition
1.2.1 Symbol Segmentation
1.2.2 Symbol Recognition
1.2.3 Structural Analysis
1.3 Scientific Goals L o
1.4 Document Structure

Mathematical Expression Recognition

2.1 Introduction

2.2 Statistical Framework

2.3 Symbol Likelihood 0L

2.4 Structural Probability 0000
2.4.1 2D Probabilistic Context-Free Grammars
2.4.2 Parse Tree Probability

Symbol Recognition

3.1 Symbol Duration

3.2 Symbol Segmentation L.
3.2.1 Introduction
3.2.2 Segmentation Model

3.3 Handwritten Symbol Classification
3.3.1 Introduction
3.3.2 Online Features
3.3.3 Offline Features
334 Classifiers o

vii

11
12
15
18
19
20
21

3.4 Printed Symbol Classification
3.4.1 Introduction,
3.4.2 Feature Extraction
3.4.3 Classifiers

Structural Analysis

4.1 Introductiono

4.2 Spatial Relationships Classification
4.2.1 Geometric Features: Bounding Boxes
4.2.2 Shape Features: Polar Histograms

4.3 Clustering-based Penalty

4.4 2D-PCFG Estimation
4.4.1 Viterbi Estimation 0000
4.4.2 Constrained Parsing

Parsing Mathematical Expressions

5.1 2D-PCFG Parsing Algorithm
5.2 Complexity and Search Space
5.3 Multi-primitive Symbol Recognition
5.4 Training Process oL

The Problem of Performance Evaluation

6.1 Introduction.

6.2 Performance Evaluation Metrics
6.2.1 Early Global Metrics
6.22 EMERS
6.2.3 IMEGE
6.2.4 Label Graphs
6.2.5 String Matching 0.

6.3 Summary e

Experimentation

7.1 Datasets
7.1.1 Printed Mathematical Expressions
7.1.2 Handwritten Mathematical Expressions

7.2 Classification of Handwritten Symbols
7.2.1 Classifiers Evaluation: HMM and RNN
7.2.2 Features Evaluation: Online and Offline
7.2.3 Comparison with other approaches
7.2.4 SUMMArYo e e e e e

45
46
46
47
49
52
53
o4
o4

57
58
59
63
64

69
70
72
72
73
74
78
81
82

viii FAM-DSIC-UPV

7.3 Classification of Printed Symbols 107

7.3.1 Experimental setup. 107
7.3.2 Results and Discussion 108
7.3.3 Summary 110

7.4 Spatial Relationships Classification 111
7.4.1 Geometric Feature Results 111
7.4.2 Shape-Based Feature Results 112
7.4.3 Discussion 113
744 Summaryo Lo 115

7.5 Recognition of Handwritten Math Expressions 117
7.5.1 Experimental Setup 117
7.5.2 CROHME 2013 Experiments 117
7.5.3 CROHME 2014 Experiments 122
7.5.4 SUMMArY oL 125

7.6 Recognition of Printed Math Expressions 127
7.6.1 Experimental Setup, 127
7.6.2 Results and Discussion 129
7.6.3 Summaryo 131

8 Applications 133
8.1 Open-source Software 134
8.1.1 Printed Math Expression Recognition 134
8.1.2 Handwritten Math Expression Recognition 134
8.1.3 Features for Handwriting Recognition 135
8.1.4 Image-based Evaluation 135

8.2 ITEX Transcription and Information Retrieval 136
8.3 puCAPTCHA: Math-based CAPTCHA 139
8.3.1 Imtroduction, 139
8.3.2 Related Work 141
8.3.3 System Design L. 144
8.3.4 Evaluation 150
8.3.5 Discussion 157

8.4 Layout Analysis of Structured Documents 159
8.4.1 Imtroduction, 159
8.4.2 Segmentation of Structured Documents 160
8.4.3 Probabilistic Graphical Models 163
8.4.4 Grammatical Model 165
8.4.5 Text Classification Features 168
8.4.6 Evaluation 170

FAM-DSIC-UPV X

8.4.7 Summary 176

9 Conclusions 177
9.1 Summary 178
9.2 Scientific Contributions 181

List of Acronyms 185

List of Figures 187

List of Tables 193

List of Algorithms 195

X FAM-DSIC-UPV

CHAPTER

1

Introduction

Mathematical notation is a well-known language that has been used all over
the world since hundreds of years ago. Despite the great number of cultures,
languages and even different writing scripts, mathematical expressions consti-
tute a universal language in many fields. During last century and, especially,
since the development of Internet, digital information represents the best re-
source in order to access and share data. Therefore, it is necessary to digitize
documents and to input mathematical expressions directly into computers.

Although most people know how to read or write a mathematical expres-
sion, introducing them in a computer device usually requires learning specific
notations or how to use a certain editor. Mathematical expression recognition
intends to fill this gap between the knowledge of a person and the language
computers understand.

This chapter presents the motivation for recognizing mathematical expres-
sions and its applications in Section 1.1. Then, in Section 1.2 we introduce
the types of mathematical expressions and the main problems that a recog-
nition system hast to deal with. Finally, we describe the goals of this thesis
in Section 1.3 and the structure followed to accomplish them is presented in
Section 1.4.

Chapter Outline

1.1 Motivation e 2
1.2 Mathematical Expression Recognition 2
1.3 ScientificGoals 0. 9
1.4 Document Structure. 9

Chapter 1. Introduction

1.1 Motivation

Mathematical notation constitutes an essential source of information in many
fields. Thousands of years ago humankind started to represent countings using
very primitive systems. Several civilizations created more and more complex
notations in order to account for more advanced data, like geometric calcula-
tions or astronomical observations. The continuous developments of mathe-
matics make possible that we can access today to the knowledge acquired for
centuries.

Nowadays, there is an advanced well-known notation used all over the
world. The amount of scientific documents is extraordinary, and the great
scientific community is continuously producing more knowledge that has to
be represented. Having the information digitalized is crucial in order to make
feasible searching and accessing a set of relevant documents. Also, scientists,
students and teachers access to math information and work with computers.
However, introducing math notation into an electronic device requires learning
notations like ITEX and MathML, or using graphic editors.

Recognition of mathematical expressions aims at developing systems able
to automatically understand math notation provided by humans as printed
or handwritten expressions. This is important for automatic document dig-
itization containing formulae, where scanned expressions can be recognized
and there is a large amount of resources to digitize. Furthermore, it is very
useful being able to input mathematical information into computers by tak-
ing a photo of an equation, or handwriting it directly into a tactile device or
pen-based interface. Once a formula has been introduced into a computer, it
can be handled since there are multiple applications.

Information retrieval is another interesting application of recognizing math-
ematical notation, such that a set of relevant documents can be obtained using
a mathematical expression as a query. Finally, these techniques can also be
used for accessibility of disable people, for example, a printed or handwritten
mathematical expression can be translated into Braille notation or read using
text-to-speech tools.

1.2 Mathematical Expression Recognition

Mathematical expression recognition is a pattern recognition problem and its
goal is to obtain the math expression encoded in a given input sample. In
this field we distinguish different types of expressions that require specific
treatment. In this section, we first describe the taxonomy of mathematical

2 FAM-DSIC-UPV

1.2. Mathematical Expression Recognition

expressions considered in this problem. Afterwards, we state the main tasks
that a math recognition system has to deal with.

First, a math expression can be either printed or handwritten. Printed
formulae are commonly easier to recognize than handwritten expressions be-
cause they tend to be more regular. Handwriting introduces more variability
in the shape of the symbols and the relations between them. Also, there are
many different writers and writing styles, thus, handwritten mathematical ex-
pression recognition is more challenging. Figures 1.1 and 1.2 show an example
of the printed and handwritten version of the same mathematical expression.

ag = % + %

Figure 1.1: Example of printed mathematical expression.

i Z Y
&(oh/x + \
=

Figure 1.2: Example of handwritten mathematical expression.

Regarding the input representation, we consider the problem to be offline if
the math expression is represented as an image, i.e. a matrix of pixels. On the
other hand, a mathematical expression is considered to be online when it has
been introduced using a device such that we have the temporal information
of the writing, i.e. the input is a sequence of points. The representation
of mathematical expressions is based on different primitives depending on
the type of expression. Offline expressions are usually based on connected
components.

FAM-DSIC-UPV 3

Chapter 1. Introduction

Definition 1.2.1. A connected component of an image is a set of adjacent
foreground pixels, where pairs of pixels are connected such that are neighbors
in an 8-connected sense.

The primitives for representing online math expressions are usually strokes.

Definition 1.2.2. A stroke is the sequence of points drawn since the pen
touches the surface until the user lifts the pen from the surface.

These definitions of primitives can be seen on the examples of Figures 1.1
and 1.2. For instance, in the printed expression of Figure 1.1, symbols 7 and
+ are made up of one connected component, and symbol = is composed of
two connected components. If the handwritten expression of Figure 1.2 was
online, symbol m would be composed of three strokes, symbol + would be
composed of two strokes and number 0 would be drawn using just one stroke.
But if the handwritten expression of Figure 1.2 was offline, symbol 7 would be
composed of two connected components, and symbol + and number 0 would
be made up of one connected component.

According to these differences, the problem of recognizing mathematical
expressions has three possible scenarios: offline printed math expression recog-
nition, and both online and offline handwritten math expression recognition.

Automatic recognition of math notation is traditionally divided into three
problems [Chan and Yeung, 2000; Zanibbi and Blostein, 2012]: symbol seg-
mentation, symbol recognition and structural analysis. The issues related to
each of these problems are detailed below.

1.2.1 Symbol Segmentation

Symbol segmentation is the problem of determining what parts of the input
expression form a mathematical symbol. Depending on the type of expression,
online or offline, there are different issues to cope with.

Segmentation of offline mathematical expressions is usually based on com-
puting the connected components of the image. Figure 1.3 shows examples of
the problems related to segmentation of offline mathematical symbols. First,
many symbols are made up of more than one connected component by def-
inition and have to be grouped (Figure 1.3a). A difficult problem in offline
segmentation is when the connected components of two different symbols are
touching and have to be split (Figure 1.3b). Also, some symbols can be bro-
ken into several components due to image degradation (Figure 1.3c). Finally,
images can contain noise that produces additional components that do not
form any symbol and should be grouped or ignored (Figure 1.3d).

4 FAM-DSIC-UPV

1.2. Mathematical Expression Recognition

¢ e
t 2 Y d
(a) (b) (c)

(d)

Figure 1.3: Symbol segmentation problems in offline mathematical
expression recognition based on connected components.

Segmentation of online expressions is commonly based on strokes, although
symbol segmentation could also be based on connected components where it
would have the same problems than in offline segmentation. Stroke-based
segmentation can handle the problem of touching symbols provided that two
touching symbols are written in different strokes. An equivalent problem would
appear if two symbols share a single stroke.

Mathematical symbols can be made up of one or more strokes. For in-
stance, in offline segmentation a plus sign (+) is detected as a connected com-
ponent, but in online segmentation it has two strokes that must be merged.
Figure 1.2 shows several multi-stroke symbols whose strokes must be grouped:
1, m, + and =. Finally, although is less common than noise in images, small
strokes can be introduced by the user that do not belong to any symbol of the
mathematical expression and should be discarded.

Context information is important to determine the segmentation of an
input expression. In Figure 1.4(a) we can see several segmentation hypotheses
that could be reasonable if context is not taken into account. For instance, the
plus-minus sign (+) could be split into a plus sign and a horizontal line, or the
fraction line and the top stroke of the number five could be merged as an equals
sign [Awal et al., 2009]. Figure 1.4(b) shows ambiguities due to handwriting
production, such that the expression could have several valid interpretations
with alternative segmentations: ‘ 1-1<zx ‘, ‘ 1- kx‘ or ‘H <z ‘

1.2.2 Symbol Recognition

Mathematical symbol recognition aims to identify the symbol encoded by a
given hypothesis. Commonly, in offline recognition a hypothesis is an image,
and in online recognition a symbol hypothesis is a set of strokes. There are
many sets of symbols in mathematical notation: the Latin alphabet (a — z,
A — Z), the Greek alphabet (a, 8, v, 7, >, ...), numbers (0 — 9), operators

(+,—,/,), ...) and more (co, =, V, {, }, ...).

FAM-DSIC-UPV 5

Chapter 1. Introduction

v oD
= /“<X

Figure 1.4: Handwritten mathematical expressions showing several
examples of ambiguities in symbol segmentation.

Some of the symbols in mathematics are very similar, and there are even
symbols that are represented by the same shape, for instance, the number 0
and the letter o, or the letter x and the operator x. Figure 1.5 shows two
examples of handwritten symbol hypotheses and some of their possible inter-
pretations. Context information of the mathematical expression can help to
solve the ambiguities in symbol recognition and determine the correct symbol
class. We can see an example in Fig . 1.6 where the same shape represents a
letter (x) in the upper expression and an Cartesian product operator (x) in
the lower expression.

T TS
A [Ix]alg v

Figure 1.5: Recognition of mathematical symbols can be hard without
context, examples of ambiguity in classification.

6 FAM-DSIC-UPV

1.2. Mathematical Expression Recognition
>\ ‘% — @

Figure 1.6: Example of symbol classification depending on the context
in the mathematical expression. The same symbol shape is classified as
a letter in top expression (22 — x) and as a product operator between
sets in bottom expression (A x B =).

1.2.3 Structural Analysis

A mathematical expression is made up of symbols such that there are different
relationships between them. Given a set of symbols, the final step in math-
ematical expression recognition is the detection of the structure that relates
them and represents the recognized expression.

The structural analysis of equations requires determining two-dimensional
relationships between symbols or sets of symbols. In Figures 1.1 and 1.2 we
can see examples of the most common relations: subscript between symbols a
and 0; superscript between symbols x and 2; below between the elements of
the fraction; inside in the square root; and right relationship for the horizontal
concatenation of the elements in the expression. There are other relations like
radicals (v/), left scripts (fz) or the complex structure of matrices.

Relations between symbols can be ambiguous in several situations, such
that detecting the correct relationship might require knowing the symbols or
rely on language models. Figure 1.7 shows an example where the relation-
ship between two symbols in a mathematical expression requires taking into
account the entire expression.

Normally, the structure of a mathematical expression is represented as a
tree. Figure 1.8 shows the same expression encoded by three types of trees. In
relational trees, the mathematical symbols are the leaves of the tree and the
internal nodes represent the relations, while in symbol layout trees each node
is a symbol and edges indicate the relationships. In operator trees, leaves
represent symbols and each node contains the operation that computes the
expression bottom-up.

FAM-DSIC-UPV 7

Chapter 1. Introduction

- C

Figure 1.7: Example of subscript and superscript relationships that
cannot be determined locally [Chan and Yeung, 2000).

R) +)

no @
/N
® @ »H O 0 ® @

e

Figure 1.8: Example of tree representation of the expression .
Left to right: relational tree, symbol layout tree, and operator tree.

Finally, structural analysis is important in order to determine the correct
segmentation and the identity of the recognized mathematical symbols. Some
symbols can only be correctly classified if their spatial relationships are taken
into account. For example, a horizontal line can represent a minus operator, a
fraction bar or can be part of a symbol (e.g. =, < or). Context information
is crucial to solve these ambiguities, as we can see in the example of Figure 1.4.

8 FAM-DSIC-UPV

1.3. Scientific Goals

1.3 Scientific Goals

As previously described, there are several scenarios for mathematical expres-
sion recognition. An expression can either be printed or handwritten, and
handwritten formulae can be, in turn, online or offline. Regardless of the
type of math expression, three main problems must be solved: symbol seg-
mentation, symbol recognition and structural analysis. These problems are
closely related since symbol segmentation and symbol recognition depend on
the structure of the expression, and vice versa.

This thesis is devoted to develop an integrated approach for mathematical
expression recognition such that symbol segmentation, symbol recognition and
structural analysis are simultaneously optimized. We want to define a formal
framework based on parsing probabilistic grammars that can be generalized
for any type of mathematical expression. Also, the model should virtually
accept any input expression without constraints. Furthermore, we plan to
deal with the estimation of the different probability distributions that yield
from the recognition framework.

In this research field, despite many publications have been proposed, there
are several issues that make comparison difficult. As a pattern recognition
problem, we consider an important goal to evaluate the proposed methods
using standard metrics and to report results using public corpora. This will
let us to find the best features and classifiers for each task and provide com-
parable results. Also, we aim to develop the software required to implement
the approach presented in this thesis and release it as open-source. We hope
that this will help the progress in mathematical expression recognition.

Finally, we aim to explore some of the applications of the developments
of this thesis. First, the range of applications of mathematical expression
recognition as described at the beginning of this chapter. Second, the solutions
and probabilistic models presented in this thesis could be applied to other
tasks.

1.4 Document Structure

This Chapter 1 introduces the problem of recognizing mathematical expres-
sions and defines the different goals of this thesis. In order to achieve them,
the document is organized as follows:

Chapter 2 first reviews the related work on mathematical expression recog-
nition. Then, we define the formal framework of the integrated approach

FAM-DSIC-UPV 9

Chapter 1. Introduction

for recognizing mathematical notation developed in this thesis. The for-
mulation of the model can account for any type of expression: printed
expressions and both online and offline handwritten expressions.

Chapter 3 describes the probabilistic models that form the symbol likelihood
probability derived in the statistical framework. The models, features
and classifiers of this chapter are described for both handwritten and
printed mathematical symbols.

Chapter 4 details the calculation of the probability that accounts for the
structure of a mathematical expression. This chapter describes the com-
putation of the spatial relationships between symbols and subexpres-
sions, and the estimation of the probabilistic grammar.

Chapter 5 presents the parsing algorithm that computes the recognized math-
ematical expression for a given input such that the probability defined
in the statistical framework is maximized. Furthermore, the properties
of the algorithm are analyzed and some practical issues are discussed.

Chapter 6 introduces the problems of automatic performance evaluation in
mathematical expression recognition. Then, we present different met-
rics that have been proposed in order to provide objective automatic
assessment of recognition results.

Chapter 7 reports the experimentation carried out in order to evaluate at
different levels the approach for math expression recognition developed in
this thesis. The experiments are performed on both online handwritten
math expressions and offline printed math expressions.

Chapter 8 presents several applications of the developments of this thesis.
First, direct applications of mathematical expression recognition. Then,
we detail the application of math expression recognition and probabilistic
parsing to two different tasks.

Chapter 9 summarizes the contributions of this thesis and presents the pub-
lications resulted from this work.

10 FAM-DSIC-UPV

CHAPTER

2

Mathematical Expression
Recognition

Automatic recognition of mathematical expressions is a challenging problem
that requires tackling ambiguities at several levels. On the one hand, the
segmentation of the input in mathematical symbols and their classification.
On the other hand, the detection of the two-dimensional structure that re-
lates the symbols and represents the math expression. All these problems are
closely related since symbol segmentation and recognition are influenced by
the structure of the expression, while the structure strongly depends on the
symbols recognized. For these reasons, we present an approach that integrates
several stochastic sources of information and is able to globally determine the
most likely expression. This way, symbol segmentation, symbol recognition
and structural analysis are simultaneously optimized.

As previously introduced, there are different types of expressions. We
present a formal framework that is able to account for any type of mathe-
matical expression. For the sake of a better understanding, we describe the
approach in terms of online handwritten mathematical expressions such that
primitives are strokes, but the generalization to offline expressions (printed or
handwritten) is straightforward using connected components as primitives.

In this chapter, we first review previous proposals for mathematical expres-
sion recognition and introduce our model in Section 2.1. Then, Section 2.2
describes the statistical framework of the integrated grammar-based approach.
This framework derives two different probabilities: the symbol likelihood that
is described in Section 2.3, and the structural probability that is defined in
Section 2.4.

Chapter Outline

2.1 Introduction 0000 12
2.2 Statistical Framework 15
2.3 Symbol Likelihood 18
2.4 Structural Probability 19

11

Chapter 2. Mathematical Expression Recognition

2.1 Introduction

The problem of automatic mathematical expression recognition has been stud-
ied for decades [Anderson, 1967; Chou, 1989; Chan and Yeung, 2000; Zanibbi
and Blostein, 2012]. Different approaches have been presented for this task.
Some systems are based on recursively dividing the math formula into subex-
pressions by means of projection profiles [Okamoto and B., 1991], the X-Y cut
algorithm [Ha et al., 1995] or using prior knowledge about the structure of
math notation [Faure and Wang, 1990]. These approaches effectively decom-
pose the mathematical expression into smaller subproblems. However, some
cases like square roots require special treatment, and sloped expressions can
be challenging for this methodology.

Another group of methods are based on trees or graphs. Eto and Suzuki
[2001] developed a model for printed math expression recognition that com-
puted the minimum spanning tree of a network representation of the expres-
sion. Tapia and Rojas [2004] presented a proposal for online recognition also
based on constructing the minimum spanning tree and using symbol dom-
inance. Zanibbi et al. [2002] recognized an expression as a tree, and pro-
posed a system based on a sequence of tree transformations. Lehmberg et al.
[1996] defined a net such that the sequence of symbols within the handwritten
expression was represented by a path through the graph. Shi et al. [2007]
presented a similar system where symbol segmentation and recognition were
tackled simultaneously based on graphs. They then generated several sym-
bol candidates for the best segmentation, and the recognized expression was
computed in the final structural analysis [Shi and Soong, 2008]. This group of
approaches generally results in efficient algorithms for recognizing formulas,
and trees and graphs are proper models for representing mathematical expres-
sions. However, context-free dependencies are not naturally modelled in most
of these structures. Also, some approaches require a one-dimensional order,
but math notation is 2D. Therefore, the order is often achieved by detect-
ing baselines and exploiting the left-to-right reading order. But errors in the
baseline detection cannot be solved in further steps. Another option to obtain
a one-dimensional order in online recognition is to assume that symbols are
written with consecutive strokes, which limits the set of accepted inputs.

Given the well-defined structure of math notation, many approaches are
based on grammars because they constitute a natural way to model this prob-
lem. In fact, the first proposals on math expression recognition were grammar-
based [Anderson, 1967; Chou, 1989]. Since then, different studies have been
developed using different types of grammars. For instance, Chan and Yeung

12 FAM-DSIC-UPV

2.1. Introduction

[2001] used definite clause grammars, the model of Lavirotte and Pottier [1998]
was based on graph grammars, Yamamoto et al. [2006] presented a system us-
ing Probabilistic Context-Free Grammars (PCFG), and MacLean and Labahn
[2013] developed an approach using relational grammars and fuzzy sets. De-
spite previous approaches use different types of grammars, the methodology
is based on modelling more complex structural relations by means of rules
that combine problems creating larger hypotheses. In this thesis we will focus
on models based on PCFGQG, because the structure of math notation can be
naturally modelled using context-free grammars, and specifically PCFG be-
cause this well-known formalism will allow us to develop a formal statistical
framework.

Proposals based on PCFG use grammars to model the structure of the
expression, but the recognition systems are different. Garain and Chaudhuri
[2004] proposed a system that combines online and offline information in the
structural analysis. First, they created online hypotheses based on deter-
mining baselines in the input expression, and then offline hypotheses using
recursive horizontal and vertical splits. Finally they used a context-free gram-
mar to guide the process of merging the hypotheses. Yamamoto et al. [2006]
presented a version of the CYK algorithm for parsing 2D-PCFGs with the
restriction that symbols and relations must follow the writing order. They
defined probability functions based on a region representation called “hidden
writing area”. Prusa and Hlavac [2007] described a system for offline recogni-
tion using 2D context-free grammars. Their proposal was penalty-based such
that weights were associated with regions and syntactic rules. The model pro-
posed by Awal et al. [2014] considers several segmentation hypotheses based
on spatial information, and the symbol classifier has a rejection class in order
to avoid incorrect segmentations. All these previous approaches were based
on PCFG, but the resulting models have significant differences. Moreover,
the lack of public datasets and standard metrics made that the performance
of these proposals was not compared. Based on these studies, we wanted to
develop our own approach for math expression recognition.

During the development of this thesis, we first tackled the problem of recog-
nizing printed mathematical expressions. We developed an initial model based
on connected components and 2D-PCFG parsing [Alvaro et al., 2011]. After-
wards, we moved on to online handwritten mathematical expression recogni-
tion with the emergence of the first CROHME competition [Mouchere et al.,
2011], as it became an active research field. Our first approach was to apply the
model we had developed for printed expressions to handwritten expressions.
This way, by computing the connected components of the input strokes and

FAM-DSIC-UPV 13

Chapter 2. Mathematical Expression Recognition

using specific classifiers and features for handwritten symbols, we obtained a
parser for online handwritten math expressions [Alvaro et al., 2014]. However,
this approach had problems regarding symbol segmentation and recognition
and it did not take advantage of the online information.

That model tackled symbol segmentation by computing the connected
components of the input strokes and merging them using productions of the
grammar (e.g. an equals sign is a line below another line). However, this strat-
egy required consideration of additional classes for symbol composition (e.g.
an ¢ without the dot or linked letters in functions) and finding proper spatial
relations for their combination. Moreover, it could not account for touching
symbols or symbols with segmentations that have not been taken into account
with specific productions in the grammar (for instance, broken symbols like 7
in Fig. 1.2). Thus, segmentation was not a hidden variable but depended on
design decisions of the grammar and symbol composition.

In order to overcome the problems of this segmentation methodology, we
moved towards a model based on stroke primitives instead of connected com-
ponents. This way we use the time information of the input and it represents
a more powerful model to tackle symbol segmentation. But this strategy also
introduces more challenges in order to determine which sets of strokes compose
a mathematical symbol. We wanted to develop an approach based on parsing
2D-PCFG where symbol segmentation and recognition was integrated follow-
ing an approach similar to [Shi et al., 2007; Luo et al., 2008]. The solution
presented by Shi et al. [2007] combined several stochastic sources of informa-
tion on symbol segmentation, symbol recognition and spatial relationships in
order to determine the best overall segmentation and recognition. However, it
had the restriction that symbols must be written with consecutive strokes in
time and structural analysis was performed as a decoupled step. We pursue a
formal model such that mathematical expressions can be written in any order.

As aresult, in this thesis we describe an integrated approach based on pars-
ing 2D-PCFG using strokes as primitives with no time order assumptions. Our
proposal integrates several stochastic information sources in order to globally
determine the most likely mathematical expression. In this advanced frame-
work, segmentation becomes a hidden variable, and the statistical framework
developed for online handwritten mathematical expressions can be applied to
offline recognition by considering connected components as primitives instead
of strokes, and pixels instead of points.

14 FAM-DSIC-UPV

2.2. Statistical Framework

2.2 Statistical Framework

In online handwritten math expression recognition, the input is a sequence
of strokes, and these strokes are in themselves a sequence points. Fig. 2.1
shows an example of the input for a mathematical expression. As you can
see, the temporal sequence of strokes does not correspond to the sequence
of symbols that it represents. For example, we can see that the user first
wrote the subexpression z — y, then the user added the parentheses and its
superscript (x—y)?, finally converting the subtraction into an addition (x+y)2.
This example shows that some symbols might not be made up of consecutive
strokes (e.g. the + symbol in Fig. 2.1). This means that the mathematical
expression would not be correctly recognized if it was parsed monotonically
with the input, i.e. processing the strokes in the order in which they were
written. Meanwhile, the sequence of symbols that make up a subexpression
does not have to respect the writing order (e.g. the parentheses and the
subexpression they contain in Fig. 2.1).

05 02 08
01 03
o
! O¢

Figure 2.1: Example of input for an online handwritten mathematical
expression. The order of the input sequence of strokes is labeled (o =
0102 ... 08)-

Given a sequence of input strokes, the output of a mathematical expres-
sion recognizer is usually a sequence of symbols [Shi et al., 2007]. However,
we consider that a significant element of the output is the structure that de-
fines the relationship between the symbols making up the final mathematical
expression. As mentioned above, we propose modeling the structural rela-
tionships of a mathematical expression using a statistical grammatical model.
By doing so, we define the problem of mathematical expression recognition
as obtaining the most likely parse tree given a sequence of strokes. Fig. 2.2
shows a possible parse tree for the expression given in Fig. 2.1, where we can
observe that a (context-free) structural model would be appropriate due to, for
instance, structural dependencies in bracketed expressions. The output parse
tree represents the structure that relates all the symbols and subexpressions

FAM-DSIC-UPV 15

Chapter 2. Mathematical Expression Recognition

Exp
/\
ParExp A Sym
/\
LeftPar ExpRightPar
Exp RightPar

TN

Sym OpSym

N

OpBin Sym

|

01 02 03 04 05 06 o7 08

Figure 2.2: Parse tree of expression (z +)2 given the input sequence
of strokes described in Fig. 2.1. The parse tree represents the structure
of the math expression and it produces the 6 recognized symbols that
account for the 8 input strokes.

that make up the input expression. The parse tree derivation produces the se-
quence of pre-terminals that represent the recognized mathematical symbols.
Furthermore, to generate this sequence of pre-terminals, we must take into
account all stroke combinations in order to form the possible math symbols.
Taking these considerations into account, two main problems have been
observed. First, the segmentation and recognition of symbols is closely re-
lated to the alignment of mathematical symbols to strokes. Second, the struc-
tural analysis of a math expression addresses the problem of finding the parse
tree that best accounts for the relationships between different mathematical
symbols (pre-terminals). Obviously, these two problems are closely related.
Symbol recognition is influenced by the structure of the mathematical expres-
sion, and detecting the structure of the math expression strongly depends on
the segmentation and recognition of symbols. For these reasons we propose
an integrated strategy that computes the most likely parse tree while simulta-
neously solving symbol segmentation, symbol recognition and the structural

16 FAM-DSIC-UPV

2.2. Statistical Framework

analysis of the input.

Formally, let an online mathematical expression be a sequence of N strokes
0 =0102...0yN. We state the mathematical expression recognition as a struc-
tural parsing problem such that the goal is to obtain the most likely parse
tree t that accounts for the input sequence of strokes o:

t = argmax p(t | 0)
teT
where 7 represents the set of all possible parse trees.
At this point, we consider the sequence of mathematical symbols s € S as
a hidden variable, where S is the set of all possible sequences of symbols (pre-
terminals) produced by the parse tree t: s = yield(¢). This can be formalized
as follows:

t = arg max Z p(t,s | o)
teT seS
s=yield(t)
If we approximate the probability by the maximum probability parse tree, and
assume that the structural part of the equation depends only on the sequence
of pre-terminals s, the final target expression is

t ~argmax max p(s|o)-p(t|s) (2.2.1)
teT s€S
s=yield(t)

such that p(s|o) represents the observation (symbol) likelihood and p(t|s)
represents the structural probability.

This problem could be solved in two steps. First, by calculating the seg-
mentation of the input into mathematical symbols and, second, by computing
the structure that relates all recognized symbols [Zanibbi et al., 2002]. How-
ever, in this study we propose an integrated strategy for computing Eq. (2.2.1)
where symbol segmentation, symbol recognition and the structural analysis of
the input expression are globally determined. This way, all the information is
taken into account in order to obtain the most likely mathematical expression.

Next, in Section 2.3 we define the observation model that accounts for the
probability of recognition and segmentation of symbols, p(s|o). The probabil-
ity that accounts for the structure of the math expression p(t|s) is described
in Section 2.4. Finally, the algorithm that, for a given input o, computes
the mathematical expression # that maximizes the probability of Eq. 2.2.1 is
presented in Chapter 5.

FAM-DSIC-UPV 17

Chapter 2. Mathematical Expression Recognition

2.3 Symbol Likelihood

As we have seen, in the recognition of online handwritten math expressions,
the input is a sequence of strokes 0 = 0109 ... 0n, which encodes a sequence of
pre-terminals s = s152...5k, (1 < K < N) that represents the mathematical
symbols. A symbol is made up of one or more strokes. Some approaches
assumed that users always write a symbol with consecutive strokes [Shi et al.,
2007; Yamamoto et al., 2006]. Although this assumption may be true in
many cases, it constitutes a severe constraint that means that these models
cannot account for symbols composed of non-consecutive written strokes. For
example, the plus sign (+) in the expression in Fig. 2.1 is made up of strokes
o3 and og and would not be recognized by a model that incorporated this
assumption.

In this section we define a symbol likelihood model that is not based on time
information but rather spatial information. This model is therefore able to
recognize math symbols made up of non-consecutive strokes. Given a sequence
of strokes, testing all possible segmentations could be unfeasible given the high
number of possible combinations. However, it is clear that only strokes that
are close together will form a mathematical symbol, which is why we tackle the
problem using the spatial and geometric information available since, by doing
so, we can effectively reduce the number of symbol segmentations considered.
The application of this intuitive idea is detailed in Section 3.2.2.

Before defining the segmentation strategy adopted for modeling the symbol
likelihood, we must introduce some preliminary formal definitions.

Definition 2.3.1. Given a sequence of N input strokes o, and the set con-
taining them, set(o) = {o; | i : 1... N}, a segmentation of o into K segments
is a partition of the set of input strokes

bo,K) = {b|i:1...K}

where each b; is a set of (possibly non-consecutive) strokes representing a
segmentation hypothesis for a given symbol.

Definition 2.3.2. We define By as the set of all possible segmentations of the
input strokes o in K parts. Similarly, we define the set of all segmentations B

as:
B= |]J Bk
I<K<N
Once we have defined the set of all possible segmentations B, we want

to calculate the probability of the segmentation and recognition of symbols

18 FAM-DSIC-UPV

2.4. Structural Probability

for a given sequence of strokes o. In Eq. (2.2.1), we can define a generative
model p(s, 0), rather than p(s|o), because, given that the term p(0) does not
depend on the maximization variables s and ¢, we can drop it. The next step
is to replace the sequence of IV input strokes o by its previously defined set
of segmentations, b = b(o, K) € Bg where 1 < K < N. Finally, given K, we
define a hidden variable that limits the number of strokes for each of the K
pre-terminals (symbols) that make up the segmentation, I : Iy ...lx. Each [;
falls within the range 1 < I; < min(N, Lyax), where L.y is a parameter that
constrains the maximum number of strokes that a symbol can have.

= > > > ps,b0)

I<K<N beBy 1

In order to develop this expression, we factor it with respect to the number
of pre-terminals (symbols) and assume the following constraints: 1) we ap-
proximate the summations by maximizations, 2) the probability of a possible
segmentation depends only on the spatial constraints of the strokes it is made
up of, 3) the probability of a symbol depends only on the set of strokes asso-
ciated with it, and 4) the number of strokes for a pre-terminal depends only
on the symbol it represents. Therefore, the probability becomes

=~ il b l; | s; 2.3.1
p(s,0) ~ mjgxgggﬁmaxnp plsi |) p(ls |) (23.1)

From Eq. (2.3.1) we can conclude that we need to define three models: a
symbol segmentation model, p(b;), a symbol classification model, p(s;|b;), and
a symbol duration model, p(l;|s;). These three models for symbol recognition
are discussed in depth in Chapter 3.

2.4 Structural Probability

The statistical framework described in this thesis defines the problem of rec-
ognizing a mathematical expression as finding the most likely parse tree ¢ that
accounts for the input strokes o. Formally, the problem is stated in Eq. (2.2.1)
such that two probabilities are required. In the previous section we presented
the calculation of the symbol likelihood p(s|o). In this section we will define
the structural probability p(t|s).

Although the natural way to compute the most likely parse tree of an input
sequence would be to define probabilistic parsing models p(t|s), in the litera-
ture, this problem has usually been tackled using generative models p(¢, s)

FAM-DSIC-UPV 19

Chapter 2. Mathematical Expression Recognition

(language models) and, more precisely, grammatical models [Manning and
Schiitze, 1999]. Next we define a generative model p(t,s) based on a two-
dimensional extension of the well-known context-free grammatical models.

2.4.1 2D Probabilistic Context-Free Grammars

A context-free model is a powerful formalism able to represent the structure
of natural languages. It is an appropriate model to account for math notation
given the structural dependencies existing between different elements in an
expression (for instance, the parentheses in Fig. 2.1). We will use a two-
dimensional extension of Probabilistic Context-Free Grammars (2D-PCFG), a
well-known formalism widely used for math expression recognition [Anderson,
1967; Chou, 1989; Yamamoto et al., 2006; Awal et al., 2014].

Definition 2.4.1. A Context-Free Grammar (CFG) G is a 4-tuple (N, X, S, P)
where N is a finite set of nonterminal symbols, X is a finite set of terminal
symbols (N NXE = 0), S € NV is the start symbol of the grammar, and P is a
finite set of rules: A - a, A€ N,ae (NUX)T.

A CFG in Chomsky Normal Form (CNF) is a CFG in which the rules are
of the form A — BC or A — a (where A, B,C € N and a € X).

Definition 2.4.2. A Probabilistic Context-Free Grammar (PCFG) G is de-
fined as a pair (G,p), where G is a CFG and p : P —|0, 1] is a probability
function of rule application such that VA € N': Y 4 p(A — «;) = 1, where
n4 is the number of rules associated with nonterminal symbol A.

Definition 2.4.3. A Two-Dimensional Probabilistic Context-Free Grammar
(2D-PCFG) is a generalization of a PCFG, where terminal and nonterminal
symbols describe two-dimensional regions. This grammar in Chomsky Normal
Form results in two types of rules: terminal rules and binary rules. First, the
terminal rules A — a represent the mathematical symbols which are ultimately
the terminal symbols of 2D-PCFG. Second, the binary rules A — BC' have
an additional parameter r that represents a given spatial relationship, and its
interpretation is that regions B and C must be spatially arranged according
to the spatial relationship r.

The application of this formalism to calculating the probability of the
structure of a mathematical expression, defined as a parse tree in the statistical
framework of this approach, is defined below.

20 FAM-DSIC-UPV

2.4. Structural Probability

2.4.2 Parse Tree Probability

The 2D-PCFG model allows us to calculate the structural probability of a
mathematical expression in terms of the joint probability p(t, s), such that in
Chomsky Normal Form is computed as:

pt.s)= [I »wala) [»BC|A)

(A—a,t) (A—BCit)

where p(a|A) is the probability of the rule A — « and represents the probabil-
ity that « is derived from A. Moreover, (A — «,t) denotes all rules (A — «)
contained in the parse tree ¢. In the defined 2D extension of PCFG, the com-
position of subproblems has an additional constraint according to a spatial
relationship . Let the spatial relationship r between two regions be a hidden
variable. Then, the probability of a binary rule is written as:

p(BC | A) =Y p(BC,7 | A)

T

Therefore, by approximating summations by maximizations, and assuming
that the probability of a spatial relationship depends only on the subproblems
B and C involved, the structural probability of a mathematical expression
becomes:

pt,s)~] plalA) (2.4.1)
(A—a,t)
[max p(BC|A)p(r|BC) (2.4.2)
(ASBCH

where p(a|A) and p(BC|A) are the probabilities of the rules of the grammar,
and p(r|BC) is the probability that regions encoded by nonterminals B and
C are arranged according to spatial relationship r. The estimation of the
probabilities of the grammar and the definition of the spatial relationships
probability are thoroughly detailed in Chapter 4.

FAM-DSIC-UPV 21

CHAPTER

3

Symbol Recognition

The problem of recognizing mathematical expressions requires dealing with
several tasks. Symbol classification is crucial in order to achieve good recogni-
tion results because, in the end, a mathematical expression is a set of symbols
and their structural relationships. The symbol likelihood probability defined
in the statistical framework for mathematical expression recognition resulted
in three probability distributions: a symbol segmentation model, a symbol
classification model and a symbol duration model. In this chapter we address
the definition, estimation and evaluation of these models for both handwritten
and printed mathematical symbols.

Defining the models for symbol recognition can be generalized if we formu-
late them in terms of primitives: strokes for online recognition and connected
components for offline recognition. Therefore, the symbol duration model and
the symbol segmentation model are formally defined for any type of math-
ematical expression. Symbol duration model is defined in Section 3.1, and
the segmentation model as well as the considered admissible hypotheses are
described in Section 3.2.

Regarding symbol classification, handwritten mathematical symbols can
be either online or offline. In Section 3.3 we describe several sets of features
for handwritten symbol classification, including online, offline and a combi-
nation of them. On the other hand, printed mathematical symbols present
significant differences with respect to handwritten symbols. Thus, we detail
specific features and classifiers for printed symbol recognition in Section 3.4.

Chapter Outline

3.1 Symbol Duration. 24
3.2 Symbol Segmentation 24
3.3 Handwritten Symbol Classification 30
3.4 Printed Symbol Classification 40

23

Chapter 3. Symbol Recognition

3.1 Symbol Duration

An intuitive idea about symbol composition is that a given mathematical sym-
bol is commonly represented by a certain number of primitives. For example,
in online representation, a number 2 is usually a single-stroke symbol, while
symbols x and = are likely to be composed of two strokes, and symbol w
is normally made up of three strokes. Likewise, in offline representation, a
number 2 or a symbol z are usually composed of one connected component,
while an equals sign = is normally made up of two connected components,
or a trigonometric function is likely to be composed of three (cos) or more
connected components (sin).

The symbol duration model accounts for the probability that a mathemat-
ical symbol class s; is usually made up of a certain number of primitives [;.
This is the probability p(l;|s;) required in the symbol likelihood calculation of
Eq.(2.3.1). Shi et al. [2007] proposed a simple way to calculate this probability
from a set of labeled data as

P | 1) = <<l)> (3.1.1)

where ¢(s;,1;) is the number of times the symbol s; was composed of ; primi-
tives and ¢(s;) is the total number of samples of class s; in the dataset used for
estimation. We smoothed these probabilities in order to account for unseen
events using add-one smoothing [Jurafsky and Martin, 2008].

3.2 Symbol Segmentation

One of the main challenges in mathematical expression recognition is determin-
ing the segmentation of the input into symbols. As presented in Section 1.2.1,
formulae contain several symbols that can be encoded by one or more than one
primitives. Although context is important for proper math symbol segmen-
tation, we can decide whether or not a set of primitives is likely to represent
a mathematical symbol based on, for example, their geometric and spatial
information.

In this section the goal is to define a statistical model that provides the
probability that a set of primitives can form a mathematical symbol. First,
we introduce and review previous work in symbol segmentation. Second, we
detail the segmentation model defined for mathematical symbols.

24 FAM-DSIC-UPV

3.2. Symbol Segmentation

3.2.1 Introduction

In the literature, several segmentation strategies have been proposed in both
handwritten and printed mathematical expression recognition. As discussed in
Section 1.2.1, there are different problems concerning segmentation of math-
ematical symbols: noise, touching characters and symbols composed of more
than one primitive.

Noise reduction in offline expressions can be tackled using image treatment
techniques like median filters or morphological operations (dilation/erosion).
These methods try to remove small connected components caused by image
degradation while preserving the pixels that represent the foreground infor-
mation. It can effectively reduce noise, but can also produce cases of touching
characters that were not in the original image. In online recognition, the user
can introduce noisy small strokes while handwriting an expression, that can
also be preprocessed. In both online and offline recognition, math notation
contains many small symbols (dots and diacritical marks) which can be diffi-
cult to distinguish from noise.

The segmentation of touching symbols in offline recognition is challenging
and usually requires specific treatment. There are some proposals for tackling
this problem. Nomura et al. [2003] used specific geometric features for de-
tecting touching characters and the deviation from standard feature values in
symbol classification. Garain and Chaudhuri [2005b] developed a predictive al-
gorithm based on multifactorial analysis that selects possible cut-positions for
segmenting touching symbols. Tian and Zhang [2007] detected and segmented
touching math symbols using a method based on contour features and the ra-
tio between width and height. A similar problem in online recognition is when
two or more symbols are written with a single stroke (continuous handwrit-
ing), although this is uncommon in math expression recognition. Only letters
in functions tend to share strokes (cos, lim, etc.), which is usually solved by
considering functions as math symbol classes. In this thesis, we leave the seg-
mentation of touching symbols as future work. A possible direction to deal
with this issue in the current framework would be to work with oversegmented
expressions.

After dealing with noise and touching characters, ideally, we would have
clean inputs of mathematical expressions where each symbol is composed of
one or more primitives. In the literature, some approaches for recognizing
mathematical expressions are not directly based on analysis of primitives.
Chou [1989] method had two stages. The lexical access stage performs the
pattern matching between input regions of the image and a set of input tem-
plates using the Hamming distance. The parsing stage computes the recog-

FAM-DSIC-UPV 25

Chapter 3. Symbol Recognition

nized expression according to a 2D stochastic context-free grammar. Other
approaches consist in recursively dividing the input image. Faure and Wang
[1990] divided the expressions according to the input data and the prior knowl-
edge about the structure of math notation. Okamoto and B. [1991] applied the
projection profile cutting algorithm to recursively split the input along both
vertical and horizontal directions. Ha et al. [1995] proposed a segmentation
method in two steps. First, the expression is processed top-down using the
recursive X-Y cut algorithm. Second, a bottom-up process considering spatial
relations between neighboring objects.

Regarding offline recognition methods based on connected components,
Twaakyondo and Okamoto [1995] proposed an approach consisting in three
main parts. First, symbol recognition was performed by labelling and merg-
ing connected components. Second, a specific structure processing step where
certain type of expressions are analyzed. Finally, the fundamental structure
processing step in which the global structure of the recognized mathematical
expression is evaluated. Suzuki et al. [2003] developed a method such that
symbol segmentation is first determined using a coarse-to-fine strategy with
geometric features. A clustering technique where each connected component
is appended to its nearest cluster is used to correct the initial segmentation.
Finally, a network representing multiple hypotheses is constructed and the
minimum spanning tree in that network is the recognized mathematical ex-
pression. Prusa and Hlavac [2007] presented a system based on parsing 2D
grammars. The segmentation method consisted in computing several hypoth-
esis based on connected components and a scanning window. Afterwards, the
parsing process computed the expression according to the grammar minimiz-
ing a global penalty.

Methods based on recursively dividing the math expressions into subex-
pressions [Faure and Wang, 1990] are generally more suitable for printed ex-
pressions than for handwritten expressions. In online recognition, there are
several approaches based on a graph representation that encodes several seg-
mentation and recognition hypotheses, similar to the proposal for offline recog-
nition by Suzuki et al. [2003]. Lehmberg et al. [1996] and Shi et al. [2007]
defined a net or symbol graph such that the sequence of symbols within the
handwritten expression was represented by a path through the graph. Both
proposals assumed that symbols were composed of consecutive strokes in time.
Matsakis [1999] created symbol segmentation hypotheses by computing the
minimum spanning tree of the input strokes. Kosmala and Rigoll [1998] pro-
posed solving the segmentation and recognition of mathematical symbols using
the global decoding of Hidden Markov Models (HMM). Moreover, as several

26 FAM-DSIC-UPV

3.2. Symbol Segmentation

approaches have used grammars for recognizing math notation, these propos-
als have segmentation strategies driven by grammars [Yamamoto et al., 2006;
Prusa and Hlavac, 2007; Hu et al., 2012; MacLean and Labahn, 2013; Awal
et al., 2014].

Generally, despite the great number of proposals, in most of them it is
common to have a model that measures whether or not a hypothesis is likely
to form a mathematical symbol. On the one hand, decoupled approaches com-
pute symbol segmentation prior to performing the analysis of the expression,
and errors in segmentation cannot be recovered in further steps. This is the
case of methods that recursively divide the expressions or that perform the
structural analysis after symbol segmentation is determined.

On the other hand, integrated approaches incorporate a probability dis-
tribution or a scoring function in the computation of the recognized formula,
such that segmentation is determined globally. These probabilities or scores
are commonly based on computing geometric features [Lehmberg et al., 1996;
Shi et al., 2007; Toyozumi et al., 2004; MacLean and Labahn, 2013] or shape
descriptors [Hu and Zanibbi, 2013] over primitives that can be combined to
form the mathematical symbols.

In the statistical framework of the approach defined in this thesis, the
segmentation is based on primitives and globally determined by the probability
of the most likely tree. For the calculation of this probability we require
a segmentation model. Below we define the set of admissible segmentation
hypotheses and the segmentation model that accounts for the prior probability
that a set of primitives can form a mathematical symbol.

3.2.2 Segmentation Model

The statistical framework developed in thesis defines an input mathematical
expression as a sequence of observations 0 = 0105 ...0x. Commonly this rep-
resents a sequence of input strokes in online recognition such that, as we have
already discussed, the approach proposed in this thesis is not based on tem-
poral information, but rather on spatial and geometric information. Conse-
quently we can also apply this framework to offline recognition by enumerating
the connected components in any order.

In Section 2.3 we defined the set of all possible segmentations B. Given
this definition of B, we can see that its size is exponential on the number
of primitives N. In this section we first explain how to effectively reduce
the number of segmentations considered. Then, we describe the segmentation
model used for computing the probability of a certain hypothesis p(b;) required
in the calculation of the symbol likelihood of Eq. (2.3.1).

FAM-DSIC-UPV 27

Chapter 3. Symbol Recognition

Taking into account all possible segmentations B for a given math expres-
sion could be unfeasible. In order to reduce this set, we use two concepts
based on geometric and spatial information: wvisibility and closeness. Let us
first introduce some definitions.

Definition 3.2.1. The distance between two primitives o; and o; can be
defined as the Euclidean distance between their closest points (or pixels).

dist(0z, 05) = peiﬂiq%oj \/(q,z —Pa)?+ (¢y — py)?
Definition 3.2.2. A primitive o; is considered wisible from o; if the straight
line between the closest points (or pixels) of both primitives does not cross
any other primitive oy.

If a primitive o; is not wisible from o; we consider that their distance is
infinite. For example, given the expression in Fig. 2.1, the strokes visible from
04 are 03,0 and og.

Furthermore, when multiple primitives form a math symbol is because
those primitives are spatially close. For this reason, we only consider segmen-
tation hypotheses b; where primitives are close to each other.

Definition 3.2.3. A primitive o; is considered close to another primitive o;
if their distance is shorter than a given threshold byy.

Using these definitions, we can characterize the set of admissible segmen-
tation hypotheses.

Definition 3.2.4. Let G be an undirected graph such that each primitive is
a node and edges only connect primitives that are wvisible and close. Then, a
segmentation hypothesis b; is admissible if the primitives it contains form a
connected subgraph in G.

Consequently, a segmentation b(o, K) = bibs...bx is admissible if each
b; is, in turn, admissible. These two geometric and spatial restrictions signifi-
cantly reduce the number of possible symbol segmentations.

In addition to reducing the set of possible segmentations, we need a seg-
mentation model in order to calculate the probability that a given set of prim-
itives (segmentation hypothesis, b;) forms a mathematical symbol. We define
a segmentation model very similar to the concept of grouping likelihood pro-
posed by Shi et al. [2007], extracting a set of geometric features for a given
segmentation hypothesis b;. First, for each primitive o; of b;, we compute the
mean horizontal position, the mean vertical position and its size (calculated

28 FAM-DSIC-UPV

3.2. Symbol Segmentation

as the maximum value of horizontal and vertical size). Then, for every pair of
primitives in b; we compute the difference between their horizontal positions,
vertical positions, sizes, and their distance. The feature vector used for the
segmentation model is obtained averaging these four values for each pair: av-
erage horizontal distance (d) average vertical offset (o), average size difference
(0), and average distance (6).

Shi et al. [2007] used a scoring function such that these features were
normalized using a fixed threshold value, but this normalization made the
features dependent on the resolution of the input data. In order to ensure that
the features are resolution-independent, we normalized them by the diagonal
of the normalized symbol size (defined in Section 5.2).

Once we have defined a set of normalized geometric features, the last step is
computing the segmentation probability p(b;). Instead of the scoring function
proposed by Shi et al. [2007], we trained a Gaussian Mixture Model (GMM)
using positive samples ¢ = 1 (the primitives of b; can form a math symbol)
and a GMM using negative samples ¢ = 0 (the primitives of b; cannot form a
math symbol) from the set of all admissible segmentations B. A segmentation
hypothesis b; is represented by the 4-dimensional normalized feature vector
g(b;) = [d, 0,6,0], and the probability p(b;) that a hypothesis b; forms a math
symbol is obtained as

p(bi) = paum(c =11 g(b;)) (3.2.1)

We selected GMM because they are a well-defined statistical model, fast
to compute for classification, and our intuition about the defined geometric
features is that they follow a normal distribution. Other statistical classifiers
can be used in order to obtain this probability (e.g. support vector machines)
where discriminative training could lead to better performance.

FAM-DSIC-UPV 29

Chapter 3. Symbol Recognition

3.3 Handwritten Symbol Classification

In mathematical expression recognition, symbol classification is a crucial step.
In this section we first introduce the problem and review related work on
handwritten mathematical symbol recognition. Then, we detail features for
online classification and several features for offline classification. Finally, two
main classifiers are presented, and the evaluation of the different proposals is
reported in Section 7.2.

3.3.1 Introduction

Handwritten mathematical symbol classification is a classical pattern recogni-
tion problem. A given sample (b;) is first preprocessed, then several features
F(b;) are extracted and a certain classifier (6) is used to compute the most
likely symbol class (s) according to labeled data. The probability of the sym-
bol classification model for a given class is obtained as the posterior probability
provided by a classifier

p(s | b;) = po(s | F(bi)) (3.3.1)

A great number of classifiers have been proposed in the past for online
mathematical symbols [Zanibbi and Blostein, 2012]. Thammano and Rugkun-
chon [2006] used artificial neural networks for online symbol classification using
first an online stage to classify in four different groups, and then an offline stage
for final recognition. Winkler [1996] combined three HMMs for handwritten
symbol recognition. Given an online sample, three different sets of features
(one online and two offline) were extracted and the HMM emission probabili-
ties were later combined to produce the final classification. A similar approach
was proposed by Keshari and Watt [2007] using Support Vector Machines
(SVM) for this task. They produced the image representation of each sample
and trained two classifiers: SVM for online classification and SVM for offline
classification. The final recognition was obtained by combining both SVMs
using a weight parameter. Garain and Chaudhuri [2004] extracted directional
features from the online symbols and recognized them with two classifiers:
Nearest Neighbor and HMM. Simistira et al. [2008] used a classifier based on
template elastic matching distance, such that the math symbols were encoded
using pen-direction features using the 8-level Freeman chain coding scheme.
Luo et al. [2008] presented an advanced method for classification that consid-
ers the whole mathematical expression to build a graph representing several
symbol segmentation and recognition hypothesis. The symbol classifier was a
GMM per symbol class using histogram of oriented gradients as features.

30 FAM-DSIC-UPV

3.3. Handwritten Symbol Classification

Despite the great number of papers published, they were not directly com-
parable because they used private datasets and different experimentation. For-
tunately, the publication of the MathBrush database [MacLean et al., 2011]
and the CROHME competitions [Mouchere et al., 2011, 2012, 2013, 2014] pro-
vided good resources for handwritten mathematical symbol recognition and
later approaches reported results using them. MacLean and Labahn [2010] de-
veloped an efficient elastic matching algorithm. Hu and Zanibbi [2011] used an
online HMM classifier proposing a novel initialization method and a new fea-
ture. Davila et al. [2014] defined a wide set of features for online handwritten
symbols: global geometric features, crossing features, and fuzzy histograms
of points and orientations. The authors also compared the performance of
AdaBoost, Random Forests and SVM classifiers. Julca-Aguilar et al. [2014]
proposed fuzzy shape context and online features for classification with Multi
Layer Perceptron neural networks. They also considered the rejection of false
segmentation hypotheses.

The different methods presented for recognition can be grouped in two sets.
First, global classification such that a set of features describes each symbol
hypothesis and different classifiers can be used (e.g. nearest neighbor, SVM
or ANN). Second, sequential classification such that symbol hypotheses are
encoded as a series of feature vectors and sequential classifiers are required
(e.g. HMMs or Recurrent Neural Networks). In the following sections we
describe several sets of features for sequential classification of handwritten
mathematical symbols, as well as two different classifiers. All these proposals
are evaluated and compared to other approaches in Section 7.2.

3.3.2 Online Features

An online mathematical symbol given as a set of strokes b; represents a se-
quence of points p in space. We extract online features as

F(bi) = f(p)f(p2) - flpm); M= o]
0;€b;

such that we concatenate the sequences of points of the strokes o; € b; ac-
cording to the input order. Here we present two sets of features. First, a set
of online features. Second, a set of hybrid features that extends the online
features with offline information.

FAM-DSIC-UPV 31

Chapter 3. Symbol Recognition

Online Features

For each point p = (z,y), we compute seven time-based features proposed by
Toselli et al. [2007] for handwritten text recognition:

e Normalized coordinates: (z,y) normalized values such that y € [0, 100]
and the aspect-ratio of the sample is preserved.

e Normalized first derivatives: (z’,y/).
e Normalized second derivatives: (z”,y").
e Curvature: k, the inverse of the radius of the curve in each point.

Finally, for each point p we obtain a feature vector fon(p) as:

fon(p) = [z, y, 2",y 2" 4" k]

It should be noted that no resampling is required prior to the feature
extraction process because first derivatives implicitly perform writing speed
normalization [Toselli et al., 2007].

Hybrid Features

In order to complement the online features with offline information, we propose
to extend them taking into account a context window in the offline representa-
tion centered in the considered point p (Figure 3.1). Given a context window
of size w x w we projected the w? gray-scale values to d dimensions by using
Principal Component Analysis (PCA). Thus, we obtained a set of hybrid fea-
tures for online classification such that each point p = (z,y) is represented by
the following feature vector

fhyb(p) = [$7y7$/7y,7$”7y”7ka V1,02, ... ,Ud]

online offline

The image representation of an online sample was rendered setting the
height of the image to a fixed value h and preserving the aspect ratio (up to
5h to prevent symbols like a fraction bar from creating too wide images). Then,
the image was produced through linear interpolation among every consecutive
points within each stroke. Finally, a 3x3 Gaussian filter window was applied to
slightly smooth the image, producing the final gray-scale image (see Figure 3.1)
such that each pixel is in the range [0, 255].

32 FAM-DSIC-UPV

3.3. Handwritten Symbol Classification

..°':f.' o .'_'

Figure 3.1: The online features are extended with offline information
using a context-window centered on each point in the rendered image.

3.3.3 Offline Features

In this section we describe several sets of offline features for handwritten math-
ematical symbol classification. These features are extracted from samples en-
coded as images, but offline features are also useful in order to complement
online information since we can easily produce the image representing an on-
line mathematical symbol. We refer to these features by the name of the group
or university that has developed them: PRHLT, FKI and RWTH.

A mathematical symbol represented as a set of primitives b;, either con-
nected components or strokes, can be encoded as an image 7 of W x H pixels.
Given this image, we extract offline features for each column Z; as

Fbi)=f(ZT1)f(Z2) ... f(Zw)

PRHLT Offline Features

In this section we describe the offline features that the Pattern Recognition
and Human Language Technologies (PRHLT) group has used for many hand-
written text recognition tasks [Toselli et al., 2004a].

Given the image of a math symbol (Fig. 3.2.a) it is transformed into a
sequence of feature vectors as follows. First, the image is divided into a grid
of small square cells sized a small fraction of the image height (H/20). Then
for each cell we compute three different values (Fig. 3.2): normalized gray
level (b), horizontal gray-level derivative (c¢) and vertical gray-level deriva-
tive (d). The feature extraction was extended to a 5 x 5 window centered
at the current cell to obtain smoothed values. The values are weighted by
a two-dimensional Gaussian function in (b) and a one-dimensional Gaussian

FAM-DSIC-UPV 33

Chapter 3. Symbol Recognition

Figure 3.2: Example of PRHLT offline features computation. Given
an image of a math symbol (a) we compute the normalized gray level
(b), horizontal gray-level derivative (c) and vertical gray-level derivative
(d). Each column of the stacked images (e) represents a feature vector.

function in (c) and (d). The derivatives are computed by least squares fitting
a linear function. Finally, we stack the three different images that result after
computing these values for each cell (see Fig. 3.2.e). Thus, each column from
left to right represents a feature vector fpm1; of 60 dimensions.

FKI Offline Features

The FKI features proposed by Marti and Bunke [2001] are a well-known set
of geometric features that has been used for years in handwriting recognition.
Given a binary image of height H, we compute 9 geometrical values ¢; for each
column z as:

e Number of black pixels in the column:

H
ci(z) = I(x,y)
y=1

e Center of gravity of the column:

1
co(x) = EZy-I(a:,y)
y=1

34 FAM-DSIC-UPV

3.3. Handwritten Symbol Classification

e Second order moment of the column:
T
es(z) = 73 D v* L(9)
y=1
e Position of the upper contour in the column:
c4(z) = min{y | Z(z,y) = black}
e Position of the lower contour in the column:
cs(z) = max{y | Z(z,y) = black}
e Orientation of the upper contour in the column:

es() = cq(x+1) ; cq(z —1)

e Orientation of the lower contour in the column:

er(x) = cs(x+1) ; cs(xz —1)

e Number of black-white transitions in the column:
cs(7) = NThlackswhite Z(7,9); 1 <y < H
e Number of black pixels between the upper and lower contours:
o)=Y Iy
ca(z)<y<cs(z)

Finally, given a binary image of size W x H, for each column z such that
1 <z < W this definition will generate a 9-dimensional feature vector as:

fri(Zs) = [e1(2), c2(2), . . ., co ()]

RWTH Offline Features

The RWTH features [Dreuw et al., 2009] have been extensively used in hand-
writing recognition. Given an image of height H, this set of features is simply
computed using a sliding window of width w from each column left to right
(see Fig. 3.4a). Then, the wx H values of each extracted window are projected
to D dimensions by using PCA. Finally each projected window represents a
feature vector frwtn.

FAM-DSIC-UPV 35

Chapter 3. Symbol Recognition

Lately, the vertical repositioning method [Giménez et al., 2010] has pro-
vided very good results in handwriting recognition [Doetsch et al., 2012], there-
fore we decided to also test this method. We first computed the vertical center
of gravity of each extracted window. Then, we repositioned the window such
that its vertical center is aligned with the computed center of gravity. Fig. 3.4
shows an example of the RWTH features computed with and without vertical
repositioning.

Polar Offline Features

Shape descriptors are a well-known representation that have been used for
multiple applications [Yang et al., 2008]. Su et al. [2013] proposed a fea-
ture extraction based on polar histograms for handwritten text recognition.
We defined similar features but we use circles instead of ellipses and equally
spaced distances instead of log-distances, as a simpler first application of these
descriptors to math symbol classification.

The polar descriptor centered in a point p was defined as follows. We draw
n circles with radii equally spaced up to the maximum radius . Moving coun-
terclockwise, draw radii dividing each circle into m equal arcs. This descriptor
is encoded as a matrix such that each row represents a circle and each column
represent the angle starting from zero degrees. Figure 3.3 shows an example
of polar descriptor.

Figure 3.3: Example of polar descriptor with n = 5 circles and m = 8
arcs in a particular column of a square root symbol.

The idea is to use a sliding polar descriptor instead of the sliding window
used in the previously described RWTH features. Given a descriptor, each of
the n x m bins contains the number of foreground pixels that fall into that
bin normalized by the total number of pixels in the descriptor. Thus, each
feature vector fpolar is computed as the projection of that polar histogram to

36 FAM-DSIC-UPV

3.3. Handwritten Symbol Classification

D dimensions using PCA. Given an image of size W x H, the feature vectors
are computed from each column left to right setting the center of the polar
descriptor on the center of each column, i.e. at row H/2.

We also wanted to apply the vertical repositioning method to these fea-
tures. Given a column x and radius r, the standard polar features are centered
in p = (x, H/2). Following the methodology of the RWTH features, we com-
puted the vertical centroid y' of the window from column (z — r) to (z + r)
and then the descriptor center is set to p = (z,y’). Fig. 3.5 shows an example
of the polar histograms computed with and without vertical repositioning.

3.3.4 Classifiers

In the introduction of this section we reviewed that several classifiers have been
used for handwritten mathematical symbol recognition. In this thesis we test
two different sequential classifiers for this task: Hidden Markov Models and
Recurrent Neural Networks. The evaluation of these classifiers for handwritten
symbol classification is reported in Section 7.2.

Hidden Markov Models

Hidden Markov Models (HMMs) are a statistical model such that if we use
them to predict the next observation in a sequence, the distribution of predic-
tions will depend only on the value of the immediately preceding observation
and will be independent of all earlier observations [Bishop, 2006]. If we have
a set of observations, we can estimate the parameters of an HMM using max-
imum likelihood by means of the Baum-Welch algorithm [Baum, 1972].

HMMs have extensively been used in speech recognition [Jurafsky and
Martin, 2008], handwriting recognition [Plamondon and Srihari, 2000] and
natural language processing [Manning and Schiitze, 1999]. In this thesis, we
use left-to-right HMMs for mathematical symbol classification, thus observa-
tion sequences are assumed to be symbols and no segmentation and language
models are required. We can efficiently compute the posterior probability for
symbol s of a given sample b; with the well-known forward-backward algo-
rithm [Wessel et al., 2001]

p(s | bi) = pmam(s | F(b;))

FAM-DSIC-UPV 37

Chapter 3. Symbol Recognition

rree

VO YN suotsuewitp (7 03 31 Surjoelord 19jje 109004 aInyea] & sjyusesordor mopuim yoery ‘sfoxid

“(spe1q) 109d1I0sOp JRIY UT ON[RA WNWIXRUT 91} 0}
(e91ym) oroz woly ‘wreido)sty rejod o1p Jo senyea o1y juesaIdal s10)dLIdSOP 1) UI SUIQ Y[} JO SIO[0D SRIS-ARIS
O], "SOIe g] = Wi PUR SOOI G = U SUISN [OqUIAS 1001 orenbs ' 10 soanjesy rejod jo ojdwexy :G'¢ oIn3ig

%@

%

?\?QJO.M w:EosaogS [ROTLIOA [IIM m@psﬁw& MQJO d (q

%

§B§ miom A

1T = M JO MOPUIM SUIPI[S ® SUISN [OqUIAS J001 81enbs ® 10] soanjeaj surggo H MY oY} Jo sjdurexsy :§°¢ 2an3drq

i
1
n

-

]

@ Aly]

|

!"—':-\
2]

¢ eonsaon 1

nr

i

T

odo

M

(22

$—4
Qo
or—
—
or =
n
~

2z 2]
g
=)
B

J

]
—2

v
HI

N

LMY

)

Y

-z = |

somyeoy HIAMY (¢

_f

FAM-DSIC-UPV

38

3.3. Handwritten Symbol Classification

Recurrent Neural Networks

Sequential classification has traditionally been tackled using HMMs. However,
in the last years RNNs have brought more attention to the research community.
RNNSs are a connectionist model containing a self-connected hidden layer. The
recurrent connection provides information of previous inputs such that the
network can benefit from past contextual information [Pearlmutter, 1989].
The Long Short-Term Memory (LSTM) advanced RNN architecture allows
that cells can access to context information over long periods of time. This is
achieved by using a hidden layer composed of recurrently connected subnets,
called memory blocks [Graves et al., 2009].

Bidirectional RNNs [Schuster and Paliwal, 1997] have two separate hid-
den layers that allow the network to access context information in both time
directions: one hidden layer processes the input sequence forward and the
other processes it backward. The combination of bidirectional RNNs and the
LSTM architecture results in BLSTM-RNNs. These networks have outper-
formed standard RNNs and HMMs in handwriting text recognition [Graves
et al., 2009] and also they are faster than HMMs in terms of classification
speed.

In this thesis we used BLSTM-RNN for mathematical symbol classifica-
tion. The RNN was trained in a frame-based approach, i.e. given an input
sequence F(b;) composed of n vectors such that F(b;) = fifa... fn, the net-
work computes for each class s the posterior probability p(s | f;), where f;
represents a feature vector. Then, we obtained the posterior probability per
symbol after the following normalization:

pls |) = pron(s | F0)) = S p(s | f5) (3.3.2)
=1

where the probability per symbol for class ¢ is computed as its average prob-
ability per frame.

FAM-DSIC-UPV 39

Chapter 3. Symbol Recognition

3.4 Printed Symbol Classification

Automatic recognition of printed mathematical symbols is a fundamental
problem for recognizing mathematical expressions. In the following sections
we present the related work on this field and describe different features and
classifiers for this task. The methods proposed for printed math symbol clas-
sification are evaluated in Section 7.3.

3.4.1 Introduction

Recognition of typeset mathematical symbols is a difficult problem due to
there is a large number of symbols, with different font-types (e.g. roman,
italic, calligraphic) and different sizes within a mathematical expression. As
defined by Eq. (3.3.1) for handwritten symbols, the probability of the symbol
classification model is computed as the posterior probability of a given classi-
fier. Since there are significant differences between printed and handwritten
symbols, specific features and classifiers for both problems are convenient.
Especially, printed symbols are more regular than handwritten symbols.

Several techniques have been proposed for the offline recognition of printed
mathematical symbols. Okamoto and Miyazawa [1992] used a simple template
matching technique for classifying mathematical symbols. Lee and Lee [1993]
proposed a classification in two stages. First, a coarse classification algorithm
was used to reduce the number of candidates. Second, the character with
the highest similarity is selected using 13 features. Fateman et al. [1996]
represented each math symbol by a vector of 27 features and classified them
using minimum Euclidean distance. They divided the bounding box of the
symbols into a 5 x 5 grid, and then counted the percentage of black pixels in
each cell. The additional two features are the height-to-width ratio and the
absolute height in pixels of the bounding box. Garain et al. [2004] developed
a method that first looked for the presence of certain simple primitives to
recognize symbols by combining several disconnected primitives. The symbols
that cannot be identified by the former classifier are passed to a combination
of three classifiers: a run-number based classifier, a grid-based classifier, and
a wavelet decomposition based classifier. Malon et al. [2008] presented both
directional features and density features for classification with SVM using
different kernels.

Many classification methods have been proposed in the literature. Never-
theless, there are very few studies that compare different classification tech-
niques on the same database and under the same experimental conditions.
Below we describe the feature extraction process used to train several classi-

40 FAM-DSIC-UPV

3.4. Printed Symbol Classification

fiers for printed math symbol classification. The performance of the proposed
classifiers will be assessed in Section 7.3 on two public databases.

3.4.2 Feature Extraction

Two types of classifiers will be used for symbol classification. On the one hand,
models that classify samples represented by a feature vector of fixed size. On
the other hand, models for sequence classification.

Given a region of a gray-scale image encoding a printed mathematical
symbol, we simply normalize it to 15 x 15 pixels. As a result, we obtain
a 225-dimensional feature vector for classification such that each value is in
the range [0,255]. This simple representation is appropriate because printed
mathematical symbols are quite regular, thus, little variations are expected
for different samples of the same symbol.

Regarding sequence classification, we applied the feature extraction process
used in handwritten text recognition by Toselli et al. [2004a] that we have also
been applied for handwritten math symbol classification (see Section 3.3.3).
Given the W x H image of a mathematical symbol, it is divided into a grid of
small square cells sized a small fraction of the image height (H/20). Each cell
is characterized by the following values (Fig. 3.6): normalized gray level (b),
horizontal gray-level derivative (c¢) and vertical gray-level derivative (d). To
obtain smoothed values of these features, the extraction process is extended
to a 5 x 5-cell window centered at the current cell and weighted by a two-
dimensional Gaussian function in (b) and a one-dimensional Gaussian function
in (c) and (d). The derivatives are computed by least squares fitting a linear
function. Columns of cells are processed from left to right such that a 60-
dimensional feature vector is obtained from each column by stacking the values
computed in its constituent cells. Figure 3.6e shows a graphical representation
of the computed features.

3.4.3 Classifiers

In this section we present four classifiers for printed math symbol classification.
We compare classical techniques with other techniques that have not been
explored for this task. Below we briefly describe the proposed classifiers used
for mathematical symbol recognition.

FAM-DSIC-UPV 41

Chapter 3. Symbol Recognition

Nearest Neighbor

The k-Nearest-Neighbor (k-NN) rule is a very popular pattern classifier that
provides good results when the number of prototypes is large. Each class is
represented by several samples, such that a new sample is classified into the
class obtained by majority vote of its k nearest neighbor prototypes. In this
task we used the Euclidean distance to determine the nearest sample in the
training set.

"
i \

i
.nl||

d) il

':a’lllllllllll“

Figure 3.6: Example of feature extraction for sequence classification.

Weighted Nearest neighbor

The Weighted Nearest Neighbor (WNN) classifier was proposed by Paredes
and Vidal [2006] as an improvement of the classical 1-NN. A discriminative
technique is used to learn a weighted distance by using the 1-NN rule with a
training set. A distance weighting scheme is proposed which can independently
emphasize prototypes and/or features. Several alternatives are considered
in [Paredes and Vidal, 2006]: using a different weight for each prototype,
using a different weight for each class and feature, or using a combination
of the previous alternatives. In this task, there are training samples more
representative than others, and also in symbol representation the importance
of each pixel is different. Consequently, it is reasonable to weight both the

42 FAM-DSIC-UPV

3.4. Printed Symbol Classification

prototypes and the features for each class.

The experimental results that are reported in Paredes and Vidal [2006]
with the UCI and Statlog corpora were comparable to or better than those
obtained by other state-of-the-art classification methods.

Support Vector Machines

Support Vector Machine (SVM) is a maximum margin classifier that has
demonstrated to be a powerful formalism for many recognition tasks. SVM
became popular for solving problems in classification, regression, and novelty
detection. An important property of SVMs is that the determination of the
model parameters corresponds to a convex optimization problem, and so any
local solution is also a global optimum [Bishop, 2006].

In this work we used the multi-class SVM described in [Crammer and
Singer, 2002]. This technique has been previously used for printed symbol
recognition recognition with successful results [Malon et al., 2008].

Hidden Markov models

Hidden Markov models (HMMs) have been widely used for classification of
online mathematical symbols [Garain and Chaudhuri, 2004; Hu and Zanibbi,
2011]. However their use in offline printed symbol recognition remained un-
explored although HMMs have been successfully used for offline handwritten
text recognition [Toselli et al., 2004a]. We applied the feature extraction pro-
cess previously detailed for sequence classification with HMMs for this symbol
recognition task. A brief description of HMMs is available in Section 3.3.4.

FAM-DSIC-UPV 43

CHAPTER

4

Structural Analysis

A set of mathematical symbols has no meaning until relations are determined
between them. The structure resulting from these relationships defines a math-
ematical expression. Automatic recognition of mathematical notation has two
main problems: the recognition of the symbols, and the analysis of the struc-
ture of the expression. Although these problems can be considered indepen-
dent, they are closely related. Within the formal framework defined in this
thesis, we simultaneously optimized both problems by finding the most likely
tree according to a structural model.

The structural analysis of mathematical expressions in this approach is
driven by probabilistic grammars (2D-PCFG). However, the 2D-PCFG them-
selves are not enough to account for the structure of a given mathematical
expression. Probability distributions that model the spatial relationships be-
tween symbols and subexpressions are also required.

In Section 4.1, we first introduce the content of this chapter regarding the
structural analysis of mathematical expressions. The classification of spatial
relationships between parts of an expression is described in Sections 4.2 and
4.3. Finally, we detail the estimation of the probabilistic grammar in Sec-
tion 4.4.

Chapter Outline

4.1 Introduction 000, 46
4.2 Spatial Relationships Classification 46
4.3 Clustering-based Penalty 52
4.4 2D-PCFG Estimation 53

45

Chapter 4. Structural Analysis

4.1 Introduction

In the literature, there are several proposals for recognizing mathematical ex-
pressions. Many approaches have been reviewed in previous chapters accord-
ing to the methodology proposed (see Section 2.1). In this thesis we defined
an integrated approach based on parsing 2D-PCFG. The statistical frame-
work stated the problem of recognizing math notation as finding the tree that
maximizes the probability of Eq. (2.2.1). Also, we defined in Section 2.4 the
structural probability of a given math expression as the parse tree obtained
according to a 2D-PCFG.

The computation of the structural probability is defined by Egs. (2.4.1) and
(2.4.2). There are two main sources of information involved in the calculation
of the probability of these equations. On the one hand, the spatial relationships
probability between two regions: p(r|BC'). On the other hand, the productions
of the 2D-PCFG whose probability has to be estimated: p(a|A) and p(BC|A).
The definition of these distributions is provided below.

In order to provide examples and a more clear description, the definitions
of this chapter are in terms of handwritten mathematics. However, as in other
parts of this thesis given that we developed a general framework for mathemat-
ical expression recognition, the application to offline expressions is immediate.
This is because features and classifiers are based on spatial information and
pixels can be considered instead of points.

4.2 Spatial Relationships Classification

The computation of the structural probability of a math expression defined by
Eq. (2.4.2) requires a spatial relationship model. This model has to provide the
probability p(r|BC') that two subproblems B and C are arranged according
to spatial relationship r.

A common approach for obtaining a spatial relationship model is to define
a set of geometric features to train a statistical classifier. Most proposals in
the literature define geometric features based on the bounding boxes of the
regions [Zanibbi et al., 2002; Awal et al., 2014]. The geometric features are
usually modelled using Gaussian models [Awal et al., 2014], SVMs [Simistira
et al., 2014] or fuzzy functions [Zhang et al., 2005], though some authors man-
ually define specific functions [Zanibbi et al., 2002; Yamamoto et al., 2006;
MacLean and Labahn, 2013]. All these approaches successfully deal with the
classification of spatial relationships in math notation. Bounding boxes repre-
sent a good approximation for encoding regions and easily compute geometric

46 FAM-DSIC-UPV

4.2. Spatial Relationships Classification

features, although in some cases other representations could be more useful
for encoding the actual shapes of the symbols.

The spatial relations can be defined only between pairs of math symbols
[Aly et al., 2009] or between symbols and subexpressions [Simistira et al., 2014].
Determining relationships only between symbols is less complex, but some
structures could require special treatment because the relations may involve
sets of symbols. For instance, before performing the structural analysis, Suzuki
et al. [2003] decomposed each fraction into its numerator and denominator and
extracted the expression in a root sign.

In this thesis, we cope with the classification of relationships between sym-
bols and subexpressions. In order to recognize mathematical expressions, we
consider five spatial relationships: right (BC), below (B), subscript (Bc), su-
perscript (BY) and inside (v/C). These five relationships are enough because
we process the expressions left-to-right and top-bottom.

In this section, we propose two sets of features for spatial relationship clas-
sification. Given two regions B and C, extracting a feature vector h(B, C') that
represents their relationship we can train a classifier using labeled samples.
Therefore, the probability of the spatial relationship model can be computed
as the posterior probability provided by a statistical classifier (0) for class r

p(r | BC) =po(r | h(B,C))

Next we describe two sets of features for classifying spatial relationships
based on two different representations. First, a feature set based on the bound-
ing boxes of the regions. Second, a novel feature set based on the actual shape
of the symbols. The evaluation of their performance on a public dataset is
reported in Section 7.4.

4.2.1 Geometric Features: Bounding Boxes

Aly et al. [2009] presented two geometric features H and D for classifying spa-
tial relationships between pairs of printed mathematical symbols. Based on
their work, we extended the set of features with seven additional values. We
aimed at improving classification results by providing more information given
that handwritten expressions present more variability than printed expres-
sions, and also because we considered relations between symbols and subex-
pressions. As a result, we defined nine geometric features for two given regions
B and C based on their bounding boxes. This way, we compute the feature
vector h(B, C') that represents their relationship and can be used for classifi-
cation. The features are defined in Fig. 4.1, where H is the height of region

FAM-DSIC-UPV 47

Chapter 4. Structural Analysis

C, feature D is the difference between the vertical centroids, and ‘dhc’ is the
difference between the horizontal centers. The features are normalized by a
factor F' such that we tested: the height of B, the combined height of regions
B and C, or the distance between the centroids of regions B and C.

dxy dy
C B
dx dy
dxo b C
B dy2
dhe 1

h(B,C) = [H, D, dhc, dx, dz1, dza, dy, dy:, dya]

Figure 4.1: Geometric features for classifying the spatial relationship
between regions B and C.

The most challenging classification is between classes right, subscript and
superscript [Zanibbi and Blostein, 2012]. An important feature for distin-
guishing between these three relationships is the difference between vertical
centroids (D). Some symbols have ascenders, descenders or certain shapes
such that the vertical centroid is not the best placement for the symbol cen-
ter.

With a view to improving the placement of vertical centroids, we divided
symbols into four typographic categories: ascendant (e.g. d or \), descendant
(p, 1), normal (z,+) and middle (7,1I). For normal symbols the centroid is
set to the vertical centroid. For ascendant symbols the centroid is shifted
downward to (centroid + bottom)/2. Likewise, for descendant symbols the
centroid is shifted upward to (centroid + top)/2. Finally, for middle symbols
the vertical centroid is defined as (top+ bottom)/2. Fig. 4.2 shows an example
of the different centers computed for a math symbol according to its type.

Once the vertical centers were calculated for every symbol, this information
was hierarchically inherited as follows. The combination of two regions B and
C resulting in a new region A had to follow some rules in order to preserve
good center values. A decision was made depending on the spatial relation
between them and the rule of the grammar, giving rise to different cases. In
general, for the subscript relation (B¢) and the superscript relation (B®) the
center of their combined region A is the center of region B (Fig. 4.3a), for the
inside relation (v/C') the resulting center is the center of C (Fig. 4.3b), and for

48 FAM-DSIC-UPV

4.2. Spatial Relationships Classification

descendant

normal
middle

ascendant

Figure 4.2: Example of vertical center computation for a mathematical
symbol depending on its typographic category.

the right relation (B C') the final center is computed as the midpoint between
their vertical centers (Fig. 4.3c). Finally, the below relation (2) depended on
the rules of the grammar. For example, for parsing a fraction the following
two rules could be used:

. bel .
Fraction ———» Expression OverExp

bel . .
OverExp —2 HorzLine Expression

where in the second rule the vertical center of ‘OverExp’ would be the center
of ‘HorzLine’ and in the first rule the vertical center of ’Fraction’ would be
the center of ‘OverExp’. As a result, the center of the region containing the
fraction is the center its fraction line.

4.2.2 Shape Features: Polar Histograms

Many shape descriptors have been defined for image retrieval and object recog-
nition in images [Yang et al., 2008]. Lately, shape-based features have been
used in mathematical expression recognition to detect layout classes for sym-
bols [Ouyang and Zanibbi, 2009], symbol retrieval [Marinai et al., 2011], sym-
bol segmentation [Hu and Zanibbi, 2013], symbol recognition [Julca-Aguilar
et al., 2014] and expression matching [Hirata and Honda, 2011]. But the
application of shape-based features to spatial relation classification for math
expressions remained unexplored.

In this section, we propose a novel set of features that is not based on
bounding boxes but rather on the actual shape of the symbols. We define a
shape-based feature set that is similar to shape contexts [Belongie et al., 2002;

FAM-DSIC-UPV 49

Chapter 4. Structural Analysis

B | S E— cl

a) ci A ; B | L1 I A
B

b) C |]. — |l A

c) B Cl—=1| A

Figure 4.3: Vertical center computation of the combination of two
regions according to the spatial relation among them: a) subscript and
superscript; b) inside; c) right.

Yang et al., 2008]. We modify the polar shape matrix [Goshtasby, 1985], which
provides a powerful descriptor that is invariant under translation, rotation and
scaling. However, we wish to apply this descriptor to determine the relation-
ship between two elements whose their relative position is important. As a
result, we do not want rotation invariance.

Given two sets of strokes B and C, let Gg and G¢ be the center of mass of
their corresponding shapes. Using G = (G + G¢)/2 as a center, we draw n
circles with radii equally spaced up to the maximum radius containing B and
C. Moving counterclockwise, draw radii dividing each circle into m equal
arcs. This descriptor is encoded as a matrix M such that each row represents
a circle and each column represent the angle starting from zero degrees. Fach
cell M(4,j) has one of three values obtained by majority vote of the points
located in each bin:

—1 more points from set B than C
M(i, j) = 0 empty bin

+1 tie, or more points from set C' than B

Figure 4.4 illustrates the effect of grid resolution on the polar histogram
features. We see that as the grid size is increased, the representation is more
detailed, producing a warped image of the strokes. The corresponding polar

50 FAM-DSIC-UPV

4.2. Spatial Relationships Classification

5 x 8 =40 bins 10 x 16 = 160 bins 15 x 32 = 480 bins

Figure 4.4: Varying distance (n) x angle (m) resolution in a polar
histogram layout descriptor. Values shown using green (-1), red (+1),
and white (0).

shape matrix according to our features for n =5 and m = 8 is

o o0 o0 -1 -1 0 0 O
+1 0 0 -1 -1 0 0 O
+1 +1 0 0 -1 -1 0 O
+1 +1 0 0 -1 0 0 O

o o0 o0 o0 -1 -1 0 O

Finally, the feature vector h(B, (') describing the spatial relationship be-
tween the two regions is obtained by reducing the nxm features using Principal
Component Analysis (PCA). Figure 4.5 illustrates the proposed descriptor for
the five spatial relations considered.

FAM-DSIC-UPV 51

Chapter 4. Structural Analysis

h
d

Right: dB Subscript: X, Superscript: exp

Below: Z Inside: /i

C>h

Figure 4.5: Polar histogram layout descriptors.

4.3 Clustering-based Penalty

The spatial relationship classifier is able to provide a probability for every re-
lation r between any two given regions. However, there are several situations
where we would not want the statistical model to assign the same probability
as in other cases. Considering the expression in Fig. 4.6, the classifier might
yield a high probability for superscript relationship ‘3%’, for the below rela-
tionship ‘5’, and for the right relationship ‘2 3’; though we might expect a
lower probability, since they are not the true relationships in the correct math
expression.

Intuitively, those symbols or subexpressions that are closer together should
be combined first. Furthermore, two symbols or subexpressions that are not
visible from each other (see visibility definition in Section 3.2.2) should not be
combined. These ideas are introduced into the spatial relationship model as a
penalty based on the distance between strokes.

Specifically, given the combination of two hypotheses B and C, we com-
puted a penalty function based on the minimum distance between the primi-

52 FAM-DSIC-UPV

4.4. 2D-PCFG Estimation

1T

2 3

Figure 4.6: Example for hierarchical clustering penalty.

tives of B and C

penalty(B,C) =1/(1+ oiegl,lcgec d(os,05))
such that it is in the range [0,1]. It should be noted that, although it is a
penalty function, since it multiplies the probability of a hypothesis, the lower
is the penalty value the more the probability is penalized.

This function is based on the single-linkage hierarchical clustering algo-
rithm [Sibson, 1973] where, at each step, the two clusters separated by the
shortest distance are combined. We defined a penalty function in order to
avoid making hard decisions, because it is not always the case that the two
closest strokes must be combined first.

The final statistical spatial relationship probability is computed as the
product of the probability provided by the statistical classifier and the penalty
function based on hierarchical clustering

p(r | BC) = p(r | h(B,C)) - penalty (B, C) (4.3.1)

An interesting property of the application of the penalty function is that,
given that the distance between non-visible strokes is considered infinite, this
function prunes many hypotheses. Furthermore, it favors the combination of
closer strokes over strokes that are further apart. For example, the superscript
relationship between symbols 3 and z in Fig. 4.6, although it could be likely,
the penalty will favor that the 3 is first combined with the fraction bar, and
later the fraction bar (and the entire fraction) with the x.

4.4 2D-PCFG Estimation

In the approach presented in this thesis, the computation of the structural
probability of a mathematical expression required two statistical sources of in-

FAM-DSIC-UPV 53

Chapter 4. Structural Analysis

formation. The spatial relationships probability has been defined by Eq. (4.3.1).
The other statistical source comes from the probabilistic grammar.

Since the rules of math notation are well-known, starting from the CFG
provided by the organizers of the CROHME competition, we manually modi-
fied it to improve the modeling of some structures. We also added productions
that increase ambiguity in order to model certain structures like the relations
between categories of symbols (uppercase/lowercase letters, numbers, etc.).
However, the probabilities of the productions of the 2D-PCFG have to be
estimated.

The process for estimating the 2D-SCFG is detailed below, and the effect
in performance of the estimation of the grammar is reported in the experi-
mentation of Section 7.5 (see Tables 7.11 and 7.12).

4.4.1 Viterbi Estimation

An usual approach to estimating probabilistic grammars is the Viterbi score
[Ney, 1992]. We recognized the expressions of the training set in order to obtain
the most likely derivation trees according to the grammar. As recognizing the
training set will introduce errors into the computed trees, we used constrained
parsing to obtain the parse tree that best represents each training sample.
Then, the probability of a production A — « was calculated as

(A= a)

PA =) = =275

such that ¢(A — «) is the number of times that the rule A — «a was used when
recognizing the training set, and c(A) is the total number of productions used
that have A as left-hand operator. In order to account for unseen events, we
smoothed the probabilities using add-one smoothing [Jurafsky and Martin,
2008]. This smoothing method is naive and more advanced methodologies
should lead to better results. However, we chose this method because it is
simple and in the experimentation for validating the model, the domain of
mathematical notation is known and the grammars only have a few hundreds
of rules.

4.4.2 Constrained Parsing

Given a mathematical expression and its ground-truth information, we wanted
to constrain the parsing process to recognize it perfectly with our model.
There were two parts of the recognition process to take into account: symbol
recognition and structural analysis.

54 FAM-DSIC-UPV

4.4. 2D-PCFG Estimation

First, symbol segmentation and classification is completely determined by
the ground-truth, because the annotated information identifies each symbol
(s;) and the strokes that compose them (b;). Thus, in the definition of the
symbol likelihood of Eq. (2.3.1), we can set the true number of symbols K
and the correct segmentations b € By . Also, for each symbol we consider that
the probability resulting from the product of the three models (segmentation,
classification and duration) is equal to one.

Regarding the structural analysis, it is not straightforward because sev-
eral trees can represent the same mathematical expression. The ground-truth
information of a mathematical expression commonly represents the structure
as a tree [MacLean et al., 2011; Mouchere et al., 2013]. However, the most
likely tree according to the 2D-PCFG of our parser can split the expression
differently, producing another (equivalent) tree structure. For this reason, in
order to guide the parser to recognize a given expression, we fed it with the list
of spatial relationships provided in the ground-truth. Thus, the probability
of Eq. (4.3.1) that two hypotheses B and C' are arranged according to spatial
relationship r, is set to one if that relationship is on the ground-truth (or can
be inferred using transitive properties of relations). In this way, we favor the
relationships extracted from the ground-truth while the parsing process is free
to recognize other structure if the 2D-PCFG has a different construction.

FAM-DSIC-UPV 55

CHAPTER

5)

Parsing Mathematical
Expressions

The fully integrated approach developed in this thesis for recognizing mathe-
matical expressions is based on parsing 2D-PCFG. Throughout the previous
chapters we have described in detail the statistical framework and the calcu-
lation of the different probabilistic sources required for computing the most
likely expression. At this point, given an input expression, we need to de-
fine the procedure for recognizing the most likely mathematical expression
according to our formal statistical framework.

In this chapter we describe the algorithm that computes the mathematical
expression that maximizes the target probability of Eq. (2.2.1) according to
the proposed approach. We also provide further analysis of the properties of
the algorithm and discuss practical issues. The algorithm is described in terms
of primitives such that it is applicable to any type of mathematical expression.

The parsing algorithm is presented in Section 5.1. Then, we analyze the
complexity of the algorithm and some properties of the search space in Sec-
tion 5.2. In Section 5.3 we discuss how the proposed approach deals with the
recognition of symbols made up of multiple primitives. Finally, the process for
training the system for math expression recognition is detailed in Section 5.4.

Chapter Outline

5.1 2D-PCFG Parsing Algorithm 58
5.2 Complexity and Search Space 59
5.3 Multi-primitive Symbol Recognition 63
5.4 Training Process 64

o7

Chapter 5. Parsing Mathematical Expressions

5.1 2D-PCFG Parsing Algorithm

In this section we present the algorithm for mathematical expression recogni-
tion that maximizes Eq. (2.2.1). We define a CYK-based algorithm for parsing
2D-PCFGs in the statistical framework described in this thesis. Using this al-
gorithm, we compute the most likely parse tree according to the proposed
model for a given input o containing N primitives.

The parsing algorithm is essentially a dynamic programming method. First,
the initialization step computes the probability of several mathematical sym-
bols for each possible segmentation hypothesis. Second, the general case com-
putes the probability of combining different hypotheses such that it builds the
structure of the mathematical expression.

The dynamic programming algorithm computes a probabilistic parse ta-
ble v. Following a notation similar to [Goodman, 1999], each element of - is
a probabilistic nonterminal vector, where their components are defined as:

VAL = pA = by L =]b]
such that (A, b,1) denotes the probability of the best derivation where non-
terminal A generates a set of primitives b of size [.

Initialization. In this step the parsing algorithm computes the probability
of every admissible segmentation b € B as described in Section 3.2.2. The prob-
ability of each segmentation hypothesis is computed according to Egs. (2.2.1)
and (2.3.1) as

(A, bi,1) = max { p(s | A) p(bi) p(s | bi) p(l | 5) } (5.1.1)
VA VK, Vb € By, 1 <i<|b, 1 <I<min(N, Lpax)

where L.« is a parameter that constrains the maximum number of primitives
that a symbol can have.

This probability is the product of a range of factors such that it is max-
imized for every mathematical symbol class s: probability of terminal rule,
p(s|A) (Eq. (2.4.1)), probability of segmentation model, p(b;) (Eq. (3.2.1)),
probability of mathematical symbol classifier, p(s|b;) (Eq. (3.3.1)), and prob-
ability of duration model, p(l;|s) (Eq. (3.1.1)).

General case. In this step the parsing algorithm computes a new hypothesis
v(A, b,1) by merging previously computed hypotheses from the parsing table

58 FAM-DSIC-UPV

5.2. Complexity and Search Space

until all N primitives are parsed. The probability of each new hypothesis is
calculated according to Egs. (2.2.1) and (2.4.2) as:

v(A, b, 1) =max{ v(A4,b,1), max max max {

T bpbc
p(BC | A)y(B,bp, 1) v(C,bc,lc) p(r | BC) }t} (5.1.2)
VA, 2<I< N

such that b=bgUbc ;bgNbc =0 and [=g+ 1c .

This expression shows how a new hypothesis (A, b, 1) is built by combining
two subproblems (B, bg,lp) and v(C, bc, l¢), considering both syntactic and
spatial information: probability of binary grammar rule p(BC|A) (Eq. (2.4.2))
and probability of spatial relationship classifier p(r|BC) (Eq. (4.3.1)). It
should be noted that both distributions significantly reduce the number of
hypotheses that are merged. Also, the probability is maximized taking into
account that a probability might already have been set by the Eq. (5.1.1)
during the initialization step.

Finally, the most likely hypothesis and its associated derivation tree that
accounts for the input expression can be retrieved in v(S, 0, N) (where S is the
start symbol of the grammar). The pseudocode of the algorithm for parsing
mathematical expressions is provided in Algorithm 5.1.

5.2 Complexity and Search Space

We have defined an integrated approach for mathematical expression recog-
nition based on parsing 2D-PCFG. The dynamic programming algorithm is
defined by the corresponding recursive equations. The initialization step is
performed by Eq. (5.1.1), while the general case is computed according to
Eq. (5.1.2). We have also presented the pseudocode of the parsing algorithm
in Algorithm 5.1. In addition to the formal definition, there are some de-
tails of the parsing algorithm regarding the search space that need further
explanation.

The initialization step computes the probability for every admissible seg-
mentation hypothesis (B) limited by the parameter Lp.x. After the initial-
ization step, the general case is the core of the algorithm. The first loop
determines the size [4 of the hypotheses to be built. Then, the second loop
generates all the sizes to split [4 primitives into Ig + lc = 4. Once the sizes
are set, for every set of primitives bg we try to create a new hypothesis for
every possible combination with another set bo using the binary rules of the
grammar. According to this algorithm we can see that the time complexity for

FAM-DSIC-UPV 59

Chapter 5.

Parsing Mathematical Expressions

Algorithm 5.1: CYK for parsing math expressions

input :

G (2D-PCFG grammar with start symbol S)
o (sequence of N primitives)
Lyyax (max number of primitives per symbol)

output: most likely parse tree £ that maximizes Eq. (2.2.1)

begin

//

// Initialization step
for | =1 to min(Lyax, N) do

for b; € B:|bj|=1do
for A —secGdo
pr =p(s | A) p(bi) p(s | b;) p(l | s)
if pr > 0.0 and pr > (A, b;,1).p then
L V(A,bi,l).p =pr
v(A, bi,l).rule = A — s

// General case
for 4, =2 to N do

for Ip=1tolsy—1do
lc=1l4—1p
for bp: Fv(B,bp,lp) do
for bc: 3’7(0, bc,lc) do
for AL BC eG do
pr = p(BC|A) p(r|BC)y(B,bg,lp).p v(C,bc,lc).p
if pr > 0.0 and pr > y(A,ba,l4).p then
(A, ba,la)p =pr
Y(A,ba,l).rule = A5 BC
v(A,ba,la)left =~(B,bp,IB)
Y(A, ba,la).right = v(C, be, lc)

The most likely hypothesis that accounts for the input o

return v(S,0,N)

60 FAM-DSIC-UPV

5.2. Complexity and Search Space

parsing an input expression of N primitives is O(N*|P|) where |P| is the num-
ber of productions of the grammar. However, this complexity can be reduced
by constraining the search space.

The intuitive idea is that, given a set of primitives bg, we do not need
to try to combine it with every other set bo. A set of primitives bp defines
a region in space, allowing us to limit the set of hypothesis b to those that
fall within a region of interest. For example, given symbol 4 in Fig. 4.6, we
only have to check for combinations with the fraction bar and symbol 3 (below
relationship) and the symbol x (right or sub/superscript relationships).

We applied this idea using the region in the two-dimensional space associ-
ated with a set of primitives.

Definition 5.2.1. Given a primitive o;, its associated region r(o;) = (z,y, s, t)
in the 2D space is the minimum bounding box that contains that primitive,
where (x,y) is the top-left coordinate and (s,t) the bottom-right coordinate
of the region.

Definition 5.2.2. Likewise, given a set of primitives b = {o; | 1 < j < |b]}, its
associated region r(b) = (zp, Yp, Sp, tp) is the minimum rectangle that contains
all primitives o; € b.

Therefore, given a spatial region r(bg) we retrieve only the hypotheses b¢
whose region r(b¢) falls in a given area R relative to r(bp). Fig. 5.1 shows the
definition of the regions in the space in order to retrieve relevant hypotheses
to combine with bg depending on the spatial relation.

The dimensions of the normalized symbol size (R, Ry) are computed as
the maximum between the average and median width of the input primitives
(Ry); and the maximum between the average and median height of the input
primitives (Rp). These calculations are independent of the input resolution.
The normalized symbol size is also used to normalize other distance-related
metrics in the model, like determining what primitives are close together in
the multi-primitives symbol recognition or the normalization factor of features
in the segmentation model.

In order to efficiently retrieve the hypotheses falling in a given region R,
every time a set of hypotheses of size [4 is computed, we sort this set ac-
cording to the x coordinate of every region r(b4) associated with v(A,ba,04).
This sorting operation has cost O(N log N). Afterwards, given a rectangle
r(bp) in the search space and a given size l¢, we can retrieve the hypotheses
v(C,be,lc) falling within that area by performing a binary search over that
set in O(log N). Although the regions are arranged in two-dimensions and

FAM-DSIC-UPV 61

Chapter 5. Parsing Mathematical Expressions

they are sorted only in one dimension, this approach is reasonable since math

expressions grow mainly from left to right.

Assuming that this binary search will retrieve a small constant number
of hypothesis, the final complexity achieved is O(N?log N|P|). Furthermore,
many unlikely hypotheses are pruned during the parsing process.

Right, Subscript, Superscript ‘ 77777777 ‘
x =max(r(bp).x + 1,r(bp).s — Ry) | \
y=r(bg).y — Ry bs | R
s =r(bp).s + 8Ry | :
t =r(bg).t + Ry, | |
Below b
z=r(bp).x — 2R, h,,a,,fg,,k,,ﬁ
Y= max(r(bB).y + 1, T’(bB).t — Rh) [[
s = r(bp).s + 2Ry | l
t =r(bg).t + 3Ry | R
Inside

x=r(bp)r+1 bp |
y=r(bp).y+1 | i
s=r(bp).s + Ry : :
t =r(bp).t + Ry, § R |
Mroot ‘R
z=r(bp).x — 2R, | |
y=r(bp).y — Ry | |

s = min(r(bg).s,r(bp).x + 2R,,) N

t = min(r(bp).t,r(bg).y + 2Ry) bp

Figure 5.1: Spatial regions defined to retrieve hypotheses relative to

hypothesis bg according to different relations.

62

FAM-DSIC-UPV

5.3. Multi-primitive Symbol Recognition

5.3 Multi-primitive Symbol Recognition

Detecting symbols composed of multiple primitives is a challenging task in
mathematical expression recognition. The parsing algorithm developed in this
thesis for recognizing mathematical expressions has two steps. First, when
the parsing table is initialized, several symbol hypotheses are introduced as
subproblems of 1 < n < Ly, primitives following Eq. (5.1.1). Then, in the
general case, the parsing table is filled with hypotheses of n > 2 primitives
by combining smaller subproblems using Eq. (5.1.2). This produces a scaling
problem of the probabilities.

The probability of a multi-primitive symbol hypothesis of size n > 2
created in the initialization step is always the product of four probabilities
(Eq. (5.1.1)), while the hypothesis resulting from the combination of subprob-
lems will involve 6n — 2 terms in the calculation. For instance, when two
hypotheses are combined using the Equation (5.1.2), the resulting probability
of a hypothesis of size [4 = 2 is

(A, b4,2) = p(BC | A)y(B,bp,1)v(C,bc, 1) p(r | BC)

such that is the result of multiplying ten probabilities: p(BC|A), p(r|BC) and
twice the four probabilistic models of each hypothesis of size one. Thus, the
model would favor the multi-primitive hypotheses at the sacrifice of combining
smaller symbols. In general, parsing PCFG is biased to consider smaller trees
more probable [Manning and Schiitze, 1999].

In addition to this scaling problem, the different probabilistic distributions
have been estimated separately, which leads to values in different scales. For
these reasons, following [Luo et al., 2008], we assigned different exponential
weights (w;) to each model probability, and we also added an insertion penalty
(I) in the initialization step (Eq. (5.1.1)). Taking into account these decisions,
the equation of the parsing algorithm for the initialization step becomes

(A, 03, 1) = max {1 p(s | A)* p(bi)™ p(s [6:)"* p(l] s)™ }
VA VK, Vb e B, 1 <i<|b], 1 <1 <min(N, Lpax)
and the equation of the general case becomes
A b)) = A, bl
v(4,b,1) =max{ 7(4,b,1), max max g%ﬁ{

p(BC | A)*~(B,bp, 1) v(C,bc,lc) p(r | BO)"™® }}
VA, 2<I<N

FAM-DSIC-UPV 63

Chapter 5. Parsing Mathematical Expressions

These parameters alleviate the scaling differences of the probabilities. Fur-
thermore, the weights help to adjust the contribution of each model to the final
probability, since some sources of information are more relevant than the oth-
ers. The parameters can be tuned, for instance, minimizing an error metric
using a development dataset.

Additionally, there are some multi-primitive mathematical symbols that
can be naturally recognized by adding specific rules to the grammar. For
example, the following rule

Equals(=) below, Hline(—) Hline(—)

models an equals sign as the vertical concatenation of two horizontal lines.
Other examples of symbols that can be detected using grammar rules are: =+,
< or cos. Therefore, the hypotheses generated at the initialization step of the
parsing process along with these specific rules provide a powerful method for
recognizing multi-primitive mathematical symbols, where symbol segmenta-
tion becomes a hidden variable.

5.4 Training Process

A mathematical expression recognition system that implements the parsing
algorithm described in this chapter requires some steps to be ready for recog-
nition. As discussed in this thesis, there are problems at different levels. Given
an input sample, we developed an integrated approach that globally computes
the most likely expression, but several probabilistic sources and parameters
are used in the calculation. In this section we explain the process for training
the math expression recognition system using a set of annotated math expres-
sion samples for training, and another set for validation. The training process
is divided in two stages.

First, we need to estimate the distributions required for computing the
probabilities of the hypotheses generated during the parsing process: the sym-
bol likelihood and the structural probability. Fig. 5.2 shows a diagram of the
steps required to train an initial system for recognizing mathematical expres-
sions, which involves the following tasks:

e For each annotated math expression in the train set, we extract samples
of: mathematical symbols, wrong symbol segmentations and spatial re-
lationships. It is important to extract hypotheses taking into account
the constraints used during the recognition algorithm: the admissible
segmentation hypotheses (Section 3.2) and the considered spatial rela-
tionships (Section 4.2).

64 FAM-DSIC-UPV

5.4. Training Process

e The calculation of the symbol likelihood requires the following esti-
mations:

— Counting the number of primitives for each symbol sample in the
train set, we estimate the symbol duration model (Section 3.1).

— Using the mathematical symbol samples and the wrong segmenta-
tion samples, we extract the geometric features for segmentation
described in Section 3.2.2 and we train a statistical classifier. This
classifier provides the probability of the symbol segmentation
model.

— As described in Chapter 3, the symbol classification model is
obtained as the posterior probability provided by a statistical classi-
fier using Eq. (3.3.1). Using the symbol samples from the train set,
we extract the specific features and train the corresponding classi-
fiers depending on the type of expression: handwritten expressions
(Section 3.3) or printed expressions (Section 3.4).

e The structural probability requires the following steps:

— The samples of spatial relationships extracted from the train set of
mathematical expressions are used to compute several feature vec-
tors of different relationships (Section 4.2). The probability of the
spatial relationships model is obtained as the posterior proba-
bility of a statistical classifier trained with the relationships encoded
as feature vectors.

— A 2D-PCFG is required for computing the structural probability.
Since the rules of math notation are well-known, a grammar can
be manually constructed considering all productions equiprobable.
Also, the organizers of the CROHME competition provided a CFG
that can be easily converted into a 2D-PCFG.

e Finally, all the estimated models along with a 2D-PCFG, are the re-
sources necessary to compute the required probabilities and build our
initial system for mathematical expression recognition.

The initial system for mathematical expression recognition is able to parse
input expressions, but the parameters of the system (segmentation distance
threshold, insertion penalty and exponential weights) have to be tuned in
order to obtain the best performance of the proposed approach. Also, the
probabilities of the productions of the 2D-PCFG have to be estimated.

FAM-DSIC-UPV 65

Chapter 5. Parsing Mathematical Expressions

Train Set
Mathematical
Expressions
Admissible Symbol
Segmentations
Spatial
Wrong Symbol Relationship
Segmentations Samples S
amples

Extract

Extract

Segmentation Symbol Reift)iac:;)aslhi
Features Features Features P

. . Train
Train Train .
. Spatial
Segmentation Symbol L
. . Relationship
Classifier Classifier i
Classifier

Extract

Symbol Symbol Symbol Spatial
Segmentation Classification Duration Relationships
Model Model Model Model

Symbol Structural
Likelihood 2D-PCFG Probability
Initial
System

Figure 5.2: Diagram of the process for training the initial mathematical
expression recognition system.

66 FAM-DSIC-UPV

5.4. Training Process

The second stage for training the final recognition system is described in
Fig. 5.3, requiring the following tasks:

e The initial system is built with the probability distributions previously
estimated and all parameters set initially to one (I = by, = w; = 1.0).
The maximum number of primitives that a symbol can have (Lyax) can
be set manually in order to accounts for most of the symbols. The ini-
tial system with this configuration is used to recognize the validation
set. Then, we tune the parameters using the Downhill Simplex algo-
rithm [Nelder and Mead, 1965] such that a performance error metric is
minimized. As a result, we obtain the initial system with the parameters
tuned.

e The next step is estimating the probabilities of the productions of the
grammar (see Section 4.4). To this end, we recognize the expressions in
the train set using the tuned system and constrained parsing. Then, we
estimate the probabilities of the 2D-PCFG using the Viterbi score with
the set of parse trees from the training samples.

e Finally, we repeat the parameter tuning procedure minimizing a perfor-
mance error metric when recognizing the validation set, but this time
using the estimated 2D-PCFG. The estimated grammar and probabilis-
tic models, along with the parameters tuned in this step, are the final
configuration for the mathematical expression recognition system.

FAM-DSIC-UPV 67

Chapter 5. Parsing Mathematical Expressions

Initial
System

Parameter
Tuning

Equiprobable
2D-PCFG

Train Set
Mathematical
Expressions

Validation Set
Mathematical
Expressions

Contrained
Parsing

Viterbi
Estimation

Estimated
2D-PCFG
A
Parameter
Tuning
Final
System

Figure 5.3: Diagram of the process for training the final mathematical
expression recognition system.

68 FAM-DSIC-UPV

CHAPTER

The Problem of
Performance Evaluation

Assessing the performance of different solutions to a problem is crucial in
order to evaluate the advancements in a specific field such that research can
move towards the best approach to deal with it. A good set of performance
metrics along with large public datasets is the desired scenario for comparing
different approaches and help the research community. Unbiased metrics that
can be computed automatically are very important for objective evaluation.
Furthermore, in many pattern recognition problems is common to estimate
the parameters of a model by minimizing an error function based on a certain
metric.

Automatic performance evaluation in mathematical expression recognition
is not straightforward. There are several issues that have made comparison
in this field difficult. In this chapter we discuss the problems related with
the assessment of mathematical expression recognition experiments and the
solutions proposed so far.

The chapter is organized as follows. In Section 6.1 we describe and discuss
the main issues related to automatic evaluation of mathematical expression
recognition. Then, in Section 6.2 we present and analyze different metrics
used in the literature for performance evaluation, where we developed and
proposed a new metric. Finally, in Section 6.3 we discuss the problems and
solutions presented in this chapter.

Chapter Outline

6.1 Introduction 70
6.2 Performance Evaluation Metrics 72
6.3 Summary ittt e e e e e e e e e 82

69

Chapter 6. The Problem of Performance Evaluation

6.1 Introduction

Diverse issues arise in performance evaluation of mathematical expression
recognition systems. A deep discussion about this problem was provided by
Lapointe and Blostein [2009] and Awal et al. [2010]. Next, we review the main
problems that make automatic performance evaluation difficult in this field.

One of the main issues in performance evaluation of math notation is that
there are many ambiguities at different levels. First, there are ambiguities
inherent to the expressions that accept different interpretations. Awal et al.
[2010] show some examples like the expression f(y+ 1) that can be considered
as the variable f multiplying the term (y + 1), or the function f applied to
the value y + 1; or the expression a/2b that can be interpreted as a fraction
with denominator 2b or the product between the fraction a/2 and the variable
b. Other ambiguities are due to handwriting production. In Section 1.2 there
are several examples of ambiguities at different levels, like Fig. 1.4 shows am-
biguous symbol segmentations and Fig. 1.6 presents different interpretations
of the same shapes.

These previous sources of ambiguity produce that more than one ground-
truth could be valid for a given expression. Nevertheless, even if a math ex-
pression is not ambiguous, the representation formats do not enforce unique-
ness [Lapointe and Blostein, 2009]. Math expressions are usually encoded
in ATEX or MathML, where the same expression can be annotated by sev-
eral correct representations as shown in Fig. 6.1. All the described ambigui-
ties can produce that a correct recognition result for a given expression does
not match the ground-truth, therefore reporting undesired recognition errors.
Consequently, metrics for automatic performance evaluation of math expres-
sion recognition should be based on formats that specify a unique encoding
for a given math expression.

Commonly, mathematical expression recognition is divided in three differ-
ent problems (see Section 1.2): segmentation, symbol recognition and struc-
tural analysis. Although several issues have been described, symbol segmen-
tation and symbol recognition can be easily calculated. The only remaining
ambiguity is the interpretation of an expression. Measuring errors in the
structure of the expression is the most challenging task. Many authors report
symbol segmentation rate, symbol recognition rate and the expression recog-
nition rate. However, the expression recognition rate is hard to be automated
due to the representation ambiguities, thus several results are computed man-
ually [Awal et al., 2010]. Moreover, it is a very pessimistic metric such that
a single error in an expression produces a wrong recognition result. Global

70 FAM-DSIC-UPV

6.1. Introduction

KTEX MathML
x_a"2 +1 <mathml> <mathml>
x_ a~{2} + 1 <mrow> <mrow>
x {a} 2 + 1 <msubsup> <msubsup>
N <mi>x</mi> <mi>x</mi>
x_{a} {2} + . . i i
- <mi>a</mi> <mi>a</mi>
x"2_a + 1 <mn>2</mn> <mn>2</mn>
x"2_{a} + 1 </msubsup> </msubsup>
x"{2}_a + 1 <mo>+</mo> <mrow>
x~ {2} _{a} + <mn>1</mn> <mo>+</mo>
</mrow> <mn>1</mn>
</mathml> </mrow>
</mrow>
</mathml>

Figure 6.1: Some examples of different valid representations for math

expression in BTEX and MathML format.

error values can be computed as an edit distance between strings or trees,
but the encoding of the math expressions has to deal with the representation
ambiguities. Furthermore, edit distances report a global error (frequently not
normalized), such that the source of the error is unknown (segmentation, sym-
bols, structure). Several proposals of metrics for math expression recognition
evaluation are detailed in next Section 6.2.

Despite the problems previously described, there are other issues that make
comparison of approaches difficult. For many years, in the literature several
methods and techniques were proposed, but there was a shortage of large, rep-
resentative, publicly available ground-truthed datasets [Lapointe and Blostein,
2009]. As a result, many approaches reported results on small private datasets
collected by the authors, such that comparison is not feasible.

A good way to provide comparable results is being able to reproduce a
reported experimentation. If the software used in a given approach is made
available and the parameters and procedures are clearly described, further pro-
posals could be compared. Unfortunately, the systems are not usually released,
and often the experimentation is not detailed enough to allow performing the
reported experiments using the same parameter settings.

Fortunately, mathematical expression recognition field has been tackling
all these problems. During the last years, several public datasets have been

FAM-DSIC-UPV 71

Chapter 6. The Problem of Performance Evaluation

released (see Section 7.1), many different metrics have been proposed (see next
Section 6.2) and even the CROHME international competition is held every
year providing results of various approaches under the same conditions.

6.2 Performance Evaluation Metrics

In previous section we have introduced and discussed the main issues that
make difficult the automatic performance evaluation of mathematical expres-
sion recognition. In this section we describe the metrics that have been pro-
posed to this end, analyzing their strengths and weaknesses.

6.2.1 Early Global Metrics

Expression recognition rate is a metric for computing the overall performance
of a math expression recognition system. It is commonly reported along with
other metrics at symbol level [Okamoto et al., 2001; Zanibbi et al., 2002].
Recognition rate at expression level complements the symbol level evaluation,
but it is a pessimistic metric because a single error causes the entire expression
to be a wrong recognition result. Furthermore, its computation has to deal
with representation ambiguities.

Later, other global metrics were proposed as a combination of recogni-
tion rates at different levels. Chan and Yeung [2001] proposed an integrated
performance measure as the ratio of the number of correctly recognized sym-
bols and operators (structure) to the total number of symbols and operators
tested. Garain and Chaudhuri [2005a] defined a global performance index
that combines the number of symbols recognized incorrectly and the number
of symbols incorrectly arranged in the expression. They also penalized dif-
ferently the structural errors depending on the level of the symbol, such that
the dominant baseline of an expression is treated as level zero and the level
number increases above and decreases below the baseline.

These first proposals for computing a global error integrate the errors at
symbol level and at structure level. However, segmentation errors are not
taken into account and would affect the computation of these metrics because
not direct matching could be possible between expressions. Also, determin-
ing implicit operators in the integrated performance measure or the incorrect
arrangements in levels of the global performance index is not straightforward,
and the software for evaluation was not made available.

72 FAM-DSIC-UPV

6.2. Performance Evaluation Metrics

6.2.2 EMERS

A mathematical expression can be naturally represented as a tree (see Fig. 1.8).
The tree representation, commonly in MathML format, contains simultane-
ously the symbols and the structure of a given mathematical expression. For
this reason, computing an edit distance between trees is an appropriate method
in order to compute the error between a recognized expression and its ground-
truth tree.

Sain et al. [2010] proposed EMERS?, a tree matching-based performance
evaluation metric for mathematical expression recognition. Using the tree rep-
resentation of two expressions in MathML (which can also be easily obtained
from ITEX) they defined a method for computing the edit distance between
them. Since matching of trees is a hard problem, they proposed to match or-
dered trees represented by their corresponding Fuler strings. Given two trees
encoded by two Euler strings A and B, the overall complexity of the EMERS
algorithm is O(|A|?|B|?) or more generally O(n?).

EMERS computes the set of edit operations that transform the recognized
tree into the ground-truth tree. Accordingly, EMERS is not a normalized
metric but an edit distance, such that if both trees are identical EMERS is
equal to zero. The edit distance between trees is a well-defined metric but
the representation ambiguity of MathML can produce that correct recogni-
tion results are considered errors. We performed an experiment comparing
the trees of a recognition experiment with the ground-truth trees, and also
comparing the recognized trees with the equivalent trees the system would
provide in an error-free experiment (using constrained parsing as described in
Section 4.4.2). The expression recognition rate, computed as the percentage
of expressions with EMERS equals to zero, differed by almost 8% depending
on the ground-truth used [Alvaro et al., 2012]. A canonical form to repre-
sent math expressions in MathML should be required in order to avoid this
problem. Sain et al. [2010] try to overcome this problem by converting the
MathML to IXTEX and then converting the XTEX back to MathML.

Furthermore, the edit operations can be for symbols or MathML tags, such
that the distance between some symbols is different depending on its type
(<mi>, <mo>, <mn>). For example, the distance between letter s and symbol
x would be one (modify s to x), whereas the distance between letter s and
number 5 would be two (modify <mi> to <mn> and modify s to 5). As other
global metrics, the computed error value accounts for the entire expression
but the source of the errors is not explicitly known. The set of edit operations

#Available at http://www.isical.ac.in/~utpal/resources.php

FAM-DSIC-UPV 73

http://www.isical.ac.in/~utpal/resources.php

Chapter 6. The Problem of Performance Evaluation

is provided and we could compute if they are related to symbols or tags, but,
for instance, segmentation mistakes could not be detected and would become
symbol and tags errors.

Finally, the authors propose two options for computing the error: every
edit operation has the same cost, or it depends on the baseline (using the
concept of level defined in previous section) in which the edit operators are
done. The default EMERS value is computed using the weighted version, and
this produces that the distance is not symmetric in some cases.

6.2.3 IMEGE

While researching on mathematical expression recognition, automatic perfor-
mance evaluation metrics are very important in order to assess if new strategies
are improving the recognition performance. Expression recognition rate was
pessimistic and had the problem of representation ambiguity. For these rea-
sons, we developed a novel performance evaluation metric trying to overcome
these problems.

Given a recognition result of a certain expression and its ground-truth we
wanted to evaluate the quality of this result. The image representation of
a math expression can be generated from its string codification (e.g. TEX
or MathML). Since there can be several string representation of the same
expression but the image obtained should be unique, we proposed comparing
images directly to compute an error metric. Next we explain how by using an
image-matching model (IDM), we defined the evaluation algorithm (BIDM)
that is used to finally compute the recognition error (IMEGE).

Image-matching model (IDM)

In order to obtain a matching between two images, the initial idea was to com-
pute a two-dimensional warping between them. Keysers et al. [2007] presented
several deformation models for image classification, and the Image Distortion
Model (IDM) represented the best compromise between computational com-
plexity and evaluation accuracy. For this reason, we chose the IDM to perform
a two-dimensional matching between two images.

The IDM is a zero-order model of image variability [Keysers et al., 2007].
This model uses a mapping function with absolute constraints; hence, it is
computationally much simpler than a two-dimensional warping. Its lack of
constraints is compensated using a local gradient image context window. This
model obtains a dissimilitude measure from one image to another such that if
two images are identical, their distance is equal to zero.

74 FAM-DSIC-UPV

6.2. Performance Evaluation Metrics

The IDM has two parameters: warp range (w) and context window size
(¢). The algorithm requires each pixel in the test image to be mapped to
a pixel within the reference image not more than w pixels from the place it
would take in a linear matching. Over all these possible mappings, the best
matching pixel is determined using the ¢ x ¢ local gradient context window
by minimizing the difference with the test image pixel. Fig. 6.2 illustrates
how the IDM works and the contribution of both parameters, where the warp
range w constrains the set of possible mappings and the ¢ x ¢ context window
computes the difference between the horizontal and vertical derivatives for
each mapping. It should be noted that these parameters need to be tuned.

reference

Figure 6.2: Image Distortion Model (IDM) visual representation.

The evaluation algorithm (BIDM)

Once we had a model that was able to detect similar regions of two images, we
wanted to use this information to compute an error measure between them.
Starting from the IDM-distance algorithm presented in [Keysers et al., 2007,
we proposed the Binary IDM (BIDM) evaluation algorithm (defined in Algo-
rithm. 6.1). First, instead of calculating the vertical and horizontal derivatives
using Sobel filters, these derivatives are computed using the method described
in [Toselli et al., 2004a]. Next, the double loop computes the IDM distance for
each pixel, and these values are stored individually. After that, the difference
between each pixel of the test image and the most similar pixel found in the
reference image can be represented as a gray-scale image (Fig. 6.3c-1). At this

FAM-DSIC-UPV 75

Chapter 6. The Problem of Performance Evaluation

Algorithm 6.1: Binary IDM (BIDM) evaluation algorithm.

input : test image A (I x J)
reference image B (X xY)
warp range w
context window size ¢
output: BIDM(w, ¢) from A to B
begin
A" = vertical _derivative(A)
A" = horizontal derivative(A)
BY = vertical_derivative(B)
B" = horizontal_derivative(B)

for i=1toI do

for j =1 to J do

r=liF)L =14 o= sl
S1={1,..., X}n{i' —w,...,i" +w};
So=A{1,....Y}n{j —w,....i +w}

v 2
map i] - ;2151,1 Z Z z+n,j+m - Bac—l—n,y-l—m)

yESQ m=—z nN=—z

h h 2
+ (AiJrn,jer B:p+n,y+m)

normalize_depth(map, 255)
binarize(map) //Otsu’s method

fg = {(z,y) | A(z,y) < 255} //Foreground pizels
cp =fgN{(x,y) | map(z,y) =0} //Correct pizels

return lepl //Correct pizels ratio

/4]

76 FAM-DSIC-UPV

6.2. Performance Evaluation Metrics

point, we have a dissimilitude value for each pixel of the test image. However,
rather than knowing how different a pixels is, we want to know whether or
not a pixel is correct. This is achieved by normalizing the distance values
in the range [0,255] and then performing a binarization process using Otsu’s
method [Otsu, 1979] (Fig. 6.3c-2). Finally, we intersect the foreground pix-
els of the test image with the binarized mapping values (like an error mask),
and, as a result, we know which pixels are properly recognized and which are
incorrectly recognized (Fig. 6.3c-3). Therefore, since the background pixels
do not provide information, the number of correct pixels is normalized by the
foreground pixels.

The time complexity of the algorithm is O(IJw?c?), where I x J are the
test image dimensions, w is the warp range parameter, and c is the local
gradient context window size. It is important to note that in practice both w
and c take low values compared to the image sizes.

Recognition Error (IMEGE)

The BIDM algorithm computes the number of pixels of a test image that are
correctly allocated in another reference image according to the IDM model.
The algorithm that we used followed the concepts of precision and recall to
compute the Image-based Mathematical Expression Global Error (IMEGE).P
First, we compute the BIDM value from the test image to the reference (pre-
cision p). Second, we compute the same value from the reference image to
the test image (recall r). Finally, both values are combined using the har-
monic mean f; = 2(p-r)/(p+r), and we obtain the final error value. Fig. 6.3
illustrates an example of this process.

Rendering the image of a math expression encoding copes with the prob-
lem of representation ambiguity. Moreover, IMEGE provides a normalized
value in the range [0,100] than can be interpreted as a visual error (as hu-
man beings do) and is not as pessimistic as expression recognition rate. On
the other hand, IMEGE can not distinguish the source of the errors although
it can identify the misrecognized zones of the math expression. As a visual
error, misrecognitions involving larger symbols would affect more pixels than
errors produced by smaller symbols. Given that this measure takes the global
recognition information into account, it can be very helpful to complement the
expression recognition rate and symbol related metrics in order to assess the
performance of a system.

PSoftware available, see Section 8.1.4.

FAM-DSIC-UPV 77

Chapter 6. The Problem of Performance Evaluation

a) Mathematical expression recognition result
ground-truth = {x"2 + 13}
recognition = {x2 + 1}

b) Image generation from ground-truth and recognition
2 3
img; =| L ‘I— 1 img2:$2+ 1

¢) BIDM computation in both directions
imgo — imgy img; — imgy

1
o ®
9 2 3
3 o
4 | precision = 124189% (f)g = 0.6777 | recall = 12‘:%% (f); =0.6112

d) Recognition global error
fi(precision, recall) = 0.6427
error = 100(1 — 0.6427) = 35.73

Figure 6.3: Example of the procedure for computing the IMEGE mea-
sure given a math expression recognition and its ground-truth in IATEX.

6.2.4 Label Graphs

Zanibbi et al. [2011] proposed a set of performance metrics for online handwrit-
ten mathematical expressions based on representing the expressions as label
graphs. A label graph is a directed graph over primitives represented using
adjacency matrices. In a label graph, nodes represent primitives, while edges
define primitive segmentation (merge relationships) and object relationships.
Given a math expression, a label graph is constructed from a symbol layout
tree (see Fig. 1.8) such that the strokes in a symbol are split into separate
nodes. Each stroke keeps the spatial relationship of its associated symbol, and
the nodes inherit the spatial relationships of their ancestors in the layout tree.

78 FAM-DSIC-UPV

6.2. Performance Evaluation Metrics

Fig. 6.4 shows an example of online handwritten math expression and
two label graphs: a label graph for its ground-truth, and a label graph for
a recognition result containing errors. Each label graph is displayed such
that the dashed edges show the inherited relationships. The adjacency matrix
representation is also provided, where the diagonal of the matrix represents
the symbol class of each stroke and other cells provide primitive pair labels.
These pairs encode the spatial relationships (right, superscript, etc.), where
underscore () identifies unlabeled strokes or no-relationship, and an asterisk
(%) represents two strokes in the same symbol [Zanibbi et al., 2013].

Since the label graph representation contains the information of a mathe-
matical expression at all levels (symbols, segmentation and structure), several
metrics can be computed. Given a math expression composed of n strokes, its

S

Recognition: 2k*

x> x =
*x 8 =™
8 ¥ nwn =

|
=

N &=

* 8 I IA

8 * I A X

Figure 6.4: Example of label graph representation of an online hand-
written math expression recognition and its ground-truth. The dashed
edges are inherited relationships.

FAM-DSIC-UPV 79

Chapter 6. The Problem of Performance Evaluation

ground-truth label graph, and the label graph of a recognition result, Zanibbi
et al. [2011] defined the following set of metrics. First, metrics for specific
errors:

e Classification error (AC): the number of strokes that have different
symbol classes (elements of the diagonal of the adjacency matrix) in the
label graphs.

e Layout error (AL): the number of disagreeing edge labels in the label
graphs (off-diagonal elements of the adjacency matrix). This error can
be decomposed as the sum of segmentation error (AS) and relationships
error (AR), depending on the type of label of the edges.

Second, metrics at expression level that provide an overall error for a recog-
nition result:

e ADB,: the number of disagreeing stroke labels and relationships between
two graphs, i.e. the Hamming distance between the matrices of both
label graphs. This metric can be computed as

_AC+AL

n2

AB;,

This metric will produce more distance for layout errors (n(n — 1) ele-
ments) than for classification errors (n elements) because is not weighted.
For this reason, the next metric was also proposed.

o AFE: the average per-stroke classification, segmentation and layout er-
rors, such that the three types of errors are weighted more equally. It is

calculated as
1 [AC AS AL
AE_S(n +\/n(n—1)+\/n(n—1)>

In the recognition example of Fig. 6.4, we can see that the symbols 1 and <
have been incorrectly grouped as a letter k, and the relationship with the letter
x has been incorrectly detected as superscript. The error metrics previously
described for this example are:

o« AC =2 (k=1 k—<}
o AS =2; {* = _, x> R}
o AR=4; {S—R,S—R,S—R, S—>R}

80 FAM-DSIC-UPV

6.2. Performance Evaluation Metrics

e AL=AS+AR=6

e AB, =230 =} =032

.AE:%<%+\/%+\/%):0.4213

All these label graph Hamming distances are proper metrics [Zanibbi et al.,
2011], and the time complexity for the expression level metrics is O(n?), al-
though in practice only the labeled edges have to be compared, which is must
faster for sparse graphs. Furthermore, label graph metrics precisely determine
the different types of errors at all levels, which is very useful information. Also,
the representation ambiguity of formats like ITEX or MathML is tackled by
the label graph representation and the inheritance of relationships.

Finally, precision and recall at object level (symbols) can also be com-
puted from this representation [Zanibbi et al., 2013]. The last editions of the
CROHME competition use these metrics for assessing the performance of the
systems [Mouchere et al., 2013, 2014], thus these metrics are becoming the
current standard of the state-of-the-art literature in mathematical expression
recognition, thanks to the authors that released a great set of open-source
tools for computing them®.

It should be noted that this set of metrics is based on strokes, i.e. for
online handwritten mathematical expressions. However, the authors pointed
out that they can be applied to images using pixels or connected components
as primitives, as well as to other related problems like chemical diagrams,
flowchart recognition or tables [Zanibbi et al., 2011, 2013]. In order to do
so, the ground-truth has to be provided at primitive level. In the CROHME
competitions, the InkML format contains all the required information to build
the label graphs, but only KTEX or MathML annotation would not be enough.

6.2.5 String Matching

One of the most common format for representing mathematical expressions
is WTEX. Recently, Pavan Kumar et al. [2014] proposed a structure encoded
string representation computed from IXTEX, although authors comment that
it can be extracted from MathML and any other format. They address the
problem of performance evaluation of mathematical expression recognition as
computing the Levenshtein edit distance between two strings.

Mathematical expressions are two-dimensional structures, while strings are
an one-dimensional format. The proposed string encoding is based on consid-

“Label Graph Evaluation Library at http://www.cs.rit.edu/~dprl/Software.html

FAM-DSIC-UPV 81

http://www.cs.rit.edu/~dprl/Software.html

Chapter 6. The Problem of Performance Evaluation

ering symbols left-to-right and two regions for each mathematical symbol, such
that top-left, above and top-right spatial relationships are encoded in north-
ern region, and bottom-left, below and bottom-right spatial relationships are
encoded in southern region. This string encoding deals with representation
ambiguity by always processing symbols left-to-right and northern region be-
fore than southern region.

Pavan Kumar et al. [2014] also defined additional symbols to encode the
math expressions as strings, like an empty symbol in order to handle special
cases. A northern region is delimited by start (Ng) and end (V) marks, and
a southern region has equivalent start (Ss) and end (S.) marks. For example,
any of the IXTRX strings of Fig. 6.1 encoding the math expression 22 + 1 would
be represented by the string: x, Ny, 2, N, Ss, a, Se, +, 1.

This metric follows the same methodology than EMERS with some dif-
ferences. The string representation makes the edit distance easier, such that
time complexity is O(n?) while EMERS was O(n%). Also, string represen-
tation does not have the problem of considering symbol types as errors like
EMERS in MathML. However, computing the string format requires handling
several cases and it is not as straightforward as using a MathML tree. Like
EMERS, the string matching also reports an edit distance that is not normal-
ized, such that if two strings are identical their distance is zero. The source of
the errors (classification, segmentation or structure) is not detected, and the
distance could not be symmetric if the error is weighted taking into account
the concept of levels.

It seems a good alternative to EMERS, handling better the representation
ambiguity and having less time complexity. Although label graph metrics are
more complete, it could be useful when only the ITEX or MathML is provided
as ground-truth. Unfortunately, at this moment the software for computing
this metrics is not publicly available.

6.3 Summary

In this chapter we first presented and discussed different issues that arise when
computing automatic performance evaluation of math expression recognition.
There are errors at several levels, ambiguities in representation, and other
problems that make comparison of systems difficult.

Afterwards, we described several approaches that have been proposed in
order to assess mathematical expression recognition systems. EMERS and
string matching are metrics based on computing edit distances between trees
and strings, respectively. We also proposed IMEGE a global error calculated

82 FAM-DSIC-UPV

6.3. Summary

over the image representation of math expressions. These three metrics pro-
vide performance metrics at expression level, but the source of the errors
(classification, segmentation or structure) is not identified. The benefits and
drawbacks of these metrics that have been properly discussed, but they can
be helpful to complement errors at symbol level, especially when ground-truth
is only provided as a INTEX or MathML expression.

The set of metrics based on label graphs is the most complete. The pro-
posed representation deals with representation ambiguity and provides infor-
mation at all levels. Label graphs are based on primitives, so it requires a
detailed ground-truth information to construct the graphs (e.g. InkML for-
mat). The metrics are well-defined and are becoming the standard reported
metrics of last publications in the field, like the last editions of the CROHME
international competitions [Mouchere et al., 2013, 2014].

FAM-DSIC-UPV 83

CHAPTER

7

Experimentation

A complete description of an approach for recognizing mathematical expres-
sions has been provided in this thesis. This pattern recognition problem has to
deal with tasks at several levels. Some of the previous chapters focused on solv-
ing specific problems within mathematical expression recognition, proposing
several features and classifiers. In this chapter, we report the experimentation
carried out in order to assess the performance of the different proposals, as
well as the performance of the approach at expression level.

This thesis is devoted to develop a method for recognizing mathematical
notation. We have described a statistical framework and its associated parsing
algorithm for recognizing any type of expression: online, offline, printed or
handwritten. Therefore, in this chapter we report several experiments in order
to evaluate our proposal.

The datasets of printed and handwritten mathematical expressions used to
perform the experiments are described in Section 7.1. Symbol classification is
evaluated in Section 7.2 for handwritten symbols, and printed symbol classifi-
cation is evaluated in Section 7.3. Then, experiments on spatial relationships
classification are reported in Section 7.4. Finally, the performance of the ap-
proach developed in this thesis for handwritten math expression recognition
is assessed in Section 7.5 and its application to printed math expressions is
analyzed in Section 7.6.

Chapter Outline

7.1 Datasets v i it i i 86
7.2 Classification of Handwritten Symbols 93
7.3 Classification of Printed Symbols 107
7.4 Spatial Relationships Classification 111
7.5 Recognition of Handwritten Math Expressions . . 117
7.6 Recognition of Printed Math Expressions 127

85

Chapter 7. Experimentation

7.1 Datasets

In order to assess and compare the performance of different approaches and
methodologies, public datasets are required. Although there was a lack of
public resources in the mathematical expression recognition field, fortunately,
different datasets have been released during the last years [Suzuki et al., 2005;
MacLean et al., 2011; Mouchere et al., 2013]. Below we provide the description
of the different datasets we used for validating the developments discussed in
this thesis. First we present the datasets of printed mathematical expressions
and, second, we describe the datasets of handwritten mathematical expres-
sions.

7.1.1 Printed Mathematical Expressions

Public and large resources of annotated printed mathematical expressions have
been available for more years than for handwritten mathematical notation.
Below we describe the two datasets of printed mathematical expressions used
in this thesis for experimentation.

UW-III: University of Washington

The UW-III database [Phillips, 1998] is a set of document images from differ-
ent fields that includes 25 journal document pages containing mathematical
formulae. Some of the images come from blurred photocopies. Each image
has annotated the zones where the math expressions are located, but the
mathematical symbols are not isolated. The zones that are annotated are not
embedded in the text. We manually isolated and classified the symbols. As a
result, the complete database had 2,233 mathematical symbols belonging to
120 classes. However, many symbol classes had very few samples, such that
only 84 classes had at least 4 samples. Some samples of expressions from the
UWL-III database are shown in Fig. 7.1. It can be noted that expressions are
a bit degraded, with problems like noise or touching symbols.

INFTY dataset

Suzuki et al. [2005] released the InftyCDB-1 database, a great resource that
contains 467 page images of 30 English articles on pure mathematics. All the
characters and symbols are included in the database with their ground-truth
information. Therefore, it can be used both for printed text recognition and
printed mathematical expression recognition. Other elements like matrices,

86 FAM-DSIC-UPV

7.1. Datasets

{ = (b iQ-r32 62h=—!—'€!}'
@=pm|[v Pl
Wa* (x) = :
d_]' 2 ' Nmin ' tU"TTdm P L
an l.\- pm L° A fin = N v Ry :—n—rﬁ_'
Elu, (L)1%s 2 :
; = [1;(2 N D)I° du(e)= 3 Ju; (8N D) p (2N D,)du(e)
1,3=1 1’ %1 J
m
= 1'§=1 JI Plw: xe€ L{w) N Di' Yy €EL@nN DJ]dul(x) dul(y).

Figure 7.1: Examples of printed mathematical expressions from the
UW-III dataset.

tables and figures are not labeled in the ground-truth. In this thesis, we are
focused on the mathematical information of the database.

The pages of the articles can contain isolated mathematical expressions
and also expressions embedded inline the text. The samples are annotated
with many useful information both at expression level and at symbol level.
Each mathematical expression is located in a page image by the coordinates
of its bounding box, and the transcription in MathML, ATEX and IML is also
provided. At symbol level, each symbol is also annotated with its bounding
box coordinates in the page image along with the symbol class. Furthermore,
there is also information about the type of symbol (operator, Greek, numeric,
Roman, etc.), the font (Italic, Bold, etc.) or the quality of the representation
(normal, separated or touching symbols, etc.). Finally, each mathematical
symbol has also specified the spatial relationship relative to the preceding
symbol, which is used to describe the structure of the math expression as a
tree.

The number of mathematical expressions in the database is 21K which in
turn contain 157K mathematical symbols belonging to 212 classes. Fig. 7.2
shows different examples of mathematical expressions from the Infty dataset.
First samples are clean images of complex expressions containing several sym-

FAM-DSIC-UPV 87

Chapter 7. Experimentation

bols, operators and relations. Some of the problems related to offline math-
ematical expression recognition can be seen in these examples. The radical
sign of the second expression is separated into two connected components,
whereas the T" and right parethesis of the bottom-left expression are touching
symbols. Moreover, some of the expressions of the Infty dataset are incom-
plete (see bottom-right expression), which might be a problem for automatic
recognition if a system expects complete inputs.

(n+a)

AT (a) D(—P)alfIQdV

115 =

3nn62n 1
2 '\/7’/4:2n 1
k—1

Z(ai — B:)6; = (Br —)bk [[C(p)s

1=0 pEP

o(T)(C a(4)) (0 =1k-1,2 <

k*(w') = k*(wo) —

Figure 7.2: Examples of printed mathematical expressions from the
INFTY dataset.

7.1.2 Handwritten Mathematical Expressions

Although there was a large public dataset for printed expressions since Suzuki
et al. [2005] released the Infty database, similar resources of online handwritten
mathematical expressions were released quite recently. In this section we detail
the datasets of online handwritten mathematical expressions used in this thesis
for experimentation.

MathBrush Dataset

The MathBrush database released by MacLean et al. [2011] represents a great
resource for handwritten mathematical expression recognition. It contains
4,654 annotated mathematical expressions written by 20 different writers.

88 FAM-DSIC-UPV

7.1. Datasets

The number of math symbols is 26K and they are distributed in 100 different
classes. Each expression is annotated at stroke level with symbol segmen-
tation and symbol identification. The relationships between sets of strokes,
corresponding to either symbols or subexpressions, are also provided in SCG
format, as well as a full encoding of the mathematical expression in IATEX,
tree format and others.* Fig. 7.3 shows some examples of the expressions
in the MathBrush dataset. We can see the great writing style variability in
the expressions of the first two rows. For instance, a very common symbol
like the letter = is written in three quite different ways. Other challenges are
strokes that represent more than one symbol (first two letters of trigonometric
functions), cursive handwriting (bottom-left expressions), nested expressions
(square roots) or the very similar shape of some symbols (number 2 and letter
223

322
Viz

z in bottom-right expression:

2 L 2
~
AR f(f%?fdw f@. 22 dye
VI " Q
S (1) Snlax) < [’/)V\/.lw{n@
N=4

n=1

M =-tant
oS (20 & x> 2.2%

r4

Figure 7.3: Examples of handwritten mathematical expressions from
the MathBrush dataset.

#Details about formats at https://www.scg.uwaterloo.ca/mathbrush/corpus.shtml

FAM-DSIC-UPV 89

https://www.scg.uwaterloo.ca/mathbrush/corpus.shtml

Chapter 7. Experimentation

CROHME Datasets

The Competition on Recognition of Online Handwritten Mathematical Ex-
pressions (CROHME) has been held annualy since its first edition in [Mouchere
et al., 2011]. Initially, the training had 921 handwritten math expressions and
was extended to 1, 341 on the second edition [Mouchere et al., 2012]. The third
edition of the CROHME competition [Mouchere et al., 2013] released a large
resource for mathematical expression recognition as a result of combining and
normalizing several datasets: the MathBrush database [MacLean et al., 2011],
the HAMEX database [Quiniou et al., 2011], the MfrDB database [Stria et al.,
2012], the ExpressMatch dataset [Aguilar and Hirata, 2012] and the KAIST
dataset. The last edition, to this date, of CROHME [Mouchere et al., 2014]
used the same data than the previous competition but provided a different
test set. They also included an additional task for recognition of matrices.

In this thesis, we will focus on the dataset of the two last editions of the
competition [Mouchere et al., 2013, 2014] since they share the same training
data. The samples in the CROHME 2013 dataset are encoded in InkML,P
a format that includes information of a math expression at all levels: the
strokes, the symbol segmentation, and the structure represented in MathML. It
contains 8,835 online handwritten mathematical expressions for training and
671 math expressions for testing. These expressions contain about 86K math
symbols for training and 6K symbols for testing distributed in 101 classes.
The test set of the CROHME 2014 dataset had 986 expressions containing
10K math symbols. The test set of the competitions were collected by the
organizing research labs: the IRCCyN/IVC (Université de Nantes, France),
the DPRL (Rochester Institute of Technology, USA) and the CVPR (Indian
Statistical Institute, India).

The combination of all these datasets from different countries results in
mathematical expressions written by many different writers using different
styles. Fig. 7.4 shows some samples of mathematical expressions from the
databases that compose the competition dataset. It should be noted that the
training set of the CROHME competition includes the MathBrush database
previously described.

Finally, CROHME 2014 introduced a novel task on recognizing handwrit-
ten math expressions containing matrices, which require specific treatment
due to more complex spatial relations and dimension restrictions. The or-
ganizers released 362 expressions for training and the test set comprised 175
expressions. Examples of this type of formulae are shown in Fig. 7.5.

“http://www.w3.org/TR/InkML/

90 FAM-DSIC-UPV

http://www.w3.org/TR/InkML/

’)C}r 3%;3/74«3“2
3()- o) 9(p) - g(a) 50

C~oa b-a

7w o0 " y—>teo 2"
2 ~ 2 RAK
5:(£@f (n-zwv Aok =
A=l A4

Figure 7.4: Examples of online handwritten mathematical expressions

from the CROHME 2013 competition dataset.

a-l,l b I + Q2 bz,l al;'b’ll ‘t‘ 0“1.,1\01,-;_

0_7_’[bl,l +a'111b2,[Cl.z,; bt,2+a2’z_b1,1

= = {2){A
:‘> /\ \O / + Y o ()(> 0 /\+(’\)(’5) Ao
th dr H’:L
el 9 T h
Ean) 2| ! . i gy W
7(*“—] \ O ‘ \:L"('“_‘) ‘éi.“__.[).- %E:‘!)

-]

\\

Figure 7.5: Examples of mathematical expressions for the matrix recog-

nition task of the CROHME 2014 competition.

7.2. Classification of Handwritten Symbols

7.2 Classification of Handwritten Symbols

In Section 3.3, dedicated to handwritten symbol classification, we described
several sets of features and different classifiers. We carried out several ex-
periments in order to assess the performance of the proposed features and
classifiers in this task.

In the following sections we report three main evaluations. First, a compar-
ison between HMM and RNN classifiers. Second, we assess the performance
of both online and offline features for symbol recognition, as well as their com-
bination. Finally, we compare our symbol classification methodology to other
proposed techniques.

7.2.1 Classifiers Evaluation: HMM and RNN

Two classifiers for sequence classification have been proposed for recognizing
handwritten mathematical symbols: HMMs and RNNs. We carried out some
experiments in order to compare the performance of both classifiers. To this
end, we also tested the recognition rate achieved using online features and the
hybrid extension, because context information is an important factor in this
evaluation.

For this experimentation we used the MathBrush dataset (Section 7.1.2).
Since it was released, some approaches have reported results using this dataset.
Therefore, in addition to comparing the performance of HMMs and RNNs, we
carried out the same experimentation described by Hu and Zanibbi [2011] in
order to obtain comparable results and validate our experiments. Thus, we
discarded six symbol classes (<,#, <, A, and ‘comma’) because they had
less than 50 samples in the train set, and the symbol ‘dot’. As a result,
93 different mathematical symbols were considered. For each class, we used
90% samples as the train set (22,305) and the remaining 10% as the test set
(2,531). Finally, we carried out 20 trials where the train and test sets were
chosen randomly, and symbol recognition results are stated as the mean and
the standard deviation computed across the trials.

Below we detail the experiments carried out with HMMs and RNNs for
mathematical symbol recognition. Results are presented and analyzed for
each classifier, and at the end of this section we discuss the differences in
performance of both classifiers.

FAM-DSIC-UPV 93

Chapter 7. Experimentation

Hidden Markov Models experimentation

Mathematical symbol classification was performed using HMM with different
number of Gaussian mixtures per state (Section 3.3.4). We used left-to-right
HMM with variable number of states s. per class ¢, computed as s. = I./k,
where [, is the average number of feature vectors per class in the train set, and
k is a design parameter that measures the average number of feature vectors
modelled per state (state load). This parameter was set to k = 6 and s, forced
to be in range [3, 15] through preliminary experimentation (or using previous
knowledge). The training process of the HMM was done by means of the
Baum-Welch algorithm [Baum, 1972]. This is a generative training procedure
that does not require a validation set.

The extension of the online features with offline information had several
parameters to be tuned. These parameters were tuned using one of the 20
trials, then the best values were set for the remaining experiments. First, each
sample was rendered to an image of fixed height A as described in Section 3.3.2.
Then, different context-window sizes w were tested, and for each size several
number of PCA dimensions d were also evaluated.

Figure 7.6 shows the results for hybrid features when tuning the parame-
ters. Image height h = 20 obtained the best results, because it provided a bet-
ter representation than smaller images and it also included more information
on each pixel than larger images (Figure 7.6 left). Regarding context-window
size (w) and PCA dimensions (d), the best results were provided by w = 15 for
both d = {8,14} (Figure 7.6 right), but smaller values were preferred to ob-
tain less complex models. Consequently, we finally selected the values h = 20,
w = 15 and d = 8 because they obtained the best results adding only 8 new
offline features per frame.

Figure 7.7 shows the HMM mathematical symbol classification results in
the trial used for tuning the parameters for both sets of features and differ-
ent number of Gaussian mixtures per state. Results showed that the hybrid
features greatly improved the symbol recognition rate with respect to online
features. Using 128 Gaussian mixtures and online features the average recog-
nition rate was 82.3% whereas hybrid features raised the recognition accuracy
up to 88.2%.

Recurrent Neural Networks experimentation

In order to make a fair comparison, we carried out several experiments with
RNN analogously to HMM experimentation. We used exactly the same train
and test sets and the same feature vectors.

94 FAM-DSIC-UPV

7.2. Classification of Handwritten Symbols

Symbol recognition rate

88.5 88.5
88 h=20, w=15
87.5 L+ |
h=12, w=15 ‘e i
87 | J
86.5 [1 865 h=20, W=19 =rssesn
e h=20, w=15 ——
o h=20, w=11 -
h=32, w=15 h=20, w=07
86 ‘ ‘ ‘ ‘ ‘ 86 ‘ : ‘ ‘
4 8 10 12 14 16 18 4 8 10 12 14 16

PCA dimensions

PCA dimensions

Figure 7.6: Hybrid features parameter tuning using HMM for differ-
ent image heights (h), context window sizes (w) and PCA dimensions.

Symbol recognition rate for one of the 20 trials.

90

Symbol Recognition Rate

76

74

72 L

hybrid ——
onling = x:

Number of Gaussians

8

16

64 128

Figure 7.7: HMM symbol recognition rate for different number of Gaus-

sian mixtures per state using both online features and hybrid features.
Results computed for one of the 20 trials.

FAM-DSIC-UPV

95

Chapter 7. Experimentation

The RNN had a BLSTM architecture (Section 3.3.4). The size of the
input layer was determined by the feature set: 7 for online features and 15 for
hybrid features. The output layer size was 93, the number of mathematical
symbol classes. Finally, the size of the forward and backward hidden layers was
tuned for one of the 20 trials and then that value was fixed for the remaining
experiments (Figure 7.8). In the final RNN configuration for both online
features and hybrid features, the forward and backward hidden layers each
contained 70 LSTM memory blocks.

()
T
o
=
2
.“é’
D
Q
o
()
i
°
Q
s
o 84 1
83 :. .
L hybrid —— |
82 | | | | ~ online «wn-
10 30 50 70 90 110 130 150

RNN Hidden Layer Size

Figure 7.8: RNN symbol recognition rate in one of the 20 trials for dif-
ferent hidden layers size using both online features and hybrid features.

Following [Graves et al., 2009], the network weights were initialized with
a Gaussian distribution of mean zero and standard deviation 0.1. The net-
work was trained using online gradient descent with a learning rate of 0.0001
and a momentum of 0.9. In order to use the same train and test set that
on HMM experimentation, we extracted a validation set from the train set
using the same criterion of 90%/10% samples per class. Then, the error rate
was recorded every 5 epochs on the validation set and training was stopped
when performance had ceased to improve on the validation set for 50 epochs.
Because of the random initialization, each experiment was repeated four times
and we calculated the average number of epochs to obtain the best network ac-
cording to the validation set. Finally, we trained the RNN during that number

96 FAM-DSIC-UPV

7.2. Classification of Handwritten Symbols

of epochs using the original train set.

We carried out 20 mathematical symbol classification experiments using
RNN as previously described, where each trial included four repetitions and
the average recognition rate was considered. Final results for RNN and HMM
classifiers using both online features and hybrid features are shown in Ta-
ble 7.1, where both top-1 and top-5 recognition rates are reported. The symbol
recognition rate achieved using online features by RNN clearly outperformed
HMM. The RNN results obtained with online features were even slightly bet-
ter than the HMM results with hybrid features. However, the hybrid features
in combination with RNN did not produce the great improvement observed in
HMM.

Table 7.1: Classification results with HMM and RNN classifiers and
two sets of features: online and hybrid.

Classifier Features Top-1 Top-5

HMM online 82.3+0.5 981+0.3
HMM hybrid 88.24+0.5 99.2+0.2
RNN online 89.3+04 99.2+0.2
RNN hybrid 89.4+0.3 99.3+0.2

Discussion

We followed the experimentation described in Hu and Zanibbi [2011] over
a large public database. In that work the best recognition rate among 20
trials was 82.9% using HMM and four online features. Thus, our results are
comparable since we obtained a 82.3% average recognition rate with HMM
and seven online features. Additionally, we tested two sets of features and two
different classifiers.

When using the online features, RNN outperformed HMM increasing the
symbol recognition rate from 82.3% up to 89.3%. This great improvement
comes mainly for two reasons. First, the RNN classifier learns using discrim-
inative training, whereas HMM learns through generative training. Discrim-
inative training usually obtains better results in classification tasks. More-
over, RNN take into account context information which is very important for
handwriting recognition, whereas HMM assume that frames are independently
observed.

FAM-DSIC-UPV 97

Chapter 7. Experimentation

Regarding hybrid features, they provided a great improvement in HMM
compared to using only online features, but recognition results barely differed
in RNN. In our opinion, HMM obtained such good results because the pro-
posed offline features included the context information on each point, such
that they helped to solve the lack of HMM regarding contextual modelling.
For that reason, despite hybrid features also added offline information of the
sample, RNN did not present differences with respect to the results obtained
with online features. The differences in performance between RNN and HMM
corroborate the findings from Graves et al. [2009].

In conclusion, RNN outperforms HMM in this handwritten math symbol
classification task. RNN are faster than HMM in classification, and using only
7 online features the RNN obtained top-1 recognition rate of 89.3% whereas
HMM obtained 82.3%. The hybrid features increased the HMM performance
up to 88.2% top-1 recognition rate, but still results were worse than those
of RNN. Furthermore, hybrid features required additional computation, and
15 features per frame results in more complex models. Contextual modelling
was the key factor provided by both hybrid features and RNN, as well as the
discriminative training used in this classifier.

7.2.2 Features Evaluation: Online and Offline

In this section we detail the experimentation carried out to assess the per-
formance of the different online and offline features proposed for handwritten
mathematical symbol classification. The symbol classifiers were BLSTM-RNN
because yield better results than HMM. We used the RNNLIB library [Graves,
2010] and the software for computing the different features are also available
(see Section 8.1.3).

Experimental setup

We used the dataset of the CROHME 2013 competition (see Section 7.1.2) for
the experimentation. Although this dataset only contains online handwritten
mathematical expressions, we can render the offline version of each symbol as
described in the hybrid features definition (see Section 3.3.2). In this case the
image height was set to H = 40 pixels.

In adition to the train and test sets of the CROHME 2013 competition,
we needed a validation set for tuning parameters of some features and also
for training the RNN classifier. Hence, we first extracted a validation set
by taking 10% of the samples of each class in the original train set, and the

98 FAM-DSIC-UPV

7.2. Classification of Handwritten Symbols

remaining 90% were used for training. This way we also kept proportionally
the distribution of the classes.

We used the same configuration of the RNN classifier for every experiment.
The size of the input layer was determined by the feature set and the output
layer size was 101, i.e. the number of symbol classes. The forward and back-
ward hidden layers each contained 100 LSTM memory blocks. The network
weights were initialized with a Gaussian distribution of mean zero and stan-
dard deviation 0.1. The network was trained using online gradient descent
with a learning rate of 0.0001 and a momentum of 0.9. This configuration has
obtained good results in handwritten text recognition [Graves et al., 2009] and
in previous experiments comparing HMMs and RNNs.

The experimentation was carried out in two steps. First, we trained the
network until the error had ceased to improve on the validation set for 50
epochs. As the RNN results depend on the random initialization, we per-
formed four experiments with the validation set in order to compute the aver-
age number of epochs e required to obtain the best network. Then, we trained
four RNNs using the full training set during é epochs. Finally, we classified
the test set with the RNNs trained with the full training set and the aver-
age recognition rate is reported along with the standard deviation computed
across the four experiments.

Results

Following we report the classification performance of every set of features
while recognizing the CROHME 2013 test set using RNN classifiers. The
online features do not need any parameter to be tuned, so we carried out
the experiment as previously defined. Regarding offline features, the PRHLT
features computed 60-dimensional vectors for each column of the rendered
images and the FKI features extracted 9 features per column. On the other
hand, RWTH and POLAR features had some parameters to be tuned. We
tried several sizes w of the sliding window in RWTH features. The polar
features radius was set to half the height of the image, in this case r = 20, and
we tested different values of circles (n) and arcs (m). We also tried different
number of dimensions for the PCA projection.

The parameters of the features in the final experiment were obtained ac-
cording to the error obtained with the validation set. The RWTH features
were extracted using a sliding window of width w = 5 pixels and projected
to 30 dimensions, whereas the POLAR features were computed with n = 5
circles, m = 12 arcs and also projected to 30 dimensions. This configuration
was also used with the vertical repositioning method of both sets of features.

FAM-DSIC-UPV 99

Chapter 7. Experimentation

Finally, given that we have computed both online and offline features, the
next natural step was to combine both classification results in order to ob-
tain better performance [Keshari and Watt, 2007]. We combined the posterior
probability of an RNN with online features and the posterior probability of
an RNN with offline features using linear interpolation and a weight parame-
ter ().

p(s | b)) = - pran(s | Fon(bi)) + (1 — @) - pran(s | Forr (b)) (7.2.1)

where the probability for one model is computed as defined in Eq. (3.3.2). We
set a = 0.5 for every combination.

The results are shown in Table 7.2 such that there are three sets of re-
sults: using online features, using offline features and their combination. We
report top-1, top-2 and top-5 recognition rates. Furthermore, there are several
classes that produce many classification errors because they have very similar
shape but different semantic [Hu and Zanibbi, 2013]. Therefore, we also com-
puted top-1 recognition rate where those similar classes were merged (TOPY).
The symbols merged in this error were: {1,|,/,comma}, {P,p}, {S,s}, {C,c},
{X,z, x}, {V,v} and {0,0}. It should be noted that we are dealing with the
handwritten version of these symbols.

Discussion

The experimentation summarized in Table 7.2 produced several interesting
results. First, although online data normally yields better results than offline
data [Plamondon and Srihari, 2000], we obtained higher recognition rate val-
ues with offline features than using online features. Results show that online
features obtained on test set a 82.5 top-1 recognition rate whereas PRHLT,
FKI and RWTH offline features improved up to 83.9, 84.1 and 83.4 respec-
tively. In our opinion, an important factor for these results could be that
the CROHME database comprises samples from many different writers and
datasets. This can cause that the online samples were more sensitive to the
writing style, whereas the image representation of the symbols could present
less variance.

Regarding the performance of the offline features, there are several results
to take into account. First, we can see that PRHLT, FKI and RWTH features
obtained the best results outperforming online features. On the other hand,
the proposed POLAR features provided a good performance although not as
good as the rest of offline features, even slightly worse than the online results.
It should be noted that this was an initial test of polar features for this task

100 FAM-DSIC-UPV

7.2. Classification of Handwritten Symbols

Table 7.2: Classification results with RNN classifiers and several sets
of features: online, offline and their combination.

Features | TOP, TOP, TOPs | TOP;

Online 82.5+0.3 923401 96.8+0.1 | 88.3+£0.2
PRHLT 83.9+04 934+02 97.6+0.1|89.9+04
FKI 841402 93.6+£0.1 97.8+0.1 | 90.3+£0.2
RWTH 834403 93.1+£0.2 97.5£0.0 | 89.6+0.3
RWTHvr 82.9+£02 922403 974+0.1 | 88.8+£0.2
POLAR 81.2+04 912403 96.7+0.1 | 87.2+0.3
POLARvr 80.8+£0.3 90.4£0.3 96440.1 | 86.6+£0.4
On. + PRHLT |87.1+£02 95.0+0.1 98.3+0.1 | 92.7£0.2
On. + FKI 86.8+0.4 953402 98.4+0.1|92.6+0.2
On. + RWTH | 86.7+0.3 94940.2 984+0.1 | 92.6+0.1
On. + RWTHvr | 86.5+£0.2 947402 98.4+0.1 | 92.3£0.0
On. + POLAR | 86.1£04 945402 98.2+0.1 | 91.9+0.1
On. + POLARvr | 86.0£0.2 942402 98.1+0.1 | 91.7+0.1

and better results could be obtained with more advanced configurations of the
shape descriptors [Su et al., 2013].

We would like to remark the results obtained by the FKI features because
they obtained the best results with only 9 features, while the rest of offline
features required 30 or 60 dimensions and more complex calculations. We
think that FKI features obtained such a good performance because the RNNs
can take advantage of context. Hence, it does not require features to include
context in their representation, like RWTH or POLAR, because the model
itself can manage it. Another result that may suggest this conclusion is that
the recognition rate of RWTH features in validation set worsened with wider
sliding windows.

With respect to the vertical repositioning method, this technique has really
improved the results in handwritten text recognition [Doetsch et al., 2012].
Nevertheless, in this task results did not present any improvement or they
were even slightly worse. Our intuition is that this could be caused due to
we are tackling the classification of isolated handwritten math symbols. This
means that each sample is already segmented, whereas in handwriting text
recognition the segmentation is a complex problem solved implicitly by the

FAM-DSIC-UPV 101

Chapter 7. Experimentation

model, like HMMs or RNNs [Graves et al., 2009].

The combination of the classification results of online features and offline
features led to significant improvements in the achieved recognition rate. We
combined the posterior probabilities of both results according to Eq. (7.2.1)
with @ = 0.5. Every combination between online and offline systems obtained
better error rates, with relative improvements up to 20%.

Finally, we could see that there is an important gap between top-1 and
top-2 results, and top-5 recognition rates are really high. This behaviour
shows that even though there is still room for improvement, the classifier
provides very good results. We expect that with integration of this classifier
in a mathematical expression recognition system, the contextual information
of the expression could help to solve many misclassifications. This can also be
seen according to the reported TOP] recognition rate, because the combined
classification achieved almost 93% recognition rate if those similar shaped
classes are not considered as errors. In addition to the classes detailed in TOP
computation, many errors were caused by very similar classes like: {5, s},

{t,+}, {comma,)}, {q,9} or {z,2}.

7.2.3 Comparison with other approaches

As a result of the previous experiments, we concluded that our best mathe-
matical symbol classifier was the combination of an RNN trained with online
features and an RNN trained with offline features (FKI). The CROHME 2014
competition included an isolated symbol recognition task. We participated
with our approach trained on the training set of the competition (Section 7.1.2)
and tuning the parameters using the test set of the previous edition (CROHME
2013). As every edition of CROHME, the contestants submited their systems
to the organizers and they classified the hidden test.

The task of symbol recognition had in turn two evaluations: the accuracy
of the classifier with respect to the true symbols, and the ability of the classifier
to accept true symbols while rejecting junk samples [Mouchere et al., 2014].
For the evaluation without junk class, we trained our classifier as previously
described. For the scenario with rejection option, the organizers provided
a tool for extracting junk samples from the training expression. The RNN
classifier learns the posterior probability of the training set, thus the amount
of training samples for each class affects the prior probability of each symbol
class. In this experimentation, we fed the RNN classifier with the same number
of samples of true symbols and junk samples.

Seven different systems participated in the competition (note that System
VII did not participate in this task):

102 FAM-DSIC-UPV

7.2. Classification of Handwritten Symbols

System I - Universitat Politecnica de Valéncia
This is the approach proposed in this thesis for online handwritten sym-
bol classification. A combination of two RNN classifiers: one RNN
trained with online features (7 per frame) and another RNN trained
with offline features (9 per frame).

System II - University of Sao Paulo
Julca-Aguilar et al. [2014] used a Multi Layer Perceptron (MLP) neural
network classifier with a combination of fuzzy shape context features
and online features.

System III - MyScript
This approach used a set of features that combines dynamic informa-
tion from the ink signal (position, direction and curvature), and static
information from a bitmap representation of the ink (projections and
histograms). The symbol classifier is an MLP neural network.

System IV - Rochester Institute of Technology, DPRL
The classifier proposed by Davila et al. [2014] used SVM with a Gaussian
Kernel and several sets of online and offline features: global features,
crossings features, fuzzy histograms of points and fuzzy histograms of
orientations.

System V - Rochester Institute of Technology, CIS
In this case, the authors used an SVM classifier and five features: pen-
up/down, the density in the center of a 3 x 3 matrix containing symbol
strokes, normalized y-coordinate, sine of curvature and cosine of vicinity
from slope [Liwicki and Bunke, 2009].

System VI - Tokyo University of Agriculture and Technology

This system normalizes each input symbol pattern with the Line Density
Projection Interpolation normalization method. Then a 512-dimensional
feature vector is extracted based on Normalization-Cooperated Gradient
Feature. The feature vector is reduced to 300 dimensions by FLDA. The
reduced vector is classified by a Generalized Learning Vector Quantiza-
tion classifier. For classifying invalid symbols more accurately, patterns
are clustered into 64 clusters by using the LBG algorithm for training.

System VIII - Athena Research and Innovation Center, ILSP
Simistira et al. [2008] developed a system based on a template elastic
matching distance such that the mathematical symbols were encoded us-
ing pen-direction features and the 8-level Freeman chain coding scheme.

FAM-DSIC-UPV 103

Chapter 7. Experimentation

The results of the competition are shown in Table 7.3, where the reported
metrics are top-1 recognition rate (TOP;) and true mean position (TMP).
The true mean position is the mean position of the correct label in the n-
best output of the classifier. In the evaluation with junk samples, the true
acceptance rate (TAR) and false acceptance rate (FAR) are also reported.

Table 7.3: Results of the isolated symbol recognition task of the
CROHME 2014 competition. System I is the approach developed in
this thesis.

Svstem 101 classes 101 classes + junk class
¥ TOP; TMP | TOP; TMP TAR FAR
I 91.24 1.20 no reject option

89.79 125 | 84.14 1.28 80.29 6.44
II 82.72 160 | 79.11 1.50 82.49 14.63
11 91.04 1.19 | 85.54 1.23 87.12 10.39
v 88.66 1.27 | 83.61 1.29 83.52 9.03
\Y 85.00 137 | 71.19 148 86.84 36.85

VI 84.31 1.53 no reject option
82.08 1.63 | 76.24 1.57 7798 16.47
VIII 77.25 1.68 no reject option

The proposal developed in this thesis (System I) obtained the best results
in the evaluation without rejection option (91.24%) and performed second-best
in the evaluation considering the junk class (84.14%). In this later scenario,
we obtained the lowest false acceptance rate (lower FAR is better) but also a
lower true acceptance rate than other systems (higher TAR is better). This is
directly related to the percentage of junk samples used for training. We could
balance the performance of the RNN classifier regarding this issue by selecting
different ratios of junk samples during the training process.

7.2.4 Summary

In this experimentation we have evaluated different options for classifying
handwritten mathematical symbols. We first compared the performance of
HMMs and BLSTM-RNNs, as well as two sets of features: online features and
hybrid features. RNN classifiers outperformed HMM in this symbol recogni-
tion task. The hybrid features significantly improved the recognition rate of

104 FAM-DSIC-UPV

7.2. Classification of Handwritten Symbols

HMMs but the accuracy of RNN barely differed. Contextual modelling was
the key factor provided by both hybrid features and RNN, as well as the dis-
criminative training procedure of RNNs compared to the generative training
of HMMs.

Later, we studied the performance of several sets of offline features for
handwritten math symbol classification. We tested different well-known fea-
tures, a novel set of features based on polar histograms and the vertical repo-
sitioning method. Results show that offline features provided better results
than online features, and their combination produced up to 20% relative im-
provement. FKI offline features presented the best performance due to they
obtained the best recognition rates using only 9 features. The vertical reposi-
tioning method did not improve results in this task.

Finally, we compared our approach based on the combination of an online
RNN and an offline RNN to other proposals. We reported the result of a recent
international competition [Mouchere et al., 2014] using a public dataset. Our
symbol classifier obtained the best performance in several metrics, showing
state-of-the-art competitive results.

FAM-DSIC-UPV 105

7.3. Classification of Printed Symbols

7.3 Classification of Printed Symbols

In Section 3.4, we described four different classifiers for printed mathematical
symbol recognition. Below, we report the experimentation carried out in order
to assess the performance of the different proposals.

7.3.1 Experimental setup

We performed experiments on two public datasets of printed mathematical
expressions (see Section 7.1). In both datasets, we discarded touching symbols
and only considered symbol classes that had at least four samples. First,
we used 2,076 mathematical symbols belonging to 84 classes of the UW-III
database. We randomly extracted 75% of the samples for training and the
remaining 25% samples for testing. As the UW-III is a small dataset, we
repeated this process 100 times. Second, we used the INFTY dataset which
contains roughly 157K symbols. Given the large size of this dataset, we limited
the maximum amount of training and test data to make the experimentation
more feasible. We composed four training sets of increasing size (5K, 10K, 20K,
50K) and one test set (5K). These training and test datasets were chosen at
random but keeping the actual distribution of symbols of the original dataset.
The total number of classes for the experimentation was 183.

Below we detail the configuration of the classification techniques described
in Section 3.4.3. For the k-NN classifier, we tested values of k = {1,3,5}
without using any technique of prototype removing. We initially divided the
set of prototypes into three categories based on the aspect ratio, thus we
greatly reduced the number of comparisons. A test sample was only compared
with the set of prototypes of its category. If we did not divide the set of
prototypes according to the aspect ratio, the classification error rate remained
the same.

The WNN classifier required tuning some parameters during the training
process. For this reason, we adjusted them using one of the 100 repetitions of
the UW-III experimentation and set those values to the remaining experiments
on both datasets. A public implementation of this classifier is available.¢

For the SVM classification, we used the SVM™##class 14614 with a linear
kernel, because Malon et al. [2008] reported better classification results with
linear kernel for printed math symbol recognition on the INFTY dataset. The
parameters were tuned on the UW-III as previously described for the WNN
classifier.

‘http://users.dsic.upv.es/~rparedes/research/CPW
dhttp://svmlight.joachims.org/svm_multiclass.html

FAM-DSIC-UPV 107

http://users.dsic.upv.es/~rparedes/research/CPW
http://svmlight.joachims.org/svm_multiclass.html

Chapter 7. Experimentation

Finally, for the HMM classification technique, we tested different number
of Gaussian distributions per state using the HTK toolkit.* The HMMs were
left-to-right models with different number of states for each symbol class, de-
pending on the average width of the image samples of each class. The number
of states ranged from 1 (e.g. vertical bar) to 15 (e.g. trigonometric functions
or square roots).

7.3.2 Results and Discussion

The experimental results on the UW-III dataset are shown in Table 7.4. We
can see that the best results were obtained by the SVM classifier. Regarding
the classification error with the A-NN classifier, it increased as k increased
because there were not enough “similar” prototypes to choose in classes with
few prototypes. We tested this hypothesis by removing the classes that had
less than 8 prototypes per class (column > 8 in Table 7.4), and 16 prototypes
per class (column > 16 in Table 7.4). Thus, we can see that the difference
in performance between 1-NN and 5-NN classifiers decreased from 3.26 with
more than 4 samples per class to 1.52 with more than 16 samples per class;
which is consistent with our hypothesis.

Table 7.4: Average classification error rate for the UW-III data set.

Number of samples per class

Classifier >4 >8 > 16
1-NN 6.34 £0.08 5.44+0.08 5.05+0.07
3-NN 8.27+0.09 6.71+£0.07 5.70£0.08
5-NN 9.60+0.08 7.78+0.07 6.57+0.09
WNN 5.88£0.07 5.23+0.08 5.02=+0.09
SVM 4.85+0.05 4.27+0.04 4.244+0.05

HMM 6.42+0.09 6.364+0.08 5.71+0.07

We also observed that the WNN classification technique was very com-
petitive, slightly improving the performance of the 1-NN classifier. HMMs
obtained good results, although worse than other classifiers. Sequential classi-
fication might be less convenient for this problem than recognition with global
representation because printed isolated math symbols are fairly regular.

°http://htk.eng.cam.ac.uk/

108

FAM-DSIC-UPV

http://htk.eng.cam.ac.uk/

7.3. Classification of Printed Symbols

On the other hand, Table 7.5 shows the results of the experimentation with
the INFTY dataset. In all cases, the results improved as the size of the training
set increased. The best result were obtained with SVM, but WNN obtained
analogous competitive results. In this case, as more samples were available,
the learning process of the WNN classifier produced a greater improvement
with respect to the 1-NN classifier.

The k-NN classification rule obtained similar values for different values of
k with a large amount of prototypes, given that more samples per class were
available in the training set. HMMs obtained competitive results with less
samples, but they did not improve as much as the other classifiers when the
training set increased.

Table 7.5: Classification error rate for the InftyCDB-1 data set.

#Training samples
Classifier 5K 10K 20K 50K

I-NN 6.3 45 43 33
3-NN 7.0 5.0 43 32
5-NN 79 55 44 35
WNN 48 35 34 28
SVM 45 34 3.0 26
HMM 48 39 38 38

In the four classification techniques, approximately 50% of the errors in-
volved classes overline, minus, fractional line, underline, and hyphen. These
symbols have almost the same shape, and they should be merged and distin-
guished by structural methods.

A classification error rate of 1.5% was reported on the INFTY database
by Suzuki et al. [2003]. However, it should be taken into account that they
classified entire printed expressions, thus symbol classification was helped with
structural information. Other printed math symbols classification techniques
are reported in Garain et al. [2004] on a different database. In that work, first
the symbols are confidently classified if some special primitives appear in the
mathematical symbol. This allows the system to classify 39% of the symbols,
obtaining an error rate of about 1.7%. For the remaining symbols, the best
obtained results after combining three classifiers was 6.2% error rate.

FAM-DSIC-UPV 109

Chapter 7. Experimentation

7.3.3 Summary

In this experimentation we have compared four classifier for printed math-
ematical symbol recognition. The k-NN classifier and SVM are well-know
models that had been used for this task. We also proposed and tested two
additional classifiers that had not been used in this field: WNN and HMMs.

The best results were obtained with SVM and WNN classifiers. Classic
k-NN are simple and provided good performance as the number of training
samples increased. Finally, HMMs obtained competitive results, although per-
formed worse than the other proposals. We concluded that, although HMMs
have been successfully used for handwritten text recognition, classifiers based
on global representation are more appropriate for this problem.

110 FAM-DSIC-UPV

7.4. Spatial Relationships Classification

7.4 Spatial Relationships Classification

In this section we evaluate the features proposed in Section 4.2 for spatial
relationship classification. We report results using the MathBrush dataset of
handwritten mathematical expressions (Section 7.1.2). This dataset contains
21,238 spatial relationships distributed in five classes: right (BC), below (B),
subscript (Bc), superscript (B) and inside (v/C). Each expression has explic-
itly annotated the spatial relationships between symbols and subexpressions.

We divided the dataset randomly into 10 partitions while keeping the dis-
tribution of spatial relations roughly uniform over the partitions. Then we
performen 10 experiments such that the training set contained 80% of the
samples for each class, and the remaining 20% comprised the test set. We
used an SVM classifier with a Gaussian kernel in our experiments. In order to
tune the parameters for training the SVM classifier or to select the parameters
of the shape-based features, we also divided the training set (80%) into 70%
for training and 10% for a validation set. That split also kept the distribution
of the classes, and the best parameters in the validation set were used to finally
train the SVM with the complete training set. The error was computed using
the test set and averaged for each one of the experiments.

7.4.1 Geometric Feature Results

We performed several experiments to test the geometric features previously
described in Section 4.2.1. First, we computed the classification error such
that the normalization factor F' is equal to the height of the parent region B
(GEOj). Then, we classified the spatial relations using another normalization
factor, the distance between the center of the bounding boxes (GEO2). Fi-
nally, we normalized the features by the height of the region resulting after
combining regions B and C' (GEOj3). Moreover, we also extracted the geo-
metric features GEO2 and GEO3 without using the information about symbol
categories (ascendant, descendant, normal, middle) in order to measure the
influence of this decision.

The results in Table 7.6 show that the normalizations by center point
distance (GEO2) and combined height (GEO3) provided the best results. The
normalization factor by the height of the parent region (GEO;) performed
worse, increasing the mean classification error rate from 2.83% to 3.62%. This
is because short symbols (e.g. a fraction line) could lead to poor normalization
in GEO1. The results also show that error improves when computing a vertical
centroid based on symbol typographic categories.

FAM-DSIC-UPV 111

Chapter 7. Experimentation

Table 7.6: MathBrush spatial relationship classification results. For
each feature the number of features (#) and whether typographic symbol
classes are used (Cat.) are shown.

Feature #Features Cat. % Error (1% 0)
GEO5: F = height(BUC) 9 No 3.55 + 0.20
GEOQy: F = dist(centers) 9 No 3.48 +0.39
GEOg3: F = height(BUC) 9 Yes 2.83+£0.21
GEO;: F' = dist(centers) 9 Yes 2.84+0.16
GEO;: F = height(B) 9 Yes 3.62 +0.34
SHP: n=15,m =20 35 No 3.34+£0.21
GEO; + SHP 44 Yes 2.70£0.29

7.4.2 Shape-Based Feature Results

The polar histogram-based descriptor presented in Section 4.2.2 has param-
eters that need tuning, specifically the number of circles n and angles m,
and the number of principal components d to project. We performed a grid
search for several sizes of the descriptor (n = {3,5,10,15,20} and m =
{8,12, 16, 20, 24,28, 32}), and for each size, different numbers of principal com-
ponents were also tested (variance explained from 10% to 90% in increments
of 10%). We used one of the 10 partitions extracted from the experimentation
to tune these parameters (see Figure 7.9).

We chose n = 15, m = 20 and d = 35 (50% of total variance) as the pa-
rameters to perform the experiments for the shape-based geometric features
(SHP). For small grid sizes, results were best when high percentage of vari-
ance were accounted for in the PCA dimensions (70%-90%). However, as the
grid size increased the variance in bin counts also increased, with the best
results being obtained when keeping components covering roughly 50% of the
variance. The polar histogram features obtained a mean classification error of
3.34% (Table 7.6), without including symbol typographic classes; this is com-
parable to the accuracy obtained using the geometric features without symbol
typographic classes, where best error was 3.48%.

We tried adding to the shape-based descriptor the information about sym-
bols categories in the relation by displacing the centroids G4 or G following
the methodology described in Section 4.2.1. However, this led to weaker results
in this representation.

112 FAM-DSIC-UPV

7.4. Spatial Relationships Classification

Error (%)

8 12 16 20 24 28 32
#Angles (m)

Figure 7.9: Fitting polar histogram parameters. Error for the best
PCA dimension set for each m (angles) x n (circles) histogram is shown.

Given the good results for both feature types, which use quite different
representations, a natural next step was to merge them. This combination led
to small improvements in mean classification error to 2.7% (see Table 7.6).
This is unlikely to be significantly different from the GEOs result, due to the
larger standard deviation (0.29% vs. 0.16%).

7.4.3 Discussion

Table 7.7 shows the accumulated confusion matrix for one of the geometric
features experimentation. As expected, most errors are produced in the classi-
fication of Right, Subscript and Superscript relationships, whereas Below and
Inside relationships have few errors.

The SVM classifier is influenced by the prior probabilities of the classes in
the training data (Right: 68.9%, Subscript: 5.9%, Superscript: 9.0%, Below:
12.1%, Inside: 4.1%). The Right relationship represents about 69% of the
samples, and its recognition error was very low. The Superscript relation
had a 6.3% error, but it is the Subscript relation that is most challenging,
with more than 20% error: the Right/Subscript confusion is by far the most
frequent.

Table 7.8 shows the confusion matrix for the shape-based features. The
classification errors follow a very similar distribution. Errors in Subscript and

FAM-DSIC-UPV 113

Chapter 7. Experimentation

Superscript relations are slightly higher, as well as for Inside. The error rate
for Below relationships in ground-truth is lower, but the classifier has more
false positives for the Below relationship.

The polar histogram descriptor obtained results comparable to the geo-
metric features when no symbol information is used, but was outperformed
by the geometric features when typographic classes are used to move vertical
centroids. One possible direction for future work is to try and incorporate

Table 7.7: Confusion matrix for geometric features (GEO3) accumu-
lated for 10 classification experiments. Ground-truth labels are shown
along the rows (FN: false negative rate, FP: false positive rate).

GEO; Output
GT | Right Sub Sup Below Inside | FN
Right | 28888 196 149 7 8| 1.2%
Sub 498 1993 25 2 | 20.8%
Sup 239 3597 2 6.3%
Below 18 42 4 5083 9| 1.4%
Inside 9 1707 | 0.5%

FP | 26% 10.6% 41% 0.7% 11% |

Table 7.8: Confusion matrix for shape descriptors (SHP) accumulated
for 10 classification experiments. Ground-truth labels are shown along
the rows (FN: false negative rate, FP: false positive rate).

SHP Output
GT | Right Sub Sup Below Inside | FN
Right | 28863 251 130 4 1.3%
Sub 581 1912 25 24.1%
Sup 322 3514 2 8.4%
Below 17 23 2 5114 0.8%
Inside 37 4 22 1653 | 3.7%

FP | 32% 127% 3.8% 1.0% 0% |

114 FAM-DSIC-UPV

7.4. Spatial Relationships Classification

this information into the shape descriptor, in order to take advantage of the
categories information.

From the results, the proposed descriptors are not sufficient on their own
for spatial relationship classification. Language models may be needed to dis-
tinguish cases where the geometric conditions represent different relations de-
pending on the symbols involved (e.g. the right relation ‘Pz’ vs. the subscript
relation ‘p,’).

However, there are opportunities to improve our descriptors, for example
using continuous values for the bins in our polar histograms. For both feature
types presented, it would be good to find better ways to identify the writing
line, middle line (e.g. top of a lower-case ‘x’), or a point between these in
order to better handle the most common confusions (Right vs. Subscript or
Superscript).

7.4.4 Summary

In this section we dealt with the classification of spatial relations between
handwritten mathematical symbols and subexpressions. We presented a set
of geometric features and a novel set of shape-based features. We tested dif-
ferent normalization factors for the geometric features, as well as modified
the features using information about typographic categories. The histogram-
based shape feature provides comparable results to geometric features when
no information about symbol typographic categories (e.g. ascender) is used.
The combination of both sets of features led to a small improvement in accu-
racy. Due to the higher computational cost of shape-based features and the
obtained results, within this configuration, geometric features represent a best
option for spatial relationship classification.

In future work, we will consider including symbol typographic classes into
the shape-based feature representation. Also, it might be interesting to con-
sider adding a rejection class, to detect when two subexpressions are unrelated.
Finally, these features can be applied to printed expressions and compared
with earlier work [Aly et al., 2009].

FAM-DSIC-UPV 115

7.5. Recognition of Handwritten Math Expressions

7.5 Recognition of Handwritten Math Expressions

In this thesis we have proposed an integrated model for recognizing mathemat-
ical expressions. We have evaluated features and classifiers for math symbols
and spatial relationships. Below we assess the performance at expression level
of the proposed approach for online handwritten mathematical expressions.

7.5.1 Experimental Setup

As discussed in Chapter 6, several issues have to be taken into account for
reporting experimental results in mathematical expression recognition. For
this reason, we used the public database of the last CROHME competitions
(Section 7.1.2) and the results are reported using the set of metrics based
on label graphs (Section 6.2.4). Furthermore, we developed seshat,! an open-
source system that implements the parsing algorithm of the approach proposed
in this thesis for online handwritten mathematical expressions (Chapter 5).

The symbol classifier implemented in seshat is the linear combination of
RNNs with online and offline features, which provided the best results in hand-
written symbol classification (Section 7.2). Spatial relationships classification
was performed using geometric features and symbol categories (Section 4.2).
The combination with shape-based features is not used because it would re-
quire more computation and the improvements were not significant. The re-
maining configuration of the parsing algorithm is described throughout this
document: the symbol duration model (Section 3.1), the symbol segmentation
model (Section 3.2) and the probabilistic grammar (Section 4.4).

7.5.2 CROHME 2013 Experiments

In order to provide comparable results we report experimentation using the
datasets of the CROHME 2013 competition. As described in Section 5.4, we
need a validation set for training the system. For this reason, we extracted
500 math expressions from the training set of the CROHME competition, such
that both sets had the same distribution of symbols. Therefore, the sets used
in the experimentation described in this section were a training set made up
of 8,336 expressions and a validation set with 500 expressions.

After training all the models and parameters (see Section 5.4), we clas-
sified the 671 online math expressions of the test set of the CROHME 2013
competition. Kight systems participated, including a preliminary version of
this model (system IV). All but two of the systems used only the competition

fhttps://github.com/falvaro/seshat (more details in Section 8.1.2).

FAM-DSIC-UPV 117

https://github.com/falvaro/seshat

Chapter 7. Experimentation

training set (8,836 math expressions). System III also used 468 additional
math expressions, and System VII was trained using roughly 30,000 math
expressions from a private corpus.

Table 7.9 shows the performance metrics at symbol level, and Table 7.10
shows results at stroke level. Results show that system VII performed the
best, obtaining very good results. It was awarded the strongest system in the
competition. However, as they used a large private dataset we were not able to
fairly compare its performance to that of the other systems. System IV was a
preliminary version of seshat and was awarded the best system trained using
only the CROHME training dataset. The main differences between System IV
and seshat are as follows: System IV only had the online RNN classifier and
seshat combines it with an offline classifier; seshat uses wvisibility between
strokes and a clustering-based penalty; and the probabilities of the grammar
were not estimated in System IV.

The approach proposed in this thesis outperformed at all levels the other
systems that were trained using the CROHME dataset. At symbol level,
symbol classification of correctly segmented symbols of seshat obtained recall
and precision of 82.2% and 81.0%, while the next best system (system VIII)
obtained 73.8 and 71.0%. The absolute difference was more than 8% in recall
and 10% in precision. Regarding spatial relationships, recall and precision for
seshat stood at 88% and 82%, while System VIII gave 73% and 77.7%. This
translates into an absolute difference of 15% in recall and 4.3% in precision.
Results at stroke-level were also better than those of the systems trained only
using the CROHME dataset. The systems were ranked according to the global
error metric AF, where seshat had 13.2%, some 6.1% less than next best
system (19.3%).

In addition to the experimentation comparing our proposed model to other
systems, it is interesting to see how each of the stochastic sources contribute to
overall system performance. For this reason we also carried out an experiment
to observe this behaviour. Some models are mandatory for recognizing math
expressions: the symbol classifier, the spatial relationships classifier and the
grammar. We performed an experiment using only these models (base system),
then adding the remaining models one by one. Also, the grammar initially
had equiprobable productions and then we compared the performance when
the probabilities of the rules were estimated. The order of introduction of
the different sources was determined such that we first added the sources
for symbol recognition and later the sources for the structural analysis of
the mathematical expression. Also, seeking to avoid that the contribution to
system performance of each source was hidden by other source.

118 FAM-DSIC-UPV

7.5. Recognition of Handwritten Math Expressions

Table 7.9: Object-level evaluation for the CROHME 2013 test set.
Systems sorted by decreasing recall for correct symbol segmentation and
classification (Seg+Class). It should be noticed that System IV is a
preliminary version of seshat.

Segments Seg+Class | DAG Relations
Rec. Prec. | Rec. Prec. | Rec. Prec.

VII 979 98.1 | 93.0 933 | 95.2 95.5
seshat | 92.0 90.7 | 82.2 81.0 | 88.0 82.0
v+ 8.0 87.1 | 739 758 | 76.3 79.9
VIII 90.3 86.9 | 73.8 71.0 | 73.0 70T
\% 84.5 86.5 | 66.7 68.3 | 72.6 74.3

II 80.7 86.4 | 664 71.1 | 45.8 63.0
II1 85.2 779 | 626 57.3 | 885 78.3
VI 07.9 473 | 47.7 39.0 | 31.8 70.0

I 46.9 384 | 25.2 20.6 | 33.7 71.6

Table 7.10: Stroke-level evaluation for the CROHME 2013 test set.
Systems sorted by increasing AE. AB, and AFE are measured on di-
rected labels graphs (8548 strokes; 81007 (undirected) stroke pairs). It
should be noticed that System IV is a preliminary version of seshat.

Label Hamming Distances w error (%)

Strokes ‘ Pairs Seg Rel | AB, AFE

VII 537 | 177rr 170 1607 2.4 4.3
seshat 1583 | 7829 700 7129 6.9 13.2
Iv* 2187 | 9493 1201 8292 | 10.1 18.3
VIII 2302 | 15644 4945 10699 | 12.1 19.3
II 2748 | 19768 1527 18241 | 13.9 22.0
A% 2898 | 10803 1228 9575 | 12.7 228
111 3415 | 15135 1262 13873 | 15.0 26.2
VI 4768 | 43893 5094 38799 | 27.6 36.7
I 6543 | 41295 5849 35446 | 26.8 41.6

FAM-DSIC-UPV 119

Chapter 7. Experimentation

Tables 7.11 and 7.12 show the changes on system performance when each
source of information is added. Global error metrics AB, and AFE consis-
tently decreased with each added feature. Symbol segmentation and symbol
recognition also improved with each addition. It is interesting that, when
no segmentation model was used, symbol segmentation still gave good results.
This was the case because the parameters of the integrated approach converged
to high values of the insertion penalty and low values of the segmentation dis-
tance threshold. In this way, the parameters of the system itself could alleviate
the lack of a segmentation model. In any case, when the segmentation model
was included, system performance greatly improved. Furthermore, we would
like to remark that, when the relations penalty was included in the model, the
number of hypotheses explored was reduced by 56.7%.

The structural analysis is harder to evaluate than symbol recognition.
Prior to estimating the grammar probabilities, the results at object level seem
to worsen when the segmentation model was included, although at stroke-level
the errors in spatial relationships decreased from about 11,000 to 9, 500 stroke
pairs. Because of the inheritance of spatial relations in label graphs Zanibbi
et al. [2011], some types of structural errors can produce more stroke-pair
errors than others Zanibbi et al. [2013]. Specifically, when the segmentation
model was used, the segmentation distance threshold was approximately twice
as high as the value of the threshold in the base system. This had two effects.
First, that the system was able to account for more symbol segmentations, as
shown by the corresponding metrics. Second, that a bad decision in symbol
segmentation can lead to worse structural errors. Nevertheless, the estima-
tion of the probabilities of the grammar led to great improvements in the
detection of the structure of the expression with barely any changes in symbol
recognition performance.

120 FAM-DSIC-UPV

7.5. Recognition of Handwritten Math Expressions

Table 7.11: Contribution to overall system performance at object level
of the different sources of information used. The models and features
listed in each row are cumulative, such that the system shown in the last
row includes all information sources.

Segments Seg+Class Relations
Rec. Prec. | Rec. Prec. | Rec. Prec.

Base system 87.6 83.6 | 783 747 | 87.0 75.0
+ duration model 88.0 84.2 | 787 753 | 86.2 75.5
+ segmentation model | 90.9 904 | 81.3 808 | 81.5 73.7
+ relations penalty 91.8 91.3 | 82.0 81.5 | 814 74.0

+ grammar estimation | 92.0 90.7 | 82.2 81.0 | 88.0 82.0

Table 7.12: Contribution to overall system performance at stroke level
of the different sources of information used. The models and features
listed in each row are cumulative, such that the system shown in the last
row includes all information sources.

Label Hamming Distances w error (%)

Strokes Pairs Seg Rel | AB, AFE

Base system 1987 11999 1172 10827 | 9.1 16.5
+ duration model 1928 12055 1138 10917 | 9.0 158
+ segmentation model 1634 10272 834 9438 | 7.6 13.7
+ relations penalty 1556 10397 724 9673 | 7.5 13.2
+ grammar estimation | 1583 7829 700 7129 | 6.9 13.2

FAM-DSIC-UPV 121

Chapter 7. Experimentation

7.5.3 CROHME 2014 Experiments

The last two editions of the CROHME competition share the same training
set (Section 7.1.2). In previous section we performed a detailed experimenta-
tion using the test set of the CROHME 2013 competition in order to evaluate
the approach developed in this thesis and the diferent statistical models pro-
posed. Afterwards, once our approach has been validated, we participated
in CROHME 2014 competition [Mouchere et al., 2014]. Below we detail our
participation and analyze the results.

We trained seshat using the train set of the CROHME competition (8, 836
math expressions) and for validation we used the test set of the previous
CROHME 2013 competition (671 math expressions). This way we could use
the entire train set for estimating the different models required for the recog-
nition system.

Seven systems participated in mathematical expression recognition task
of the CROHME 2014 competition. Six of them had already participated in
previous edition. All the systems were trained using only the train data of
the competition, except for System III that was trained on a private corpus
collected from writers in several countries.

The results of the math expression task of the competition at object level
are shown in Table 7.13 and results at stroke level are shown in Table 7.14.
System III was System VII in CROHME 2013 competition, and again they
obtained the best results and it was awarded the best system of the CROHME
2014 competition. Unfortunately, as they use private data for training the
comparison cannot be done under the same conditions. Our proposal, seshat,
obtained the best results among the remaining systems and it was awarded the
best system using only the CROHME dataset. At object level, seshat symbol
recognition results (correctly segmented and classified) obtained 8% higher
recall and 7% higher precision than next best performance (recall of System V
and precision of System IV). The structural evaluation at object-level shows
that our approach had more than 12% higher recall and 7% higher precision
than next best results (recall of System VII and precision of System VI).
Finally, at stroke level, seshat also outperformed the systems trained using
only the training set of the competition. The values of the global performance
error metrics AB,, and AE (see Section 6.2.4) for seshat were 6.2% and 12%,
respectively. System VII obtained the next best results with 9.4% and 17.7%,
such that our system had 3.2% lower AB,, error and 5.7% lower AE error.

In addition to the mathematical expression recognition task, two additional
tasks were proposed in CROHME 2014 competition. First, an isolated symbol
recognition task whose results have been reported in Section 7.2.3. Second, a

122 FAM-DSIC-UPV

7.5. Recognition of Handwritten Math Expressions

Table 7.13: Object-level evaluation for the CROHME 2014 test set.
Systems sorted by decreasing recall for correct symbol segmentation and

classification (Seg+Class).

Segments Seg+Class | DAG Relations
Rec. Prec. | Rec. Prec. | Rec. Prec.
11 98.4 98.1 | 93.9 93.6 | 94.3 94.0
I-seshat | 93.3 90.7 | 86.6 84.2 | 84.2 82.0
Vv 88.2 84.2 | 785 749 | 614 72.7
v 85.5 86.1 | 76.6 77.2 | 70.8 71.5
VII 89.4 86.1 | 76.5 73.7 | 71.8 71.7
VI 83.1 854 | 69.7 71.7 | 66.8 74.8
IT 76.6 80.3 | 67.0 70.2 | 60.3 63.7

Table 7.14: Stroke-level evaluation for the CROHME 2014 test set.
Systems sorted by increasing AE. AB, and AFE are measured on di-
rected labels graphs (13796 strokes; 288660 (undirected) stroke pairs).

Label Hamming Distances w error (%)

Strokes ‘ Pairs Seg Rel | AB, AFE

IIT 845 2489 836 1653 2.2 4.6
I-seshat | 2026 7174 2540 4634 6.2 12.0
VII 3558 11795 4388 7407 94 177
A% 2742 13477 4386 9091 | 10.3 18.2

v 3406 12768 5328 5328 | 10.0 19.2
VI 4039 13325 5670 7655 | 10.1 194

1I 4523 17449 7772 9677 | 14.4 25.8

FAM-DSIC-UPV

123

Chapter 7. Experimentation

new task dealing with the recognition of matrices, a domain that can be con-
sidered as math expressions with nested subexpressions arranged in a tabular
layout (rows and columns). The organizers provided a training set composed
of 256 online mathematical expressions containing 362 matrices. They also
provided an extended version of the label graph evaluation metrics that take
into account matrix structures. The test set had 122 expressions containing
175 handwritten matrices.

Although there were eight participants in the competition, only two of
them submited a system for matrix recognition: System III and our system (I).
System III used the same system than the trained for the expression recog-
nition task with a specific post-processing to retrieve the rows and columns.
We also used the system trained for the expression recognition taks with the
following considerations in order to account for matrices. First, the number of
rows and colummns must match when combining hypotheses in order to create
a matrix. Second, the spatial relationships between rows or columns take into
account the differences between the centers of each row/column. Specifically,
when two columns are combined, feature ‘D’ is averaged for each pair of row
centers; and when two rows are combined, feature ‘dhc’ is averaged for each
pair of column centers (features are shown in Fig. 4.1). Finally, the grammar
was extended with productions in order to account for matrices.

Table 7.15 shows the results of the matrix recognition task of the CROHME
2014 competition. System III obtained significantly better results in all met-
rics, where only symbol recognition rate obtained similar results. Comparison
has to take into account that System III was not trained with the data of
the competition. Results of both systems show that mathematical expression
recognition is harded when matrices are considered, given that the perfor-
mance metrics are lower in this task. As the CROHME organizers pointed
out, there is a great difference in the detection of columns with respect to row
detection. This is because sometimes is difficult to decide when a horizontal
concatenation of symbols represent a subexpression or it has to be split into
different columns.

Although this was our first approach to this task and it would require
further research, this experimentation validated the model developed in this
thesis also for matrix recognition. Furthermore, despite the general experi-
mentation has been carried out in the domain of the expressions considered
in the CROHME datasets, this extension for recognizing complex structures
like matrices proves that the formal framework developed in this thesis can be
extended to account for other structures of math notation.

124 FAM-DSIC-UPV

7.5. Recognition of Handwritten Math Expressions

Table 7.15: Results of the matrix recognition task of the CROHME
2014 competition.

System I (seshat) System III

Expression Rate 31.2 53.3
Symbol Recognition Rate 87.4 89.8
Matrix Recall Rate 73.1 92.6
Row Recall Rate 70.6 92.0
Column Recall Rate 50.8 69.2
Cell Recall Rate 55.4 71.1

7.5.4 Summary

The experimentation reported in this section validates the approach presented
in this thesis for online handwritten mathematical expression recognition. We
developed the software that implements the proposed system and released it
as open-source. Furthermore, we report results using standar performance
metrics and the large public dataset used in the CROHME international com-
petition. In this way, we provide comparable results in order to help the
progress in this research domain.

A detailed discussion of system performance and the contribution of each
part of the model is also provided. The system implemeting our approach
outperforms other approaches at all levels. It was awarded best system using
only the training dataset of the last two CROHME competitions [Mouchere
et al., 2013, 2014].

FAM-DSIC-UPV 125

7.6. Recognition of Printed Math Expressions

7.6 Recognition of Printed Math Expressions

The approach and the statistical framework presented in this thesis is able to
account for any type of mathematical expression. Although most of the effort
has been done on online handwritten mathematical expressions, we wanted
to validate the application of this model to offline printed math expression
recognition. Consequently, below we report an experiment to validate the
proposed approach for recognizing printed math expressions.

7.6.1 Experimental Setup

As discussed along this document, the main difference for recognizing online or
offline mathematical expressions are the primitives of each type of expression.
The input sequence of observations o is a sequence of strokes in online recog-
nition, and an enumeration of connected components (in any order) in offline
recognition. However, there is a main obstacle for applying this approach to
offline recognition: the ground-truth information.

In this experiment we used the INFTY database (Section 7.1.1), a public
large resource for printed math expression recognition. This dataset has many
ground-truth information at several levels, but the symbols are annotated with
their bounding box coordinates. Although these coordinates can precisely
locate a symbol within an image, in several cases the region of the symbol
can contain parts of other symbols (see Fig. 7.10). Therefore, as our models
require connected components as primitives, the ground-truth of the INFTY
dataset has to be processed in order to obtain the information at that level.

Figure 7.10: Examples of problems with the INFTY ground-truth in-
formation in order to isolate the connected components from the bound-
ing box coordinates.

FAM-DSIC-UPV 127

Chapter 7. Experimentation

Extracting the connected components for each symbol given its bounding
box is not straightforward. One option would be to take into account the
bounding box of all the symbols within an expression, and obtain the best
mapping from symbols to components. Another local method would be using
some heuristics, e.g. detecting the larger component in the region. But these
methods are error-prone because there are touching symbols, some samples
might be split in several components (and small components should not be
removed), square roots can contain large symbols, etc. In the end, manual
supervision is required in order to guarantee that ground-truth at connected
component level is correctly obtained in all cases. When we performed the
printed recognition experiment reported in Section 7.3, we discarded touching
symbols, and we used local heuristics with manual supervision in order to label
the samples of symbols for the experimentation.

Another problem derived from the annotation using bounding boxes, is
that we cannot use the label graph performance evaluation metrics (Sec-
tion 6.2.4). The tools for computing these metrics work at stroke level, al-
though Zanibbi et al. [2011] defined the metrics at primitive level such that
other primitives could be used (e.g. pixels or connected components). Again,
we would need the ground-truth at connected component level in order to
generate label graphs from annotated data, and tools that work with this type
of offline data.

Even though the INFTY database (Section 7.1.1) was released several years
ago, comparison of different approaches for printed recognition is difficult due
to the problems of performance evaluation in this field (Chapter 6) and because
there are no standard train and test set partitions. We randomly selected 3K
math expressions from the INFTY database as a test set. The remaining
expressions were used for training the system, except for 500 expressions that
were extracted at random for validation. We modified seshat (Section 8.1.2)
to make it able to process offline expressions. Only two changes are necessary:
the system has to read images and compute connected components; and the
symbol classifier and feature extraction has to be specific for printed symbols.

Below we present a pilot experiment of printed mathematical expression
recognition. The goal of this study is to validate our approach in this scenario,
but further experimentation should be carried out with the required ground-
truth information and evaluation tools. The configuration of the seshat sys-
tem adapted for printed recognition was the following. The symbol recognizer
was a simple nearest neighbor classifier as described in the experiment of Sec-
tion 7.3. This classifier does not need to be trained and presented a good
performance for this task. The symbol duration model was obtained from the

128 FAM-DSIC-UPV

7.6. Recognition of Printed Math Expressions

number of connected components of the train symbol samples. The segmenta-
tion model and the spatial relationship classifier estimated from the CROHME
train set were directly used in this pilot experiment. Finally, we manually
defined a 2D-PCFG that accounted for the 183 mathematical symbols consid-
ered, and the structures of the expressions that appear in the INFTY database.
The productions of the grammar were equiprobable.

7.6.2 Results and Discussion

In this section we present the results of the pilot experiment of printed math-
ematical expression recognition. The performance evaluation at symbol level
was computed such that, if the bounding box coordinates of the recognized
symbol match the ground-truth coordinates, it is properly segmented. If the
symbol class of the properly segmented symbol is also correct, then the symbol
is correctly segmented and classified. We tuned the parameters of the parsing
algorithm maximizing the rate of symbols correctly segmented and classified
when recognizing the validation set. Finally, we classified the test set with
this system and the obtained results are reported in Table 7.16.

Table 7.16: Recognition results at different levels of 3K printed math-
ematical expressions from the INFTY dataset.

Symbol Segmentation Rate ~ 97.8%
Symbol Seg. + Classification 92.9%
Expression Recognition Rate 45.0%

IMEGE mean 12.4%
EMERS mean 2.3

Symbol segmentation and symbol recognition results obtained a very good
performance, because printed expressions are more regular than handwritten
expressions, and printed symbol classifiers provide a lower recognition error
than handwritten symbol classifiers.

On the other hand, as we could not compute label graphs error metrics,
we reported two proposals for global evaluation. IMEGE is an image-based
global error metric described in Section 6.2.3, and EMERS is an edit distance
between trees described in Section 6.2.2. We report the mean values of the
global metrics, and also the histograms of the recognition errors of the samples
in the test set (Fig. 7.11) because the distribution of the errors is not normal.

FAM-DSIC-UPV 129

Chapter 7. Experimentation

Analyzing the histogram of the errors we can see that both metrics present
a very similar distribution, although the range is different because IMEGE is
a normalized error while EMERS is an edit distance. The EMERS values
represent the edit distance between the recognition result and the ground-
truth, thus we can see how most of the samples have few errors and the number
of expressions requiring many edit operations is very low. Regarding IMEGE,
as it is a normalized error metric, the distribution is slightly different. We can
see how either expressions are perfectly recognized (zero error) or most of the
global errors are in the range 10% — 30%. It seems reasonable, since a small
global error would require few errors in large expressions.

0.5 0.5

Frequency

0 2 4 6 8 10 12 0 10 20 30 40 50 60
EMERS IMEGE

Figure 7.11: Histogram of error metrics of the expressions in the test
set for the printed mathematical expression recognition experiment.

In Chapter 6 we presented a discussion about problems in performance
evaluation. Omne of the main problems was measuring structural and global
errors due to representation ambiguity. In this experimentation we reported
two global metrics, and both metrics reported practically the same number of
expressions with no error. The IMEGE metric dealt with ambiguity because
it is based on the image representation computed from the KTEX strings.
On the other hand, EMERS computes a tree edit distance, but we obtained
the MathML trees from the IXTEX strings and most of the ambiguities were
removed [Sain et al., 2010].

130 FAM-DSIC-UPV

7.6. Recognition of Printed Math Expressions

We report the expression recognition rate as the percentage of expressions
with IMEGE error equals to zero (equivalent to EMERS equals to zero). There
were only 5 expressions out of 3000 of the test set that had IMEGE equals to
zero but EMERS greater than zero. In all these cases, the IATRX expressions
contained subscript or superscript relationships with different bracketed base
of the relation. The IMEGE graphic representation was equivalent but the
generated trees were different, producing that EMERS reports the expressions
as incorrect (see Fig. 7.12).

‘ Recognition ‘ Ground-truth
BTEX ‘ P {(C x)} {s} ‘ P(x)~{s}
Render ‘ P(z)® P(z)*
<mathml> <mathml>
<mrow> <mrow>
<mi>P</mi> <mi>P</mi>
<msup> <mo> (</mo>
<mrow> <mi>x</mi>
<mo> (</mo> <msup>
MathML <mi>x</mi> <mo>)</mo>
<mo>)</mo> <mi>s</mi>
</mrow> </msup>
<mi>s</mi> </mrow>
</msup> </mathml>
</mrow>
</mathml>
Error | IMEGE =0; EMERS =2.5

Figure 7.12: Example of evaluation difference between EMERS and
IMEGE due to representation ambiguity.

7.6.3 Summary

Mathematical notation is well-defined, independently of the type of expression
considered for automatic recognition: printed or handwritten, online or offline.
The approach and statistical framework developed in this thesis, with specific
treatment for symbol recognition, have proven to recognize printed mathemat-
ical expressions. In this section, we reported a pilot experiment that validates

FAM-DSIC-UPV 131

Chapter 7. Experimentation

this approach. Further experimentation need to be done with ground-truth
information at level of connected components. Also, all the probabilistic mod-
els integrated in the system and the grammar estimation should be calculated
from the set of printed expressions. Finally, under these proper conditions,
standard partitions of the INFTY dataset would be very useful for comparison
of different proposals in this field.

132 FAM-DSIC-UPV

CHAPTER

Applications

The motivation of this thesis was to develop an approach for mathematical
expression recognition. This problem has several applications, and the tech-
niques explored during the research process can also be useful in order to
tackle other related situations. Throughout the development of this study, we
have created several tools and analyzed different applications.

In this chapter we present the main applications of mathematical expres-
sion recognition we have explored. First, in Section 8.1 we review the open-
source software that has been published during the development of this thesis.
Second, in Section 8.2 we show an application for introducing online hand-
written math expressions into computers and information retrieval. Then, in
Section 8.3 we present pCAPTCHA, a novel application of human interaction
proof based on math recognition. Finally, in Section 8.4 we describe a method
for layout analysis of structured documents based on parsing 2D-PCFG.

Chapter Outline

8.1 Open-source Software 134
8.2 ITEX Transcription and Information Retrieval . . 136
8.3 uCAPTCHA: Math-based CAPTCHA 139
8.4 Layout Analysis of Structured Documents 159

133

Chapter 8. Applications

8.1 Open-source Software

As a result of the developments of this thesis, different open-source software
has been made publicly available. We hope that this will help the progress
in mathematical expression recognition. Below we briefly review the software
released.

8.1.1 Printed Math Expression Recognition

As described in Section 2.1, initially we dealt with the problem of recognizing
printed math expressions. The approach described in this thesis was obtained
after some years of developments starting from that model. This initial parser
for printed expressions was published in an international conference [Alvaro
et al., 2011] and obtained a good performance. We released the source code
of the recognizer and referenced it within the paper. The software can be
obtained at

https://github.com/falvaro/pme_parser

and it is licensed under the GNU General Public License version 3.0 (GPLv3).

The software accepts an image as input thanks to the Magick++ library,®
and outputs the recognized expression in IITEX format. The symbol classifier
is a simple nearest neighbor classifier as described in Section 3.4. A sample
grammar is provided and we manually defined probability functions based on
geometric features for spatial relationship classification.

8.1.2 Handwritten Math Expression Recognition

In this thesis we developed a formal approach for recognizing mathematical ex-
pressions. We released the software that implements the system for recognizing
online handwritten math expressions according to the proposed methodology.
The source code is publicly available at

https://github.com/falvaro/seshat

and it is licensed under the GNU General Public License version 3.0 (GPLv3).

The software accepts input in InkML format or SCGINK format (plain
text), and outputs the recognized expression in ITEX and InkML (which in-
cludes MathML). As detailed along this thesis, there are several distributions
inside a math recognition system, such that seshat contains the configuration

*http://www.imagemagick.org/Magick++/

134 FAM-DSIC-UPV

https://github.com/falvaro/pme_parser
https://github.com/falvaro/seshat
http://www.imagemagick.org/Magick++/

8.1. Open-source Software

described in experiments of Section 7.5.3. It is worth to mention that sym-
bol classifiers are BLSTM-RNNs, such that integrates part of the code of the
RNNLIB library,? and the Xerces-c library® is used for parsing InkML.

This software was awarded “Best system trained on CROHME dataset” in
the CROHME 2014 competition [Mouchere et al., 2014].

8.1.3 Features for Handwriting Recognition

Classification of handwritten math symbols is a challenging task. For this
reason, we explored several features as described in Section 3.3. The code for
extracting the online features, hybrid features and four different sets of offline
features (PRHLT, FKI, RWTH and Polar), is available at the software section
of the PRHLT research center website

www.prhlt.upv.es

All the tools for computing the features are released under the GNU General
Public License version 3.0 (GPLv3).

8.1.4 Image-based Evaluation

Regarding the problem of automatic performance evaluation in mathematical
expression recognition, we developed a metric based on image matching. The
code for computing the IMEGE error metric (see Section 6.2.3) is available at

https://github.com/falvaro/imege

and it is licensed under the GNU General Public License version 3.0 (GPLv3).

The software includes the code for computing the BIDM algorithm and a
wrapper for computing the IMEGE error. It computes the error value directly
from two given IXTEX expressions. The 12p? tool is used in order to obtain
the image representation from the KTEX string.

Phttp://sourceforge.net/projects/rnnl/
‘http://xerces.apache.org/xerces-c/
dhttp://redsymbol.net/software/12p/

FAM-DSIC-UPV 135

www.prhlt.upv.es
https://github.com/falvaro/imege
http://sourceforge.net/projects/rnnl/
http://xerces.apache.org/xerces-c/
http://redsymbol.net/software/l2p/

Chapter 8. Applications

8.2 HKTEX Transcription and Information Retrieval

One of the first applications of mathematical expression recognition that a
person would think about is introducing math notation into a computer using
handwriting. It is very useful in order to obtain the transcription into a
certain notation, even more if some encodings are unknown. Therefore, we
made available an online demonstrator of online handwritten mathematical
expression recognition at

http://cat.prhlt.upv.es/mer/

The web demo accepts handwriting as input and provides the KITEX tran-
scription of the recognized math expression, such that the underlying system
is based on seshat. Furthermore, the expression can be used to retrieve rele-
vant documents from internet using Google’s search engine, or mathematical
information can be obtained thanks to Wolfram Alpha online service.® An ex-
ample of the interface is shown in Fig. 8.1, such that the recognized expression
is used in order to retrieve relevant documents using Google’s search engine.

Mathematical information retrieval is an active research field and specific
techniques have been proposed [Zanibbi and Blostein, 2012]. Currently, we
simply search for results using the IXTEX string as query and Google’s en-
gine, but specific techniques and metrics are being developed [Stalnaker and
Zanibbi, 2015] and it would be interesting to used them in the future.f

°https://www.wolframalpha.com/
fAn example of information retrieval using more advanced techniques developed by the
DPRL can be found at http://saskatoon.cs.rit.edu/tangent

136 FAM-DSIC-UPV

http://cat.prhlt.upv.es/mer/
https://www.wolframalpha.com/
http://saskatoon.cs.rit.edu/tangent

8.2. KIEX Transcription and Information Retrieval

Mathematical Expression Recognition

overview instructions publications awards accepted expressions

a2+b2:02

aM2} + b2} = M2}

Search this in Google or in Wolfram|Alpha.

R e

o Gt s N DRAW HERE

Google vz +vrz=c')] a |

Pythagorean theorem - Wikipedia, the free encyclopedia
en.wikipedia.org/wiki/Pythagorean_thecrem * Traducir esta pagina

a"2 + b"2 = ¢*2\l\,. where ¢ represents the length of the hypotenuse, and a and b
represent the lengths of the other two sides. The Pythagorean theorem is ...

Imagenes de a*{2} + b*{2} = c*{2}

o
A

"
A

2 3, g2 '_ 2 0 S
¢ =a +b. + b =¢ ™

Figure 8.1: Example of the online demo for IWTEX transcription and
information retrieval of online handwritten mathematical expressions.

FAM-DSIC-UPV 137

8.3. wCAPTCHA: Math-based CAPTCHA

8.3 wCAPTCHA: Math-based CAPTCHA

A captcha (Completely Automated Public Turing Test to Tell Computers
and Humans Apart) is a program that protects online services against bots
by generating and grading challenges that humans can pass but computers
cannot. Online services are often protected with captchas that typically must
be solved by typing on a keyboard. Now that smartphones and tablets are
increasingly being used to browse the web, new captchas best suited to touch-
capable devices should be devised, since entering text on soft keyboards is
usually uncomfortable.

We contribute to solving this issue with puCAPTCHA, a novel method
to tell humans and computers apart by means of math handwriting input.
Below, we first introduce the problem in Section 8.3.1 and we review the
different captchas that have been proposed in the literature in Section 8.3.2.
Then, in Section 8.3.3 we describe uyCAPTCHA, our captcha proposal based
on handwritten math expression recognition. In Section 8.3.4 we report the
experimentation we carried out to validate the method. Finally, we summarize
the properties of yCAPTCHA and present conclusions in Section 8.3.5.

8.3.1 Introduction

Captcha belongs to the set of protocols called HIPs (Human Interactive Proofs),
which allow a person to authenticate as belonging to a select group [Rusu and
Govindaraju, 2004]; e.g. human as opposed to machine, adult as opposed to a
child, etc. Captchas are used on the web for many purposes, such as to prevent
massive email account creation, avoid spam comments in blogs and forums,
or verify financial transactions. The main advantage of captchas is that they
operate without the burden of passwords, biometrics, mechanical aids, or spe-
cial training [Baird and Popat, 2002]. However, the usability of captchas is a
subject of intense debate [Bursztein et al., 2014; Chellapilla et al., 2005; Yan
and El Ahmad, 2008].

Historically, users have had to deal with captchas in the form of images of
distorted text, such distortions based on the weaknesses of Optical Character
Recognition (OCR). However, as OCR software improves, solving captchas
is becoming increasingly difficult. This places a burden on users [Bursztein
et al., 2014], who are progressively reluctant to solve them [Shirali-Shahreza
and Shirali-Shahreza, 2006]. Moreover, the majority of captchas are designed
for use on computers and laptops, which do not align well with the interaction
style of mobile users (see Fig. 8.2).

According to the international telecommunication union, there are more

FAM-DSIC-UPV 139

Chapter 8. Applications

[reCAPTCHA m [reCAPTCHA !m

(Type the text)
[Type the text) Privacy & Terms

Figure 8.2: Solving captchas on a mobile device is rather uncomfort-
able. For instance, focusing on a text field causes zooming and field
positioning which do not allow for the captcha to be read properly.

than 2 billion active mobile-broadband subscriptions worldwide.® An inde-
pendent study by comScore® confirmed that in 2013 smartphones and tablets
surpassed desktop PCs to become the leading platform in terms of total time
spent online, either via web browsers or apps that make use of web services.
These figures urge for a prompt revision on the design of HIPs in general and
captchas in particular, since entering text in soft keyboards is uncomfortable
and error-prone [Chen et al., 2010]. To this end, drawing is presumably easier
and quicker than typing on a mobile device [Kienzle and Hinckley, 2013].

We have developed uCAPTCHA, a novel way to tell humans and comput-
ers apart by handwriting mathematical expressions on a touch-capable device.
The main advantage of pCAPTCHA is that it is language-independent, so it
is equally easy to learn for everyone. Another potential advantage is that
HCAPTCHA uses a controlled vocabulary of math symbols, which provides
high recognition accuracy. Most important, the spatial relations between sym-
bols (e.g. superscripts, subscripts, fractions, etc.) allow for a large number
of different expressions to be generated. Furthermore, very few OCR soft-
ware can recognize mathematical expressions. Together with its segmentation-
resilient foreground noise technique (Fig. 8.3), uCAPTCHA should keep reg-
ular attackers at bay. Finally, as a byproduct of solving a yCAPTCHA chal-
lenge, a labeled handwritten mathematical expression is obtained. Therefore,
pwCAPTCHA contributes to building valuable machine learning datasets. Ul-
timately, this work informs our understanding of designing better web security
measures.

€http://www.itu.int/ITU-D/ict/statistics
Bhttp://www.comscore.com/mobilefutureinfocus2013

140 FAM-DSIC-UPV

http://www.itu.int/ITU-D/ict/statistics
http://www.comscore.com/mobilefutureinfocus2013

8.3. wCAPTCHA: Math-based CAPTCHA

E = oo

XQ# 26 v XQ®v 26 v

Figure 8.3: pnCAPTCHA interface. A math expression is shown to
the user (left), who has to draw it on a canvas (right). Buttons from left
to right: clear strokes, request a new challenge, listen challenge (to write
it in plain text), undo last stroke, redo last stroke, submit challenge.

8.3.2 Related Work

Many captchas are known to be broken, so their general strength is an area of
increasing concern. There are very comprehensive surveys in this area [Baird
and Popat, 2002; Basso and Bergadano, 2010; Hidalgo and Alvarez, 2011;
Roshanbin and Miller, 2013]. The next generation of captchas are likely to be
more difficult and awkward for human users; e.g. Rusu et al. [2010] combined
handwritten text images with a random tree structure and random test ques-
tions that leveraged unique features of human cognition. This approach was
found to be hard to solve by machines, but also by regular users.

Text-based CAPTCHASs

Text-based captchas obfuscate OCR by introducing image degradations; the
harder ones provide better performance but are also harder for humans to
solve [Chew and Baird, 2003; Coates et al., 2001]. Among others, reCAPTCHA
[von Ahn et al., 2008] stands out as the most popular solution. It makes
positive use of human effort by channeling the time spent solving captchas
into digitizing text, annotating street imaginery, or building machine learning
datasets. It also can be broken with 99% of accuracy [Goodfellow et al., 2014].
There is a large body of additional work on text-based captcha, and compre-
hensive surveys can be found in Baird and Popat [2002]; Basso and Bergadano
[2010]; Hidalgo and Alvarez [2011]; Roshanbin and Miller [2013].

FAM-DSIC-UPV 141

Chapter 8. Applications

Image-based CAPTCHASs

Since most text-based captchas are vulnerable, researchers have proposed al-
ternatives to character recognition. A popular one is the form of image recog-
nition, which requires users to identify simple objects in the images presented.
However, the need for a human to label the pictures in a large database is
mandatory, so that answers can be verified. Examples in this regard include:
Sketcha [Ross et al., 2010], Implicit CAPTCHA [Baird and Bentley, 2005],
GOTCHA [Blocki et al., 2013], Asirra [Elson et al., 2009], or CAPTCHA-
Zoo [Lin et al., 2011].

In visualcaptcha' the user has to click on the icon that best represents
the word given. Currently, 37 icons and 20 audios are used as input stimuli.
KittenAuth! also uses relatively small image databases. An image database
small enough to be manually constructed is also small enough to be manually
reconstructed by an attacker.

An interesting image-based captcha requires the user to rotate images to
the correct orientation [Gossweiler et al., 2009]. An advantage of this idea is
that it uses unlabeled images. One drawback is that images have to be carefully
selected since certain images can have several correct orientations. Also, if the
images display faces, they can be automatically detected and rotated.

CAPTCHA Alternatives

The Math CAPTCHA [Hernandez-Castro and Ribagorda, 2010] presents the
user with an equation that must be solved. The number of different math
challenges is very few and the answer for them is a single digit, so the challenge
can be passed with trial and error. Further, this captcha is too complicated
for the general public. There are other math-based captchas much simpler
than this, relying on basic arithmetic operations shown in plain HTML, which
can be automatically solved using regular expressions.

Another alternative is presenting the user with a short video, who can
either describe it [Kluever and Zanibbi, 2009] or select the most appropri-
ate answer from an option list [Shirali-Shahreza and Shirali-Shahreza, 2008].
These approaches do not scale well, as they require human intervention to
enlarge the challenge database. In NuCaptcha® the user has to type moving
letters, an approach that has been recently broken [Xu et al., 2012].

"http://visualcaptcha.net
Jhttp://thepcspy.com/kittenauth/
*http://nucaptcha.com

142 FAM-DSIC-UPV

http://visualcaptcha.net
http://thepcspy.com/kittenauth/
http://nucaptcha.com

8.3. wCAPTCHA: Math-based CAPTCHA

Another option is to make the user play a game. PlayThru! provides dif-
ferent possibilities in this regard. Further, they claim to adopt a sophisticated
mechanism to differentiate human game playing activity from automated ac-
tivity [Mohamed et al., 2014]. However, there is evidence that these games
can be easily spoofed.™

CAPTCHASs for Mobile Devices

A number of research efforts are aimed to simplify and speed-up captcha solv-
ing on mobile devices. TapCHA [Jiang and Tian, 2013] presents the user
with a set of geometric shapes (square, triangle, etc.), and the challenge con-
sists in dragging one of the shapes. Chow et al. [2008] propose to click on
three valid English words out of a grid of 3x4 captchas. Some companies like
Unigpin" and ConfidentCAPTCHA® use this technique with images. Drawing
CAPTCHA [Shirali-Shahreza and Shirali-Shahreza, 2006] presents the user
with a large number of squares randomly drawn, and the user must connect
three diamonds via taps. QapTchaP is a draggable component for web forms;
users just have to move a slider to confirm that they are humans. All of these
approaches can be broken with machine learning techniques and client-side
scripting [Chellapilla and Simard, 2005; Lin et al., 2011].

SeeSay and HearSay [Shirali-Shahreza et al., 2013] allow the user to solve
a captcha by submitting audio instead of text. There are, however, a number
of situations where it is too noisy or inappropriate to use speech-based input.
Moreover, recognition errors are one of the major concerns for users to accept
these captchas [Shirali-Shahreza et al., 2013].

Handwriting CAPTCHAs

One option to ease text entry on mobile devices is by means of handwriting
input. In Highlighting CAPTCHA [Shirali-Shahreza and Shirali-Shahreza,
2011] the user must trace an obfuscated word with a stylus. This method
is similar in spirit to ours; however it has two drawbacks. First, it requires
the user to precisely trace each character, which is difficult to perform on
a mobile device due to the inaccuracy of user input [Hourcade and Berkel,

'http://areyouahuman. com
“http://spamtech.co.uk/software/bots/cracking-the-areyouhuman-captcha
"http://uniqpin.com

°http://confidentcaptcha.com
Phttp://myjqueryplugins.com/jquery-plugin/qaptcha

FAM-DSIC-UPV 143

http://areyouahuman.com
http://spamtech.co.uk/software/bots/cracking-the-areyouhuman-captcha
http://uniqpin.com
http://confidentcaptcha.com
http://myjqueryplugins.com/jquery-plugin/qaptcha

Chapter 8. Applications

2008]. Second, the handwriting recognition that validates user input relies on
heuristics that do not achieve competitive accuracy.

Regular text handwriting could be further explored as a means to solve
captchas on mobile devices. However, recognition of cursive hand-made text
is language-dependent and challenging both for computers and humans [Rusu
et al., 2010]. Isolated handwritten character recognition could be used instead,
but the number of symbols should be reduced in order to remove ambiguities
(e.g. ¢, C, 0, O, 0, etc.), resulting in few combinations available. Further, this
is actually a subset of math symbols, which are language-independent and can
be controlled together with the type of expressions shown to the user.

Another work closely related to ours is MotionCAPTCHA.? It presents
the user with an image of a unistroke gesture that the user must draw. This
is actually a proof of concept, and so it has a number of important security
flaws. For example, the gesture vocabulary is very small (16 gestures, 4 bits of
information entropy per challenge) and the solution to the captcha is available
in the HTML source code.

8.3.3 System Design

The specific implementation of yCAPTCHA reflects a number of design prin-
ciples. We believe that understanding these will be useful to others trying to
build similar systems. Ideally, desirable properties of captchas are the follow-
ing [Hernandez-Castro and Ribagorda, 2010]:

e Automation: the challenge should be automatically generated and graded
by a computer program.

Easy of use: the challenge should be taken quickly and easily by humans.

High reliability: it should accept virtually all human users.
e Low false negatives: it should reject very few human users.
e Low false positives: it should reject virtually all machine users.

However, no matter the challenge, the whole system must be secure. Our
design of yCAPTCHA validates what is submitted by the user on the server
side, and is protected against brute-force attacks, replay attacks [Mohamed
et al., 2014] and side-channel attacks [Zelkowitz, 2001]. Fig. 8.4 provides an
overview of our system architecture. At a high level, the process for passing a
pCAPTCHA is the following:

9http://josscrowcroft.com/demos/motioncaptcha/

144 FAM-DSIC-UPV

http://josscrowcroft.com/demos/motioncaptcha/

8.3. wCAPTCHA: Math-based CAPTCHA

1. The system generates a challenge: the image of a math expression.
2. The user draws the math expression represented in the challenge.

3. The sequence of handwritten strokes are submitted to an online math
recognition system.

4. For a challenge to be passed, the ID of the recognition result must match
the ID of the mathematical expression presented to the user.

? math renderer W
a

challenge

—o canvas
generator
encoder ID

challenge passed if IDs match

J handwritten = strokes
ID | encoder

math parser sequence

web server browser/app recognizer ’ output ‘ | module |

O

Figure 8.4: Requesting a pCAPTCHA generates a math expression
in TeX format (a). The expression is encoded (d,e) and rendered as an
image (b,c). The user must draw (f) the presented math expression,
generating thus a sequence of strokes (g) that is submitted to a hand-
written math expression parser (h). The output of the recognizer is a
math expression in TEX format, which is encoded (i) in the same way as
(d). The challenge is solved if the final ID (j) matches the challenge ID

(e).

A yCAPTCHA ID is a one-way “salted” hash of a TEX equation generated
by a PCFG. The server-side encoder knows how to de-salt the hash, which
depends on the session and a number of additional factors such as the website
requesting the challenge or the checksum of the non-distorted challenge image.
So, even if a malicious attacker could mimic our encoder algorithm, these
measures would deter a potential attack.

FAM-DSIC-UPV 145

Chapter 8. Applications

Generation and Recognition of Math Expressions

In order to automatically generate challenges for yCAPTCHA, we manually
defined a PCFG that produces math expressions in TEX format. Fig. 8.5 shows
some pCAPTCHA examples, where images have been obfuscated.

Special consideration has been put into making our challenges reasonable
for humans to solve. On the one hand, successful captchas rely on segmenta-
tion problems, as they are computationally expensive [Simard et al., 2003].
pCAPTCHA images use black and white foreground arcs, since these are
easily recognized for humans and yet remain difficult for computers to dis-
tinguish [Chellapilla et al., 2005]. On the other hand, although PCFGs are
defined at the symbol level [Zanibbi and Blostein, 2012], our PCFG for chal-
lenge generation is defined at the stroke level because in uCAPTCHA the user
has to enter strokes. Thus, a “longer” challenge means that the user has to
write more strokes, not necessarily that the expression has more symbols. For

instance, (3 symbols, 3 strokes) is much faster to write than

(3 symbols, 9 strokes).

Figure 8.5: Examples using between 4 and 9 strokes per mathematical
expression.

There are 3 different sources of error in yCAPTCHA:

1. The challenge is too hard or unclear, which may be skipped.
2. The user draws an incorrect symbol.

3. The math recognizer does not accept the answer.

The latter is worth of consideration, as it introduces some degree of indeter-
minism due to recognizing hand-made input. Therefore, it is important for
the math recognizer to reach high accuracy results.

146 FAM-DSIC-UPV

8.3. wCAPTCHA: Math-based CAPTCHA

HwCAPTCHA is built upon seshat, the open-source recognizer of online
handwritten math expressions that implements the approach developed in this
thesis. The 2D-PCFG used in the math recognition parser has been obtained
from the PCFG we used to generate the challenges.

Initially, we considered the full set of 101 symbols used in CROHME
dataset (see Section 7.1.2). Since the number of samples provided for each
class is quite unbalanced, we manually labeled new symbols until we obtained
500 samples per class. Then, for each symbol class we used 400 samples for
training, 50 samples for validation, and 50 samples to form the test set. As
a result, we trained the BLSTM-RNN symbol classifiers with 40,400 symbols.
The error rate of isolated symbol recognition was 6.97%. This was not suf-
ficient for uCAPTCHA, so we removed the symbols that caused most of the
errors according to the classifier’s confusion matrix. After this, the error rate
was as low as 0.88% considering 66 symbols. Fig. 8.6 shows the symbol sets
before and after removal of conflicting classes.

0O 1 2 3 4) 6 7 8 9
Ala o« b B p C ¢ cos +
a | A = E e = 4
F f v G g ~ =2 > h H
i I € o [j k 1 L X
{ | < lmlog (< m M pu
n N # o P p ¢ wm + |/
g R »r] } —-) S s o
sin > T t tan 0 x w V
v w X =z y Y =z = 1 |,

Figure 8.6: Original set (101 symbols) and reduced set (66 symbols),
by removing those symbols indicated in gray background color.

Reducing the set of math symbols resulted in an isolated symbol classifi-
cation error of near zero, but the structure of the math expressions has to be
recognized as well. Thus, aiming at a better system, we limited our PCFG
so that structural ambiguities were removed. For instance, we decided that a
letter followed by a number can only be subscript or superscript. With these
improvements, the error of our math recognition system should be very low.

FAM-DSIC-UPV 147

Chapter 8. Applications

The error at expression level will be evaluated in next section, because we
need expressions accepted by our constrained grammar.

Despite reducing the number of symbols and constraining the grammar,
the number of accepted mathematical expressions is very large. Concretely,
with a vocabulary of m math symbols and r spatial relations, there are ap-
proximately m™ 7V~ math expressions of N symbols. uCAPTCHA uses 66
symbols and 5 spatial relations, so a challenge with 3 symbols has about 7TM of
possible combinations, which represents 22.7 bits of information entropy. This
is actually an upper bound, since not all symbols can use all spatial relations.
By way of comparison, a 4-digit PIN has 10* combinations and 13.2 bits of
information entropy.

Web Service

Our captcha proposal provides a JSON-based REST API to become backend-
agnostic. This way, developers can use their preferred technology stack to
deploy uCAPTCHA on websites or native mobile apps. The API provides
two entry points: one for requesting a challenge and other for solving the
challenge (Fig. 8.7). Both API entry points require a registered user token
to be submitted on each request. Otherwise the server responds with a “403
Forbidden” HTTP status code, which indicates that the server can be reached
and understood the request, but refuses to take any further action. When
a challenge is requested, the developer can point to PNG and MP3 files by
concatenating the response ID with .png or .mp3 extensions. To solve the
challenge, the user must submit a sequence of online strokes in the following
format:

[[ml,yl,tl], ceey [xN,yN,tN]], //First stroke

[[z1,y1,t1], .-, [war, yar, tar] | //Last stroke

]

where = and y are coordinates and ¢ is their timestamp.

A status code informs the application interfacing with our web service
whether the result was successfully processed (0: no error) or not (code > 0
otherwise). A challenge is passed when the value of msg equals "success".
All passed challenges are periodically fed back to our math recognizer so that
it can learn different writing styles and improve accuracy.

148 FAM-DSIC-UPV

8.3. wCAPTCHA: Math-based CAPTCHA

l Request [GET http://url/user_token/challenge]
[Response | data:{ "status":0, "id":"http://url/hash" }]

Request POST http://url/user_token/solve/id
data: [strokes array]

naen

[Response | data:{ "status":0, "msg":"success" }]

Figure 8.7: REST API. We have developed an accompanying web-
based prototype that interfaces with our web service.

Web Application

We have developed a web-based prototype that interfaces with our web service.
In order to save valuable touchscreen space, we decided to put the challenge
as a background image in a web canvas, as shown in Fig. 8.3. However, a
developer implementing other yCAPTCHA interfaces may decide to present
the user with the image and the canvas separately (Fig. 8.8), as the user
is actually not required to trace the symbols of the math expression. It is
required, however, to preserve the spatial relations between symbols.

X

r s

t

r
Y+E |

Figure 8.8: Alternate UI design. Eventually we opted for the compact
version (Fig. 8.3) in order to save screen space.

&

Similar to other captchas, to account for challenges that are unreadable or
too difficult to write, our application allows users to request a new challenge.
Also, when a yCAPTCHA is wrongly solved, the user is presented with a
different challenge; there is no option to retry the same pCAPTCHA once
submitted. Further, in order to provide an accessible option for all users, our
application features the possibility of hearing the mathematical expression and

FAM-DSIC-UPV 149

Chapter 8. Applications

letting the users to write it down in plain text. In this case, the web canvas
is replaced by a regular text field. Under the hood, the audio synthesis is
performed with Festival,” an open source speech synthesis system. English
and Spanish voices are currently available, as they are shipped with the latest
Festival version.

8.3.4 Evaluation

In this section, we performed two studies in order to investigate the possibilities
of uCAPTCHA. The first one analyzed the strengths of ytCAPTCHA against
printed math expression recognition systems. The second one was an in-lab
user study, aimed at comparing pCAPTCHA against two alternatives.

Attacking pyCAPTCHA

We simulated a fundamental attack consisting in scanning pyCAPTCHA chal-
lenges offline with math OCR software. We generated thousands of challenges
and tried to automatically solve them with InftyReader,® a very competitive
system for recognizing printed math expressions.

HCAPTCHA images are rendered in lightgray color, which caused In-
ftyReader to misrecognize all expressions. Images were thus binarized and
submitted again to InftyReader, but it could not recognize any expression
because of the foreground noise. Therefore, we sought a more sophisticated
attack.

Aimed at removing the foreground noise while preserving the math sym-
bols, we applied erosion and dilation operations with different operator sizes.
Fig. 8.9 shows some examples of the images resulting after these morphological
operations. Even so, none of these attempts allowed InftyReader to properly
recognize any expression because the lines and arcs used as noise have similar
width to that of the math symbols, thus either the noise was not successfully
removed or parts of the symbols disappeared afterward.

We conclude that uCAPTCHA cannot be broken with out-of-the-box math
OCR or basic image preprocessing techniques. This is because offline recog-
nition usually relies on connected components analysis, which in our case is
obfuscated by using foreground noise as lines and arcs. Even in the case that
noise could be removed with a sophisticated preprocessing technique, at least
two further issues should be addressed to break a uCAPTCHA. First, the
denoised image should be scanned with a competent math OCR. Then, it

"http://festvox.org
*http://www.inftyproject.org

150 FAM-DSIC-UPV

http://festvox.org
http://www.inftyproject.org

8.3. wCAPTCHA: Math-based CAPTCHA

n/_/\ ,.//_ - ;)
%@’Eﬁb %&Lﬁ]) / \ l!"-_.l”l / ' .,' s

1px — 2 px — 3 px — 4 px

Figure 8.9: Attacking uCAPTCHA. Noise reduction examples use
morphological operators (erosion plus dilation) of variable size.

still should be required to generate the online sequence of strokes that repre-
sents the math expression. As a two-dimensional problem, not only must the
symbols be correct, but also properly arranged.

User Study

This study was aimed at comparing yCAPTCHA with reCAPTCHA (cur-
rently the most popular captcha system) and MotionCAPTCHA (a similar
alternative to ours, from a user interaction’s perspective). Our hypothesis was
that drawing is better than typing on a mobile device in several ways.

Prior to this user study, we carried out a preliminary pilot experiment in
order to examine the actual performance of our math recognizer. Also, because
we needed to collect some samples of expressions for tuning the parameters
of the recognition system. As we used the same PCFG to generate challenges
and recognize expressions, we can directly compare the TEX outputs and tune
the parameters such that expression recognition rate is maximized.

We advertised the study widely to get a sample of participants with diverse
backgrounds. Eventually we recruited 10 participants (3 females) aged 25-35
(M = 30.4, SD = 3.4). Two of them were left-handed. All participants had
submitted a text-based captcha at some time while browsing the web, though
nobody had technical background in computer security or captcha design.
Each participant was given a gift voucher of $10 at the end of the study.

The experiment was a within-subjects repeated measures design with three
conditions: reCAPTCHA (Fig. 8.2), MotionCAPTCHA (Fig. 8.10), and
WCAPTCHA. We measured error rates and three time-related measures: pro-
cessing time (time between showing up the captcha and start entering the
solution), execution time (time spent solving the captcha), and overall solving

FAM-DSIC-UPV 151

Chapter 8. Applications

time (until clicking on the submit button).

All challenges were solved on a Nexus 4 smartphone (Android 4.4.4) with
the Chrome mobile browser 36. uCAPTCHA challenges were set to randomly
range between 3 and 6 strokes per expression, which is approximately 2—6
symbols per expression. In addition, some adjustments were made to the
other captcha systems:

e recCAPTCHA currently displays Google street view images by default.
Then, after solving exactly 5 challenges they become the usual two words
(a verification word, to which reCAPTCHA knows the answer, and an
unknown word which comes from an old book). We ensured that the
two-word version was always shown to the participants, so that everyone
tested it under the same settings.

e MotionCAPTCHA is an insecure option for many reasons. However, it
is similar to pCAPTCHA in terms of interaction, c.f. drawing instead
of typing. Therefore, we instrumented MotionCAPTCHA to reach the
level of its peers. The prototype uses the same interface as yCAPTCHA,
the same foreground noise technique, and a similar hashing function to
encode the challenges. In addition, 3 unistroke gestures are always shown
to the user, which increases the challenge combinations from 16 to 163.
The server-side recognizer is a nearest-neighbor classifier with Euclidean
distance [Wobbrock et al., 2007].

S = @A

XQ# 26 v XQ# 6 v

Figure 8.10: MotionCAPTCHA example, using our UI’s look and feel.

Participants were briefly introduced the captcha systems they would use
and could test each for at most 5 minutes. They had to hold the smartphone
in portrait position and were told to go at their normal working pace. They
had to solve 25 challenges with each system; resulting thus in 250 observations
per condition. Participants were informed whether they successfully solved a

152 FAM-DSIC-UPV

8.3. wCAPTCHA: Math-based CAPTCHA

challenge or not as they went, as it is a better simulation of real-world use
cases. All systems automatically advanced to the next challenge, regardless it
was correctly solved or not. Conditions were counterbalanced and presented
to the participants randomly, in order to reduce the chance of learning effects.
With a view to get a better picture of the study, participants filled in
the SUS and NASA-TLX questionnaires on a nearby computer. They were
also asked to score each captcha system in a 5-point Likert scale in terms of:
usefulness, ease of execution, ease of understanding, and ease of learning.

Analysis of Recognition Accuracy As shown in Table 8.1, uCAPTCHA
was found to be more accurate than reCAPTCHA and MotionCAPTCHA.
The difference in recognition accuracy between reCAPTCHA and uCAPTCHA
was not significant, whereas MotionCAPTCHA performed significantly worse
than its peers. We conclude that yCAPTCHA is accurate enough for produc-
tion use. The bad performance of MotionCAPTCHA is explained by the fact
that a single challenge entails 3 unistroke gesture recognition tests, so if just
one of these tests is unsuccessful, the challenge is not passed.

Table 8.1: Recognition accuracy results.

System Accuracy (%) 95% CI*

reCAPTCHA 88.4 [83.84 — 91.80)]
MotionCAPTCHA 65.6 [59.52 — 71.21]
(CAPTCHA 90.8 [86.57 — 93.79]

* Wilson interval estimation for binomial distributions.

Analysis of Solving Time Overall, participants spent considerably more
time solving a reCAPTCHA than a MotionCAPTCHA or a uCAPTCHA.
Results of Table 8.2 revealed that reCAPTCHA was significantly slower than
its peers. uCAPTCHA was about one second slower than Motion CAPTCHA,
however this was unsurprising because yCAPTCHA challenges had almost
twice the number of strokes.

Similarly, execution time results showed that participants spent consid-
erably more time typing a reCAPTCHA than drawing a Motion CAPTCHA
or a puCAPTCHA. Users spent a significantly high amount of time typing
as compared to drawing. As expected, drawing a uCAPTCHA was slower
than MotionCAPTCHA, since yCAPTCHA challenges require entering more
strokes.

FAM-DSIC-UPV 153

Chapter 8. Applications

Table 8.2: Mean solving time. SDs are denoted in parentheses.

Time (s) reCAPTCHA MotionCAPTCHA pCAPTCHA

Processing 5.0 (2.9) 0.9 (0.4) 1.3 (0.7)
Execution 10.2 (3.6) 44 (1.2) 5.1 (1.9)
Overall 15.2 (4.5) 5.3 (1.5) 6.5 (2.1)

We observed that reCAPTCHA takes up to one third of the total time to
process the challenge, i.e. the user first reads the challenge and then focuses
on the text field to start typing. In contrast, participants were considerably
faster with the other systems. MotionCAPTCHA and uCAPTCHA required
similar solving time, which suggests that our math challenges are both easy
to read and understand.

Analysis of Usability and Workload In terms of SUS, reCAPTCHA
scored lower than its peers (higher is better), as shown in Table 8.3. Results
revealed that reCAPTCHA was found to be significantly less usable than the
other systems, while MotionCAPTCHA and pCAPTCHA performed similar.

Table 8.3: Mean usability (SUS) and workload (TLX) scores. SDs are
denoted in parentheses. Higher SUS is better, lower TLX is better.

Score 1eCAPTCHA MotionCAPTCHA puCAPTCHA

SUS 49.7 (16.1) 77.0 (11.5) 82.0 (8.8)
TLX 6.1 (1.9) 4.0 (1.3) 3.9 (1.2)

In terms of TLX, reCAPTCHA scored higher than its peers (lower is bet-
ter). Results revealed that reCAPTCHA was found to be more cognitively
demanding than the other systems. MotionCAPTCHA and uCAPTCHA per-
formed similar.

Analysis of Perceived Utility Our participants found reCAPTCHA to be
less likable than the other systems, though they acknowledged that it pursues
the considerate goal of digitizing books. This is why reCAPTCHA scored
higher in terms of usefulness but was around a neutral score for the rest of
the assessed statements (see Table 8.4). Overall, reCAPTCHA was perceived
to be significantly less valuable than its peers. It was interesting to note that

154 FAM-DSIC-UPV

8.3. wCAPTCHA: Math-based CAPTCHA

MotionCAPTCHA, despite its low accuracy, was rewarded by the participants
as being statistically similar to yCAPTCHA. This suggests that mobile users
are eager to try captchas that are best suited to mobile devices.

Table 8.4: Mean subjectivity scores (higher is better). SDs are denoted
in parentheses.

Perception reCAPTCHA MotionCAPTCHA uCAPTCHA

Usefulness 4.0 (0.8) 3.8 (0.7) 4.5 (0.5)
Execution 2.9 (1.3) 4.0 (0.8) 4.4 (0.5)
Understandability 3.2 (1.3) 4.2 (0.7) 4.3 (0.5)
Learnability 3.2 (1.2) 4.3 (0.7) 4.3 (0.5)
Overall 3.2 (1.2) 4.2 (0.7) 4.3 (0.5)

Qualitative Observations Participants were concerned about the fact that
unistroke gestures must be performed in a unique way: “even though it is very
easy to reproduce the gestures, the recognizer fails too often.” In contrast,
in uCAPTCHA it is possible to write math symbols in different ways, which
provides the user with more flexibility. In this regard, one participant stated:
“I’'m not very good at writing... I'm surprised how accurate is the math recog-
nizer!” Finally, other participant made an interesting observation: “Initially I
considered pfCAPTCHA to be more complex than MotionCAPTCHA, but then
I realized that you are just drawing what you see in the background.”

Labeled Dataset As a result of the challenges solved by our participants,
2,787 online handwritten math expressions have been automatically anno-
tated. The math recognition system outputs a TEX transcription together
with an InkML file describing the recognition result. Therefore, when a chal-
lenge is solved we obtain a valid sample that is annotated at the stroke level
with symbol segmentations, symbol classes, and the structure of the expres-
sion. pCAPTCHA is thus channeling the user effort into building valuable
machine learning datasets. For instance, the data can be useful for training
handwritten math expression recognition systems, for which the annotation
process is usually tedious and time-consuming [MacLean et al., 2011].

FAM-DSIC-UPV 155

Chapter 8. Applications

Follow-up Study: Improving Recognition Accuracy

Overall, the accuracy rate of uCAPTCHA is competitive enough for produc-
tion use, however we wondered if it could be further improved. One way to
do so is by improving the math recognizer. Nevertheless, this is a non-trivial
task that requires expert knowledge in pattern recognition or machine learn-
ing procedures. A more plausible option consists in introducing a confidence
measure, so that the outcome of the recognizer is not as hard as a true/false
binary decision. In fact, reCAPTCHA intentionally tolerates some errors de-
pending on how much they trust the user giving the solution. This is in line
with a question raised by one of our participants: “most of the time I did not
understand why reCAPTCHA accepted my answer because I had to do a very
big guess on one of the words.” Eventually we adopted the following solution.

For mathematical expressions, EMERS [Sain et al., 2010] is a well-defined
tree edit distance for performance evaluation (see Section 6.2.2). EMERS
is not a normalized distance, but it calculates the set of edit operations to
transform a tree into another such that if both trees are identical EMERS
is equal to zero. Fig. 8.11 shows the gain achieved in accuracy incurred by
different EMERS thresholds.

10 T T T T

Error(%)

9
8
7
6
5
4
3
2
1
0

EMERS

Figure 8.11: Improving accuracy by using different EMERS thresholds.

As observed, EMERS-1 (one tree-edit distance) leads to 50% of improve-
ment in current recognition rates (Fig. 8.11). However, this comes at the cost
of increasing the chance of false positives. Thus, it is important to seek a bal-
ance between using a binary decision as recognition result (hard constraint)
or being a bit fault-tolerant in order to improve the user’s acceptance. To
this end, we have decided to use EMERS-1 in case the recognition result does

156 FAM-DSIC-UPV

8.3. wCAPTCHA: Math-based CAPTCHA

not match the challenge submitted to the user. This should increase the user
experience without impacting security.

Regarding the automatic annotation of math expressions, only those ex-
pressions that have been perfectly recognized (EMERS-0) are actually saved
as ground truth data.

8.3.5 Discussion

Bursztein et al. [2014] analyzed the interactions of visual features used in to-
day’s captchas, in order to understand how they affect captcha’s difficulty and
user perception. Unexpectedly, it was found that accuracy and solving time are
not good predictors of user preference. Instead, it is more effective to use the
captcha as a medium for engagement with the user, and examine the interac-
tion holistically. This explains why our participants scored MotionCAPTCHA
and yCAPTCHA similarly; see Table 8.3 and Table 8.4. However, our evalua-
tion tasks were artificial and therefore we suspect that in a real-world situation
this perception toward MotionCAPTCHA might change due to its relatively
low accuracy.

HIPs, and by extension captchas, are based on open problems in artificial
intelligence (AI) that induce security researchers, as well as otherwise malicious
programmers, to work on advancing the field of AI. HIPs are thus a win-win
situation [von Ahn et al., 2004]: either it is not broken and there is a way
to differentiate humans from computers, or it is broken and an Al problem is
solved. While pyCAPTCHA does not guarantee that is secure against highly
sophisticated attacks, it is not trivially breakable. However, like every captcha
system, pyCAPTCHA could be defeated by human manpower. For example,
spammers could pay a developer to aggregate our challenges and feed them
one by one to a human operator.

Our current implementation of yCAPTCHA has a number of limitations
that are intended to be addressed in future work:

e It would be desirable to incorporate more math symbols, in order to
further increase pyCAPTCHA’s information entropy. However, our pre-
liminary studies suggest that doing so may increase the error rate of
the recognizer. A plausible option would be balancing EMERS and
expression length; e.g. EMERS-2 would not be tolerable for use with
expressions comprising 3 symbols, but it may be adequate for use with
expressions having 6 symbols. Also, the set of symbols was constrained
by the database of math expressions. A larger dataset of handwritten
math symbols would provide more symbols to train the math parser.

FAM-DSIC-UPV 157

Chapter 8. Applications

e The lines and arcs of the foreground noise are drawn in an uncontrolled
fashion. It may happen that they occlude parts of the expression, such as
a minus sign, which could lead the user to enter a wrong solution to the
challenge presented. In fact, one of our participants complained about
this issue. In any case, if the user cannot distinguish what symbols are
being shown, it is possible to reject the challenge by requesting another
one. We log all unsolved challenges for later analysis.

e It may be the case that a mathematical expression does not make sense;
e.g. . This may confuse users with advanced math knowledge,
though we have not received such a complain. We believe that a mech-
anism to generate “mathematically correct” expressions would be desir-
able.

On another line, it is worth noting that our web service can be integrated
in native mobile apps; however we expect yCAPTCHA to be largely used on
websites. This was the main reason why we developed a web-based application
to interface with our web service. In this context, we should mention that the
application is tailored to HTML5 browsers. Therefore, drawing on a web
canvas might not work in old devices or old browsers. Also, drawing does not
work at all in browsers that have disabled JavaScript.

Lastly, if uCAPTCHA were largely used, it would create a vast dataset
of labeled online handwritten math expressions. This resource would help
the advancement in math research, which is lately bringing more attention to
students as a result of the rapid growth of mobile devices. For instance, educa-
tion is moving toward computer-based solutions at the expense of traditional
(paper-based) books, so handwritten input is likely to play an important role
in the classrooms in the near future. Other applications are introduced in
Section 1.1, for which pyCAPTCHA would contribute in creating worthwhile
resources.

158 FAM-DSIC-UPV

8.4. Layout Analysis of Structured Documents

8.4 Layout Analysis of Structured Documents

In this thesis we developed an approach for math expression recognition based
on parsing 2D-PCFG. The two-dimensional extension of PCFG studied in
this document is a powerful formalism that can be applied to other prob-
lems. Therefore, we explored the application of 2D-PCFG to layout analysis
of structured documents. Probabilistic grammars are suitable for this problem
because they can account for the syntactic structure of the document and the
two-dimensional dependencies between regions.

8.4.1 Introduction

Page segmentation is a fundamental problem of Document Image Analysis
(DIA) which is important for subsequent document analysis and recognition
tasks. Document image segmentation intends to detect homogeneous relevant
zones in a given document and finding out the structural relations among these
zones [Shafait et al., 2008]. The relevant zones in DIA depend on the task and
they can be drawings, textual zones, special symbols, etc.

Many successful image segmentation techniques have been defined in the
past for typeset documents [Shafait et al., 2008]. Several contests have been
held for this type of documents where a common framework is defined in order
to be able to compare existing techniques [Antonacopoulos et al., 2013a,b].
Developing generic image segmentation techniques for historical handwritten
documents is a very difficult task due to the absence of general editing rules
in the past, since the editing rules were usually different for each collection.

Some historical handwritten documents exhibit regularities similar to type-
set documents, and image segmentation techniques used for typeset documents
can be considered for historical handwritten documents [Antonacopoulos et al.,
2011]. Segmentation of this kind of documents has been approached in the
past with geometrical techniques. In [Bulacu et al., 2007] projection profiles
were mainly used for page layout analysis of documents with very satisfactory
results. But for many other documents, page segmentation techniques that
rely on explicit isolation of elements like characters, words or lines are often
not useful. For those documents, integrated approaches seem more appropri-
ate. We focus on determining the structure and the segmentation of textual
zones in images of this second type of historical handwritten documents, con-
cretely in marriage license books [Romero et al., 2013] (see Figure 8.12). This
step is crucial for subsequent text recognition processes like line detection
and extraction [Likforman-Sulem et al., 2007] and later transcription, or word
spotting [Toselli et al., 2004b; Puigcerver et al., 2014].

FAM-DSIC-UPV 159

Chapter 8. Applications

Probabilistic Graphical Models (PGM) offer a natural framework to tackle
these segmentation problems and to relate segmented units represented here
as random variables, since it easily allows to represent dependencies between
them [Jordan et al., 1999; Wainwright and Jordan, 2008; Koller and Friedman,
2009]. However, computing exact inference on these models may be challeng-
ing depending on the structure that they present. In this case we must resort
to other approximate methods like the Graph Cut algorithm [Boykov et al.,
2001] or some variations of the Belief Propagation (BP) algorithm [Yedidia
et al., 2003]. Within this formal framework, Cruz and Terrades [2012] pro-
posed a solution for classifying the different textual zones that are present
in marriage license books, although no structure detection was performed.
In that research, pixel classification based on texture features obtained from
the Gabor transform are compared with Relative Location Features [Gould
et al., 2008]. Both types of features are combined in a Conditional Random
Field [Lafferty et al., 2001] to take into account contextual information in the
classification process of the pixels.

In order to address both the detection of textual zones and the analysis of
structural relationships among these zones, we consider the use of structural
models. PCFG are a powerful formalism of syntactic pattern recognition which
has been used previously for DIA [Jain et al., 2001; Handley et al., 2005].
2D-PCFG is a well known formalism that has been studied in the past for
two-dimensional parsing [Crespi Reghizzi and Pradella, 2008]. As we have
seen in the approach for math recognition developed in this thesis, this type of
grammars are able to represent efficiently contextual two-dimensional relations
that are important for page segmentation.

In this research we study the application to segmentation of structured
documents of the approach based on parsing 2D-PCFG developed in this the-
sis for math expression recognition. We propose a formal model that integrates
several probability distributions for textual zone segmentation and structural
analysis directly into the parsing process of 2D-PCFG. We deal with the esti-
mation of the probabilistic sources and we compare our approach to solutions
based on PGMs.

8.4.2 Segmentation of Structured Documents

Marriage license books are documents that were used for centuries to register
marriages in ecclesiastical institutions. FEach marriage is represented by a
record and the transcription of these documents has been considered very
interesting for demography and migratory research [Esteve et al., 2009]. Each
unit of information is composed of several related textual regions. T'wo relevant

160 FAM-DSIC-UPV

8.4. Layout Analysis of Structured Documents

‘LMW ﬁ/m/

%M%%M/% 4/% /%/7

'%M%/ﬂ% /M %ﬁ/ /L//%&(
/ %// Loty (BB 2
7 /m/m o2 %7 L//%m« %ﬂ

/%ﬂ% : <'\;>g 4
@//// Z

é7 L%A@Mﬁ/ﬁq /{,/Zf;
/%m%,%)%% N
, /zé/ / '
'f%%%é//%%7g.
//é\//%//m /M% 4
v ;@Z B it

Figure 8.12: Example of page of a marriage license book containing
six records.

FAM-DSIC-UPV 161

Chapter 8. Applications

page segmentation problems can be stated for these documents. First, to
segment and classify the different textual units of the records. And second, to
find out the syntactic structure of the records in a given page.

Most of these books have a structure similar to an accounting book. Fig-
ure 8.12 shows an example of page of a marriage license book belonging to a
collection of 291 books conserved at the Cathedral of Barcelona. The pages in
these books were orderly written, and although there are differences over the
centuries, the layout in each page was quite rigid. Every book is divided in
two parts: the first part is an index of surnames and the second part contains
the marriage license records (see [Romero et al., 2013] for a more detailed
description of this collection). We focused on the segmentation of the pages
in the second part of the book.

Each page contains several records, such that each one is associated with
a marriage license. Each record has in turn a husband surname’s block (Fig-
ure 8.13.a), the main block (Figure 8.13.b), and the tax block (Figure 8.13.c).
Note that the documents can have additional textual zones, like the date that
can be seen at the beginning of the page (it can also appear in the middle
of a page), and the two large calligraphic letters® that separate the consecu-
tive records that were registered the same day. These additional zones were
ignored in this study, i.e. they are considered background because they were
not relevant for subsequent transcription tasks. The process for creating the
ground-truth requires marking the minimum rectangle containing the identi-
fied classes: Body, Name and Tax. All the pixels that did not belong to any
of these regions were considered background.

The final goal in those documents is to obtain the transcription of each
marriage license. The problem is to correctly isolate every record in a page,
and to relate their corresponding parts, that is, the surname, the body text and
the tax associated with each entry. We aim at detecting the bounding boxes
around the main parts of each record. Note, that a fine-grained detection of
the frontiers of each zone would be ideal, but this is difficult because sometimes
two zones overlap if rectangular bounding boxes are used as in this approach
(see the lower record in Fig. 8.13).

The problem of detecting the records can be stated as two different prob-
lems: first, to classify the textual zones into the previously mentioned classes
(Background, Name, Body and Taz); and second, to detect the complete set
of records of each page. To address this problem, first we review related work
based on PGMs to solve the segmentation of images of documents. These

“These letters are D. D. that is the abbreviation of “Dit dia” which means “The mentioned
day” in Catalan.

162 FAM-DSIC-UPV

8.4. Layout Analysis of Structured Documents

L (b)

(c)

Figure 8.13: Example of the page segmentation problem for two
records. Several background zones are considered and each record is
composed of three parts: (a) Name (b) Body (c) Tax.

graphical models become our baseline approach. Second, we present a model
based on 2D-PCFG that solves the segmentation of the full document us-
ing structural and probabilistic information. Finally, we describe two sets of
text classification features used to classify the image regions according to the
graphical information, and the evaluation performed on this corpus.

8.4.3 Probabilistic Graphical Models

When we tackle the problem of image labeling, PGMs [Koller and Friedman,
2009] provide a proper framework to represent the structure and the relation-
ships between the variables in the model. In this representation the different
variables are distributed in a graph structure, where it can be depicted as
a directed or undirected graph depending on the type of dependencies repre-
sented. This graph is composed by a set of nodes representing the different set
of variables, and a set of edges denoting the dependencies between the nodes.

In the case of image labeling, a natural way for representing the dependen-
cies between the pixels of the image is by means of a two-dimensional grid-like
structure, which can be modeled by a Markov Random Field (MRF) [Li, 1995].
In this representation each pixel in the image is represented by a node in the
graph, although in some tasks it is also common that a node represents a
group of pixels clustered in cells or superpixels [Gould et al., 2008].

FAM-DSIC-UPV 163

Chapter 8. Applications

In this problem the objective is to compute Mazimum a Posteriori (MAP)
probability to find the combination of class labels ¢ for each pixel in x that max-
imizes the PGM probability. One way to model this distribution is in terms
of the energy associated with a Conditional Random Field (CRF) [Lafferty
et al., 2001], conditioning the probability with respect to a set of computed
features:

1
KR SN S SHR) St

(i,5)€e

plc|x) =

where 1 (z;,¢;) represents the local potentials at each pixel i, and ¢(c;,c;)
the pairwise potentials of assigning the labels c;, ¢; to the neighbor pixels 4, j.
The constant Z(x) represents the partition function, a normalization factor to
ensure the proper definition of the probability distribution. In some types of
structures, as in the case of grid-like graphs, a large amount of variables may
result in the impossibility of providing an exact computation of this value,
leading to the need of using approximate methods to achieve this task [Roth,
1996].

Many methods have been proposed to perform inference in PGMs, that
is, to obtain the likelihood or the conditional probability with a model for
a given input. However, the problem of computing exact inference in grid-
structured CRF's is known to be a NP-hard problem and becomes intractable
when we model a large number of variables [Cooper, 1990]. Nevertheless, there
are many methods in the literature that provide approximate solutions to the
problem. One example is the Graph Cut algorithm [Boykov et al., 2001] used
in many segmentation tasks [Kumar et al., 2007]. The method relies on the
fact that many computer vision problems can be formulated in terms of an
energy minimization function, and provides a local minimum based on the
most likely cut in the graph. Another family of methods used to perform ap-
proximate inference in graphical models are the sum-product message passing
algorithms. Within this type of algorithms are the Belief Propagation (BP)
algorithm [Yedidia et al., 2003], and the version for loops Loopy Belief Prop-
agation (LBP) [Weiss, 2000], that is able to perform inference in the case of
grid-structured CRFs. There are also other algorithms that follow different
approaches. One example is the Iterated Conditional Models (ICM) [Besag,
1986], an algorithm for optimization that follows a search paradigm. In this
study we use the three algorithms stated before for the inference in PGMs.

164 FAM-DSIC-UPV

8.4. Layout Analysis of Structured Documents

8.4.4 Grammatical Model

We studied the application of parsing 2D-PCFG in order to compute the most
likely structure and segmentation of a document. This powerful model intends
to tackle the logical layout problem in combination with text classification fea-
tures. A context-free model is a natural way to account for both the horizontal
and vertical context of the problem, where there are dependencies among rows,
columns and 2D regions.

The formal definition of 2D-PCFG is provided in Section 2.4.1. In this
problem, the entire document must be parser, thus we define 2D-PCFG that
are able to deal with two-dimensional matrices. There are only two spatial
relationships (r € {H, V}) in this two-dimensional extension: horizontal con-
catenation (H) or vertical concatenation (V). Given a rule A =+ B C, the
combined subproblems B and C' must be arranged according to the spatial
relation constraint, i.e. horizontally adjacent and same height for r = H, and
vertically adjacent and same width for » = V. This simple extension does not
require a spatial relationship model and is enough to account for the problem
we are dealing with. The segmentation of the input document can be obtained
as the most likely derivation given a 2D-PCFG, such that the region that de-
fines the input image is recursively divided either vertically or horizontally
into smaller rectangular regions.

Parsing Algorithm

Given a page image, the problem is to obtain the most likely parsing ac-
cording to a 2D-PCFG. For this purpose, the input page is considered as a
two-dimensional matrix I with dimensions w x h and each cell of the matrix
can be either a pixel or a cell of d x d pixels. Then, we define an extension
of the well-known CYK algorithm to account for two-dimensional structures.
We have basically extended the algorithm described in [Crespi Reghizzi and
Pradella, 2008] to include the probabilistic information of our model, and the
integration of different probabilistic sources studied in this thesis.

The CYK algorithm for 2D-PCFG is essentially a dynamic programming
method, which fills in a parsing table 7. Following a notation very similar
to [Goodman, 1999], each element of T is a probabilistic nonterminal vector,
where their components are defined as:

Ty @1+ Al = DA = 2) (24+1,y+1)) (8.4.2)
o4 &
ﬁx,y),(z+i,y+j)[A] = p(A = Z(:v,y),(m+i,y+j)) (843)

FAM-DSIC-UPV 165

Chapter 8. Applications

Each region 2(;) (z4iy+j) 1S defined as a rectangle delimited by its top-left
corner (z,y) and its bottom-right corner (z + i,y + j). We denote

lij = U(2(zy),(2+i,y+5))

as the size (i x j) of the subproblem associated with a region 2(y y) (z4iy+j)-
The probabilities p represent the probability of the most likely derivation from
nonterminal A resulting in the region z.

If the size of the subproblem is larger than 1 x 1, then there exists some
binary rule (A & B C, with B,C € N, and r € {H,V}) and some split
point k such that, in a similar way to [Goodman, 1999], we can divide the
problem in two subproblems:

ﬁ(A ;r> Z(x,y),(x+i,y+j)) = p(eixj ’ A) Héag,{ {

)

H N -+ R +
llggi(ip(A — BC) D(B = 2(uy),(e+ky+j) DC = Z(ethy) (@tiy+i)) >

v))
1@;?§jp(A 5 BO) BB 2 2(ny) (wrigir) DC = 2 yin) (origss) I
(8.4.4)

where a new hypothesis is computed from two smaller subproblems, such that
the probability is maximized for every possible vertical and horizontal decom-
position resulting in the region z(;) (z4iy45)- 1t should be noted that the

2D-PCFG provides syntactic and spatial constraints p(A — B (), and we
have also included the probability p(¢;x; | A) that a nonterminal A accounts
for a problem of size i x j.

The probability p(¢;x; | A) has two effects on the parsing process. First, it
helps to model the spatial relations among every part of a given page because
there is a specific nonterminal for each zone of interest. For instance, this can
be seen in Figure 8.13 where the size of the background region on top of the
page will be different from the size of the background zone over a tax region.
Furthermore, many unlikely hypotheses are pruned during the parsing process
due to its size information, hence, it speeds up the algorithm.

Considering the definition of the matrix parsing table 7 (Eq. (8.4.3)), the
expression of the Eq. (8.4.4) can be rewritten to obtain the general term of

166 FAM-DSIC-UPV

8.4. Layout Analysis of Structured Documents

the parsing algorithm. Thus, for all ¢ and j, 2 < i <w, 2 < j < h, we have:

T(zy) (@ +iy+) Al = plix; | A) max {

)

H
max p(A = BC) Tay),@thy+i) B Ttk @riy+nCl

jmax. p(A Y% BCO) Tx,) (a+isy+k) [B] T y+k),(z+ig+5) [C] }

For subproblems of size equal to 1 x 1 and taking into account the definition
of Eq. (8.4.2), the derivation probability of a single cell (size region equal to
1x1) can be marginalized according to the class label (terminal) c. Given that
we need to calculate the most likely parsing, we can approximate the sum by a
maximization, and considering some other usual assumptions the probability
of the derivation of a single cell is:

DA = 2y (a+1,9+1) = P(lix1 | A) max p(A —¢) ple|2) (8.4.5)

where p(¢1x1 | A) is the probability that nonterminal A derives a subproblem
of size 1 x 1; p(c | z) represents the probability that a cell (region) z belongs
to class ¢, and it is described in Section 8.4.5; and p(A — ¢) is the probability
of a terminal rule for terminal (class) c.

Taking into account the matrix 7 (Eq. (8.4.2)), we can rewrite the expres-
sion of Eq. (8.4.5) to obtain the initialization term of the parsing algorithm.
Thus, for each region z of size 1 x 1, we have:

7E:c,y),(ac—i—l,y—',—l)[A] = p(€1><1 ‘ A) mcaX p(A — C) p(c ‘ Z(%y),(w-{—l,y—i—l)) (8'4-6)

Finally, the most likely parsing of the full input page is obtained in element
70,0),(w,n) [S] such that S is the start symbol of the 2D-PCFG. It is important
to notice that all the probability distributions involved in the parsing process
can be learnt from labeled data. The time complexity of the algorithm is
O(w3h3|R|) and the spatial complexity is O(w?h?).

Model Estimation

The model based on 2D-PCFG for parsing structured documents has, in turn,
some probabilistic distributions that need to be learnt. First, the probability
p(c | z) that a certain region z of the image belongs to class ¢ is described in
Section 8.4.5. There are two additional distributions that we have to estimate:
the probabilities p(¢;x; | A) and the probability of the rules of the grammar
p(A — «). In order to learn automatically these distributions, we followed

FAM-DSIC-UPV 167

Chapter 8. Applications

the method for estimation described in 4.4. First, we performed a forced
recognition of the training set, and then we estimate the distributions using
the parsing results.

Given a certain document, the forced recognition was carried out by provid-
ing the probability p(c | z) using the ground-truth information. Concretely, for
each cell z belonging to class ¢* we set p(c* | z) =1 and p(c| z) =0, Ve # c*.
The remaining distributions were considered equiprobable. In this way, we ob-
tained for each document the best parsing according to the 2D-PCFG model.

On the one hand, the probability distribution of the size for each nonter-
minal A was estimated according to the occurrences in the forced recognition
of the training set as
_ n(Aixj)
~ n(4)

such that n(A;x;) is the number of times that nonterminal A accounts for a
region of size i X j in the training set, and n(A) the total number times that
nonterminal A accounted for a region of any size.

On the other hand, the probabilities of the rules of the grammar were
estimated using the set of derivation trees obtained from the forced recog-
nition of the training set using the Viterbi score [Ney, 1992] as described in
Section 4.4.1.

p(lixj | A)

8.4.5 Text Classification Features

In this section we describe the different features we used for classifying small
regions of pixels and how we incorporated them into the 2D-PCFG parsing
described above. Following the outline in [Cruz and Terrades, 2012] we used
two different set of features, Gabor features as texture descriptors and Relative
Location Features [Gould et al., 2008].

Texture features

Gabor transform is a multi-resolution transform commonly used for texture
analysis. A bank of filters is defined for several orientations and signal frequen-
cies. Ilonen et al. [2007] proposed a fast implementation of multi-resolution
bank of filters in which the only parameters to be given are: the number of
orientations (n), the number of resolution levels (m) and the highest frequency
(fmaz)- As aresult, it is obtained a feature vector g of dimensions n x m, which
covers almost all the spectrum of frequencies up to the highest one f,q2.
The Gabor filter is defined by a sinusoidal wave of complex values mod-
ulated by an exponential function [Fogel and Sagi, 1989]. This function is a

168 FAM-DSIC-UPV

8.4. Layout Analysis of Structured Documents

Gaussian function centered in the origin of coordinates, with a parameter con-
trolling the size of the function support”. In the frequency space, the Gabor
filter is also defined by a Gaussian function, centered in the frequency fy and
support inversely proportional to frequency fy. Furthermore, in images the
filter support has an elliptical shape tuned by three parameters v, n and 6:

2 2
(@, y; f,0) = f—ge_(%x%%ya) et I
oo , (8.4.7)
' =xcos + ysinb,
Yy = —xsinf +ycosb
It is well-known that the Fourier transform of a Gaussian function is again
a Gaussian function. In addition, if we scale the support of Gabor filters by a
factor of k=™, the support of their Fourier transform are proportional to k™.
In particular, given the definition of Gabor filters in Eq. (8.4.7), the support
of Gabor filters in the spatial domain are ellipses with axis proportional to
kK™ and +—L—k™. The values of n and 7 are obtained according to the
nﬁ;ﬁber of orlentatlons n, the scaling factor k, and the overlapping degree ¢
of filters in the Fourier space as:

k—1+— log _ v/—logq
7= k+1 o« ’ n_ﬂ'tan%

Once we obtained the set of features, we applied a GMM to estimate the
probability p(g | ¢) of each possible class ¢ identified in this task: Background,
Name, Body and Taz . Finally, we defined the probability p(c | z) for a cell
z for a particular class ¢ required in Eq. (8.4.6) in the case of the 2D-PCFG,
and to define the term 1 in Eq. (8.4.1):

pc | 2) = Z|Zzg‘c 2) (8.4.8)

> .pglo

Relative Location Features

Relative Location Features (RLF) were introduced by Gould et al. [2008] as a
way to encode inter-class and intra-class spatial relationships as local features.
These features are computed from relative location probability maps M.,
encoding the probability of the class ¢; at region ¢ and knowing that at region j
the class ¢; is found. In other words, M, (u;;) = p(c;i | ¢;,4,7) where by

"We refer as support of a Gaussian function the region enclosing 99% of the energy.

FAM-DSIC-UPV 169

Chapter 8. Applications

ui; = (xi,v:) — (z5,y;) we denote the offset between regions ¢ and j, such
that (x;,y;) and (z;,y;) represent the centroid coordinates of regions i and j,
respectively. Thus, the self and other RLF are defined as:

other Z Mc,|cg uz,j) (Cj ‘])
Z#] Cz7éC]

self Z MCZ|C] u27j) (Cj |.])
i#jici= Cj

Moreover, herein ¢; = argmax.p(c | j) is the class label assigned at re-
gion j having the highest probability and p(c | 7) is the a posteriori probability
estimated of Eq. (8.4.8). Each of these features, v, (i) = (v2™"" (i), vs (i),
model the probability of assigning the class label ¢ to a region z taking into
account the information provided by the rest of image regions about their po-
sition and its initial label predictions. Finally, once we have computed the set

of RLF, we are able to compute the probability required in Eq. (8.4.6):
p(c| 2) = wPlogp(c| z) + wl log vo™he” (2) 4w log v/ (z) (8.4.9)

where v and 03¢ are the different sets of RLF and wP | wother and wiet
are the corresponding weights learnt from a logistic regression model. Further
details about the process can be seen in [Cruz and Terrades, 2012].

8.4.6 Evaluation

This section describes the experimentation carried out to evaluate the pro-
posed 2D-PCFG model for the task of page segmentation. We compare the
results obtained with approaches based on PGMs using three different families
of inference methods.

First, we describe the used dataset and the general settings of the experi-
ments performed. Then we describe the general outline from both experiments.
Finally, we report several performance metrics and the discussion comparing
the different models.

Experimental Settings

The Five Centuries of Marriages (5CofM) dataset is composed of a set of 291
handwritten books including marriage records conducted in the period from
the year 1451 until 1905. The set of books includes approximately 550,000
marriage licences from 250 parishes [Romero et al., 2013]. Despite the great
number of volumes in this dataset, currently only a few of them are being

170 FAM-DSIC-UPV

8.4. Layout Analysis of Structured Documents

used on different tasks like handwriting recognition, word spotting, or layout
analysis. For each of these tasks the corresponding ground-truth was manually
obtained by selecting and labeling the different regions on each page, which is
a time consuming process. Therefore, due to time limitations we focused on
a particular book of the collection for the experiments reported in this study.
However, as the documents in all the volumes have the same structure, the
proposed model could be applied to the remaining books.

The experimentation is focused on the segmentation of volume 208 of this
collection (Figures 8.12 and 8.13 show examples). This volume has 593 pages
of which we labeled at pixel level the first 200 pages. We randomly split 150
pages for training, 10 pages as validation set and the remaining 40 for test.
The resolution of the images is 300 dpi (/~ 2750 x 3940 pixels).

Following previous work [Cruz and Terrades, 2012] each page of the dataset
was divided in cells of 50 x 50 pixels in order to reduce the computational cost
of processing an image at pixel level. In previous studies we tested several
configurations of cell sizes and the impact on the results. The experiments
using cells of size 25 x 25 pixels produced lower precision and recall values
for all the considered classes in this task. Smaller cell sizes produce that text
classification features do not have enough information in order to correctly
discriminate among the different classes. Also, cells over 50 x 50 pixels were
not tested since the regions for some of the classes could be smaller than the
cell size and they might not be detected.

With respect to the parameters of the texture filter bank, we computed
a 36-dimensional feature vector using 9 orientations and 4 frequencies of the
filter. These values were chosen to ensure that the Gabor functions cover the
frequency space. Additionally, we set the following parameter values: overlap-
ping degree ¢ = 0.5, finaz = 0.35, and the scaling factor k& = /2. Finally, we
also learnt the parameters of the logistic regression used in Eq. (8.4.9) from
the training set.

PGMs Experiments

We performed several experiments using the CRF model defined in Eq. (8.4.1)
to compute the best label configuration for a page. We used the two sets of
features described in previous section to define the local potentials on each cell
of the image as described in Eqs. (8.4.8) and (8.4.9). To compute the values
for the pairwise potentials we learnt the frequencies for each possible pair of
classes from the training set.

We conducted several experiments using different inference algorithms for
the CRF. First, we tested the a-8-swap version of the Graph Cut algorithm

FAM-DSIC-UPV 171

Chapter 8. Applications

proposed in [Boykov et al., 2001]. Second, we use the method based in message
passing LBP [Weiss, 2000]. Finally we used the ICM algorithm based in the
search paradigm [Besag, 1986].

2D-PCFG Experiments

We tested our proposal based on 2D-PCFG to tackle the page segmentation
problem on the 5CofM dataset. Given the nature of the problem such that
the documents have a known structure, we manually defined the grammar.
According to the model described in Section 8.4.4, we had to train several
probability distributions. The probabilities of the productions of the gram-
mar and the size probabilities for each nonterminal were estimated from the
training data as explained in Section 8.4.4.

The 2D-PCFG model combines probability distributions that were learnt
independently, hence, there may be scaling problems when multiplying the
different probabilities. For this reason, the resulting probability was obtained
such that each distribution had an exponential weight that adjusted the scale
of them. As a result, we had to tune three weights: the probabilities of the
grammar p(A — «), the probability of a region p(c | z) and the probabilities
p(lix; | A). Then, the weights of the system were tuned using the Downhill
Simplex algorithm [Nelder and Mead, 1965] by maximizing the average F-
measure for classes Name, Body and Tax when recognizing the validation set.

Results and Discussion

Learning the different models from the training set and using the best pa-
rameters of the validation experimentation, we classified the document images
of the test set. We assessed the performance of three inference algorithms
for PGMs: Graph Cut, LBP and ICM; and a grammar-based approach (2D-
PCFG). These models were evaluated in combination with two sets of features:
Gabor features and RLF. Table 8.5 shows the results for each class: Body,
Name and Taz. The reported metrics are the precision, recall and F-measure
at cell level averaged for each page in the test set. Results show that class
Body was classified with good F-measure rates, whereas classes Name and Taz
represented the most challenging part. This is related with the percentage of
the page that represents each region, because it is more difficult to properly
classify small regions. Errors are usually made in the boundaries of the re-
gions, therefore, a row or column of cells represents a smaller percentage of
class Body than class Name, and of course than class Tax which is usually
composed of just a few cells.

172 FAM-DSIC-UPV

8.4. Layout Analysis of Structured Documents

Table 8.5: Classification results for different models and text classifi-
cation features.

Model Features Class Precision Recall F-measure
Body 0.91 0.79 0.84
Gabor Name 0.21 0.80 0.32
. . .61
Graph Cut Tax 0.50 0.84 0.6
Body 0.90 0.92 0.91
RLF Name 0.66 0.78 0.70
Tax 0.89 0.43 0.56
Body 0.89 0.83 0.86
Gabor Name 0.27 0.74 0.39
LBP Tax 0.45 0.79 0.56
Body 0.88 0.93 0.90
RLF Name 0.72 0.71 0.69
Tax 0.85 0.43 0.55
Body 0.89 0.83 0.85
Gabor Name 0.27 0.74 0.39
ICM Tax 0.45 0.79 0.56
Body 0.89 0.92 0.91
RLF Name 0.71 0.74 0.72
Tax 0.90 0.45 0.58
Body 0.91 0.95 0.93
Gabor Name 0.73 0.86 0.78
9D-PCFG Tax 0.69 0.80 0.71
Body 0.90 0.95 0.92
RLF Name 0.77 0.79 0.77
Tax 0.78 0.65 0.68

FAM-DSIC-UPV 173

Chapter 8. Applications

There are two factors to take into account: the text classification features
and the page segmentation model. Regarding text classification features, we
can clearly observe two different behaviours. On one hand, PGMs performed
significantly better with RLF features than when regular Gabor features were
used. Both Body and Name recognition classes always improved, where the
improvement in Name F-measure is remarkable. The class Tax was the most
challenging class. Although the differences in F-measure were small, we can
see that Gabor features provided less precision but more recall whereas RLF
produced higher precision and lower recall values.

On the other hand, the 2D-PCFG model obtained similar performance us-
ing both sets of features, and even results with Gabor features were slightly
better than results provided by RLF features. 2D-PCFG is a powerful model
that is able to take advantage of the knowledge about the document structure.
Thus, grammars were able to overcome the lacks of Gabor features obtaining
very good results for all classes without the additional spatial information
provided by RLF. Given that we learnt probabilistic information about the
structure of the documents from training data, the model was able to success-
fully parse documents using the regular Gabor features. Figure 8.14 shows
an example of recognition using 2D-PCFG and both sets of features. We can
see how the overlapping region between Name and Body is classified as Body.
Also, as results pointed out (see Table 8.5), Gabor features obtained higher
recall and we can see that resulting regions are larger. On the other hand,
RLF provided higher precision by adjusting better the size of the regions de-
tected. Finally, recognizing the space between records is difficult due to the
large calligraphic letters considered as background.

Comparing the performance of the different models, 2D-PCFG outper-
formed PGMs. Results showed that grammars achieved a great improvement
even using Gabor features. The best results among the PGMs were obtained
by ICM and RLF features with F-measure 0.91, 0.72 and 0.58 for classes
Body, Name and Tax, respectively. The 2D-PCFG model with Gabor fea-
tures achieved F-measure 0.93, 0.78 and 0.71 for classes Body, Name and Taz,
respectively.

PGMs classify cells but they do not identify the explicit segmentation
in records. However, the most likely hypothesis according to the 2D-PCFG
model provides a derivation tree that accounts for both the structure of the
document and the segmentation in cells. Using this information we extracted
the number of records detected in each document. Then, we computed the
percentage of documents in the test set where the number of records detected
was correct.

174 FAM-DSIC-UPV

8.4. Layout Analysis of Structured Documents

a) Ground-truth

¢) 2D-PCFG with RLF

Figure 8.14: Example of page segmentation and structure detection
with 2D-PCFG using cells of 50x 50 pixels and different text classification
features.

FAM-DSIC-UPV 175

Chapter 8. Applications

2D-PCFG in combination with Gabor features computed the right number
of records in 80% of the test documents, whereas with RLF features only 52.5%
of the documents had the correct number of records detected. All the errors
were due to oversegmentation in both sets of features. This measure helps to
assess the quality of the recognition such that we can see that in addition to
the slight improvement of Gabor features with respect to RLF features, the
number of records detected presented an important difference.

8.4.7 Summary

Given the grammar-based model developed in this thesis for math expression
recognition, in this study we proposed an application of 2D-PCFG for page
segmentation of structured documents. We evaluated this proposal using two
sets of features: Gabor and RLF. We also tested several inference algorithms
for PGMs, where RLF features obtained better results than Gabor features.

The experimentation carried out proved that 2D-PCFG parsing outper-
formed PGMs in this task. Furthermore, 2D-PCFG obtained better results
with Gabor features than using RLF features, because the grammatical model
was able to take advantage of the knowledge about the document structure.
Moreover, grammars were able to provide the detailed and explicit informa-
tion of the page segmentation, hence, record-level evaluation could be done
and results also showed a good performance of the model.

176 FAM-DSIC-UPV

CHAPTER

Conclusions

This thesis was devoted to develop a fully integrated approach for mathemat-
ical expression recognition. Along the chapters of this thesis, we presented
an approach based on parsing 2D-PCFG, and we studied each of the specific
tasks and issues related to automatic recognition of mathematical expressions.
We evaluated the different proposals and methods described in this thesis with
several experiments, and finally we explored some of the applications derived
from the work developed during these years.

This final chapter summarizes the developments and conclusions of this
thesis and we also discuss possible future research directions. Finally, we
report the scientific contributions and publications that resulted from the work
carried out in different tasks.

Chapter Outline
9.1 Summaryttt e e e e e e e e 178
9.2 Scientific Contributions 181

177

Chapter 9. Conclusions

9.1 Summary

At the beginning of this thesis, in Chapter 1, we identified the problems of
mathematical expression recognition and we stated generally the scientific
goals we pursued along this document. The goals achieved can be grouped in
three main tasks:

1. Develop an approach for automatic mathematical expression recognition.
2. Use public data and standard performance metrics.
3. Explore applications of the developed techniques.

Developing an approach for mathematical expression recognition
was the main goal of this thesis. Although there are several options to tackle
this problem, we also had specific objectives to develop our method. In this
thesis, we presented an approach that meets the following features:

e We developed an integrated approach such that symbol segmentation,
symbol recognition and structural analysis are simultaneously optimized.

e We defined a formal statistical framework based on parsing 2D-PCFG.

e The developed approach is generalized for any type of mathematical
expression: printed or handwritten, online or offline.

e The system accept virtually any input expression, i.e. the expressions
can be introduced in any order.

e All the probability distributions used in the statistical framework are
estimated from data.

Recognizing mathematical expressions is a complex task that deals with
several problems simultaneously. Furthermore, we generalized the formal
framework for any type of expression and studied specific modules. Figure 9.1
presents an outline of the different components of our mathematical expression
parser. We can see how all the parts contribute to the recognition process, as
well as how the approach is generalized for any type of mathematical expres-
sion: online handwritten, offline handwritten, and offline printed.

In order to provide comparable results, we wanted to use public data
and standard performance metrics. We believe it is of paramount im-
portance to assess improvements in any field and advance towards the best
solutions. Regarding this matter, we achieved the following results:

178 FAM-DSIC-UPV

9.1. Summary

Input
Sequence of Strokes Matrix of Pixels

handwritten handwritten printed

Y

Symbol Recognition /

T
|
|
'
I

Primitives

Connected Components
and Pixels

Symbol Duration Model

Symbol Segmentation Model

Offline Features
Printed

Offline Features

Online Features Handw ritten

LA, PR

Structural Analysis J P

Spatial Relationships
Classification

2D-PCFG

Output

Recognized Math Expression

Figure 9.1: Diagram that summarizes the common and specific parts
for recognizing any type of mathematical expression according to the
approach developed in this thesis: online handwritten (solid), offline
handwritten (dotted) and offline printed (dashed).

FAM-DSIC-UPV 179

Chapter 9. Conclusions

e We analyzed the problem of performance evaluation and proposed an
automatic performance evaluation metric.

e We report results using public datasets and standard metrics, which
allowed us to look for the best features, classifiers and methodologies.

e We released most of the software developed in this thesis as open-source.

e We participated in international competitions in order to evaluate our
proposals and compare them to other solutions under the same condi-
tions.

Once we have developed and evaluated our approach for mathematical ex-
pression recognition, we explored several applications of the developed
techniques:

e The transcription of handwritten math expressions as a tool to introduce
math notation into computer devices by means of handwriting. This
transcription was used to perform simple computations or information
retrieval using external services.

e LCAPTCHA, a novel method to tell humans and computers apart by
means of math handwriting input. This application is also able to gen-
erate annotated online handwritten math expressions.

e A method for layout analysis based on the statistical framework for
parsing 2D-PCFG developed in this thesis.

Finally, we identify the following future work research directions re-
garding mathematical expression recognition:

e Further research could be done on math symbol recognition, with new
features and classifiers. In addition, two issues could be tackled. First,
special treatment for recognition of similar shaped symbols ({z, x, X},
{0,0}, etc.). Second, tackle recognition of small symbols like punctuation
marks.

e More advanced features and classifiers for symbol segmentation model.
Our current model uses four simple features and GMM as classifiers,
which are generative models. There are many features proposed for this
task [Hu and Zanibbi, 2013] and discriminative training could provide
better results.

180 FAM-DSIC-UPV

9.2. Scientific Contributions

e Spatial relationship classification has high error rates for distinguishing
between right, superscript and subscript relations. It could be interesting
to train different classifiers depending on symbol categories as it improves
classification results between symbols [Aly et al., 2009].

e Further research should be done for the application of the integrated
approach developed in this thesis to offline recognition, both printed
and handwritten mathematical expressions.

e In many natural language processing problems, language models such
as n-grams can be easily estimated from large resources, like collections
of books, wikipedia, etc. An interesting future research direction is the
estimation of language models for mathematical expression recognition
using the resources available on Internet.

e We would like to explore the problem of math information retrieval, an
interesting application of math expression recognition that has brought
attention during the last years.

9.2 Scientific Contributions

The research work presented in this thesis has been developed during several
years. We have tried to deal with most of the issues related to mathematical
expression recognition and some of its applications. As a result, this thesis has
generated the following contributions: 8 conference papers, 3 journal papers
(plus one submitted), 3 competition awards and a technology transfer project.
Below we sum up the scientific contributions grouped according to the different
task within mathematical expression recognition.

Mathematical Symbol Classification

The study about different symbol classifiers and features for printed math-
ematical symbol classification was published in:

e Francisco Alvaro and Joan-Andreu Sénchez. Comparing Several Tech-
niques for Offline Recognition of Printed Mathematical Symbols. Inter-
national Conference on Pattern Recognition (ICPR), 2010, pp. 1953—
1956.

Regarding handwritten mathematical symbol recognition, the comparison
between online features and hybrid features, as well as the performance eval-
uation of HMM and BLSTM-RNN was published in:

FAM-DSIC-UPV 181

Chapter 9. Conclusions

e Francisco Alvaro, Joan-Andreu Sénchez, and José-Miguel Benedi. Clas-
sification of On-line Mathematical Symbols with Hybrid Features and
Recurrent Neural Networks. International Conference on Document
Analysis and Recognition (ICDAR), 2013, pp. 1012-1016.

The comparison of different offline features for classifying handwritten
math symbols using BLSTM-RNN and the combination of online and offline
features was published in:

e Francisco Alvaro, Joan-Andreu Sénchez, and José-Miguel Benedi. Of-
fline Features for Classifying Handwritten Math Symbols with Recur-
rent Neural Networks. International Conference on Pattern Recognition
(ICPR), 2014, pp. 2944-2949.

Spatial Relationships Classification

A study about different features for spatial relationship classification was
published in:

e Francisco Alvaro and Richard Zanibbi. A Shape-Based Layout Descrip-
tor for Classifying Spatial Relationships in Handwritten Math. ACM
Symposium on Document Engineering (DocEng), 2013, pp. 123-126.

Automatic Performance Evaluation

We published two contributions regarding the problem of automatic per-
formance evaluation. First, a study concerning the ambiguity in tree repre-
sentation and unbiased evaluation by means of constrained parsing:

e Francisco Alvaro, Joan-Andreu Sénchez, and José-Miguel Benedi. Un-
biased Evaluation of Handwritten Mathematical Expression Recogni-
tion. International Conference on Frontiers in Handwriting Recognition
(ICFHR), 2012, pp. 181-186.

Also, we proposed a performance evaluation metric based on image-matching
and we presented it in:

e Francisco Alvaro, Joan-Andreu Sdnchez, and José-Miguel Benedi. An
image-based measure for evaluation of mathematical expression recog-
nition. Iberian Conference on Pattern Recognition and Image Analysis

(IbPRIA), 2013, pp. 682-690.

182 FAM-DSIC-UPV

9.2. Scientific Contributions

Mathematical Expression Recognition

Our first research on mathematical expression recognition was focused on
printed expressions. We published an initial model for parsing printed expres-
sions based on parsing 2D-PCFG in :

e Francisco Alvaro, Joan-Andreu Sanchez, and José-Miguel Benedi.
Recognition of Printed Mathematical Expressions Using T'wo-dimensional
Stochastic Context-Free Grammars. International Conference on Docu-
ment Analysis and Recognition (ICDAR), 2011, pp. 1225-1229.

Afterwards, we moved to handwritten mathematical expression recogni-
tion. Based on the work developed for printed expressions, we advanced and
developed an approach for recognizing handwritten expressions. We published
it in:

e Francisco Alvaro, Joan-Andreu Sanchez, and José-Miguel Benedi.
Recognition of On-line Handwritten Mathematical Expressions Using 2D
Stochastic Context-Free Grammars and Hidden Markov Models. Pattern
Recognition Letters, 2014, vol. 35, pp. 58—67.

Finally, we developed the integrated approach presented in this thesis, and
the description of this approach was submitted to:

e Francisco Alvaro, Joan-Andreu Sanchez, and José-Miguel Benedi.
An Integrated Grammar-based Approach for Mathematical Expression
Recognition. Pattern Recognition, 2015, (submitted).

Applications

Some of the applications of mathematical expression recognition we ex-
plored in this thesis resulted in publications. The approach for layout analysis
based on parsing 2D-PCFG of structured documents was initially published
in:

e Francisco Alvaro, Francisco Cruz, Joan-Andreu Sanchez, Oriol Ramos
Terrades and José-Miguel Benedi. Page Segmentation of Structured
Documents Using 2D Stochastic Context-Free Grammars. Iberian Con-
ference on Pattern Recognition and Image Analysis (IbPRIA), 2013, pp.
133-140.

Later, we extended that research such that the application reported in this
thesis was presented in:

FAM-DSIC-UPV 183

Chapter 9. Conclusions

e Francisco Alvaro, Francisco Cruz, Joan-Andreu Sanchez, Oriol Ramos
Terrades and José-Miguel Benedi. Structure detection and segmentation
of documents using 2D stochastic context-free grammars. Neurocomput-
ing, 2015, vol. 150, pp. 147-154.

Finally, the yCAPTCHA method has been accepted for publication in the
following journal:

e Luis A. Leiva and Francisco Alvaro. pCAPTCHA: Human Interaction
Proofs Tailored to Touch-Capable Devices via Math Handwriting. In-
ternational Journal of Human-Computer Interaction, 2015.

Awards

The Competition on Recognition of On-line Handwritten Mathematical
Expression (CROHME) has been held since 2011 [Mouchere et al., 2011, 2012,
2013, 2014]. So far, we have participated in all editions of the competition and
received the following awards:

¢ CROHME 2011: Winner of the CROHME competition.
Mouchere H., Viard-Gaudin C., Garain U., Kim D. H., Kim J. H.
CROHME 2011: Competition on Recognition of Online Handwritten
Mathematical Expressions. International Conference on Document Anal-
ysis and Recognition (ICDAR) 2011. Beijing, China.

¢ CROHME 2013: Best system using CROHME training set.
Mouchere H., Viard-Gaudin C., Zanibbi R., Garain U., Kim D. H.,
Kim J. H. ICDAR 2013 CROHME: Third International Competition on
Recognition of Online Handwritten Mathematical Expressions. Inter-
national Conference on Document Analysis and Recognition (ICDAR),
2013. Washington, DC, USA.

¢ CROHME 2014: Best system trained on CROHME dataset.
Mouchere H., Viard-Gaudin C., Zanibbi R., Garain U. ICFHR 2014
Competition on Recognition of On-line Handwritten Mathematical Ex-
pressions (CROHME 2014). International Conference on Frontiers in
Handwriting Recognition (ICFHR), 2014. Creta, Greece.

184 FAM-DSIC-UPV

List of Acronyms

2D-PCFG
BIDM
BLSTM
CAPTCHA

CFG
CNF
CYK
DIA
GMM
HMM
IDM
IMEGE
k-NN
LSTM
MLP
OCR
PCA
PCFG
PGM
RNN
SUS
SVM
TLX
WNN

Two-Dimensional Probabilistic Context-Free Grammar
Binary Image Distortion Model
Bidirectional Long Short-Term Memory
Completely Automated Public Turing Test
to Tell Computers and Humans Apart
Context-Free Grammar

Chomsky Normal Form
Cocke-Younger-Kasami

Document Image Analysis

Gaussian Mixture Model

Hidden Markov Model

Image Distortion Model

Image-based Mathematical Expression Global Error
k Nearest Neighbors

Long Short-Term Memory

Multi Layer Perceptron

Optical Character Recognition

Principal Component Analysis
Probabilistic Context-Free Grammar
Probabilistic Graphical Model

Recurrent Neural Network

System Usability Scale

Support Vector Machines

Task Load Index

Weighted Nearest Neighbor

185

List of Figures

1.1
1.2
1.3

1.4

1.5

1.6

1.7

1.8

2.1

2.2

3.1

Example of printed mathematical expression.
Example of handwritten mathematical expression.
Symbol segmentation problems in offline mathematical expres-
sion recognition based on connected components.
Handwritten mathematical expressions showing several exam-
ples of ambiguities in symbol segmentation.
Recognition of mathematical symbols can be hard without con-
text, examples of ambiguity in classification.
Example of symbol classification depending on the context in
the mathematical expression. The same symbol shape is clas-
sified as a letter in top expression (z? —) and as a product
operator between sets in bottom expression (A x B = ().

Example of subscript and superscript relationships that cannot
be determined locally [Chan and Yeung, 2000].

Example of tree representation of the expression . Left
to right: relational tree, symbol layout tree, and operator tree.

Example of input for an online handwritten mathematical ex-
pression. The order of the input sequence of strokes is labeled
(O = 0102 ... Og).
Parse tree of expression (x + y)? given the input sequence of
strokes described in Fig. 2.1. The parse tree represents the
structure of the math expression and it produces the 6 recog-
nized symbols that account for the 8 input strokes.

The online features are extended with offline information using
a context-window centered on each point in the rendered image.

187

33

List of Figures

3.2

3.3

3.4

3.5

3.6

4.1

4.2

4.3

4.4

4.5
4.6

5.1

5.2

5.3

6.1

6.2

Example of PRHLT offline features computation. Given an
image of a math symbol (a) we compute the normalized gray
level (b), horizontal gray-level derivative (c) and vertical gray-
level derivative (d). Each column of the stacked images (e)

represents a feature vector.o L. 34
Example of polar descriptor with n = 5 circles and m = 8 arcs
in a particular column of a square root symbol. 36

Example of the RWTH offline features for a square root symbol
using a sliding window of w = 11 pixels. Each window repre-
sents a feature vector after projecting it to D dimensions with
PCA. . . 38
Example of polar features for a square root symbol using n =5
circles and m = 12 arcs. The gray-scale colors of the bins in the
descriptors represent the values of the polar histogram, from
zero (white) to the maximum value in that descriptor (black). . 38
Example of feature extraction for sequence classification. 42

Geometric features for classifying the spatial relationship be-

tween regions Band C. 48
Example of vertical center computation for a mathematical
symbol depending on its typographic category. 49

Vertical center computation of the combination of two regions
according to the spatial relation among them: a) subscript and
superscript; b) inside; ¢) right. 50
Varying distance (n) x angle (m) resolution in a polar his-
togram layout descriptor. Values shown using green (-1), red

(+1), and white (0). 51
Polar histogram layout descriptors. 52
Example for hierarchical clustering penalty. 53

Spatial regions defined to retrieve hypotheses relative to hy-

pothesis bp according to different relations. 62
Diagram of the process for training the initial mathematical
expression recognition system.o 66
Diagram of the process for training the final mathematical ex-
pression recognition system. 68

Some examples of different valid representations for math ex-
pression | 22 + 1 fin WTEX and MathML format. 71
Image Distortion Model (IDM) visual representation. 75

188 FAM-DSIC-UPV

List of Figures

6.3

6.4

7.1

7.2

7.3

7.4

7.5

7.6

7.7

7.8

7.9

7.10

7.11

7.12

8.1

Example of the procedure for computing the IMEGE measure
given a math expression recognition and its ground-truth in
TREX. . o e 78
Example of label graph representation of an online handwritten
math expression recognition and its ground-truth. The dashed
edges are inherited relationships. 79

Examples of printed mathematical expressions from the UW-III

dataset. 87
Examples of printed mathematical expressions from the INFTY
dataset. 88
Examples of handwritten mathematical expressions from the
MathBrush dataset. 89
Examples of online handwritten mathematical expressions from
the CROHME 2013 competition dataset. 91
Examples of mathematical expressions for the matrix recogni-
tion task of the CROHME 2014 competition. 91

Hybrid features parameter tuning using HMM for different im-
age heights (h), context window sizes (w) and PCA dimensions.
Symbol recognition rate for one of the 20 trials. 95
HMM symbol recognition rate for different number of Gaus-
sian mixtures per state using both online features and hybrid
features. Results computed for one of the 20 trials. 95
RNN symbol recognition rate in one of the 20 trials for different
hidden layers size using both online features and hybrid features. 96
Fitting polar histogram parameters. Error for the best PCA
dimension set for each m (angles) x n (circles) histogram is

Examples of problems with the INFTY ground-truth informa-
tion in order to isolate the connected components from the

bounding box coordinates.o L Lo 127
Histogram of error metrics of the expressions in the test set for
the printed mathematical expression recognition experiment. . 130
Example of evaluation difference between EMERS and IMEGE
due to representation ambiguity.o 131

Example of the online demo for IXTEX transcription and infor-
mation retrieval of online handwritten mathematical expressions.137

FAM-DSIC-UPV 189

List of Figures

8.2

8.3

8.4

8.5

8.6

8.7

8.8

8.9

8.10

8.11

8.12
8.13

8.14

Solving captchas on a mobile device is rather uncomfortable.
For instance, focusing on a text field causes zooming and field
positioning which do not allow for the captcha to be read prop-
erly. . .o 140
wCAPTCHA interface. A math expression is shown to the user
(left), who has to draw it on a canvas (right). Buttons from left
to right: clear strokes, request a new challenge, listen challenge
(to write it in plain text), undo last stroke, redo last stroke,
submit challenge. 0L 141
Requesting a yCAPTCHA generates a math expression in TEX
format (a). The expression is encoded (d,e) and rendered as
an image (b,c). The user must draw (f) the presented math
expression, generating thus a sequence of strokes (g) that is
submitted to a handwritten math expression parser (h). The
output of the recognizer is a math expression in TEX format,
which is encoded (i) in the same way as (d). The challenge is

solved if the final ID (j) matches the challenge ID (e). 145
Examples using between 4 and 9 strokes per mathematical ex-
Pression. 146
Original set (101 symbols) and reduced set (66 symbols), by
removing those symbols indicated in gray background color. . . 147
REST API. We have developed an accompanying web-based
prototype that interfaces with our web service. 149
Alternate Ul design. Eventually we opted for the compact ver-
sion (Fig. 8.3) in order to save screen space. 149
Attacking yCAPTCHA. Noise reduction examples use morpho-
logical operators (erosion plus dilation) of variable size. 151
MotionCAPTCHA example, using our UI’s look and feel. . . . 152
Improving accuracy by using different EMERS thresholds. . . . 156

Example of page of a marriage license book containing six records. 161
Example of the page segmentation problem for two records.
Several background zones are considered and each record is
composed of three parts: (a) Name (b) Body (c) Tax. 163
Example of page segmentation and structure detection with 2D-
PCFG using cells of 50 x 50 pixels and different text classifica-
tion features. 175

190 FAM-DSIC-UPV

List of Figures

9.1 Diagram that summarizes the common and specific parts for
recognizing any type of mathematical expression according to
the approach developed in this thesis: online handwritten (solid),
offline handwritten (dotted) and offline printed (dashed). . . . 179

FAM-DSIC-UPV 191

List of Tables

7.1

7.2

7.3

7.4
7.5
7.6

7.7

7.8

7.9

7.10

Classification results with HMM and RNN classifiers and two
sets of features: online and hybrid.
Classification results with RNN classifiers and several sets of
features: online, offline and their combination.
Results of the isolated symbol recognition task of the CROHME
2014 competition. System I is the approach developed in this
thesis. L
Average classification error rate for the UW-III data set.
Classification error rate for the InftyCDB-1 data set.
MathBrush spatial relationship classification results. For each
feature the number of features (#) and whether typographic
symbol classes are used (Cat.) are shown.
Confusion matrix for geometric features (GEO3) accumulated
for 10 classification experiments. Ground-truth labels are shown

along the rows (FN: false negative rate, FP: false positive rate).

Confusion matrix for shape descriptors (SHP) accumulated for
10 classification experiments. Ground-truth labels are shown

along the rows (FN: false negative rate, FP: false positive rate).

Object-level evaluation for the CROHME 2013 test set. Sys-
tems sorted by decreasing recall for correct symbol segmenta-
tion and classification (Seg+Class). It should be noticed that
System IV is a preliminary version of seshat.
Stroke-level evaluation for the CROHME 2013 test set. Sys-
tems sorted by increasing AE. AB, and AFE are measured on
directed labels graphs (8548 strokes; 81007 (undirected) stroke
pairs). It should be noticed that System IV is a preliminary
version of seshat.

193

97

114

114

List of Tables

7.11

7.12

7.13

7.14

7.15

7.16

8.1
8.2
8.3
8.4

8.5

Contribution to overall system performance at object level of
the different sources of information used. The models and fea-
tures listed in each row are cumulative, such that the system
shown in the last row includes all information sources. 121
Contribution to overall system performance at stroke level of the
different sources of information used. The models and features
listed in each row are cumulative, such that the system shown
in the last row includes all information sources. 121
Object-level evaluation for the CROHME 2014 test set. Sys-
tems sorted by decreasing recall for correct symbol segmenta-
tion and classification (Seg+Class). 123
Stroke-level evaluation for the CROHME 2014 test set. Systems
sorted by increasing AE. AB, and AFE are measured on di-
rected labels graphs (13796 strokes; 288660 (undirected) stroke

PAITS). © v v o 123
Results of the matrix recognition task of the CROHME 2014

competition.o 125
Recognition results at different levels of 3K printed mathemat-

ical expressions from the INFTY dataset. 129
Recognition accuracy results. 153
Mean solving time. SDs are denoted in parentheses. 154

Mean usability (SUS) and workload (TLX) scores. SDs are
denoted in parentheses. Higher SUS is better, lower TLX is

better. 154
Mean subjectivity scores (higher is better). SDs are denoted in
parentheses. 155
Classification results for different models and text classification
features.o 173

194 FAM-DSIC-UPV

List of Algorithms

5.1 CYK for parsing math expressions 60

6.1 Binary IDM (BIDM) evaluation algorithm. 76

195

Bibliography

F. Aguilar and N. S. T. Hirata. ExpressMatch: A System for Creating
Ground-Truthed Datasets of Online Mathematical Expressions. In Document
Analysis Systems (DAS), 2012 10th IAPR International Workshop on, pages
155-159, March 2012.

F. Alvaro, J. Sdnchez, and J. Benedi. Recognition of printed mathematical
expressions using two-dimensional stochastic context-free grammars. In In-
ternational Conference on Document Analysis and Recognition, pages 1225—
1229, 2011.

F. Alvaro, J.-A. Sénchez, and J.-M. Benedi. Unbiased evaluation of hand-
written mathematical expression recognition. In International Conference on
Frontiers in Handwriting Recognition (ICFHR), pages 181-186, 2012.

F. Alvaro, J.-A. Sanchez, and J.-M. Benedi. Recognition of on-line handwrit-
ten mathematical expressions using 2d stochastic context-free grammars and
hidden markov models. Pattern Recognition Letters, 35(0):58-67, 2014.

W. Aly, S. Uchida, and M. Suzuki. Automatic classification of spatial re-
lationships among mathematical symbols using geometric features. IEICE
Transactions, 92-D(11):2235-2243, 20009.

R. H. Anderson. Syntax-directed recognition of hand-printed two-dimensional
mathematics. In Symposium on Interactive Systems for Experimental Applied
Mathematics: Proceedings of the ACM Symposium, pages 436-459. ACM,
1967.

A. Antonacopoulos, C. Clausner, C. Papadopoulos, and S. Pletschacher. His-
torical document layout analysis competition. In Proc. of ICDAR, pages
1516-1520, Beijing, China, 2011.

A. Antonacopoulos, C. Clausner, C. Papadopoulos, and S. Pletschacher. I1C-
DAR 2013 Competition on Historical Newspaper Layout Analysis (HNLA

197

Bibliography

2013). In Document Analysis and Recognition (ICDAR), 2013 12th Interna-
tional Conference on, pages 1454-1458, Aug 2013a.

A. Antonacopoulos, C. Clausner, C. Papadopoulos, and S. Pletschacher. 1C-
DAR 2013 Competition on Historical Book Recognition (HBR 2013). In
Document Analysis and Recognition (ICDAR), 2013 12th International Con-
ference on, pages 1459-1463, Aug 2013b.

A.-M. Awal, H. Mouchere, and C. Viard-Gaudin. Towards handwritten math-
ematical expression recognition. In International Conference on Document
Analysis and Recognition, pages 1046-1050, 2009.

A.-M. Awal, H. Mouchere, and C. Viard-Gaudin. The problem of handwritten
mathematical expression recognition evaluation. Frontiers in Handwriting
Recognition, International Conference on, 0:646-651, 2010.

A.-M. Awal, H. Mouchere, and C. Viard-Gaudin. A global learning approach
for an online handwritten mathematical expression recognition system. Pat-
tern Recognition Letters, 35(0):68 — 77, 2014. Frontiers in Handwriting Pro-
cessing.

H. S. Baird and J. L. Bentley. Implicit CAPTCHAs. In Proc. SPIE/IST,
pages 507-518, 2005.

H. S. Baird and K. Popat. Human interactive proofs and document image
analysis. In Proc. DAS, pages 507-518, 2002.

A. Basso and F. Bergadano. Anti-bot strategies based on human interactive
proofs. In Handbook of Information and Communication Security, pages 273—
291. 2010.

L. Baum. An inequality and associated maximization technique in statistical
estimation of probabilistic functions of a markov process. Inequalities, pages
1-8, 1972.

S. Belongie, J. Malik, and J. Puzicha. Shape matching and object recogni-
tion using shape contexts. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 24(4):509-522, 2002.

J. Besag. On the statistical analysis of dirty pictures. Journal of the Royal
Statistical Society. Series B (Methodological), 48(3):259-302, 1986.

C. M. Bishop. Pattern Recognition and Machine Learning. Springer-Verlag
New York, Inc., 2006.

198 FAM-DSIC-UPV

Bibliography

J. Blocki, M. Blum, and A. Datta. GOTCHA password hackers! In Proceed-
ings of the ACM Workshop on Artificial Intelligence and Security (AlSec),
pages 25-34, 2013.

Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimization
via graph cuts. IEEE Trans. Pattern Analysis and Machine Intelligence, 23
(11):1222-1239, 2001.

M. Bulacu, R. Koert, L. Schomaker, and T. Zant. Layout analysis of hand-
written historical documents for searching the archive of the cabinet of the
Dutch queen. In Proc. of ICDAR, volume 1, pages 23-26, Brazil, 2007.

E. Bursztein, A. Moscicki, C. Fabry, S. Bethard, J. C. Mitchell, and D. Juraf-
sky. Easy does it: More usable CAPTCHAs. In Proceedings of the SIGCHI

conference on Human Factors in Computing systems (CHI), pages 2637—2646,
2014.

K.-F. Chan and D.-Y. Yeung. Mathematical expression recognition: a survey.
International Journal on Document Analysis and Recognition, 3:3—15, 2000.

K.-F. Chan and D.-Y. Yeung. Error detection, error correction and perfor-
mance evaluation in on-line mathematical expression recognition. Pattern

Recognition, 34:1671 — 1684, 2001.

K. Chellapilla and P. Simard. Using machine learning to break visual human
interaction proofs (HIPs). In Proceedings of Neural Information Processing
Systems (NIPS), 2005.

K. Chellapilla, K. Larson, P. Simard, and M. Czerwinski. Designing human
friendly human interaction proofs (HIPs). In Proceedings of the SIGCHI
conference on Human Factors in Computing systems (CHI), pages 711-720,
2005.

T. Chen, Y. Yesilada, and S. Harper. What input errors do you experience?
typing and pointing errors of mobile web users. Int. J. Hum.-Comput. Stud.,
68(3):138-157, 2010.

M. Chew and H. S. Baird. BaffleText: a human interactive proof. In Proc.
SPIE/IST, 2003.

P. A. Chou. Recognition of equations using a two-dimensional stochastic
context-free grammar. In W. A. Pearlman, editor, Visual Communications
and Image Processing IV, volume 1199 of SPIE Proceedings Series, pages
852-863, 19809.

FAM-DSIC-UPV 199

Bibliography

R. Chow, P. Golle, M. Jakobsson, L. Wang, and X. Wang. Making
CAPTCHASs clickable. In Proc. HotMobile, pages 91-94, 2008.

A. L. Coates, H. Baird, and R. Faternan. Pessimal print: A reverse turing
test. In Proceedings of the Intl. Conf. on Document Analysis and Recgnition
(ICDAR), pages 1154-1158, 2001.

G. F. Cooper. The computational complexity of probabilistic inference using
bayesian belief networks. Artif. Intell., 42(2-3):393-405, 1990.

K. Crammer and Y. Singer. On the algorithmic implementation of multiclass
kernel-based vector machines. J. Mach. Learn. Res., 2:265-292, 2002.

S. Crespi Reghizzi and M. Pradella. A CKY parser for picture grammars.
Information Processing Letters, 105(6):213-217, Feb. 2008.

F. Cruz and O. R. Terrades. Document segmentation using relative location
features. In Proc. of ICPR, pages 1562—-1565, Japan, 2012.

K. Davila, S. Ludi, and R. Zanibbi. Using Off-line Features and Synthetic
Data for On-line Handwritten Math Symbol Recognition. In Frontiers in
Handwriting Recognition (ICFHR), International Conference on, pages 323~
328, 2014.

P. Doetsch, M. Hamdani, H. Ney, A. Giménez, J. Andrés-Ferrer, and A. Juan.
Comparison of Bernoulli and Gaussian HMMs Using a Vertical Repositioning
Technique for Off-Line Handwriting Recognition. In Frontiers in Handwriting
Recognition (ICFHR), International Conference on, pages 3-7, 2012.

P. Dreuw, D. Rybach, C. Gollan, and H. Ney. Writer adaptive training and
writing variant model refinement for offline arabic handwriting recognition.
In Document Analysis and Recognition. International Conference on, pages
21-25, 2009.

J. Elson, J. R. Douceur, J. Howell, and J. Saul. ASIRRA: A CAPTCHA that
exploits interest-aligned manual image categorization. In Proceedings of the
ACM Conference on Computer and Communications Security (CCS), pages
366-374, 20009.

A. Esteve, C. Cortina, and A. Cabré. Long term trends in marital age ho-
mogamy patterns: Spain, 1992-2006. Population, 64(1):173-202, 2009.

200 FAM-DSIC-UPV

Bibliography

Y. Eto and M. Suzuki. Mathematical formula recognition using virtual link
network. In International Conference on Document Analysis and Recognition,
pages 762-767, Washington, DC, 2001.

R. Fateman, T. Tokuyasu, B. P. Berman, and N. Mitchell. Optical character
recognition and parsing of typeset mathematics. Journal of Visual Commu-
nication and Image Representation, 7:2-15, 1996.

C. Faure and Z. Wang. Automatic perception of the structure of handwritten
mathematical expressions. In Computer Processing of Handwriting, pages
337-361, 1990.

I. Fogel and D. Sagi. Gabor filters as texture discriminator. Biological Cy-
bernetics, 61(2):103-113, 1989.

U. Garain and B. Chaudhuri. Recognition of online handwritten mathemat-
ical expressions. IEEE Trans. on Systems, Man, and Cybernetics - Part B:
Cybernetics, 34(6):2366-2376, 2004.

U. Garain and B. Chaudhuri. A corpus for ocr research on mathematical
expressions. [International Journal on Document Analysis and Recognition,
7:241-259, 2005a.

U. Garain and B. Chaudhuri. Segmentation of touching symbols for ocr
of printed mathematical expressions: an approach based on multifactorial
analysis. In International Conference on Document Analysis and Recognition,
pages 177-181 Vol. 1, Aug 2005b.

U. Garain, B. Chaudhuri, and R. Ghosh. A multiple-classifier system for
recognition of printed mathematical symbols. In Proc. ICPR, volume 1,
pages 380-383, 2004.

A. Giménez, I. Khoury, and A. Juan. Windowed Bernoulli Mixture HMMSs for
Arabic Handwritten Word Recognition. In Frontiers in Handwriting Recog-
nition (ICFHR), International Conference on, pages 533-538, 2010.

1. J. Goodfellow, Y. Bulatov, J. Ibarz, S. Arnoud, and V. Shet. Multi-digit
number recognition from street view imagery using deep convolutional neural
networks. 2014.

J. Goodman. Semiring parsing. Computational Linguistics, 25(4):573-605,
1999.

FAM-DSIC-UPV 201

Bibliography

A. Goshtasby. Description and discrimination of planar shapes using shape
matrices. Pattern Analysis and Machine Intelligence, IEEE Transactions on,
PAMI-7(6):738-743, 1985.

R. Gossweiler, M. Kamvar, and S. Baluja. What’s up CAPTCHA?: A
CAPTCHA based on image orientation. In Proceedings of the WWW, pages
841-850, 20009.

S. Gould, J. Rodgers, D. Cohen, G. Elidan, and D. Koller. Multi-class seg-
mentation with relative location prior. Int. Journal of Computer Vision, 80
(3):300-316, 2008.

A. Graves. RNNLIB: A recurrent neural network library for sequence learning
problems. http://sourceforge.net/projects/rnnl/, 2010.

A. Graves, M. Liwicki, S. Fernandez, R. Bertolami, H. Bunke, and J. Schmid-
huber. A novel connectionist system for unconstrained handwriting recogni-

tion. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 31
(5):855-868, 20009.

J. Ha, R. Haralick, and I. Phillips. Understanding mathematical expressions
from document images. In International Conference on Document Analysis
and Recognition, volume 2, pages 956-959, Aug 1995.

J. Handley, A. Namboodiri, and R. Zanibbi. Document understanding system
using stochastic context-free grammars. Proc. of ICDAR, 1:511-515, 2005.

C. J. Hernandez-Castro and A. Ribagorda. Pitfalls in CAPTCHA design and
implementation: The Math CAPTCHA, a case study. Computers & Security,
29(1):141-157, 2010.

J. M. G. Hidalgo and G. Alvarez. CAPTCHAs: An artificial intelligence
application to web security. Advances in Computers, 83(1):109-181, 2011.

N. S. T. Hirata and W. Y. Honda. Automatic labeling of handwritten math-
ematical symbols via expression matching. In International Conference on

Graph-based Representations in Pattern Recognition, pages 295-304, Munich,
Germany, 2011.

J. P. Hourcade and T. R. Berkel. Simple pen interaction performance of young
and older adults using handheld computers. Interacting with Computers, 20
(1):166-183, 2008.

202 FAM-DSIC-UPV

http://sourceforge.net/projects/rnnl/

Bibliography

L. Hu and R. Zanibbi. HMM-Based Recognition of Online Handwritten
Mathematical Symbols Using Segmental K-Means Initialization and a Modi-

fied Pen-Up/Down Feature. International Conference on Document Analysis
and Recognition, 0:457-462, 2011.

L. Hu and R. Zanibbi. Segmenting Handwritten Math Symbols Using Ad-
aBoost and Multi-Scale Shape Context Features. In International Conference
on Document Analysis and Recognition, 2013.

L. Hu, K. Hart, R. Pospesel, and R. Zanibbi. Baseline extraction-driven pars-
ing of handwritten mathematical expressions. In International Conference on
Pattern Recognition, pages 326-330, Nov 2012.

J. Ilonen, J.-K. Kamarainen, and H. Kaélvidinen. Fast extraction of multi-
resolution Gabor features. In 14th International Conference on Image Anal-
ysis and Processing, pages 481-486, Modena, Italy, 2007.

A. Jain, A. Namboodiri, and J. Subrahmonia. Structure in online documents.
In Proc. of ICDAR, volume 1, pages 844-848, 2001.

N. Jiang and F. Tian. A novel gesture-based CAPTCHA design for smart
devices. In Proc. BCS HCI, page 49, 2013.

M. Jordan, Z. Ghahramani, T. Jaakkola, and L. Saul. An introduction to
variational methods for graphical models. Machine Learning, 37(2):183-233,
Nov. 1999.

F. Julca-Aguilar, N. S. Hirata, C. Viard-Gaudin, H. Moucheére, and S. Med-
jkoune. Mathematical symbol hypothesis recognition with rejection option.
In Frontiers in Handwriting Recognition (ICFHR), International Conference
on, pages 500-504, 2014.

D. Jurafsky and J. H. Martin. Speech and Language Processing (2nd edition)
(Prentice Hall Series in Artificial Intelligence). Prentice Hall, 2008.

B. Keshari and S. Watt. Hybrid mathematical symbol recognition using
support vector machines. In International Conference on Document Analysis
and Recognition, volume 2, pages 859 —863, 2007.

D. Keysers, T. Deselaers, C. Gollan, and H. Ney. Deformation models for im-
age recognition. IEEE Trans. on Pattern Analysis and Machine Intelligence,
29(8):1422-1435, 2007.

FAM-DSIC-UPV 203

Bibliography

W. Kienzle and K. Hinckley. Writing handwritten messages on a small touch-
screen. In International Conference on Human-Computer Interaction with
Mobile Devices and Services (mobileHCT), 2013.

K. A. Kluever and R. Zanibbi. Balancing usability and security in a video
CAPTCHA. In Proceedings of the Symposium on Usable Privacy and Security
(SOUPS), pages 14:1-14:11, 20009.

D. Koller and N. Friedman. Probabilistic Graphical Models: Principles and
Techniques. MIT Press, 2009.

A. Kosmala and G. Rigoll. On-line handwritten formula recognition using
statistical methods. In International Conference on Pattern Recognition,
pages 1306-1308, 1998.

S. Kumar, R. Gupta, N. Khanna, S. Chaudhury, and S. D. Joshi. Text
extraction and document image segmentation using matched wavelets and
mrf model. Image Processing, IEEE Transactions on Image Processing, 16
(8):2117-2128, aug. 2007.

J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: Proba-
bilistic models for segmenting and labeling sequence data. In Proc. of ICML,
pages 282-289, USA, 2001.

A. Lapointe and D. Blostein. Issues in performance evaluation: A case study
of math recognition. In International Conference on Document Analysis and
Recognition, pages 1355—1359, 2009.

S. Lavirotte and L. Pottier. Mathematical formula recognition using graph
grammar. In Proceedings of the SPIE, volume 3305, pages 44-52, 1998.

H.-J. Lee and M.-C. Lee. Understanding mathematical expressions in a
printed document. In Proceedings of the Second International Conference
on Document Analysis and Recognition, pages 502-505, Oct 1993.

S. Lehmberg, H.-J. Winkler, and M. Lang. A soft-decision approach for sym-
bol segmentation within handwritten mathematical expressions. In Inter-
national Conference on Acoustics, Speech, and Signal Processing, volume 6,
pages 3434-3437 vol. 6, May 1996.

S. Z. Li. Markov Random Field Modeling in Computer Vision. Springer-
Verlag, London, UK, UK, 1995.

204 FAM-DSIC-UPV

Bibliography

L. Likforman-Sulem, A. Zahour, and B. Taconet. Text line segmentation of
historical documents: a survey. International Journal of Document Analysis
and Recognition, 9:123-138, 2007.

R. Lin, S.-Y. Huang, G. B. Bell, and Y.-K. Lee. A new CAPTCHA interface
design for mobile devices. In Proc. AUIC, 2011.

M. Liwicki and H. Bunke. Feature selection for hmm and blstm based hand-
writing recognition of whiteborad notes. International Journal of Pattern
Recognition and Artificial Intelligence, 23(05):907-923, 20009.

Z. Luo, Y. Shi, and F. Soong. Symbol graph based discriminative training
and rescoring for improved math symbol recognition. In IEEE International
Conference on Acoustics, Speech, and Signal Processing, pages 1953-1956,
2008.

S. MacLean and G. Labahn. Elastic matching in linear time and constant
space. Document Analysis Systems, Ninth IAPR Workshop on (short paper),
2010.

S. MacLean and G. Labahn. A new approach for recognizing handwritten
mathematics using relational grammars and fuzzy sets. International Journal
on Document Analysis and Recognition, 16(2):139-163, 2013.

S. MacLean, G. Labahn, E. Lank, M. Marzouk, and D. Tausky. Grammar-
based techniques for creating ground-truthed sketch corpora. International
Journal on Document Analysis and Recognition, 14:65-74, 2011.

C. Malon, S. Uchida, and M. Suzuki. Mathematical symbol recognition with
support vector machines. Pattern Recognition Letters, 29(9):1326-1332, 2008.

C. D. Manning and H. Schiitze. Foundations of Statistical Natural Language
Processing. The MIT Press, Cambridge, Massachusetts, 1999.

S. Marinai, B. Miotti, and G. Soda. Using earth mover’s distance in the
bag-of-visual-words model for mathematical symbol retrieval. In Document
Analysis and Recognition (ICDAR), 2011 International Conference on, pages
1309-1313, 2011.

U.-V. Marti and H. Bunke. Using a statistical language model to improve
the performance of an HMM-based cursive handwriting recognition system.
International Journal of Pattern Recognition and Artificial Intelligence, 15
(01):65-90, 2001.

FAM-DSIC-UPV 205

Bibliography

N. Matsakis. Recognition of handwritten mathematical expressions. Master’s
thesis, Massachusetts Institute of Technology, Cambridge, USA, May 1999.

M. Mohamed, N. Sachdeva, M. Georgescu, S. Gao, N. Saxena, C. Zhang,
P. Kumaraguru, P. C. van Oorschot, and W.-B. Chen. A three-way investi-
gation of a game-CAPTCHA: Automated attacks, relay attacks and usability.

In Proceedings of the Symposium on Information, Computer and Communi-
cations Security (CCS), pages 195-206, 2014.

H. Mouchere, C. Viard-Gaudin, U. Garain, D. Kim, and J. Kim.
CROHME2011: Competition on Recognition of Online Handwritten Mathe-
matical Expressions. In Proceedings of the 11th International Conference on
Document Analysis and Recognition, ICDAR 2011, September 2011.

H. Mouchere, C. Viard-Gaudin, D. Kim, J. Kim, and U. Garain. ICFHR
2012 Competition on Recognition of On-Line Mathematical Expressions
(CROHME 2012). In Frontiers in Handwriting Recognition (ICFHR), In-
ternational Conference on, pages 811-816, Sept 2012.

H. Mouchere, C. Viard-Gaudin, R. Zanibbi, U. Garain, and D. H. Kim.
ICDAR 2013 CROHME: Third International Competition on Recognition of
Online Handwritten Mathematical Expressions. In Document Analysis and
Recognition, International Conference on, pages 1428-1432, 2013.

H. Mouchere, C. Viard-Gaudin, R. Zanibbi, and U. Garain. ICFHR 2014
Competition on Recognition of On-Line Handwritten Mathematical Expres-
sions (CROHME 2014). In Frontiers in Handwriting Recognition (ICFHR),
International Conference on, pages 791-796, Sept 2014.

J. A. Nelder and R. Mead. A simplex method for function minimization.
Computer Journal, 7:308-313, 1965.

H. Ney. Stochastic Grammars and Pattern Recognition. In P. Laface and
R. De Mori, editors, Speech Recognition and Understanding, volume 75, pages
319-344. Springer Berlin Heidelberg, 1992.

A. Nomura, K. Michishita, S. Uchida, and M. Suzuki. Detection and segmen-
tation of touching characters in mathematical expressions. In International

Conference on Document Analysis and Recognition, pages 126—130 vol.1, Aug
2003.

M. Okamoto and A. Miyazawa. An experimental implementation of a docu-
ment recognition system for papers containing mathematical expressions. In
Structured Document Image Analysis, pages 36-53. 1992.

206 FAM-DSIC-UPV

Bibliography

M. Okamoto, H. Imai, and K. Takagi. Performance evaluation of a robust
method for mathematical expression recognition. In Proc. 6th International
Conference on Document Analysis and Recognition (ICDAR’01), pages 121—
128, September 2001.

N. Okamoto and M. B. Recognition of mathematical expressions by using
the layout structures of symbols. In International Conference on Document
Analysis and Recognition, pages 242-250, 1991.

N. Otsu. A Threshold Selection Method from Gray-level Histograms. IFEE
Transactions on Systems, Man and Cybernetics, 9(1):62-66, 1979.

L. Ouyang and R. Zanibbi. Identifying layout classes for mathematical sym-
bols using layout context. In IEEE Western New York Image Processing
Workshop, 2009.

R. Paredes and E. Vidal. Learning weighted metrics to minimize nearest-
neighbor classification error. IEEE Transaction on Pattern Analisys and
Machine Intelligence, 28(7), 2006.

P. Pavan Kumar, A. Agarwal, and C. Bhagvati. A string matching based
algorithm for performance evaluation of mathematical expression recognition.

Sadhana, 39(1):63-79, 2014.

B. Pearlmutter. Learning state space trajectories in recurrent neural net-
works. In International Joint Conference on Neural Networks, volume 2,
pages 365-372, 1989.

I. Phillips. Methodologies for using UW databases for OCR and image un-
derstanding systems. In Proc. SPIE, Document Recognition V, volume 3305,
pages 112-127, 1998.

R. Plamondon and S. Srihari. Online and off-line handwriting recognition:
a comprehensive survey. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 22(1):63-84, 2000.

D. Prusa and V. Hlava¢. Mathematical formulae recognition using 2d gram-
mars. International Conference on Document Analysis and Recognition, 2:
849-853, 2007.

J. Puigcerver, A. H. Toselli, and E. Vidal. Word-graph and character-lattice
combination for kws in handwritten documents. In International Conference
on Frontiers in Handwriting Recognition (ICFHR), pages 181186, 2014.

FAM-DSIC-UPV 207

Bibliography

S. Quiniou, H. Mouchere, S. Saldarriaga, C. Viard-Gaudin, E. Morin, S. Pe-
titrenaud, and S. Medjkoune. HAMEX - A Handwritten and Audio Dataset
of Mathematical Expressions. In Document Analysis and Recognition (IC-
DAR), 2011 International Conference on, pages 452-456, Sept 2011.

V. Romero, A. Fornés, N. Serrano, J. Sanchez, A. Toselli, V. Frinken, E. Vi-
dal, and J. Lladés. The ESPOSALLES database: An ancient marriage li-
cense corpus for off-line handwriting recognition. Pattern Recognition, 46:
1658-1669, 2013.

N. Roshanbin and J. Miller. A survey and analysis of current CAPTCHA
approaches. J. Web Eng., 12(1-2):1-40, 2013.

S. A. Ross, J. A. Halderman, and A. Finkelstein. Sketcha: A CAPTCHA
based on line drawings of 3D models. pages 821-830, 2010.

D. Roth. On the hardness of approximate reasoning. Artificial Intelligence,
82(1-2):273-302, 1996.

A. Rusu and V. Govindaraju. Handwritten CAPTCHA: Using the difference
in the abilities of humans and machines in reading handwritten words. In
International Conference on Frontiers in Handwriting Recognition (ICFHR),
pages 226-231, 2004.

A. Rusu, R. Docimo, and A. Rusu. Leveraging cognitive factors in securing
WWW with CAPTCHA. In Proceedings of the USENIX Conference on Web
Application Development (WebApps), pages 5-5, 2010.

K. Sain, A. Dasgupta, and U. Garain. EMERS: a tree matching based perfor-
mance evaluation of mathematical expression recognition systems. IJDAR,
pages 1-11, 2010.

M. Schuster and K. Paliwal. Bidirectional recurrent neural networks. Signal
Processing, IEEE Transactions on, 45(11):2673-2681, 1997.

F. Shafait, D. Keysers, and T. Breuel. Performance evaluation and bench-
marking of six-page segmentation algorithms. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 30(6):941-954, 2008.

Y. Shi and F. Soong. A symbol graph based handwritten math expression
recognition. In International Conference on Pattern Recognition, pages 1-4,
2008.

208 FAM-DSIC-UPV

Bibliography

Y. Shi, H. Li, and F. K. Soong. A Unified Framework for Symbol Segmen-
tation and Recognition of Handwritten Mathematical Expressions. In Inter-

national Conference on Document Analysis and Recognition, pages 854-858,
Washington, DC, 2007.

M. Shirali-Shahreza and S. Shirali-Shahreza. Drawing CAPTCHA. In Proc.
ITI, pages 475-480, 2006.

M. Shirali-Shahreza and S. Shirali-Shahreza. Motion CAPTCHA. In Proc.
HSI, pages 1042-1044, 2008.

S. Shirali-Shahreza, and M. Shirali-Shahreza. Multilingual highlighting
CAPTCHA. In Proc. ITNG, pages 447-452, 2011.

S. Shirali-Shahreza, G. Penn, R. Balakrishnan, and Y. Ganjali. SeeSay and
HearSay CAPTCHA for mobile interaction. In Proceedings of the SIGCHI
conference on Human Factors in Computing systems (CHI), pages 2147-2156,
2013.

R. Sibson. SLINK: an optimally efficient algorithm for the single-link cluster
method. The Computer Journal, 16(1):30-34, 1973.

P. Y. Simard, R. Szeliski, J. Benaloh, J. Couvreur, and I. Calinov. Using
character recognition and segmentation to tell computer from humans. In

Proceedings of the Intl. Conf. on Document Analysis and Recgnition (IC-
DAR), page 418, 2003.

F. Simistira, V. Katsouros, and G. Carayannis. A Template Matching Dis-
tance for Recognition of On-Line Mathematical Symbols. In Frontiers in
Handwriting Recognition (ICFHR), International Conference on, pages 415—
420, 2008.

F. Simistira, V. Papavassiliou, V. Katsouros, and G. Carayannis. Recognition
of spatial relations in mathematical formulas. In Frontiers in Handwriting
Recognition (ICFHR), International Conference on, pages 164-168, 2014.

D. Stalnaker and R. Zanibbi. Math expression retrieval using an inverted
index over symbol pairs. In Document Recognition and Retrieval (DRR),
2015.

J. Stria, M. Bresler, D. Prusa, and V. Hlavac. MfrDB: Database of Annotated
On-Line Mathematical Formulae. In Proceedings of the 2012 International

Conference on Frontiers in Handwriting Recognition, ICFHR 12, pages 542—
547, Washington, DC, USA, 2012. IEEE Computer Society.

FAM-DSIC-UPV 209

Bibliography

B. Su, X. Ding, L. Peng, and C. Liu. A novel baseline-independent feature set
for arabic handwriting recognition. In Document Analysis and Recognition,
International Conference on, pages 1250-1254, 2013.

M. Suzuki, F. Tamari, R. Fukuda, S. Uchida, and T. Kanahori. Infty- an inte-
grated ocr system for mathematical documents. In C. Vanoirbeek, C. Roisin,

and E.Munson, editors, Proc. of ACM Symposium on Document Engineering,
pages 95-104, Grenoble, 2003.

M. Suzuki, S. Uchida, and A. Nomura. A ground-truthed mathematical char-
acter and symbol image database. In International Conference on Document
Analysis and Recognition, pages 675-679 Vol. 2, Aug 2005.

E. Tapia and R. Rojas. Recognition of on-line handwritten mathematical
expressions using a minimum spanning tree construction and symbol domi-
nance. In Graphics Recognition. Recent Advances and Perspectives, volume
3088 of Lecture Notes in Computer Science, pages 329-340. Springer Berlin
Heidelberg, 2004.

A. Thammano and S. Rugkunchon. A neural network model for online hand-
written mathematical symbol recognition. In D.-S. Huang, K. Li, and G. Ir-
win, editors, Intelligent Computing, volume 4113 of Lecture Notes in Com-
puter Science, pages 292-298. Springer Berlin / Heidelberg, 2006.

X. Tian and Y. Zhang. Segmentation of touching characters in mathematical
expressions using contour feature technique. In ACIS International Confer-
ence on Software Engineering, Artificial Intelligence, Networking, and Par-
allel/Distributed Computing, volume 1, pages 206-209, July 2007.

A. Toselli, A. Juan, and E. Vidal. Spontaneous handwriting recognition
and classification. In Proc. of the 17th International Conference on Pattern
Recognition, pages 433436, Cambridge, UK, August 2004a.

A. Toselli, M. Pastor, and E. Vidal. On-line handwriting recognition system
for tamil handwritten characters. In Pattern Recognition and Image Analysis,
volume 4477 of Lecture Notes in Computer Science, pages 370-377. Springer
Berlin / Heidelberg, 2007.

A. H. Toselli, A. Juan, D. Keysers, J. Gonzélez, I. Salvador, H. Ney, E. Vidal,
and F. Casacuberta. Integrated Handwriting Recognition and Interpretation
using Finite-State Models. [JPRAI 18(4):519-539, June 2004b.

210 FAM-DSIC-UPV

Bibliography

K. Toyozumi, N. Yamada, T. Kitasaka, K. Mori, Y. Suenaga, K. Mase, and
T. Takahashi. A study of symbol segmentation method for handwritten math-
ematical formula recognition using mathematical structure information. In

International Conference on Pattern Recognition, volume 2, pages 630633,
Aug 2004.

H. Twaakyondo and M. Okamoto. Structure analysis and recognition of
mathematical expressions. In International Conference on Document Analy-
sis and Recognition, volume 1, pages 430-437, Aug 1995.

L. von Ahn, M. Blum, and J. Langford. Telling humans and computers apart
automatically. Communications of the ACM, 47(2):56-60, 2004.

L. von Ahn, B. Maurer, C. McMillen, D. Abraham, and M. Blum. re-
CAPTCHA: Human-based character recognition via web security measures.
Science, 321(5895), 2008.

M. J. Wainwright and M. I. Jordan. Graphical Models, Exponential Families,
and Variational Inference, volume 1. Now Publishers Inc., Hanover, MA,

USA, Jan. 2008.

Y. Weiss. Correctness of local probability propagation in graphical models
with loops, 2000.

F. Wessel, R. Schluter, K. Macherey, and H. Ney. Confidence measures
for large vocabulary continuous speech recognition. IEEE Transactions on
Speech and Audio Processing, 9(3):288-298, Mar 2001.

H.-J. Winkler. HMM-based handwritten symbol recognition using on-line and
off-line features. In IEEE International Conference on Acoustics, Speech, and
Signal Processing, volume 6, pages 3438-3441, 1996.

J. O. Wobbrock, A. D. Wilson, and Y. Li. Gestures without libraries, toolkits
or training: A $1 recognizer for user interface prototypes. In Proceedings of
Annual ACM Symposium on User Interface Software and Technology (UIST),
pages 159-168, 2007.

Y. Xu, G. Reynaga, S. Chiasson, J.-M. Frahm, F. Monrose, and
P. Van Oorschot. Security and usability challenges of moving-object
CAPTCHASs: Decoding codewords in motion. In Proceedings of the USENIX
Conference on Security Symposium, pages 4-20, 2012.

FAM-DSIC-UPV 211

Bibliography

R. Yamamoto, S. Sako, T. Nishimoto, and S. Sagayama. On-line recognition
of handwritten mathematical expressions based on stroke-based stochastic
context-free grammar. IEIC Technical Report, 2006.

J. Yan and A. S. El Ahmad. Usability of CAPTCHASs or usability issues in
CAPTCHA design. In Proceedings of the Symposium on Usable Privacy and
Security (SOUPS), pages 44-52, 2008.

M. Yang, K. Kpalma, and J. Ronsin. A Survey of Shape Feature Extraction
Techniques. In P.-Y. Yin, editor, Pattern Recognition, pages 43-90. Nov.
2008.

J. S. Yedidia, W. T. Freeman, and Y. Weiss. Exploring artificial intelli-
gence in the new millennium. chapter Understanding Belief Propagation and

Its Generalizations, pages 239-269. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 2003.

R. Zanibbi and D. Blostein. Recognition and retrieval of mathematical ex-
pressions. International Journal on Document Analysis and Recognition, 15
(4):331-357, 2012.

R. Zanibbi, D. Blostein, and J. Cordy. Recognizing mathematical expressions
using tree transformation. IEEE Trans. on Pattern Analysis and Machine
Intelligence, 24(11):1-13, 2002.

R. Zanibbi, A. Pillay, H. Mouchere, C. Viard-Gaudin, and D. Blostein.
Stroke-based performance metrics for handwritten mathematical expressions.
In International Conference on Document Analysis and Recognition, pages
334-338, Sept 2011.

R. Zanibbi, H. Mouchere, and C. Viard-Gaudin. Evaluating structural pat-
tern recognition for handwritten math via primitive label graphs. In Docu-
ment Recognition and Retrieval (DRR), 2013.

M. Zelkowitz. Security on the Web. Academic Press, 2001.

L. Zhang, D. Blostein, and R. Zanibbi. Using fuzzy logic to analyze su-
perscript and subscript relations in handwritten mathematical expressions.
In International Conference on Document Analysis and Recognition, pages
972-976 Vol. 2, Aug 2005.

212 FAM-DSIC-UPV

	Acknowledgements / Agradecimientos
	Abstract / Resumen / Resum
	Introduction
	Motivation
	Mathematical Expression Recognition
	Symbol Segmentation
	Symbol Recognition
	Structural Analysis

	Scientific Goals
	Document Structure

	Mathematical Expression Recognition
	Introduction
	Statistical Framework
	Symbol Likelihood
	Structural Probability
	2D Probabilistic Context-Free Grammars
	Parse Tree Probability

	Symbol Recognition
	Symbol Duration
	Symbol Segmentation
	Introduction
	Segmentation Model

	Handwritten Symbol Classification
	Introduction
	Online Features
	Offline Features
	Classifiers

	Printed Symbol Classification
	Introduction
	Feature Extraction
	Classifiers

	Structural Analysis
	Introduction
	Spatial Relationships Classification
	Geometric Features: Bounding Boxes
	Shape Features: Polar Histograms

	Clustering-based Penalty
	2D-PCFG Estimation
	Viterbi Estimation
	Constrained Parsing

	Parsing Mathematical Expressions
	2D-PCFG Parsing Algorithm
	Complexity and Search Space
	Multi-primitive Symbol Recognition
	Training Process

	The Problem of Performance Evaluation
	Introduction
	Performance Evaluation Metrics
	Early Global Metrics
	EMERS
	IMEGE
	Label Graphs
	String Matching

	Summary

	Experimentation
	Datasets
	Printed Mathematical Expressions
	Handwritten Mathematical Expressions

	Classification of Handwritten Symbols
	Classifiers Evaluation: HMM and RNN
	Features Evaluation: Online and Offline
	Comparison with other approaches
	Summary

	Classification of Printed Symbols
	Experimental setup
	Results and Discussion
	Summary

	Spatial Relationships Classification
	Geometric Feature Results
	Shape-Based Feature Results
	Discussion
	Summary

	Recognition of Handwritten Math Expressions
	Experimental Setup
	CROHME 2013 Experiments
	CROHME 2014 Experiments
	Summary

	Recognition of Printed Math Expressions
	Experimental Setup
	Results and Discussion
	Summary

	Applications
	Open-source Software
	Printed Math Expression Recognition
	Handwritten Math Expression Recognition
	Features for Handwriting Recognition
	Image-based Evaluation

	LaTeX Transcription and Information Retrieval
	CAPTCHA: Math-based CAPTCHA
	Introduction
	Related Work
	System Design
	Evaluation
	Discussion

	Layout Analysis of Structured Documents
	Introduction
	Segmentation of Structured Documents
	Probabilistic Graphical Models
	Grammatical Model
	Text Classification Features
	Evaluation
	Summary

	Conclusions
	Summary
	Scientific Contributions

	List of Acronyms
	List of Figures
	List of Tables
	List of Algorithms

