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Abstract

This paper deals mainly with the structural properties of positively reachability
and stability. We focus our attention on positive discrete-time systems and
analyze the behavior of these systems subject to some perturbation. The effects
of permutation and similar transformations are discussed in order to determine
the structure of the perturbation such that the closed-loop system is positively
reachable and stable. Finally, the results are applied to the Leslie Population
Model. It is shown the structure of the perturbation such that the properties of
the original system remain and an explicit expression of its set of positively
reachable population is given.

Keywords: Positive linear system; M-matrix; Nonnegative matrix; Stability;
Reachability; Perturbation

1 Introduction
Systems of difference equations with nonnegative coefficients are used as models in

many fields in which the variables are subject to nonnegative restrictions. Examples

of such applications can be found in [1, 2, 3, 4, 5, 6, 7]. One of the main aims in

the study of real processes is analyze if the system satisfies the stability property.

However, many times important properties such as stability and reachability are

undetectable. Thus, it is important to know if the process disturbances can be

attenuated by a feedback or if a trajectory will reach or not a desired state using

nonnegative controls. In [8] some results related to these topics are given.

The problem is that usually the system can be subject to disturbances and it

is important to know what conditions must satisfy these disturbances so that the

structure and properties that characterize our system remain. In this paper we

consider a positive linear discrete-time system, stable and positively reachable. We

propose the problem of determining what kind of perturbations can be used so that

the closed-loop system maintains stability and positively reachability. Some results

on the structure of the disturbances are given. Motivated by the application of the

obtained results in some real processes, we focus on the case where the state matrix

has a companion structure. In particular, we study the Leslie population model and

we give conditions for the system be positively reachable as well as we characterize

the collection of perturbations under which the model remains stable.

The rest of the paper is organized as follows. Section 2 presents some results

on stability of perturbed positive systems. In Section 3, previous application of a

perturbation to the initial system, we analyze how should be the collection of dis-

turbance in order to the closed-loop system remains stability and also be positively
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reachable. Section 4 gives a real application that illustrates the results provided in

the paper. Finally, some final conclusions are given.

Before proceeding, we introduce some notation, definitions and basic results. We

recall, see [9], that a matrix M is called nonnegative if all its entries are nonnegative

and it is denoted by M ≥ 0. A matrix M is an M-matrix if M = sI − A, where

A ≥ 0 and s ≥ ρ(A), where ρ(·) denotes the spectral radius of a matrix, that is the

maximum modulus of its eigenvalues.

The stability of a matrix M is equivalent to the condition ρ(M) < 1. From the

literature this property is also referred to as Schur stable matrix or convergent

matrix. In [9] a characterization of this property for nonnegative matrices is given.

Thus, a nonnegative matrix M is stable if and only if (I −M)−1 ≥ 0. Finally, the

norm ‖M‖1 is the maximum absolute column sum of M .

2 Stability of perturbed positive systems
Consider an invariant discrete-time system

x(k + 1) = Ax(k), k ≥ 0,

where the vector x(k) ∈ Rn and A is a nonnegative matrix, that is A ≥ O.

Consider that the system is asymptotically stable, that is ρ(A) < 1, and let ∆ ≥ O
be a perturbation matrix. We can prove that the perturbed system is asymptotically

stable, ρ(A+∆) < 1 if and only if ρ(∆(I−A)−1) < 1. This is established as follows.

Proposition 1 Let A ≥ O with ρ(A) < 1 and ∆ ≥ O be. The following assertions

are equivalent

(a) ∆(I − (A+ ∆))−1 ≥ O.

(b) ρ(∆(I −A)−1) < 1.

(c) ρ(A+ ∆) < 1.

Proof. Since ρ(A) < 1, then H = ∆(I −A)−1 ≥ O.

(a)⇒ (b) As H ≥ O, r = ρ(H) is an eigenvalue of H with a nonnegative eigenvector

v. From Hv = rv and noting that ∆(I − (A + ∆))−1 = H(I − H)−1 we get to

∆(I − (A+ ∆))−1v = r
1−rv ≥ 0. Thus, 1− ρ(H) > 0.

(b)⇒ (c) If ρ(∆(I −A)−1) < 1, then I − (A+ ∆) = (I −∆(I −A)−1)(I −A) is an

invertible M-matrix whose inverse matrix is nonnegative, I−A and I−∆(I−A)−1

are M-matrices. Then, ρ(A+ ∆) < 1.

(c) ⇒ (a) It is straightforward since ρ(A+ ∆) < 1 and ∆ ≥ O. �

When the matrix A has a companion structure, under similarity, we can take the

entries of A of the upper diagonal equal to 1,

A =


a1 1 · · · 0

a2 0 · · · 0
...

... · · ·
...

an−1 0 · · · 1

an 0 · · · 0

 . (1)

This matrix satisfies |I −A| = 1−
∑n

j=1 aj .



Cantó et al. Page 3 of 12

If the entries {ai ≥ 0, i = 1, . . . n} are perturbed, ai + δi with δi ≥ 0, i = 1, . . . , n,

the new perturbed matrix A+ ∆, with

∆ =


δ1 0 · · · 0

δ2 0 · · · 0
...

... · · ·
...

δn−1 0 · · · 0

δn 0 · · · 0

 , (2)

satisfies the following result.

Proposition 2 Consider matrix A as (1) and matrix ∆ ≥ O as (2), then A + ∆

is asymptotically stable if and only if ‖∆‖1 < 1− ‖A‖1.

Proof. From structure of matrices A and ∆ and by a simple calculation we check

ρ(∆(I −A)−1) =

∑n
j=1 δj

|I −A|
.

Hence, A + ∆ is asymptotically stable if and only if

n∑
j=1

δj < 1 −
n∑

j=1

aj , that is

‖∆‖1 < 1− ‖A‖1. �

Note that, if δi = 1, i = 1, . . . , n, then A + ∆ is not asymptotically stable. By

definition of A and ∆ , we can check that the matrix ∆(I − (A + ∆))−1 is not a

nonnegative matrix since all its entries are equal to
−1

(n− 1) + a1 + · · ·+ an
< 0.

From Proposition 1, ρ(A + ∆) ≥ 1, then A + ∆ is not asymptotically stable. On

the other hand, the characterization of Proposition 2 suggests that the parameters

of the perturbation must satisfy 0 ≤ δi < 1, i = 1, . . . , n.

3 Stability and positive reachability of perturbed positive systems
Now we fix our attention in a positive control discrete-time system

x(k + 1) = Ax(k) +Bu(k), k ≥ 0,

where the state vector x(k) ∈ Rn, the control vector u(k) ∈ Rm and A and B are

nonnegative matrices, that is A, B ≥ O. This system is denoted by (A,B) ≥ O

and it is a positive system since for all nonnegative initial state x(0) ≥ 0 and for

all nonnegative control or input sequences {u(j)} ≥ 0, j ≥ 0, the trajectory of the

system is nonnegative.

Using a nonnegative feedback u(k) = ∆x(k), ∆ ≥ O, the closed-loop system is

given by the state matrix A + B∆. If the initial system is asymptotically stable,

ρ(A) < 1, we want obtain conditions on ∆ in order to ensure that the new closed-

loop system is also asymptotically stable. Initially we have the straightforward result

from the Proposition 1.

Proposition 3 Let A, B ≥ O with ρ(A) < 1 and ∆ = δS ≥ 0 where S = (Im O),

then A+B∆ is asymptotically stable if and only if δ <
1

R
with R = ρ(BS(I−A)−1).
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In several applications will be important to reach a given state using an adequate

control sequence. Thus, (A,B) is reachable if for every final state xf ∈ Rn there

exists a finite input sequence transferring the initial state to xf . This property is

known as reachability property and it is characterized from the range of reachability

matrix R(A, B) =
(
B AB . . . An−1B

)
. Thus, (A,B) is reachable if and only if the

matrix R(A, B) has full rank. The set of all reachable states is the subspace generate

by the independent linear columns of R(A, B). When the system is reachable this

subspace is the space Rn. But when the nonnegative restrictions are imposed new

features arise and we have the concept of positive reachability property. The interest

in this property is motivated by the large number of fields (like bioengineering,

economic modelling, biology and behavioral science) in which it is always necessary

that the inputs u are also nonnegative. Thus, the system (A,B) ≥ 0 is positively

reachable if for every final state xf ∈ Rn
+ there exists a finite nonnegative input

sequence transferring the initial state to xf .

This property was studied in [10], [11]. Some results given in these works establish

that this property holds if and only if the reachability matrix contains a monomial

submatrix of order n. Recall that, a monomial vector is a (nonzero) multiple of some

unit basis vector, and a monomial matrix M is a matrix whose columns are distinct

monomial vectors, and can be decomposed as M = DP where D is a diagonal

matrix and P is a permutation matrix. In this case, the set of all positively reachable

nonnegative states is the cone generate by the independent monomial columns of

R(A, B). When the system is positively reachable this cone is Rn
+.

It is widely know two systems are similar if we can obtain one of the other one

by a change of base, x(k) = T x̂(k). Thus, system (A,B) is similar to system (Â, B̂)

if there exists a nonsingular matrix T such that Â = T−1AT and B̂ = T−1B.

The general reachability property is preserved under similarity transformations

however, two similar positive systems are not necessarily both positively reach-

able. Then, the concept of positive similar is introduced in the following way. Two

positive systems (A,B) and (Â, B̂) are positively similar if there exists a square non-

negative monomial matrix M satisfying Â = M−1AM and B̂ = M−1B. In [12]

is established that the positive reachability property is transferred under positive

similarity.

Moreover, in [10] the authors gave a positive reachability canonical form. This

canonical form has a upper triangular block structure where the diagonal blocks

are formed by cyclic, nilpotent and companion submatrices. Using this canonical

structure we consider the pair (A,B)

A =


A1 Φ · · · Φ

O A2 · · · Φ
...

... · · ·
...

O O · · · Φ

O O · · · Ah

 , B =


B1

B2

...

Bh−1

Bh

 (3)

with Aj ∈ Rnj×nj

+ companion matrix as (1) whose entries of the first column are

{aji , i = 1, . . . , nj}, Bj ∈ Rnj×h
+ has all entries zero except the entry of position
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(nj , h− j + 1) denoted by bj , for all j = 1, . . . , h and

h∑
j=1

nj = n. Moreover Φ ≥ O

only can have nonzero entries in the first column. This system is positively reachable

since satisfies the structure of the canonical form and it is easy to prove that the

reachability matrix contains a monomial matrix of order n.

From now on, without loss of generality we assume that the initial time is zero,

because otherwise we just need to perform a change of variables first to transfer the

initial state to zero.

Returning to the initial approach we want study the invariance of both properties,

stability and positive reachability when the system is subjected to perturbations.

Proposition 4 Let A, B ≥ O be given as in (3). Consider the perturbation matrix

∆ = (∆1 . . .∆h) being ∆j = δjSj ≥ O and Sj ∈ Rh×nj

+ has all entries zero except

the entry of position (h− j + 1, nj) which is equal to 1, j = 1, . . . , h. Then

(a) The perturbed system (A+B∆, B) is also positively reachable from zero.

(b) If the system (A,B) is asymptotically stable the perturbed system (A+B∆, B)

is asymptotically stable if and only if δj <
1−‖Aj‖1

bj
, j = 1, . . . , h.

Proof.

(a) To prove the positive reachability of the new system (A+B∆), we construct

its reachability matrix and it is easy to check that it has a monomial matrix

of size n× n.

(b) By structure of A, B and ∆ we have

ρ(B∆(I −A)−1) = max
1≤j≤n

ρ(Bj∆j(I −Aj)
−1) = max

1≤j≤n

bjδj
|I −Aj |

.

By Propositions 1 and 3 we have that the new system (A+B∆) is asymptot-

ically stable if and only if δj <
1−‖Aj‖1

bj
, for all j = 1, . . . , h. �

4 Application to the Leslie’s Population Model
Leslie matrix is a discrete, age-structured model of population growth. It is used to

model the changes in a population of organisms over a period of time. For that, it

is widely used in population ecology and demography to determine the growth of a

population, as well as the age distribution within the population over time. There

are a lot of studies on this matrix. To obtain more information on some applications

from population matrix models in ecological and evolutionary studies see [13] and

the references therein.

The Leslie model combines births and deaths in a single model and it is based on

these hypotheses: (i) The age x is a variable starting from 0 and subdivided into

n discrete age classes. The age class i corresponds to the ensemble of individuals

whose ages satisfies i − 1 ≤ x < i, i = 1, . . . , n. (ii) Time is a discrete variable

denoted by k and the time-step is equal to the duration of each age class. That is,

from k to k + 1 all individuals go from class i to i+ 1.

If we denote by x(k) the number of individuals in each age class at time k and

u(k) the measure of immigration or stocking rate, then the Leslie model is given by

x(k + 1) = Āx(k) + B̄u(k)
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where Ā represents the n × n Leslie matrix and B̄ represents the number of indi-

viduals of age i entering the system per unit of control,

Ā =


f1 f2 · · · fn

s1 0
. . .

...

sn−1 0

 , B̄ =


b

0
...

0


where the entries of the first row of the matrix Ā are given by the fertility, fi and

the sub-diagonal is given by the survival, si and there are zeros elsewhere [14]. The

fertility and survival rates are generally referred to as vital rates. And the entry b

represents the fertility from an extern input. [15]

The eigenstructure of the matrix Ā gives many information on the model. Thus,

the dominant eigenvalue λ determines the population growth in the long run. The

other eigenvalues determine transient dynamics of the population. When λ = 1 the

population is stationary, λ > 1 there is an over-population and when λ < 1 the

population diminish. On the other hand, the right eigenvectors include the stable

age distribution and the left eigenvectors include the reproductive value [16].

In addition, the pair (Ā, B̄) is similar to the pair (A,B) via the diagonal matrix

S = diag(1, s1, s1s2, . . . , s1 · · · sn−1) being A = S−1ĀS and B = S−1B̄. This

process is represented by the following discrete-time system

x(k + 1) = Ax(k) +Bu(k)

with

A =


a1 · · · an−1 an

1 · · · 0 0
... · · ·

...
...

0 · · · 0 0

0 · · · 1 0

 , B =


b

0
...

0

 (4)

where a1 = f1, aj = fj
∏j−1

i=1 si, j = 2, . . . , n.

Since A and B are nonnegative matrices we have a positive system. In addition,

the system is reachable since the reachability matrix R(A, B) has full rank but the

problem is that we can not ensure that the used control is nonnegative. That is, we

can not assert that we can achieve a certain population from nonnegative controls.

Maybe some nonnegative states can be reached by means of nonnegative inputs

but not all because the system is not positively reachable, since R(A, B) does not

contain a monomial submatrix of order n. To analyze this problem we will use the

results of above sections. First, we make some comments about the transformations

that allows us to obtain the system of interest.
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We define Tz = (I − N) and T = PTz where P is the antidiagonal permutation

matrix, being

N =


0 a1 · · · an−2 an−1

0 0 · · · an−3 an−2
...

... · · ·
...

...

0 0 · · · 0 a1

0 0 · · · 0 0

 . (5)

Since N is a nilpotent matrix, then ρ(N) < 1 and Tz is an invertible M-matrix with

T−1z =

n−1∑
i=0

N i. Thus, T−1z and T−1 are nonnegative matrices.

The set of positively reachable states is given in the following result.

Proposition 5 The set of population states which can be obtained in the Leslie’s

Population Model from a nonnegative control sequence is the cone

X =< T−1z e1, . . . , T
−1
z en > (6)

where ei is the ith-canonical vector and Tz = (I −N) with N as (5).

Proof. First, we observe that the system (A,B) given in (4) is similar to the system

(Â, B̂) where

Â =


a1 1 · · · 0

a2 0 · · · 0
...

... · · ·
...

an−1 0 · · · 1

an 0 · · · 0

 , B̂ =


0

0
...

b

 (7)

by means of the transformation matrix T with T = PTz where P is the antidiagonal

permutation matrix.

As the reachability matrix of this system (Â, B̂) contains a monomial submatrix

of order n then the system is positively reachable. Hence, we can ensure that for

all nonnegative state x̂ there exists a nonnegative sequence of control u = (u(n −
1) . . . u(1) u(0))T ≥ O such that

R
(
B̂, Â

)
u = x̂.

Then R (B, A)u = T−1x̂. So, x is reachable by means of a nonnegative control

sequence if and only if Tx is nonnegative.

Summarizing the previous comments, in the system (A, B), a state x is reachable

by means of a nonnegative control sequence if and only if there exists x̂ ≥ 0 such

that x = T−1x̂. Thus, the set of positively reachable states is the image of the

application T−1 restricted on Rn
+. From Tz = (I−N) and Tz ≥ O then {T−1ej , j =

1, . . . , n} are independent linear nonnegative vectors and they generate the cone of
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the reachable states by a nonnegative control sequence

X = {x ∈ Rn / ∃x̂ ∈ Rn
+, x = T−1x̂} =

=< T−1e1, . . . , T
−1en >= < T−1z e1, . . . , T

−1
z en > .

�

Note that using the expression of matrix T−1z =

n−1∑
i=0

N i we can write

X =< e1, (I +N)e2, . . . ,

i−1∑
j=0

N jei, . . . ,

n−1∑
j=0

N jen > . (8)

Moreover, a specific population x = (x1 x2 . . . xn)T can be obtained in the Leslie’s

Population Model from a nonnegative control sequence if and only if xn ≥ 0 and

xn−i ≥
i∑

k=1

akxn−i+k, i = 1, . . . , n− 1, (9)

Now, we study the Leslie model submitted to some kind of perturbations and we

analyze the reachability and stability properties. At this point should discuss how

the structure of the disturbance is such that the properties of the initial system

remain: be stable and have the same set of positively reachable states.

If we want keep the same set of the reachable states using a nonnegative control

sequence, then we only can consider perturbations of the kind ∆ = (0 0 . . . δ),

with δ ≥ 0. Thereby we have that the similar perturbed system (Â + B̂∆̂), with

Â = TAT−1, B̂ = TB and ∆̂ = ∆T−1, has a structure as (7). Then, it is sufficient

apply Proposition 4 for h = 1 to prove that the positive reachability property

is preserved. In the same way of Proposition 5 we can establish that the set of

positively reachable population is given by (6).

To study the stability of the closed-loop perturbed system it is sufficient to analyze

the spectral radius of the matrix Â + B̂∆̂. Applying the item (b) of Proposition 4

to this matrix we obtain that ρ(A+B∆) = ρ(Â+ B̂∆̂) < 1 if and only if δ < |I−A|
b .

These results are summarized in the following proposition.

Proposition 6 Let A, B ≥ O be given as in (4). Consider the perturbation matrix

∆ = (0 0 . . . δ) such that δ ≥ 0. Then

(a) The perturbed system (A+B∆, B) has the same cone of positively reachable

states from zero than (A, B).

(b) If the system (A,B) is asymptotically stable then the perturbed system (A +

B∆, B) is asymptotically stable if and only if δ < |I−A|
b .

The obtained results in this section can be extended to a population with several

groups or types of individuals where the group Gi can also receive births from the

rest of the groups Gj , j > i. Without loss of generality, we can see the results for

the case of a species with two types or groups of individuals G1 and G2 so that one

of them, the G2 group, also provides G1 group births. Then, we obtain that the

process is modeled by a system (Ā, B̄)

Ā =

(
Ā1 Φ̄

O Ā2

)
, B̄ =

(
B̄1

B̄2

)
,
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where the matrix blocks are defined as (4) and Φ̄ represents the connection between

the two groups. After applying the appropriate transformation S = diag(S1, S2)

where Sj , j = 1, 2, is constructed as the transformation matrix used from system

(4) to (4), the system (Ā, B̄) is transformed in the system (A,B)

A =

(
A1 Φ

O A2

)
, B =

(
B1

B2

)
, (10)

where for each j = 1, 2, Aj ∈ Rnj×nj

+ is a companion matrix as (4) whose entries of

the first row are {aji , i = 1, . . . , nj}, aj1 = f j1 ,ajl = f jl
∏l−1

i=1 s
j
i , l = 2, . . . , nj being

{f ji , i = 1, . . . , nj} and {sji , i = 1, . . . , nj−1} the fertility and survival coefficients

of the type or group Gj , respectively. Moreover, Bj ∈ Rnj×2
+ has all entries zero

except the (nj−1 + 1, 3 − j)-entry denoted by bj and n1 + n2 = n. Moreover, in

this case we consider the matrix Φ ≥ O has only one nonzero element in position

(1, n1), given by ϕ
∏n2−1

i=1 sji with ϕ the fertility coefficient from the last age class

of the group G2 to group G1.

Using the transformation matrix T = diag(T1, T2) where Tj = P (I−Nj), j = 1, 2

we obtain a system (Â, B̂) as (3). Then, applying the results on positive reachability

and stability when the system is submitted to a perturbation we obtain that the set

X of population states of the Leslie’s Population Model (10) which can be reached

from zero using a nonnegative control sequence is the cone

X = X1 ⊕X2

X1 = {(xT1 0)T / x1 ∈ X̃1} and X2 = {(0 xT2 )T / x2 ∈ X̃2}
(11)

being X̃j , constructed as in (8), X̃j =< e1, (I+Nj)e2, . . . ,
∑nj−1

i=0 N i
1enj

>, where

Tj = P (I −Nj), j = 1, 2.

And if we consider the perturbation matrix ∆ = (∆1 ∆2) being ∆j = δjSj ≥ O

such that Sj ∈ R2×nj

+ has only one nonzero element in position (3− j, nj) equal to

1, j = 1, 2, then

(a) The perturbed system (A+B∆, B) has the same cone of positively reachable

states from zero than (A, B).

(b) If the system (A,B) is asymptotically stable then the perturbed system (A+

B∆, B) is asymptotically stable if and only if δj <
|I−Aj |

bj
, j = 1, 2.

To clarify we give the following example.

Example 1 Consider a population with two groups or types of individuals where

the type or group G1 can also receive births from the group G2, where each of them

has four age classes with the following fertility f jl , survival sjl and fertility from an

extern input bj, coefficients

f11 = 0, f12 = 1, f13 = 4, s11 = 0.3, s12 = 0.2, s13 = 0.4, b1 = 1

f21 = 0, f22 = 1, f23 = 3, s21 = 0.4, s22 = 0.2, s23 = 0.3, b2 = 1,

and the fertility coefficient from the last age class of the group G2 to group G1 is

ϕ = 3.
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By the above results, a state is positively reachable if x − An−1x0 is in the cone

(11). For instance, if we consider a initial population

x0 = (330 290 210 1030 300 200)T

in the Leslie’s Model (10), a population state is positively reachable if there exists a

nonnegative control such that x = An−1x0+R(A,B)u, or equivalently, if x−An−1x0
is in the cone

X = {(xT1 0)T / x1 ∈ X̃1} ⊕ {(0 xT2 )T / x2 ∈ X̃2}

X̃1 =< e1, e2, 0.3e1 + e3 >

X̃2 =< e1, e2, 0.4e1 + e3 >

Note that to obtain de cone X we use conditions given in (9). And graphically the

cones X̃1 and X̃2 would be the following

x1

x2

x3

x1

x2

x3

Figure 1 Positively reachable population from 0 in the Leslie’s Model (10).
Positive reachability cone of G1: Positive reachability cone of G2:
{x ∈ R3 : x1 ≥ 0.3x3, x3, x2 ≥ 0} {x ∈ R3 : x1 ≥ 0.4x3, x3, x2 ≥ 0}

Using the transformation matrix T we obtain the system (Â, B̂) given by (10)

Â1 =

 0 1 0

0.3 0 1

0.24 0 0

 , Â2 =

 0 1 0

0.4 0 1

0.24 0 0

 ,

B̂1 =

 0 0

0 0

0 1

 , B̂2 =

 0 0

0 0

1 0

 .

In fact this system is positively reachable and the nonnegative sequence control to

reach any state of X can be calculate using this system. If, for example, we want to

reach this population

x = (490 380 380 1300 600 1100)T ,

which satisfies that x̂ − Â2x̂0 ≥ 0, it is sufficient increase births by means of an

input calculate as

u = R−1
(
B̂, Â

)
(x̂− Â2x̂0),
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where u = (uT (2) uT (1) uT (0))T with u(j)) = (uT1 (j) uT2 (j), j = 0, 1, 2. Then, the

desired population is obtained using the following control or input of births at step

j and each group Gj

j G1 G2

0 70 50

1 432 195

2 788 234

Now, we observe that the system (A, B) is asymptotically stable since ρ(A) =

0.83 < 1. If we consider a perturbation

∆ =

(
0 0 0 0 0 δ2

0 0 δ1 0 0 0

)
,

the system (A+B∆, B) has the same cone of positively reachable states than (A, B)

and taking δ1 <
|I−A1|

b1
= 7 and δ2 <

|I−A2|
b2

= 4 we can ensure that the perturbed

system (A+B∆, B) is also asymptotically stable. For instance if δ1 = 6 and δ2 = 3

we have ρ(A+B∆) = 0.96 < 1.

5 Conclusions
Discrete-time positive systems are quite frequent in science and engineering. We

consider the problem of determining the structure of a perturbation such that a

perturbed positive discrete-time system has the positively reachability and stability

properties. In the general model, to solve this problem the structure of the positive

reachability canonical form introduced in [10] and positive similarity transformation

are used. The Leslie’s Population model is analyzed. It is a discrete-time positive

system, it is reachable, since the reachability matrix R(A, B) has full rank, but it is

not positively reachable, since R(A, B) does not contain a monomial submatrix of

order n. It is shown the explicit expression of the cone of population states which can

be obtained in the Leslie’s Population Model from a nonnegative control sequence.

Finally, a numerical example is given to clarify the obtained results.
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